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Preface

In recent years, there were several important steps forward in the development
of graphics hardware: shaders were introduced, GPUs became more general, and
GPU performance increased drastically. In consequence, many new techniques
appeared and novel rendering methods, such as deferred shading, became prac-
tical. �e latter was one of the key factors in enabling a high light count, which
added a never-before-seen realism to real-time graphics. �e related tech demos
were breathtaking, exhibiting enormous amounts of detail and complex surface
properties. Skin started to look quite realistic, and even hair rendering reached a
new level with image-based shading. Nonetheless, one effect remained very diffi-
cult to achieve: realistic shadows.

�e cover image demonstrates how versatile shadows can be. �e scene ex-
hibits a church hall with a large glass window. �e stained glass casts shadows in
the form of colored light, scattered by atmospheric effects to yield so-called God
rays. Finally, this light produces hard and so� shadows in the very complex scene,
where the leaf foliage interacts in complex ways to yield shadows on the detailed
grass ground. All these various effects, such as hard, so�, semitransparent, and vol-
umetric shadows, add significantly to the ambiance of the scene. As a whole, the
image also provides a good example of how we take the existence of shadows for
granted and how crucial they are for creating a pleasing and realistic image—just
imagine how dull the image would look like without any shadow.

Due to the importance of shadows for realistic rendering, the topic has re-
ceived much attention, especially in real-time contexts, where people generally
strive for realism but are limited by important performance considerations. �ese
two goals—realism and performance—are difficult to combine in general and, par-
ticularly, for shadows. Consequently, in recent years the number of shadow pub-
lications and algorithms has exploded. In particular, so� shadows that approach
physically plausible results became a major topic, and many approaches appeared.

xi



xii Preface

It was not until 2007, when graphics processing units made another tremendous
leap with the introduction of DirectX 10, that the first real-time accurate GPU
shadow algorithms appeared. �ese early algorithms clearly did not exhibit the
performance required for games or interactive applications. Ultimately, no algo-
rithm, even today, is capable of delivering an always-convincing result with real-
time performance.

In the effort to balance performance and quality, many different tracks ap-
peared that aimed for realistic, plausible, or even fake shadows, each one with
its particular advantages and disadvantages. Some of these approaches were even
good enough to ensure high quality in many application scenarios at an accept-
able performance. However, choosing the right solution for the right context has
become increasingly difficult given the wealth of existing possibilities. �is was a
significant problem because it made it difficult for practitioners to find an appropri-
ate approach for their task. �e description of these approaches were spread over
various scientific conferences or publications, and no general presentation existed.

It became apparent to us that there was a strong need for an overview, practical
guidance, and also theoretical awareness of the remaining challenges and limita-
tions to creating real-time shadows. In this spirit, we developed an overview of the
many different shadow techniques that led to this book.

With the PhD theses of two of the authors [Eisemann08a,Schwarz09] featuring
state-of-the-art chapters, and as the four authors met at various conferences, the
plan to transform these chapters into a book started to take shape. As a first step,
we wrote extended notes for a course that was held at SIGGRAPH Asia 2009 [Eise-
mann09] and Eurographics 2010 [Eisemann10]. While the course was relatively
exhaustive, we realized that the topic is much broader than what could be covered
in a course. Further, recent years brought related developments, such as volumet-
ric shadows, that have not yet been covered in an overview. It turned out that our
initial plan to explain, analyze, and discuss all important shadowing techniques
was more than ambitious. It was a project that, in the end, took us roughly more
than two years to finish.

Writing such a detailed overview was an exhausting challenge, but we hope
you agree that it was worth it. �is book covers many different algorithms, ad-
dresses more than 300 publications, and, hopefully, closes the void that previously
existed. We hope you will enjoy the book and that it will enlighten your way to
more realistic and convincing imagery.
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CHAPTER 1

Introduction

An old saying tells us that there is no light without shadow, and although it is orig-
inally a metaphor, it is perfectly true: without light, everything is dark . . . and def-
initely not very exciting; but as soon as there is a light source, there are also cast
shadows.

On the one hand, shadows are important for the understanding of scenes. We
better comprehend spatial relationships between objects and better succeed in lo-
calizing them in space. Further, we can deduce shape information, not only of the
shadow-casting elements but also of the receiver, by interpreting shadow deforma-
tions.

Shadows are also an artistic means. Many movies exploit shadows to illustrate
the presence of some person or object without revealing its actual appearance (just
think of the hundreds of Dracula movies out there). Figure 1.1 shows an example
where shadows are used in this manner. While we cannot directly see the camels,
their shadows complete our understanding of the scene.

Consequently, shadows are naturally a crucial element of image synthesis—and
remain a particular challenge for real-time graphics: while conceptually relatively
simple to compute, naive methods are usually extremely costly. Only via alternative
scene representations and GPU-adapted algorithms can one achieve the perfor-
mance that is needed to match today’s needs. Hence, the topic has spurred many
scientific publications in recent years, and the field of shadow algorithms today
shows a variety never seen before. Despite this wealth of publications, currently,
no single algorithm would prove convincing and satisfying in every given scenario,
and it is unlikely that the situation will change in the near future.

While the existence of many algorithms might seem confusing and redundant
at first, it is actually a big advantage! Many algorithms satisfy particular constraints
and might offer some advantages over its competitors. In fact, there is an ap-
propriate shadow algorithm for most application scenarios, but finding one’s way

1



2 1. Introduction

Figure 1.1. Even objects outside the view can project visible shadows that can help us to establish a more complete
understanding of the scene (courtesy of Betuca Buril).

through the jungle of possibilities is difficult without advice. �is book discusses
more than 200 shadow papers in a consistent way and gives direct advice on which
algorithms to choose, ignore, or combine. �e most important methods are de-
scribed in detail, and pseudocode will help you in realizing your own implemen-
tations and support your quest for an appropriate trade-off between quality and
performance.

�is book can serve as a course for beginners with some computer graphics
knowledge and coding experience who want to rise to the level of a shadow ex-
pert. It can also be used as a reference book for experts and real-time graphics
programmers who might want to jump directly to the parts they are interested in.

If you were ever curious about shadows, or you were impressed by modern
games and wanted to get an insight in one of their most striking effects, this book
is for you. Even if you have little experience and 200 papers sounds overwhelming,
there is no reason to be worried. We start at the very beginning and guide you on
this journey one step at a time, starting off almost naively by asking the most basic
question: what is a shadow?
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Figure 1.2. A very large light source (yellow square) leads to so� shadows. All points on the
floor are actually lit to some degree.

1.1 Definition

What is a shadow? �is is a good question, and because of the fuzziness of the term,
even dictionaries have trouble giving an accurate definition. WordNet [Princeton
University09] states: “Shade within clear boundaries” or “An unilluminated area.”
By looking at Figure 1.2, one realizes rapidly that this definition is not accurate
enough. �e same holds for other definitions that try to capture the common no-
tion that a shadow is o�en attributed to a certain object; for instance, Merriam-
Webster [Merriam-Webster09] states:

�e dark figure cast upon a surface by a body intercepting the rays from a
source of light.

A better definition is given in the American Heritage Dictionary of the English
Language [Pickett00]:

An area that is not or is only partially irradiated or illuminated because of the
interception of radiation by an opaque object between the area and the source
of radiation.



4 1. Introduction

Figure 1.3. What we define as shadow depends upon the scale at which we look at objects. In the real world, the defini-
tion is thus very ambiguous; in a virtual world, described by a mathematically accurate framework, precise definitions
are possible and meaningful. �e le� image shows a close-up of a plant, revealing a fine and shadow-casting surface
structure (courtesy of Prof. U. Hartmann, Nanostructure Research and Nanotechnology, Saarland University). �e
right image illustrates a distant view for which the fine structure becomes invisible, making the shadows disappear.

�is definition brings us closer, and coincides more readily with a proposition from
the graphics domain [Hasenfratz03]:

Shadow [is] the region of space for which at least one point of the light source
is occluded.

�is definition implicitly makes two important assumptions. First, only direct illu-
mination is considered, direct illumination being the illumination coming directly
from a light source. Light bouncing off surfaces is ignored. Second, occluders are
assumed to be opaque, which is not necessarily always the case in the real world.

But even in this restricted scenario of opaque objects and direct illumination,
a shadow definition for the “real world” is not as simple as the above descriptions
lead us to believe. Take a look at Figure 1.3 (le�): do we see shadows in this pic-
ture? Without exactly knowing what is depicted, most people would say “yes.”
However, this picture shows a microscopic zoom of a leaf just like the one in Fig-
ure 1.3 (right). If one presents solely this latter picture, most people would tend
to argue that there is no visible shadow. �e underlying principle is that what we
see and how we interpret it depends highly on the scale at which we look at things.
�e impact of these small-scale variations can be enormous. A CD-ROM is a good
example of this: if you look at its back, you see a rainbow of colors caused by the
fine surface structure that is used to store data. Much of a surface’s reflection be-
havior is influenced by microscale light blocking. Hence, there is actually a fine
line between shading, which is the variation of brightness across the surface based
on its material and shape, and shadows that are cast from a different location in
space.
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In our artificial world, small-scale geometric variations are usually omitted be-
cause, in practice, we cannot afford to work at the scales necessary to capture these
effects. Usually, we tend to represent objects coarsely but rely on specialized shad-
ing functions that encode fine-scale material properties on the surface that other-
wise would be lost. Further, the fact that these functions live on the surface hint
at another very common approximation: we rely on boundary representations (at
least in the case of triangular meshes). Boundary representations are somewhat
similar to ceramic figures, since you usually cannot look beneath the surface and,
hence, there is no way to tell that they are hollow. Nonetheless, it is not uncommon
that effects take place underneath the surface that make the object appear differ-
ently; for example, marble and wax show a certain glow because the light is scat-
tered in its interior. To address these phenomena, a great deal of research focuses
on simulating these interactions approximately on the surface. In Appendix C, we
present a quick overview of some of the most common shading models, some of
which even account for the visibility of small-scale details explicitly.

�is distinction between shading and shadows leaves us with an interesting sit-
uation. In the real world, shadows might have all kinds of ambiguities. By contrast,
in our artificial universe, details are limited, and shadows are described indepen-
dently of scale and purely in terms of visibility. A definition such as the one given
by Hasenfratz et al. [Hasenfratz03] is mostly sufficient—at least as long as only
opaque objects and direct lighting are considered. Completely general real-time
algorithms, going beyond opaque objects and direct-lighting restrictions, remain
a he�y challenge, likely to keep computer graphics experts busy for the foreseeable
future.

In order to handle all cases of shadows, we propose a different, mathemati-
cally sound shadow definition, which will apply for all algorithms presented in this
book. �e experienced reader might want to skip this part and solely take a look at
Figure 1.5 to be familiar with the most important terms, as well as Equations (1.4)
and (1.6), which will be referred to herea�er.

1.1.1 Terminology

In this section, we will introduce the terminology that will be used throughout this
book. In order to facilitate understanding, we will avoid a complex mathematical
definition and assume that our scene corresponds to a triangle mesh with per-face
normals.1 �en, the scene geometry, or simply geometry, S is a set of scene points
that form the triangles. Each scene point p has a corresponding normal np defined
by the underlying triangle.

A light source L is a set of points l forming the light surface. We will refer
to these points as light (source) samples. �e light source emits energy into the

1Readers familiar with the concepts of manifolds will realize that these definitions easily extend to
such a case.



6 1. Introduction

(a)

(b)
(c)

lit

penumbra

umbra

p
   −

np

   +

Figure 1.4. A point is either (a) lit or (b, c) shadowed. In the latter case, we further distin-
guish between (b) penumbra and (c) umbra, depending on whether the light source is only
partially or completely hidden.

scene, and throughout this book, we will assume that light travels along straight
lines (even though in some situations this is not a valid approximation, e.g., in
the case of atmospheric diffraction or near black holes). Consequently, to find out
whether light can travel from one point to another, we need to consider whether
the connection between the two points is not obstructed.

To this end, we define that p sees q, where p and q are two points in three-
dimensional space, if and only if the segment connecting the two points does not
intersect the scene other than at its extremities. Mathematically, this can be equiv-
alently expressed by imposing that no intersection occurs between the scene ge-
ometry S and the open segment (p, q) ∶= {r ∣ r ∶= p + α(q − p), 0 < α < 1}.2

Building on this definition, the point p lies in shadow if and only if there exists a
light sample l such that p does not see l. �is can be equivalently stated asVL(p) ≠
∅, where

VL(p) = {l ∈ L ∣ p does not see l} (1.1)

denotes the set of all light samples that are not seen by p. If VL(p) = L, meaning
that the whole light source is blocked by the scene geometry, p is said to be in the
umbra. If only some light samples are not seen (i.e., L ≠ VL(p) ≠ ∅), p is in the
penumbra. Finally, if p is not in shadow (i.e., VL(p) = ∅), it is said to be lit. �e
different shadow cases are illustrated in Figure 1.4.

In practice, a scene is rarely a true collection of points. Rather, these points
constitute objects, like triangles, or even bunnies. In this sense, we will refer to
an object that can intersect segments from p to the light as an occluder (or, equiv-

2�is says that the segment (p, q) consists of all points r that are located between p and q.
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Figure 1.5. A view sample p is the three-dimensional location corresponding to a pixel p

in the rendered view. Occluders/blockers/shadow casters are all elements that obstruct the
light from p.

alently, as a blocker or shadow caster) for p. Objects containing such points in
shadow (i.e., objects onto which a shadow is cast) are called receivers. �ere are
situations where receivers and blockers are distinct, or where each receiver is only
shadowed by a subset of occluders. Notably, some algorithms do not allow self-
shadowing (blocker and receiver are the same object).

In practice, we will mostly be interested in computing the shadow for a special
set of receivers, notably the view samples. A view sample is the three-dimensional
point that corresponds to a given pixel of an image. �is notion is interesting be-
cause, when we produce an image for a given view, a correctly shadowed rendition
of the scene only needs to compute a correct color for each pixel, not for all points
in the scene.

Figure 1.5 illustrates most of the here-defined terms and can be used as a ref-
erence for the remainder of this book.

1.1.2 The Rendering Equation

So far, we have clarified where we can find shadows. Now, we will discuss their ac-
tual influence on the appearance of a scene. For this, we need to understand how
light interacts with the surfaces of a scene. Further, we will get to know the corre-
sponding energetic quantities that allow us to mathematically describe the physical
behavior. While the interactions can be very complex in a physical environment,
perhaps involving quantum mechanics on a microscale and specialized relativity
theory on a larger scale, in most practical scenarios of computer graphics, these
effects can be neglected. Even Maxwell’s equations only play a role in particular
cases of computer graphics. �e most prominent and usually visible effects can be
described with a much simpler equation.

Before analyzing the physical model, we will first introduce the central notion
of light energy: radiance L.3 It is defined as radiant flux (light energy per unit time;

3In this book, we will not consider wavelength dependence, as it is less relevant for shadows.
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measured in Watt) per unit solid angle and per unit projected area. �e solid an-
gle subtended by an object at a point p is the size of this object projected on the
unit sphere around the point p; in other words, it is a measure of how large an
object appears from p. Intuitively this makes sense because the farther a light is
away, the smaller it will appear and, similarly, the less energy arrives at the loca-
tion. Anyone who ever walked around with a candle in the dark should recognize
this phenomenon. �e second observation is that the definition involves per unit
projected area. Physically, it is impossible to have energy be emitted from a single
point; instead, all (real-world) light sources have some actual area, and the emitted
energy is defined in terms of this area.

�e main principle is that the outgoing radiance Lo leaving a given scene point
p in a certain direction ω is the result of an interaction between the incoming ra-
diance Li (which is the light that arrives on the surface) and the surface properties
fr (that define how light is reflected, depending on the material). �is process is
described by one of the fundamental equations in computer graphics, the so-called
rendering equation, introduced by Kajiya [Kajiya86] and Immel et al. [Immel86]:4

Lo(p, ω) = Le(p, ω) +∫
Ω+

fr(p, ω, ω̂) Li(p, ω̂) cos(np , ω̂) dω̂, (1.2)

where np is the surface normal at p and Ω+ denotes the hemisphere above the
surface at p. �e equation puts the following functions into a relation:

• Lo describes the outgoing radiance as a function of position p and direction
ω. Simply put, it quantifies the light (direct and indirect) leaving a point in
a given direction. �is term is the one we are interested in for producing an
image (see infobox on page 9).

• Le yields the emitted radiance. Put simply, this is the light produced at a
given point for a given direction. �e term is nonzero for light sources.

• Li is the incoming radiance. In principle, this incoming radiance can itself
depend on the outgoing radiance Lo at a different scene point. �is situation
is taken into account in the case of global illumination, where bounced light
is considered; for example, a red surface next to a white wall might reflect
some of its red color onto the wall, leading to so-called color bleeding.

• fr is a bidirectional reflectance distribution function (BRDF). It describes
how much of the incoming light from direction ω̂ is reflected in direction ω
at a given point p. Note that this function can be very complex, but might
also just be a constant. (More information on this topic can be found in
Appendix C).

4Kajiya introduced the equation in a different formulation, but for our explanation this simpler form
is more appropriate.
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Radiance Captured by a Camera

At this point you might wonder, a�er all these definitions, how to actually produce an
image even if we had the outgoing radiance Lo(p, ω) at disposition. A�er all, L might
be defined in each scene point but is still given per unit area. To understand how this
relates to pixel values, let’s quickly remember how a pinhole camera works, which is the
standard camera used in most real-time applications. �ere are more complex models,
but these are out of the scope of this work. For a real-world pinhole camera, light falls
through a pinhole before reaching a receptor. �e receptor integrates the incoming
light and transforms it into a pixel color. �e receptors themselves have a certain size,
which is exactly how the area quotient disappears in L. Furthermore, light can only
reach a sensor if it passes through the camera’s pinhole. Hence, we need to evaluate
Lo(p, ω) with a direction ω such that the line through p in direction ω passes through
the camera’s pinhole (in DirectX and OpenGL, this corresponds to the camera center).
When precisely evaluating the incoming light on a receptor for a given pixel, one would
need to take the angular variation for different points on the receptor into account. In
practice, this is usually neglected and only a single point is evaluated.

�e rendering equation is physically based and describes the equilibrium of
energy in a scene. While it is a good model of illumination transport, solving the
equation analytically is difficult (except for a few uninteresting cases). Photore-
alistic rendering aims at finding efficient ways to approximate and populate this
equation. �e equation inherently depends upon itself because the outgoing light
at some point might end up being the incoming light for another point. �is de-
pendency makes the computation particularly difficult.

Surface-Based Formulation

Employing the notation p→ q ∶= q−p

∥q−p∥
, the following relationship holds:

Li(p, p→ q) = Lo(q, q→ p)
for a point p that sees q. Along this segment, the energy exchange will not be
hindered by scene geometry. Consequently, the outgoing illumination from one
side is exactly the incoming illumination on the other side and vice versa.

�e integration over the directions as denoted in Equation (1.2) can be rein-
terpreted. It corresponds to an integration over a sphere centered at p onto which
all the surrounding geometry is projected as seen from p. We can hence perform
a change of variables and equivalently integrate over the surfaces of the scene S
instead of the directions on a hemisphere, leading to

Lo(p, ω) = Le(p, ω)+∫
S
fr(p, ω, p→ q) Lo(q, q→ p)G(p, q)V(p, q) dq, (1.3)
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where

G(p, q) = cos(np , p→ q) cos(nq , q→ p)∥p − q∥2
,

and V encodes a binary visibility function; it is one if p sees q and zero otherwise.

1.1.3 Simplifications for Shadow Computations

For our purpose of shadow computation, we can simplify the equation. �e term Le

is not of high importance for our discussion because there is no interdependence
with the scene. We can simply omit it and add its contribution in the end—in
practice, this could mean that the light source is simply drawn on top of the final
image. We are only interested in direct illumination that removes the equation’s
dependency on itself. Consequently, for all points q in the scene, Lo(q, q → p)
is zero, except for those locations q that lie on a light source. Also, the additivity
of the integral allows us to treat several lights sequentially by summing up their
contributions.

We thus assume that there is only one light source in the scene, thereby obtain-
ing the direct-lighting equation (with shadows):

Lo(p, ω) = ∫
L
fr(p, ω, p→ l) Le(l, l→ p)G(p, l)V(p, l) dl. (1.4)

In practice, this equation is typically simplified further, and o�en, visually sim-
ilar results can be obtained with these simplifications, while the cost of computing
them is significantly lower. A common approach builds on the observation that if
the distance of the light to the receiver is relatively large (with respect to the light’s
solid angle) and the light’s shape is simple, then the geometric term G varies lit-
tle. �is situation and the assumption that the BRDF fr is mainly diffuse together
allow for the approximation of separating the integral, which means that we can
split the integral over the product of the two functions G and Le into a product of
integrals:

Lo(p, ω) = ∫
L
fr(p, ω, p→ l)G(p, l) dl

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Shading

⋅

1

∣L∣
∫
L
Le(l, l→ p)V(p, l) dl

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Shadow

. (1.5)

Basically, the simplification results in a decoupling of shading and shadows.
Furthermore, we typically assume that the light source has homogeneous di-

rectional radiation over its surface, causing Le to simplify to a function of position
Lc(l) only. If the light source is uniformly colored, it further reduces to a constant
L̄c. Because a constant does not vary, we can take it out of the integral. �ese uni-
formity assumptions on position and direction are very common and ultimately
result in the equation

Lo(p, ω) = directIllum(p, ω,L, L̄c) ⋅ VL(p),
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Analytical Solutions

If all surfaces in the scene are Lambertian (perfectly diffuse), the BRDF 2ρ becomes
independent of directions, that is, fr(p, ω, ω̂) = ρ(p)/π, and can be moved out of the
integral. Interestingly, for the remaining integral ∫L G dl, accurate analytic solutions
exist for the relatively general case where L is a polygon—even if we integrate further
over all l within another polygonal region [Schröder93]. �is latter possibility can be
useful if subpixel information is evaluated to achieve a very high image quality and is
usually employed in offline contexts or global illumination computations. Although
it is an important theoretical contribution that remained unsolved until 1993 (despite
many early attempts, such as Lambert’s in 1790), the exact formula is o�en considered
too complex for practical applications. For complex BRDFs or visibility configurations,
we are generally le� with sampling as the only option (e.g., via so-called Monte Carlo
techniques).

where the visibility integral

VL(p) = 1

∣L∣
∫
L
V(p, l) dl (1.6)

modulates the shading

directIllum(p, ω,L, L̄c) = L̄c ∫
L
fr(p, ω, p→ l)G(p, l) dl,

which boils down to computing the (unshadowed) direct illumination. In practice,
instead of integrating over the whole light source, the shading computation typi-
cally only considers a single light sample l′ ∈ L for performance reasons, that is,

directIllum(p, ω,L, L̄c) ≈ directIllum(p, ω, l′ , L̄c).

Usually, for real-time applications, determining the integral in Equation (1.6)
is what is meant when talking about so�-shadow computation, and most solutions
aim at calculating it. In general, Equation (1.6) is not physically correct and the
approximation can be quite different compared to a reference solution based on
Equation (1.4). Only the amount of visibility is evaluated and not which part
is blocked. Precisely, the term G(p, l) makes the influence of the light source
on the point p nonuniform and it falls off with distance and orientation. �is
variation is no longer captured when separating the integrals. Estimating the ac-
tual difference between the nonseparated and separated version can be complex
though [Soler98a]. Nonetheless, results are o�en convincing.

A further simplification that is encountered in many real-time applications is
choosing a point light as light source, making the light L consist exclusively of
one point l′. �is simplifies the computation of the visibility integral from Equa-
tion (1.6) to V(p, l′). Since the visibility function V is binary, as p either sees l′ or
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does not, the resulting shadow comprises only an umbra and is hence called hard
shadow. By contrast, shadows cast by a light source with some spatial extent are
referred to as so� shadows, since they typically feature a so� transition from lit to
shadowed regions. While assuming a point light source offers significant perfor-
mance gains, it usually also notably reduces the visual quality. �is is because, in
reality, basically no point lights exist, and even the sun subtends a solid angle large
enough to result in penumbra regions—which just don’t occur with point lights.

1.2 Importance of Shadows

Why should we care about shadows? One obvious reason is that for photoreal-
istic rendering, one tries to produce images that are indistinguishable from real
photographs. �is necessarily includes computing shadows and, in particular, ac-
curate and physically based shadows. But even when dropping the hard constraint
of photorealism, computing reasonable shadows is important to provide clues con-
cerning the spatial relationship of objects in the scene or the shape of a receiver and
to even reveal information hidden from the current point of view.

Several experiments underline the importance of shadows. For instance, Ker-
sten et al. [Kersten96] investigated the influence of shadows on perceived motion.
In their many experiments, they also displayed a sphere above a plane, not unlike
Figure 1.6 (le�). Just as you can see in this image, the position of the shadow influ-
ences the perceived position. If the shadow moves up in the image, the trajectory
will further influence how we will perceive the sphere itself, and we will have the
impression that the sphere moves to the back of the box towards the ground. �is
effect is strong enough that our visual system even prefers to assume that the sphere
grows when moving to the back, rather than rejecting the shadow information. As
Miller [Miller07] points out, it is almost paradoxical that seeing some parts of what
we see less well than others can help us to understand the whole of what we see better.
But these cues are surprisingly strong and, interestingly, Kersten et al. [Kersten96]
found that more natural shadows with a so� boundary can lead to even stronger
cues than shadows with a crisp border.

Figure 1.6. Shadows have an important influence on the interpretation of spatial relation-
ships in a scene (le�). Nevertheless, even coarse approximations can achieve the same effect
(right).
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Figure 1.7. Superpositions of shadows can look much less appealing and less smooth than
the same amount of copies placed in a concentric fashion.

Perceptual results are o�en cited to stress the importance of shadows, and they
seem to illustrate this point well. But it is arguable whether the conclusion is that we
should aim at realistic shadow computations. Gooch et al. [Gooch99] found that
regular concentric shapes can deliver shadows that are preferred by several subjects
over other, potentially more precise approximations. An extreme example is shown
in Figure 1.7, which illustrates how strongly perceptual effects can influence our
judgement of quality.

Even very approximate shadows can o�en provide sufficient information to
interpret the spatial relationships. Take a look at Figure 1.6 (right). We under-
stand the scene just as before, but the shadows are far from realistic. Other experi-
ments [Ni04] illustrated that it actually suffices to add dark indications underneath
the object. An observer automatically establishes the connection and accepts the
shadow. In fact, this allowed for the use of simple disc-shaped shadows underneath
characters in many older video games.

Similar principles allowed the utilization of shadows to convey messages. A
decade ago, one of these shadow deformations became very popular in the form of
the famous advertisement for the Star Wars movie Episode 1: �e Phantom Men-
ace. Here, the young Skywalker casts a shadow that has the actual shape of his later
alter ego Darth Vader. Such shadow deformations actually have a long history in
art. �ey are o�en used to depict premonitions or even death [Miller07] and have
recently also found their way into the toolbox of automatic non-photorealistic ren-
dering techniques [DeCoro07].

Interestingly, it can also happen that we draw conclusions about casters. Espe-
cially when shadows are detailed, we o�en make unconscious assumptions con-
cerning the blocker’s shape that can be surprisingly wrong (Figure 1.8). Some
artists exploit this fact, such as Shigeo Fukuda in the installation DirtyWhite Trash
(with Gulls). Here, the shadow resembles two human beings, while the scene ac-
tually consists of the trash produced by the artists during a period of six months.
Our conclusions can be drastically wrong. While it is usually very difficult to build
objects that cast a specific shadow, for virtual objects, the construction is relatively
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Figure 1.8. Shadows might give a false impression of the actual object’s shape, an effect that
has been exploited by several artists but is usually difficult to achieve. �is virtual object
was constructed in an automatic fashion [Mitra09], whose authors kindly provided us with
the illustration.

simple. Only little user interaction was needed to produce the output in Figure 1.8
when using the algorithm by Mitra and Pauly [Mitra09] that optimizes the object’s
shape according to a set of target images.

Such results hint at the fact that it is not necessary to create accurate shadows
to explain a scene. But the question is, how far we can simplify while maintain-
ing spatial information, and ultimately also realism? Unfortunately, this is very
difficult to decide, even for artists. Cavanagh [Cavanagh05] mentions several per-
ceptual problems when approximating shadows and other physical phenomena.
Despite their importance, we are very bad in estimating the correctness of a shadow.
Hence, it seems tempting to try to benefit from the limited perceptual capabilities
of the human visual system, but this proves very difficult. For dynamic scenes, an
acceptably approximated configuration might change into an obvious visual defi-
ciency. In particular, the illusion o�en breaks when shadows start to overlap or
move in proximity to each other. As a direction for future research, however, this
is a promising field. �is also concerns the degree to which approximations can be
applied to shadows.

It is actually hard to fake shadows, especially if lights and objects are dynamic.
One should be careful because incorrect shadows decrease the realism of an image
dramatically, which is problematic if a sufficiently realistic rendering is needed, for
instance, for architectural design. While an architect may be capable of imagining
the light interactions in a building, a potential customer will usually lack the nec-
essary experience. Illumination previews help to bridge this gap and o�en enable
even novices to better understand design choices.
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For a faithful rendition of light interaction, also indirect, meaning bounced,
light that is reflected from the surrounding usually needs to be taken into account.
Shadows play an important role in this simulation and are o�en the first step of
a real-time global illumination algorithm. Recent work on global (including re-
flected light) dynamic relighting underlines the importance of decoupling direct
from indirect lighting. Due to its typically smooth variation, indirect lighting can
o�en be coarsely computed. In contrast, direct light consists of relatively high
emitted energy, usually resulting in o�en detailed and precise (high-frequency)
content; hence, fewer approximations are possible than for indirect lighting. Con-
sequently, compromises for direct illumination are o�en visible, and achieving a
realistic composite of direct and indirect lighting necessitates an accurate direct-
lighting pass. �e cost of this pass should not be underestimated, even outside of
a real-time context, such as for movie productions, direct lighting is o�en costly
because the light sources need very accurate sampling.

When performance is crucial (e.g., for a realistic game), we only need to evoke
the notion of realism. Nonetheless, inconsistencies have to be avoided because they
can destroy the immersion in this virtual world. Furthermore, in some situations,
accurate shadows might even be part of the game play, such as a player who casts
a shadow around a corner, revealing her/his position, identity, or even equipment.
Furthermore, shadows can facilitate understanding distances; for example, in a
jump-and-run game, platform positions can be better estimated and the height of
elements can be better understood.

We should provide sufficient realism, not necessarily exactitude. �e keywords
in this context are plausible and convincing. Unfortunately, it is not easy to achieve
this goal. Ultimately, only Equation (1.4) seems to be foolproof, but Equation (1.6)
is sufficient in a large number of cases. Any further approximation is likely to fail
in some common configurations. �is is a major dilemma: we should compute
approximate solutions, but in practice, only physically based shadows seem to be
convincing in all situations. Fortunately, it is not always necessary to have a solu-
tion that works for all cases. �is book will help you decide when to apply which
technique in order to achieve the best effect. But before coming to solutions, we
will first illustrate some of the main failure cases that make shadows such a chal-
lenging topic.

1.3 Difficulty of Computing Shadows

It is difficult to compute shadows. �is fact can be particularly well illustrated when
looking at so� shadows, so let’s go back to Equation (1.6). One major challenge of
computing so� shadows according to this formula is that occluders can usually not
be considered independently. Even if an accurate blocking contribution for each
particular object can be computed, it is generally not possible to derive a good



16 1. Introduction

>>

Figure 1.9. Different occluder-fusion scenarios for a view sample in the center of the scene
with decreasing occlusion from le� to right. On the le�, both blockers occupy separate parts
of the hemisphere. In the middle, they partially overlap. �e example on the right depicts
one blocker being entirely hidden by the other. (Inlays show the light source as seen from
the center view sample. )

estimate of the entire visibility integral. It is true that these values can be used to
deliver upper and lower bounds for the exact visibility integral, but not more.

Let {Bi} be the set of blockers for a receiver point p, and let us further assume
that for each blocker Bi , we are given the result Vi of computing Equation (1.6)
with all blockers except Bi removed from the scene. �en the following inequality
holds:

1 −∑
i

(1 − Vi) ≤ VL(p) ≤min
i

Vi . (1.7)

Figure 1.9 shows an illustration of different cases. �e upper bound is pro-
duced if, as seen from the receiver point p, all blockers are superimposed, the
lower bound if all their projections are disjoint. �is problem of combining differ-
ent blocker contributions is referred to as occluder fusion, and we will investigate
it in more detail in Section 6.2.3. To underline the importance of correct occluder
fusion, Figure 1.10 shows an extreme case for a very simple scene where shadows
can become very unrealistic if blocking contributions are not combined properly.

Figure 1.10. Even for simple scenes (le�), classical approximations can cause noticeable
artifacts (right). As can be seen, the umbra is overestimated.
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Figure 1.11. Only using the first visible surface from the light’s center might not be enough for convincing shadows
(le�). On the right is an accurate shadow solution.

�e intricate relationship between shadows and visibility introduces further
implications. To determine which objects are potential shadow casters, it is not
enough to check whether the object is visible from a single light sample. �is im-
portant observation is illustrated in Figure 1.11. �e image on the right correctly
involves all triangles that should participate in the shadow computation, but on
the le�, only those triangles visible from the light source’s center participate in the
shadow computation. (�e visibility determination itself is carried out with high-
est accuracy.) One can see significant problems: the shadow on the sphere is lost
and, especially, half of the shadow below the sphere seems to be missing. Although
this part of the scene is not visible from the light source’s center, it has an impor-
tant impact on the appearance of the shadow. In consequence, artifacts and even
temporal incoherence can arise.

1.3.1 Isn’t There Anything Simple about Shadow Computations?

It is surprising how much attention is needed when evaluating Equation (1.6) be-
cause a valid approximation simplifies the equation drastically. When sampling
the light, we obtain

1

∣L∣
∫
L
V(p, l) dl ≈ 1

n

n−1∑
i=0

V(p, li),

where li ∈ L are uniformly placed light source samples. In this equation, V(p, li)
basically encodes whether a point light source placed at li illuminates the point p

in the scene. In other words, we can compute shadows by approximating the light
source with many point lights. Adopting such a sampling scheme, even the more
general Equation (1.4) can be well approximated. We will discuss this approach in
more detail in Section 6.2.4.

Note that this also offers a direct link between hard shadows produced by point
light sources and so� shadows: shrinking an area light to a point leads to hard shad-
ows, and sampling an area light with point light sources results in so� shadows.
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Figure 1.12. �is scene shows one example of the importance of so� shadows in obtaining a
convincing and realistic-looking scene. On the le� is the result using a single hard-shadow
sample, whereas the right shows the outcome of a so�-shadow computation.

Figure 1.12 shows the difference between hard and so� shadows. In this case,
the hard shadow results in an unrealistic image. Even though a large amount of
light is impinging in the room, the fruit basket casts a shadow that is overly dark
and large. In reality, a small object would not block the light of the entire win-
dow. �is is a situation where even a novice realizes that something is not quite
right. �is can be particularly disturbing in an animation because even small ob-
jects can block visibility of a point light, bathing the entire scene in darkness. �e
so�-shadow image, on the other hand, does not exhibit these artifacts. Shad-
ows near contact points stay sharp and the scene receives a realistic amount of
direct light. Depending on the context, hard shadows can prove useful, though:
very distant and tiny light sources can be well approximated with a point-light
assumption.

Unfortunately, as we will see in the next chapter, even hard shadows for a single
light remain a computationally involved issue, and for convincing so� shadows,
o�en a high amount of samples is needed; 256–1,024 samples are not uncommon
for standard settings, and large area lights might necessitate even more. When
adopting an according brute-force computation (see Section 6.3), the geometry of
the scene needs to be processed for each light sample. For 1,000 samples, the cost
of such a computation will thus be roughly 1,000 times higher than for a single
point light, and this cost scales linearly with the number of light samples.

�erefore, even if the sampling of the light source seems to be simple and ro-
bust, it is generally also (very) slow. Note that such a sampling strategy is the
usual approach in ray-tracing solutions, which have become increasingly popu-
lar and, hence, are briefly covered in Section 10.4. Nonetheless, at the time of
writing, their performance is clearly lower than solutions that exploit alternative
scene representations and GPU-adapted algorithms, which will be the focus of this
book.
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1.4 Overview

�is book will investigate various aspects of shadow computations. We will first in-
troduce the most basic approaches in Chapter 2: the very commonly used shadow
mapping [Williams78] and shadow volumes [Crow77]. Both are fundamental to
the understanding of the more advanced approaches in the following chapters. In-
terestingly, these algorithms will already exploit most of the GPU features that we
will build upon in this book. Readers that are less familiar with GPU programming
can follow Appendix A in parallel with this first technical chapter to learn about
the most important elements of GPU programming.

Building upon the previously introduced solutions, we then address general
hard-shadow techniques in Chapters 3 and 4. Here, we still focus on a single point
light. In this context, we will see a mathematical analysis of the limitations of the
shadow-map technique. Its usage can lead to stair-stepping artifacts that can be
reduced by applying proper solutions. �e goal is to reduce the scale of these defi-
ciencies such that they are no longer perceivable in the current rendering. We will
see that this solution relates to computing more accurate results at the locations of
the view samples, and we will present several alternative and efficient approaches
that aim in this direction.

�e reason for the stair-stepping artifact of shadow maps is that the compu-
tations take place in image space. Here, the original scene representation is dis-
cretized. Consequently, one way to avoid artifacts is to perform a proper shadow
reconstruction based on signal theory. In other words, we will investigate, in Chap-
ter 5, various ways to reconstruct the shadow signal from a shadow-map result.
�is chapter presents those algorithms that are currently of highest relevance in
practice because they deliver a good trade-off between cost and benefit.

We will then address the topic of computing so� shadows in two separate chap-
ters. �ese shadows result from area lights and exhibit a much more natural behav-
ior because sharp contact shadows and so�-shadow boundaries for distant casters
are both handled. Chapter 6 gives a general introduction and deals with solutions
that, like shadow maps, approximate the scene with an image-based representa-
tion. �ese techniques are o�en more efficient than the geometric approaches cov-
ered in Chapter 7, though Chapter 7’s approaches can be more accurate.

�e book then continues with more advanced topics in the realm of shadow
computations. Chapter 8 addresses shadows cast by semitransparent objects. �en,
Chapter 9 discusses solutions for shadows in the presence of participating media,
like fog. Here, shadows lead to visible sha�s, a phenomenon that is also o�en re-
ferred to as God rays.

Further advanced topics are investigated in Chapter 10, where we give an over-
view of various techniques that are of practical interest. We explain in detail how
to address the precise evaluation of the incoming radiance, as well as colored (or
textured) light sources. While this first part can be seen as an extension of the pre-
vious chapters, the latter sections introduce modern topics that seem very promis-
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ing for the future. In particular, we address voxel-based shadow techniques. Voxels
are currently of high interest, not only for medical applications but also soon-to-
appear game engines that exploit this representation. In this context of future tech-
niques, we also present approaches from the realm of ray tracing, an alternative to
the standard GPU pipeline. We further discuss environmental lighting and pre-
computed radiance transfer, as both have found applications in recent games.

�e book concludes in Chapter 11 with a discussion and recipes to decide
which algorithm is the best suited for particular scenarios.

1.5 General Information for the Reader

In this book, the following conventions are used for denoting mathematical enti-
ties:

• Points and vectors are represented by bold, lowercase letters, like p and l.
�eir components are denoted by adding according subscripts, such as px for
the x-component of p. If the entity is considered to be within a certain space,
it is annotated by a corresponding superscript; for instance, pl indicates the
use of the light-space coordinate system.

• Matrices are denoted by bold, uppercase letters, like M.

• Scalar quantities are represented by italic letters, such as V and z.

• Sets and objects (which can be interpreted as an (infinite) set of points) are
labeled with uppercase script letters, like L for a light source.

For an overview of the symbols used in this book, please refer to Appendix F.
To help the reader in putting the covered algorithms into practice and work-

ing code, relevant commands, snippets of real code, and pseudocode are given
throughout the book. In order to keep the presentation consistent and concise, we
always use OpenGL (2.x and 3.x/4.x in the compatibility profile) to this end. Users
of Direct3D and newer OpenGL versions’ core functionality can find the according
equivalents in Appendix B.



CHAPTER 2

Basic Shadow Techniques

Over the last years, many contributions have been made in the field of shadows,
and many have found their way into computer games. But at the time of this book’s
writing, even though we have come a long way, accurate so� shadows cannot be
obtained in sufficient quality in real time, and we are only on the verge of achieving
pixel-accurate hard shadows for geometrically complex scenes at acceptable speed.

Both areas still leave room for improvement, especially as a scene with a single
point light is not a very common scenario. In modern movie productions, hun-
dreds of lights are placed by hand to create a wanted illumination. In this chapter,
we analyze standard techniques to compute shadows based on point lights, where
each point light gives rise to a so-called hard shadow. �e name stems from the fact
that such a shadow is binary in nature; either a point is lit or it lies in shadow, creat-
ing a sharp, or hard, boundary. A hard shadow can only be created by an infinites-
imally small light source, which in practice never appears in real life. Nevertheless,
in computer graphics, they give useful results and serve as an approximation for
very distant light sources. Typically, they also represent the basis for more evolved
methods.

In the following, we will start by presenting probably the most simple algorithm
for hard shadows: projection shadows (Section 2.1). �en, we give an overview of
the two most common and also more general techniques used for hard shadow
computation on graphics hardware, namely, shadow mapping (Section 2.2) and
shadow volumes (Section 2.3). We will see that these latter two algorithms are rel-
atively well adapted to current hardware and are at the basis of many algorithms
available today. Shadow mapping is particularly interesting because it only requires
a little information about the actual scene geometry and solely relies on an image
that encodes the distance to the light source (plane). Nevertheless, there are short-
comings and, over the years, much research has focused on improving the algo-
rithms. Besides explaining the main principles in detail, we will hence also take

21
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✎

✍

☞

✌

History

�e very first algorithm in computer graphics that was capable of producing shadows
was created by Appel [Appel68]. It used ray casting to compute hard shadows. �e
medium for drawing was a digital plotter. Plus (‘+’) signs of different sizes were used
to simulate different gray levels of shading. �e geometry was visualized using line
drawing. �e shadow borders could also be outlined.

�e first scan-line (i.e., rasterization)-based approach was presented two years later
by Bouknight and Kelley [Bouknight70] and was targeted for CRT (cathode ray tube)
display hardware with 256 levels of intensity. It combined two scanning operations—
one from the eye and one from the light source—to determine if the point of a screen-
space pixel was shadowed by a polygon. In other words, the polygons were rasterized
both from the eye and the light source. While outdated concerning the details, this
method is conceptually quite similar to the two methods shadow textures and shadow

mapping presented in Section 2.1.2 and Section 2.2.
More generally, three-dimensional computer graphics saw its birth in 1963 [John-

son63], with wireframe rendering and no hidden-line removal. In the following
years, most efforts were targeted at hidden line removal [Appel67] and surface shad-
ing [Wylie67] with one point light source. In 1971, Gouraud shading was de-
vised [Gouraud71].

In 1966, the first listing of unsolved problems in computer graphics was pre-
sented [Sutherland66], which has been updated many times since [Newell77, Heck-
bert87, Blinn98, Foley00]. For shadows, Newell and Blinn list creation of nonsharp
boundaries as the main problem [Newell77]. It is interesting to note that they mention
that such shadows are created not only from area light sources but also by the diffraction
of light at the boundaries of shadowing objects (in other words, from the fact that light
slightly bends around corners). Extensive progress has been made on the former topic,
but the latter has barely been touched over the years. In 1987, with Paul Heckbert’s list-
ing of ten remaining important unsolved problems, the question was formulated as to
how to efficiently compute shadows without using ray tracing [Heckbert87]. �e evo-
lution in this area is the main topic of this book.

Surveys of shadow algorithms have regularly been presented through the decades
that the algorithms have developed and matured [Crow77, Woo90, Hasenfratz03].

a closer look at such enhancements. Due to their volume, more advanced topics
relating to shadow mapping are covered later in Chapters 3, 4, and 5.

2.1 Projection Shadows

Projected shadows are very simple but suffer from several shortcomings, which
nowadays render them a somewhat outdated method for most real-time applica-
tions. However, they still have their use cases when artistic freedom of modifying
the shape, color, and texture of the shadows is more important than physical accu-
racy.
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Figure 2.1. If the light source is located between the plane and any part of the shadow caster,
the projection erroneously gives rise to so-called anti-shadows.

2.1.1 Planar Projected Shadows

Planar projected shadows are based on the perhaps most simple idea for creating
hard shadows on a planar ground. We have seen that a point is in shadow if one of
its segments towards the light source intersects the geometry. Because the light is a
point, all segments meet at the same location. In other words, there is a one-to-one
mapping between the segments and the points on the ground. Hence, if we would
push down the geometry along those segments on the ground, it would end up cov-
ering exactly those points on the ground that lie in shadow. �is pushing down of
the shadow-caster polygons is actually nothing else but a projection from the light
source onto the planar receiver. As for standard rasterization, such projections can
be described in the form of a matrix expression. Using such a custom projection
matrix, one can then simply draw the triangles as dark objects on the planar sur-
face [Blinn88]. �e complete derivation of the projection matrix is described on
page 24. To project the caster geometry with this matrix, apply it to each caster
vertex in the vertex shader before applying the camera matrix.

One problem of planar projected shadows appears when the light source is lo-
cated between the ground plane and any point of the shadow caster (see Figure 2.1).
In such situations, the caster would not be able to cast a shadow on the ground, but
the projection matrix still leads to a point on the receiver plane. It is easy to test for
a single vertex if such a situation occurs (its w value is negative). To ensure correct
behavior for a triangle with at least one positive and one negative w value for its
vertices, w could be interpolated and tested per fragment.

Because the projection delivers a point on the ground plane, another obser-
vation is important. �e ground plane and shadow projection will coincide at the
same depth location in space. �is leads to trouble because z-buffering usually only
keeps the pixel that is nearest to the observer, and imprecisions will basically lead
to a random choice between a ground plane or shadow pixel. �e corresponding
artifact is called z-fighting.
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✎

✍

☞

✌

Projection Matrix for Planar Shadows

We will here derive the transformation matrix M for projecting an object down to a
planar surface, with a plane defined by the equation

n ⋅ x + d = 0, (2.1)

from a point-light position l [Blinn88, Akenine-Möller08]. �at is, we want to find the
matrix M such that v′ =Mv, where v is a vertex of the object and v′ its projection. Pro-
jecting a vertex v onto the plane is similar to computing the intersection point between
the plane and a ray

r(t) = l + td with d = v − l (2.2)

from the light-source position l through the vertex v (see Figure 2.2). �is intersection
is easily derived by substituting x in Equation (2.1) with Equation (2.2) and solving for t:

n ⋅ (l + td) + d = 0 ⇒ t̂ = −n ⋅ l + d
n ⋅ d .

�e intersection point is then

v
′ = r(t̂) = l − n ⋅ l + d

n ⋅ (v − l)(v − l)
=
(n ⋅ (v − l)) l − (n ⋅ l + d)(v − l)

n ⋅ (v − l)
=
(n ⋅ l + d) v − (n ⋅ v + d) l

n ⋅ l − n ⋅ v ,

where the final step is obtained by removing the terms that cancel out and also negating
the denominator. In order to write this expression in matrix form, we utilize the fact
that the division can be achieved by making use of homogeneous coordinates. �e idea
is to put the needed denominator in the w-component of v′, which is then defined as

v
′
x = (n ⋅ l + d) vx − (nxvx + nyvy + nzvz + d) lx ,

v
′
y = (n ⋅ l + d) vy − (nxvx + nyvy + nzvz + d) ly ,

v
′
z = (n ⋅ l + d) vz − (nxvx + nyvy + nzvz + d) lz ,

v
′
w = n ⋅ l − (nxvx + nyvy + nzvz),

since for homogeneous coordinates (x , y, z,w) ≡ (x/w , y/w , z/w , 1). �erefore, v′

represents exactly the position of the intersection with the ray. It is easy to identify that
the resulting matrix is

M =
⎛⎜⎜⎜⎝

n ⋅ l + d − nxlx −nylx −nzlx −dlx−nxly n ⋅ l + d − nyly −nzly −dly−nxlz −nylz n ⋅ l + d − nzlz −dlz−nx −ny −nz n ⋅ l

⎞⎟⎟⎟⎠
. (2.3)



2.1. Projection Shadows 25

l

v

p

n

x

y

z

Figure 2.2. Planar projected shadows produce shadows on planar receivers by projecting
the polygons of the shadow caster onto the plane and drawing it with a dark color. Here, v

is a vertex of a polygon of the occluding object, and p is the vertex a�er the projection.

In the case of projected shadows, z-fighting can be solved easily by first drawing
the ground plane, then disabling culling and the depth test when projecting the
shadows (thereby enforcing them being drawn), and, finally, rendering the rest
of the scene with standard settings and activated depth buffering. �e situation
becomes more complex when shadows are not supposed to be completely black
(details can be found in the box below).

✎

✍

☞

✌

Blending Projected Shadows onto Planar Receivers

Simply relying on alpha blending while drawing the projected shadow casters is not
enough because the number of overlapping triangles in the shadow casters might vary,
leading to a nonuniformly colored shadow. �e easiest way to solve this problem is
to use the stencil buffer [Kilgard99]. It is initially cleared to zero. �en the ground is
rendered into the stencil buffer, setting the stencil to one for all covered pixels. Next, de-
activate the depth test, and set the stencil operations as follows for OpenGL: glStencil-
Func(GL EQUAL, 1, 0xffff) and glStencilOp(GL KEEP, GL INCR, GL INCR). �e ef-
fect is that when the first shadow pixel is drawn on the planar receiver, the color is output
and the stencil is incremented. �e second time, the same pixel no longer has a stencil
value of one; therefore, the stencil function fails and the pixel is ignored. Consequently,
exactly one shadow pixel is output for each pixel that should receive shadows. Dur-
ing the drawing, the blending should be activated, that is, glBlendFunc(GL SRC ALPHA,

GL ONE MINUS SRC ALPHA), to combine the color of the ground plane with the incom-
ing shadow attenuation. �e initialization to one using the ground plane ensures that
shadows are not drawn outside of its boundaries, in case the ground is limited in size.
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Figure 2.3. Shadow textures. A shadow image is used as a projective texture to cast shadows
onto receivers.

2.1.2 Shadow Textures

It is possible to extend projection shadows to also work on curved surfaces by using
the planar shadow image as a projective texture onto receivers. Imagine a projec-
tor at the light source that casts an image of the shadow onto the receiver. �is
method is called the shadow-texture method [Akenine-Möller08], although dif-
ferent combinations of the words occasionally have been used, including texture-
based shadows. In the game community, the technique has also been known as the
shadow-map method or projective shadow mapping [Nagy00, Akenine-Möller08].
However, this name could easily be confused with the more common terminol-
ogy where shadow mapping refers to the more general technique described in Sec-
tion 2.2.

To describe the method, let’s assume a very simple scenario where we have a
scene that consists of a shadow receiver and a point light l, as well as a distinct set
of occluders, or blockers, that are placed in between the two (see Figure 2.3). Let
us now place a camera at the light source in the direction of the receiver (the exact
setup will be described herea�er). From there, we render a binary image of the
scene that is initially cleared to white and in which we draw all shadow casters in
black. �is image will allow us to query whether a point lies in shadow.

Following the definition in Section 1.1 (see also Equation (1.1)), a point p is in
shadow if the open segment between p and l intersects the scene. To test whether
this segment intersects the scene, we use a simple observation: just like the seg-
ments projected to points with the previously seen projection matrix (see page 24),
each segment projects to a single point for the camera at the light source that was
used to produce the binary image.

Consequently, a single texture lookup allows us to test for shadows: if the pixel
containing the segment was filled while drawing the occluders, the point has to
lie in shadow; otherwise, it is lit. Such a lookup can be performed directly using
projective texture mapping while rendering the receiver—resulting in the so-called
shadow-texture method.
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Here is an overview of the shadow-texture algorithm:

1. Render blockers into the shadow texture.
2. Render shadow receivers with the shadow texture enabled.

Next, we will explain how to set up the camera used by step 1. �is is followed
by an explanation of how to compute the shadow texture coordinates in step 2.

The Camera

We will now outline the details of the camera used for projecting the shadow casters
onto the shadow texture. A camera matrix can be defined as Mc = MpMv, where
Mp is a parallel or perspective projection matrix and Mv is a matrix transforming
a vertex from world space into camera space. �is transform is a simple matter of
a change of frame and consists of a translation, to place the origin at the camera
position, and a rotation. �e space in which the origin is located in the light center
and the view direction is aligned with the normal of the shadow projection plane,
is called light view space or just light space for short.1 Note that the view direction
is along the negative z-axis of the view space for a right-handed coordinate system,
which is what we use.

Figure 2.4 illustrates the light view matrix Ml
v that transforms a vertex into

light space. In OpenGL, perhaps the most simple way to set up Ml
v is to use the

gluLookAt() function. A common configuration is to have the shadow project
straight down onto the plane y = 0, which then gives the following light view

x

y

z world space (W)

l
ab
clight space (L)

light frustum

view direction = -c ⇐⇒Ml
v =
⎛⎜⎜⎜⎝

ax ay az −(a ⋅ l)
bx by bz −(b ⋅ l)
cx cy cz −(c ⋅ l)
0 0 0 1

⎞⎟⎟⎟⎠

Figure 2.4. Illustration of transforming into light space. Let l be the light position. Also, let
a, b, and c be three orthogonal and normalized vectors defined in world space, where c is
the negative light view vector aligned with the normal of the shadow projection plane, and
a and b are two arbitrary orthogonal basis vectors. �is describes the frame of our desired
light space. �e matrix transforming a vertex from world space to light space is now given
by Ml

v , as defined above.

1As an analogy to eye space, where the origin is located in the eye position instead and uses the eye’s
view and up direction.
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matrix if a = −z, b = −x and c = y:

Ml
v =

⎛⎜⎜⎜⎝
0 0 −1 lz−1 0 0 lx
0 1 0 −ly
0 0 0 1

⎞⎟⎟⎟⎠
,

where l is the light position.
We also need to construct a proper light projection matrix Ml

p. �is matrix
projects the geometry, either using a parallel (orthogonal) projection or a perspec-
tive projection, and thereby provides the transformation into light clip space. A
parallel projection can be used for directional light (i.e., when light rays are parallel
and come from a light source infinitely far away). �is is a common approximation
for sunlight. Such a matrix simply scales the x , y-coordinates with a uniform fac-
tor to end up in [−1, 1] and sets all z-values to a desired projection depth or depth
interval. �e details for that type of matrix are provided on page 30.

For a point light, we instead need a perspective projection. To derive such a ma-
trix, we can utilize the matrix M in Equation (2.3) on page 24. �is matrix projects
objects onto any given plane n ⋅ x + d = 0. �e normal n of our projection plane is
(0, 0, 1) in light space, and d is our desired distance between the light position and
the projection plane. In addition, l in Equation (2.3) is the light position, which is
(0, 0, 0) in light space. �us, the projection matrix simplifies to

⎛
⎜⎜⎜
⎝

d 0 0 0
0 d 0 0
0 0 d 0
0 0 −1 0

⎞
⎟⎟⎟
⎠

.

However, in practice, we also want to limit the coordinate range of our pro-
jected x , y, z-values to [−1, 1], since the graphics hardware clips geometry outside
the unit cube. �us, choosing d = 1 is a reasonable option, which projects to
the plane z = −1. To limit the x , y-coordinate range, we add scaling of the x , y-
components to the matrix. If a horizontal field of view of fovx degrees is desired,
the scaling factor of x becomes sx = cot(fovx/2). Analogously, the scaling factor
of y is sy = cot(fovy/2), where fovy is the vertical field of view. It is, however, com-
mon to express fovx in terms of the aspect ratio α = w/h instead, where w and h
are the image width and height. �us, sx = sy/α. Furthermore, since we chose the
projection distance d = 1, this means that cot(fovx/2) = w and cot(fovy/2) = h,
which simplifies (sx , sy) to sx = w and sy = h. �is gives us the expression for the
light projection matrix as

Ml
p =

⎛
⎜⎜⎜⎜⎜
⎝

1
α

cot fovy

2
0 0 0

0 cot fovy

2
0 0

0 0 1 0

0 0 −1 0

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

w 0 0 0

0 h 0 0

0 0 1 0

0 0 −1 0

⎞
⎟⎟⎟⎟⎟
⎠

.
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Figure 2.5. Specifying a projection frustum.

General camera. �e planar projection above collapses all z-values to z = −1.
It is common to want to keep relative z-information in order to resolve visibility
when using a z-buffer. �is is the case for a standard camera when rendering from
the eye, and also when rendering images from the light in the shadow-map–based
techniques described later on in this book. We can also use it for shadow textures,
since z-values do not matter for this technique. To keep relative z-information, it
is necessary to set Ml

p(2, 3) (i.e., the element of the third row, fourth column) to
nonzero. �e rationale is that a�er applying the projection transform to a point
v, we will get a new point v′ = (v′x , v′y , v′z , v′w). �e homogenization will divide all
components by v′w, which currently is set to−vz by the matrix. One can think of this
division as a way to obtain the foreshortening effect in x and y with increased depth
to give the illusion of three-dimensional space when the image is visualized in two
dimensions. To avoid the z-component being the same constant value v′z = −1 for
all pixels, we set Ml

p(2, 3) = c, so that v′z = vz+c, which keeps relative z-information
a�er the division with v′w = −vz.

Typically, the user wants to set light-space near and far planes of the view frus-
tum by specifying their distances n and f from the origin (see Figure 2.5). Note
that these values are positive (0 < n < f ), while the light view direction is the neg-
ative z-axis. All geometry will be clipped against the six frustum planes (near, far,
le�, right, top, bottom) by the hardware unit-cube clipping, before being sent to
rasterization. In order to distribute the z-values in the range z ∈ [n, f ] over the
unit cube range (x , y, z) ∈ [−1, 1], we should set Ml

p(2, 2) = −( f + n)/( f − n)
and Ml

p(2, 3) = −2 f n/( f − n). �is maps z = −n to −1 and z = − f to +1. �e
projection matrix becomes

Ml
p =

⎛
⎜⎜⎜⎜⎜
⎝

1
α

cot fovy

2
0 0 0

0 cot fovy

2
0 0

0 0 − f+n
f−n

− 2 f n
f−n

0 0 −1 0

⎞
⎟⎟⎟⎟⎟
⎠

.

In OpenGL, Ml
p can be set up with the gluPerspective() function. Note that for

DirectX, the matrix is slightly different (see Appendix B.1.3 for details).
To summarize, our desired camera matrix is now given by Ml

c =Ml
pMl

v.
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✎
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☞
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Shadow Texture and Directional Light

For directional light, the light source does not have a specific position. Instead, all light
rays enter from a user-set direction d. OpenGL defines this light direction as the nor-
malized vector to the light. �erefore, c = d in the expression of Ml

v in Figure 2.4, and
l is a position along the vector d from the center and outside of the region of interest.
Assume that pc is the center position for a bounding sphere of the part of our scene for
which we want to render a shadow texture, and assume that r is the sphere radius. �en,
we can, for example, simply set l = pc + 1.5 r d.

If w and h are the light-space width and height of the region of interest for which to
create the shadow texture, and n and f are the near- and far-plane distances, then the
light projection matrix becomes (using OpenGL standard)

M
l
p =

⎛⎜⎜⎜⎜⎜⎝

2
w

0 0 0

0 2
h

0 0

0 0 − 2
f−n

− f+n

f−n

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
.

Texture Coordinates

In the vertex shader when rendering the shadow receivers, the texture coordinates
into the shadow texture should be computed as v′ = (Ml

pMl
v) v, where v is the

incoming vertex and Ml
p and Ml

v are the same light view and projection matrices
used when creating the shadow texture. �e x , y-texture coordinates then also
need to be shi�ed from [−1, 1]2 to the more conventional texture space [0, 1]2.
�is is either done in the shader by taking vs

xy = (v′xy + 1)/2 or by baking this shi�
into the complete transform vs = (MtM

l
pMl

v) v, where Mt looks as follows:

Mt =

⎛
⎜⎜⎜
⎝

0.5 0 0 0.5
0 0.5 0 0.5
0 0 0.5 0.5
0 0 0 1

⎞
⎟⎟⎟
⎠

.

Note that we denote the shadow-texture coordinates for a point p as ps.
Texture coordinates that fall outside [0, 1] represent unshadowed regions.

�is could be checked for as a special case in the fragment shader. If shaders are
not available, another alternative is to use a texture border of white color (i.e., no
shadow), which can be specified with the glTexParameterfv(..., GL TEXTURE

BORDER COLOR, ...) command. Clamping of the texture coordinates to the bor-
der should then be enabled, which is achieved by calling glTexParameteri(...,

GL TEXTURE WRAP {S,T}, GL CLAMP TO BORDER). A third option, mostly outdated
but avoiding the need of a texture border, is to ensure that the shadow texture
has at least a one-pixel wide margin of no shadow and then enable clamping of
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the texture coordinates to inside the image region, which is done with the glTex

Parameteri(..., GL TEXTURE WRAP {S,T}, GL CLAMP TO EDGE) command. More
details are presented by Nagy, with accompanying source code [Nagy00].

2.1.3 Discussion

A drawback of the shadow-texture algorithm is that blockers and receivers need to
be separated, requiring a shadow texture per blocker and resulting in an inability
to handle self-shadowing.

Similar to the anti-shadows (see Figure 2.1), the receivers should not lie behind
the light source. Otherwise, the shadow texture might erroneously be applied here.
As before, this situation can be dealt with by testing the w-coordinate for its sign.

Shadow textures have some interesting aspects. So� shadows could easily be
faked by filtering the shadow mask. In the offline community, artists like the ability
to modify the shadow texture by shape, color, or intensity. Such texture masks are
called light-attenuation masks, cookie textures,2 or gobo maps.3

2.2 Shadow Mapping

�e shadow-texture method described in the previous section is a simplified ver-
sion of today’s most famous solution to computing shadows in real-time applica-
tions—namely shadow mapping [Williams78]. �is method no longer needs to
separate occluders from receivers and is thereby also capable of managing self-
shadowing, as we will see. �e principle is to render an image of the scene from
the position of the light source. Every point that appears in such an image is nec-
essarily lit, while regions not visible are in shadow. To determine whether a cer-
tain three-dimensional position is in shadow then becomes a matter of checking
whether it is visible in the image from the light source or not.

Although theoretically very simple, the fact that the scene is sampled, in terms
of a discrete image resolution, leads to the requirement of a tolerance threshold
when doing the position comparisons, which causes concerns. It is interesting to
note that in the 1970s, before the domination of the z-buffer algorithm for hid-
den surface removal, similar shadow techniques existed without any such draw-
back [Weiler77, Atherton78]. �e caveat with those techniques is that the hidden-
surface removal is done by geometrical polygon clipping instead, which can be very
slow. Here follows the shadow-mapping algorithm in detail.

2”Cookie” is the informal term for ”cucaloris,” which means an opaque card with cutouts, used to
cast patterns of shadows [Barzel97].

3Gobo refers to ”GOes Before Optics” and is typically a metal or glass object, inside or very close to
the light source, that creates shadow or light patterns.
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2.2.1 Basic Algorithm

Shadow mapping builds upon the observation that the light sees all lit surfaces
of the scene. Every hidden (unseen) element lies in shadow. To determine the
visible surfaces as seen from the light, shadow mapping starts by creating an image
from the light’s position. In this image, the so-called shadow depth map or simply
shadow map, each pixel holds the depth (i.e., the distance from the light) of the
first visible surface. Graphics hardware supports the creation of such depth maps
at very little cost because the same mechanism is used to resolve visibility during
standard rendering. �e second step of the algorithm performs a rendering of the
scene from the actual viewpoint. For each rasterized fragment (which we will call
view sample), its position p is transformed into light clip space, yielding plc =(plc

x , plc
y , plc

z ). Note that (plc
x , plc

y ) is the position in the depth map to where the
fragment would project when seen from the light, and plc

z is the distance of the
fragment to the light source. Hence, to determine whether the fragment is visible
from the light, it is sufficient to compare its depth value plc

z to the value stored in
the shadow map at position (plc

x , plc
y ). If plc

z is larger than the stored value, the
fragment is necessarily hidden by some other surface nearer to the light source
and consequently lies in shadow. Otherwise, it is lit. �is process is illustrated in
Figure 2.6.

�ere are two details to note. First, in practice, the depth map is accessed
not directly with the light-clip-space position plc, but with the according shadow
(map)-texture coordinates ps, which can be derived as discussed at the end of Sec-
tion 2.1.2. Second, the depth plc

z is measured along the light view direction, which
is the negative z-axis of the light space in our definition (which assumes a right-
handed coordinate system). More generally, we will refer to both this depth value
and −pl

z as light-space depth in the following, denoting it as pl
z̃ .

�e technique is particularly interesting as it is usable with almost any arbi-
trary input, as long as depth values can be produced. Further, the fact that both
steps involve standard rasterization gives it a huge potential for acceleration on
graphics cards. In fact, OpenGL provides extensions to perform the algorithm
without shader intervention (today, most people would just use shaders, which is
more convenient). Currently, shadow mapping and variants are the most popu-
lar techniques for creating shadows in games. Nevertheless, several problems are
inherent to this method. �e most important difficulties are the treatment of om-
nidirectional light sources (Section 2.2.2), imprecisions due to the depth test (Sec-
tion 2.2.3), and aliasing artifacts arising from the pixel representation of the depth
maps. We will analyze these problems more closely in the following.

2.2.2 Omnidirectional Shadow Maps

�e fact that the shadow map is produced via rendering makes it necessary to spec-
ify a light frustum, which in turn implies that the technique is mostly aiming at spot
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Second:  rendering from viewpoint

During the second pass:  

A fragment is in shadow if 

its depth is greater than 

the corresponding depth 

value in the shadow map

First:  
Render shadow (depth) map  from 

the light source

Camera view    Light’s view   Shadow map

Figure 2.6. Illustration of the shadow-map algorithm. �e camera view, light’s view,
and corresponding shadow map (top). A depth map (shadow map) is created from the
light (bottom). To determine whether the point of a screen-space pixel is in shadow, its
x , y, z−coordinate is warped into this map. If the point is farther from the light source
(higher depth) than the stored value in the map, then the point is in shadow.

lights. �e typical way to handle omnidirectional sources is to create, for example,
six light frustums centered around the light source (one for each side of a cube) that
together cover the entire sphere of directions. �is solution is currently standard.
Wan et al. [Wan07] noticed that a so-called six-face spherical map provides better
utilization of resolution than cube maps do. A six-face sphere can be thought of as
a cube that is inflated to a spherical shape such that each side is a dome instead of
flat.

Nevertheless, using six light frustums means that the scene’s geometry needs
to be processed several times. Geometry shaders can perform this projection on a
cube map in a single pass, but the fact that geometry is duplicated for each cube face
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Shadow Map

bias
shadow map sample
view sample
surface

bias

Incorrect self 

shadowing
bias light leaking
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Figure 2.7. Depth bias. (a) �e view sample has higher depth than the shadow-map sample, but should not be regarded
as being in shadow. �erefore, a bias is added. (b) A too small bias leads to incorrect surface self-shadowing, called
z-fighting (see also Figure 2.8(a)). (c) A too large bias can cause light to leak onto objects that should be in shadow (see
also Figure 2.8(b)).

introduces a significant penalty. Instead of a cube, Brabec et al. [Brabec02b] point
out that a parabolic mapping [Heidrich98] enables the extraction of the entire field
of view with only two renderings. Furthermore, lookups in these maps are very
cheap. �e fact that the domain is not rectangular and that the sampling ratio
might vary by a factor of four are two minor reasons why this technique has not
yet received more attention. �e main reason is probably that creating these maps
is difficult. Lines need to be transformed to curves, which is incompatible with
the standard rasterization pipeline. �e solution by Brabec et al. [Brabec02b] is
to transform only vertices in a vertex shader to the correct position and assume
that the scene is tessellated finely enough to provide the correct solution. Recently,
Gascuel et al. [Gascuel08] proposed to compute the deformed and curved elements
on graphics hardware, but the algorithm remains costly. It has been pointed out
that since a tetrahedron is the polyhedron with the smallest number of faces that
encloses a point, this can be more advantageous than using cube maps [Fortes00,
Takashi06, Liao07, Liao10]. Nevertheless, using cube maps is the norm today, so
we will not discuss the other alternatives in more detail.

2.2.3 Depth Bias

To test whether a point is farther away than the reference in the shadow map re-
quires some tolerance threshold for the comparison (see Figure 2.7(a)). Other-
wise, the discrete sampling due to the limited shadow-map resolution, and also
numerical issues, can lead to incorrect self-shadowing, which (as also mentioned
in Section 2.1.1) is referred to as z-fighting or surface acne (see Figure 2.8(a)). �is
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(a) (b)

Figure 2.8. (a) Z-fighting due to a too small bias. (b) A too high bias o�en leads to light leaking. �is is most visible at
contact shadows (right, at the cube’s lower corner).

results in visible shadow sparkles on lit surfaces and can be explained as follows. If
the shadow map had infinite resolution, then the shadow testing would be a mat-
ter of checking if the point is represented in the shadow map (i.e., visible from the
light and therefore not in shadow). However, with the discrete shadow-map reso-
lution, sample points from the eye are compared to an image consisting of pixels.
Each pixel’s value is defined solely by the world sample corresponding to the pixel’s
center. Hence, when querying a view sample, it will rarely project to the location
that was actually sampled in the shadow map. Consequently, one can only com-
pare values of nearby points. �is can lead to problems when the view sample is
farther from the source (has a higher depth from the light) than the corresponding
value in the shadow map (see Figure 2.7(b)) because unwanted shadows can occur.
For example, imagine a tilted receiver plane. Within each shadow-map pixel, the
depth values of the world samples vary, and some lie below and others above the
corresponding pixel-center depth. �e ones below will be declared shadowed de-
spite them actually being visible. In order to address this issue, a threshold can be
introduced in the form of a depth bias that offsets the light samples slightly farther
from the light source (see Figure 2.9).

Defining the depth bias is more problematic than it might seem at first. �e
greater the surface’s slope, as seen from the light source (i.e., the more edge-on),
the more the depth values change between adjacent shadow-map samples, which
means that a higher bias is needed to avoid the surface incorrectly shadowing itself.
On the other hand, a too high bias will lead to light leaking at contact shadows (see
Figure 2.8(b)), making the shadows disconnected from the shadow caster. �is is
called Peter Panning or the Peter Pan problem, referring to the famous character
by James Matthew Barrie that got detached from his shadow.

�e standard approach supported by graphics hardware is to rely on biasing
with two parameters instead of just one: a constant offset and an offset that depends
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Figure 2.9. (a) �e shadow map (SM) is a discretized representation of the scene. (b) Each
SM pixel can be considered to be a geometric quad that is situated in the scene at its accord-
ing depth. �is also explains the o�en jig-jaggy shadow appearance. Furthermore, this can
create self-shadowing everywhere where the quads extend beyond the object’s geometry.
(c) �e problems resulting from these imprecisions are referred to as z-fighting and lead to
so-called surface acne. (d) Offsetting the depth values in the depth map li�s many of the
depth ambiguities, and here removes the incorrect self-shadowing (e).

on the slope of the triangle as seen from the light [Lengyel00,Schüler05,Schüler06].
Applying the biasing is done already during the rendering of the shadow map by
using the glPolygonOffset() command available in OpenGL. Unfortunately, the
parameters need to be hand adjusted. �ere are no perfect choices for all situa-
tions. Typically problematic cases are triangles inside concavities and near silhou-
ette edges as seen from the light.

2.2.4 Decreasing the Need for a Bias

A straightforward solution to increasing depth precision is to better fit the near and
far plane of the light’s frustum to the scene. �is can be based on a scene bounding
box, but more recent and advanced solutions will be presented in Chapter 4 that
also address aliasing.

Another direction is to work on the depth values themselves. A typical projec-
tion matrix is set up so that the z-buffer becomes nonlinear in its distribution of
depth values. �is makes sense for hidden-surface removal because it puts more
precision on nearby elements but is not necessarily a good choice for shadow map-
ping. A region far from the light can actually be very close to the observer and, thus,
have limited precision where most precision is needed. Brabec et al. [Brabec02a]
show how a linearized z-buffer can avoid such problems (an idea introduced by
Heidrich [Heidrich99a]). Consequently, depth precision is more evenly balanced,
and it can nowadays be achieved very easily in the vertex shader as follows.



2.2. Shadow Mapping 37

First, the incoming vertex v is multiplied by the light view matrix, so that v′ =
Ml

v v. Next, v′ is multiplied by the light projection matrix, such that v′′ = Ml
p v′.

�en, the z-value of v′′ is replaced by v′′z = −((v′z + n)/( f − n))v′′w, where n and f
are the light frustum’s near and far plane distances. Finally, v′′ is the vertex position
that we output by the vertex shader.

Using a combination of shadow textures (introduced in Section 2.1.2) and
shadow mapping has also been proposed as a way to lower the biasing problems
of shadow mapping [Oh07]. Since it is based on separating shadow casters and
receivers, which prohibits self-shadowing, we will here instead focus on more gen-
eral methods.

Polygon IDs

A classic suggestion to remove any depth-precision issues is to use indices for each
polygon instead of depth samples [Hourcade85]. �e idea is that this eliminates
the need for a bias because instead of testing depth, one compares only indices. If
the index stored in the shadow map agrees with the view sample’s, it is considered
to be visible from the light. However, along borders between adjacent triangles,
problems still remain since a triangle could be incorrectly shadowed by neighbor-
ing triangles. Furthermore, today, this technique is difficult to use because many
triangles have subpixel size, but only one index can be stored per pixel. Also, if
alternative representations are used (e.g., height fields) or triangles are subdivided
(e.g., using the tesselation unit), the attribution of indices is difficult.

Hybrid visibility determinations could be imagined that use these indices to
then initialize a search on the original mesh, but this becomes prohibitively slow.
Most of these problems disappear if indices are used per object, instead of per poly-
gon [Dietrich01, Forsyth07]. �en, however, self-shadowing is no longer possible.

Second-Depth Shadow Mapping

Wang and Molnar [Wang94] suggest using only the second layer of surfaces visible
from the light source, which in its basic version only works for watertight4 (solid)
objects with some thickness larger than any z-buffer imprecision. In practice, this
is achieved by rendering the back-facing instead of the front-facing polygons into
the shadow map. �e rationale is that z-fighting is not a problem for back-facing
geometry, since back-facing surfaces can never receive light from the source and
will, hence, always be in shadow. Consequently, such surfaces are always drawn
in black—the same color that is used for shadows. Put differently, z-fighting is
mainly a problem for surfaces represented in the shadow map, since incorrect self-
shadowing can occur if a nonsuitable bias is used. By storing only back-facing
geometry in the shadow map, for which incorrect self-shadowing does not lead to

4Watertight is also sometimes referred to as manifold or closed. �e definition we use here is that
each triangle edge has one and only one neighboring triangle, which means that the model separates
an interior from an exterior region in space.
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any visual difference, most of the biasing problems are circumvented. Silhouette
regions (convex and concave) are still problematic, as well as where objects are
in contact, penetrate, or self-intersect, resulting in light or shadow bleeding. �ese
problems can be reduced by reintroducing the bias again. �e algorithm is popular
in the gaming industry, since watertight objects can be guaranteed at modeling
time by the artist and the method significantly reduces the biasing problems by
pushing it to fewer regions.

Most bias problems arise from insufficient scene knowledge. Basically, a single
shadow map does not provide enough data to address all problems. Hence, it can
be beneficial to rely on more than a single shadow map. In the following, we will
examine these solutions.

Midpoint Shadow Maps

Woo [Woo92] proposed the use of midpoint shadow maps that extract two layers
of depth instead of just one. �e shadow map can then be set to the average dis-
tance. �is means that the first layer will not be shadowed, while the second will
be shadowed. �e virtual occluder that is produced by averaging the values lies in
between the two surfaces (hence the name midpoint shadow maps). �e method
requires two passes to extract the first and second layers (see Figure 2.10). How-
ever, on modern GPUs it is possible to improve upon this for watertight scenes by
redirecting front- and back-facing triangles to different render targets. Outputting
the depth values with minimum-blending can be used for both targets to simulate
two depth buffers.

�e advantage with respect to second-layer depth maps is that the method is
potentially compatible with non-watertight scenes. However, the main limitations
are similar to those for second-depth shadow mapping. In the le�-most figure in
Figure 2.10, midpoint shadow maps fail when a rasterized pixel from the second or
higher depth layer is closer to the light than the stored discrete-sampled midpoint
value in the shadow-map texel. Note that in this image, the problem only applies
for the third depth layer as the second depth layer here is back facing and, therefore,
automatically in shadow by the shading.

In the right-most illustration in Figure 2.10, we can clearly see that for ras-
terized pixels belonging to the first depth layer, incorrect self-shadowing can still
appear when their depth value is higher than the midpoint value stored in the
shadow-map texel. However, this technique is ameliorating the biasing problem by
pushing its need to only the few pixels along silhouette edges. A small bias could
also be added to further limit the problem along silhouettes, but the problem does
not completely disappear.

Dual Depth Layers

One problem of midpoint shadow maps is that the difference between the first and
second depth layer can be very large, leading to an overestimation of the needed
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Figure 2.10. Midpoint shadow maps. �e blue line indicates the depth layer closest to the
light, while the green indicates the second depth layer. �e black dotted line illustrates the
midpoints between the first and second depth layer. �e magenta shows the used midpoint
values, due to discretization from the limited shadow-map resolution. Midpoint shadow
maps use the average of the two closest layers (blue and green) as shadow-map depth. �is
still results in problematic situations due to the discretization. �e le� zoom shows incorrect
light-leaking (red circle) because parts of the surface (black) are closer to the light than the
midpoint value in the shadow map (magenta). �e right zoom illustrates incorrect self-
shadowing because parts that are supposed to be lit (blue) are behind the midpoint value in
the shadow map.

depth bias. Weiskopf and Ertl [Weiskopf03] point out two failure cases of the mid-
point shadow map (see Figure 2.10), where a carefully adjusted bias sometimes can
help. �eir solution is to combine midpoint shadow maps with a standard depth
bias and to choose the minimum of a fixed distance threshold and the depth av-
erage. In this way, the offset will never exceed a predefined bias. In addition, they
also discuss the possibility of back-face culling for watertight objects because back
faces are black due to shading.

Shadow-Map Reconstruction

�e biasing problem can also be reduced by trying to find a better estimation of
the actual depth of the occluding triangle. To do so, Dai et al. [Dai08] propose to
store the actual triangle information (i.e., the three vertices) of the nearest triangle
with each shadow-map sample. �us, the depth value in the shadow map can be
very accurately reconstructed, and the bias only needs to account for quantization
differences. However, for this technique to work, all shadow-caster triangles need
to be present in the shadow map, and a relatively expensive consistency check with
neighboring samples has to be carried out. Arvo and Hirvikorpi [Arvo05], on the
other hand, store shadow maps as scan lines and can interpolate depth values more
accurately than the regular representation in standard shadow maps. However,
these compressed shadow maps cannot be generated interactively.
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camera view shadow map

Figure 2.11. Illustration of shadow aliasing due to limited shadow-map resolution, with
the camera view (le�) and the corresponding shadow map (right). All screen-space points
lying in the orange region are tested for shadows against the same shadow-map pixel (in
red), which causes the jagged shadow edges in the camera view.

2.2.5 Aliasing

Another drawback of working with an image-based scene representation is that
the shadow map has limited resolution. �is results in aliasing artifacts, which
means that a cast shadow will reflect the discretization of the image in the form
of pixels. Consequently, the shadow boundaries contain visible stair-stepping arti-
facts (see Figure 2.11). �e reason is that several view samples on a receiver might
project into the same shadow-map texel. Hence, they all receive a similar shadow
response. As soon as the view samples project to the next adjacent texel, the shadow
response might change drastically. To limit this problem, many modern games use
shadow-map resolutions that far exceed the window size; 4,0962 to 8,1922 are typi-
cal choices. �e probability of two view samples falling into the same shadow-map
texel is thereby reduced, but not removed.

Attempts exist to use a shadow map per object that adapts its resolution
[Buntin07]. On the one hand, such solutions are o�en difficult to use in practice
as they imply specialized scene structures, separated rendering passes, and a strict
object notion. On the other hand, this approach is particularly useful to provide a
high-quality shadow for particular elements of the scene (e.g., the boss of a video
game level).

Aliasing is the major source of artifacts for shadow-mapping techniques and
has received much attention in these last years. Due to its importance for the vi-
sual quality of a rendering, we will provide a detailed analysis and description in
Chapter 3.
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2.2.6 Implementing Standard Shadow Mapping in Practice

We present here the code for standard shadow maps at quite a detailed level, since
a major part of the characteristics and important tricks to think about lie here. �e
code is for OpenGL.

First, a shadow-map texture is created:

glGenTextures(1, &shadowMapTexture);

glBindTexture(GL_TEXTURE_2D, shadowMapTexture);

glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32,

shadowMapResolution, shadowMapResolution, 0,

GL_DEPTH_COMPONENT, GL_FLOAT, 0);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,

GL_COMPARE_REF_TO_TEXTURE);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_COMPARE_FUNC,GL_LEQUAL);

float ones[] = { 1.0f, 1.0f, 1.0f, 1.0f };

glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, &ones);

Note that we set the border color to 1.0, which corresponds to the maximum depth,
and use the wrap mode of GL CLAMP TO BORDER. �is ensures that tests that fall
outside the view of the light return the far depth and will thus not be shadowed.
�is also works for a spotlight when we want everything outside the cone angle to
be black, since the angle test automatically handles this case.

Subsequently, a framebuffer object is created, and the shadow-map texture is
attached as depth buffer, such that we can render to the shadow map:

glGenFramebuffers(1, &shadowMapFBO);

glBindFramebuffer(GL_FRAMEBUFFER, shadowMapFBO);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

GL_TEXTURE_2D, shadowMapTexture, 0);

�is preparatory work needs to be done only once at program start-up. �e
created objects can then be used each frame for shadow mapping, where a shadow
map is rendered as follows:

Activate FBO shadowMapFBO

glPolygonOffset(2.5f, 10.0f);

glEnable(GL_POLYGON_OFFSET_FILL);

Render scene from light
glDisable(GL_POLYGON_OFFSET_FILL);

Deactivate FBO shadowMapFBO
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It is then applied when rendering the scene from the eye. To this end, the vertex
shader has to derive the shadow-map texture coordinates for each scene vertex:

uniform mat4 lightMatrix;

out vec4 shadowMapCoord;

void main() {

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

shadowMapCoord = lightMatrix * gl_Vertex;

}

�e uniform lightMatrix has to be set in the calling program:

float4x4 offsetMatrix = {

0.5f, 0.0f, 0.0f, 0.5f,

0.0f, 0.5f, 0.0f, 0.5f,

0.0f, 0.0f, 0.5f, 0.5f,

0.0f, 0.0f, 0.0f, 1.0f };

Set uniform lightMatrix to offsetMatrix * lightProjectionMatrix *
lightModelViewMatrix

Render scene from eye

Note the offset matrix offsetMatrix that is multiplied by the light matrix. �is
is to transform the shadow-map texture coordinates from range [−1, 1] to range[0, 1] without having to add any extra lines of code for this in the shaders.

Finally, the shadow-map texture coordinates are used in the fragment shader
to query the shadow map:

in vec4 shadowMapCoord;

uniform sampler2DShadow shadowMapTex;

void main() {

vec3 color = ...;

float visibility = textureProj(shadowMapTex, shadowMapCoord);

gl_FragColor = vec4(color * visibility, 1.0);

}

2.2.7 Shadow Mapping for Large Scenes

When shadowing large scenes, the overhead for shadow mapping can become sig-
nificant. Even if the main rendering algorithm uses a visibility algorithm to reduce
the geometry to be sent to the graphics hardware, in scenes with a large extent, a
shadow map might cover a huge area and might require the rendering of the whole
scene. �erefore, it is useful to create the shadow map only where the resulting
shadows will be visible to the observer.

Fitting

One simple method to reduce the overhead of shadow mapping is to focus the
shadow map on the view frustum. �is is also calledfitting. In large outdoor scenes,
fitting is also required to make the best possible use of the available shadow-map
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resolution, in order not to waste shadow-map pixels on areas that are not even in
the view frustum. �erefore, fitting will be described in more detail in Chapter 4.

However, in applications with large view frusta, fitting may not be enough to
reduce shadow-map rendering overhead. In the context of shadow-volume ren-
dering, Lloyd et al. [Lloyd04] already proposed to cull shadow casters based on
whether they influence any shadow receivers (see Section 2.4.7).

Shadow-Caster Culling

Bittner et al. [Bittner11] generalize this approach to shadow mapping and show
several ways to accurately cull shadow casters and thus reduce shadow-map cre-
ation overhead. �e main idea of this approach is to use occlusion culling to cre-
ate an accurate mask in light space that contains the information where potential
shadow receivers are. �e algorithm has four steps:

1. Determine potential shadow receivers (PSRs).

2. Create a mask of shadow receivers.

3. Render shadow casters using the mask for culling.

4. Compute shading.

(1)�e potential shadow receivers are determined by rendering the scene from
the camera viewpoint using an online occlusion-culling algorithm like CHC++
[Mattausch08]. Occlusion culling returns a list of objects (PSRs) that are visible in
the camera view. (2) �e potential shadow receivers are rendered into the stencil
buffer attached to the shadow map. For this step, bounding volumes for the objects
or the actual geometry can be used. �e former is faster but less accurate. (3) �e
shadow casters are rendered into the shadow map again using an occlusion-culling
algorithm. �e culling is set up so that a fragment is rejected if it fails the depth
test or if it is not included in the receiver mask created in the previous step. �us,
only shadow casters that influence visible shadow receivers are rendered.

�e advantage of using an occlusion-culling algorithm for steps (1) and (3) is
that in both steps, the rendering cost is proportional only to the visible part of the
scene. In step (3), occlusion culling will cull invisible casters (i.e., shadow casters
that are themselves completely in shadow) and casters that do not cast shadows on
a visible part of the scene and, thus, do not influence the final image.

One problem in creating the receiver mask is that the accuracy of the mask
depends on the notion of what a “visible object” actually is. Consider a ground
plane spanning the whole scene, for example—as an object, the ground plane is
always visible, causing the mask to be completely filled, however, only small parts
of the ground plane may be visible at any one time. To create a mask that is as
tight as possible in step (2), Bittner et al. therefore propose a so-called fragment
mask that uses an additional check before setting a pixel in the mask. �e idea is
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to reverse the roles of light and camera views, and test each shadow-receiver frag-
ment against the depth buffer of the camera view for visibility. If the fragment is
hidden in the camera view, then the mask remains untouched. �is allows creat-
ing a mask that contains exactly those pixels where a shadow receiver is actually
visible.

Note that shadow-caster culling is used in very similar ways to shadow-volume
rendering (see Section 2.4.7). �e main difference is that those methods use a
shadow map, which is created without using acceleration by culling shadow casters,
whereas for shadow mapping, the creation of the shadow map itself needs to be
accelerated.

Light Culling

Another problem that might occur in large scenes is a high number of shadow-
casting light sources, even though only a few lights actually have an effect on the
objects in the current view frustum. If in a many-lights scene, most lights have a
bounded extent, then it is possible to improve performance by light culling. For
this, the extent of the light’s influence needs to be given by some geometric shape,
for example, a sphere (for point lights).

A simple optimization is then to apply view-frustum culling to the light extent
and only use lights that intersect the view frustum. �is can save both the shadow-
mapping pass, as well as the fragment computations for shading a pixel using that
light.

O�en, the effect of a light is not visible due to occlusion. �is could be tested
using the following algorithm: first, render the back faces of the light extent, with
a depth-comparison function of “greater than or equal,” and mark pixels in the
stencil buffer that pass this depth test. �en, render the front faces of the light
extent, with a depth-comparison function of “less than or equal” and with stencil
testing enabled, so that only pixels marked in the first step are considered. If this
second pass is rendered using an occlusion query, the GPU returns the number of
pixels that are both visible and inside the light extent. If this number is lower than
a predefined threshold, the light can be culled.

2.3 Shadow Volumes

We have seen so far a shadow solution that was based on an image representation
of the scene. While conceptually simple, we also realized that many problems are
introduced by the fact that the scene is approximated in image space. Here, we
focus on a different basic algorithm that works directly in object space. Instead of
transforming the scene into a set of pixels, shadows can be described by attaching
new geometric elements to the scene—so-called shadow volumes [Crow77]. Being
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accurately constructed from geometry, this algorithm does not share the down-
sides of the previously seen shadow mapping and delivers accurate hard shadows,
but it also o�en results in increased computation cost.

Shadow volumes have a long history in the relatively young science of com-
puter graphics. �e algorithm has matured gradually for over three decades, since
its birth in 1977. Crow [Crow77] introduced the concept of creating volumes of
shadow for scenes described by polygons, which also gave rise to the name volu-
metric shadows. �is term is, however, nowadays more commonly reserved for the
type of shadow algorithms that create shadows in participating media, such as fog,
clouds, or smoke (Chapter 9).

�e best way to understand the shadow-volume algorithm is to think of the
basic concept as creating “volumes of shadow in space” (hence the name shadow
volumes) for each scene triangle that potentially casts a shadow on the scene.

For a single triangle, the shadow-volume region is defined by the triangle itself
and three quads that extend to infinity (see Figure 2.12). Each quad is defined
by two edge vertices and by an extrusion of these two vertices to infinity along the
line from the light source through the vertex. Although it may sound impossible to
project these points to infinity, we will show that homogeneous coordinates do the
trick again (Section 2.3.2). �e resulting four vertices define a quad. Each triangle
defines three quads that together with the triangle itself form the triangle’s shadow
volume. Because the triangle adds a cap to the volume, it is usually referred to as
the near cap. With this definition, a point then lies in shadow if it is located within
one or more of these volumes.

While shadow volumes seem conceptually as simple as shadow maps, an ef-
ficient implementation is far from trivial. We will discuss herea�er various ways
that will lead to an optimized computation.

Figure 2.12. A point inside a triangle’s shadow volume.
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2.3.1 Naive Shadow-Volume Algorithm

To understand the complexity of a naive shadow-volume algorithm, just imagine
how one would test whether a view sample lies in shadow. One solution could be
to first render the entire scene without shadows to produce view samples. Next,
for each triangle T , one could render a screen-filling quad with a special fragment
shader. Each drawn pixel first reads its underlying view sample and tests it for
containment in the shadow volume of the given triangle T . If it lies inside, a black
pixel is output, otherwise the result is discarded, thereby keeping the original pixel
of the rendered scene. Such a naive solution sounds extremely costly from a mod-
ern hardware perspective, since each triangle affects a computation on all pixels.
Interestingly, however, Fuchs et al. [Fuchs85] showed in 1985 that the existing spe-
cialized graphics hardware of the time—the Pixel-Planes machine—allowed a very
efficient execution of the above algorithm. Pixel-Plane machines had the unique
property that the rasterization time for a triangle was independent of the triangle’s
covered screen area [Everitt02]. Consequently, a screen-filling quad was as cheap
as drawing any small triangle in the scene. �erefore, testing all screen pixels for
their containment in the shadow frustum (one plane for each of the three frustum
sides and the triangle itself) proved extremely cheap.

Unfortunately, the higher the resolution, the more costly such specialized hard-
ware becomes and, nowadays, with our full-HD image content, a hardware accel-
eration such as the Pixel-Plane machine becomes unfeasible and better solutions
are needed.

✎

✍

☞

✌

Precomputed Solutions

Instead of constructing shadow volumes on the fly, it is also possible to employ pre-
computation. Some early shadow-volume approaches clipped the scene geometry by
planes along the shadow volumes to divide the objects in lit and shadowed parts. �e
final scene representation o�en involved complex structures like a BSP tree (or even
two [Chin89]). Although a moving object could be rather efficiently removed and rein-
serted [Chrysanthou95], light-position changes were almost infeasible for real-time us-
age. For static sources, this can sometimes still make sense for modern approaches if
the static scene representation is already organized in such a tree structure, as is o�en
the case to support efficient visibility queries.

2.3.2 Shadow-Volume Construction

Previously, we mentioned the possibility of testing all view samples against each
shadow volume. To reduce the number of view samples, one simple improvement
is to construct the actual shadow volume and render it into the current view. Only
the covered view samples can potentially lie inside the shadow volume and, thus,
need to perform the tests against the planes. While this solution reduces the cost
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on modern hardware, it is still infeasible in practice to test each pixel against all
shadow-volume planes of all shadow-casting triangles whose shadow volume cov-
ers the pixel. It will just be too much rasterization of shadow-volume polygons to
run in high frame rates, unless the scenes are fairly small. In Section 2.4.6, we will
see how to construct the shadow volumes from only the silhouette edges instead
of from each triangle. Nonetheless, the actual shadow-volume geometry on a per-
triangle basis proves useful in the more advanced algorithms, which is why it is
worth analyzing their construction here.

To robustly extrude shadow volumes to infinity, one can make use of homoge-
neous coordinates. Given a vertex in homogeneous coordinates, p ∶= (px , py , pz , 1),
we need to move this point to infinity along the line from the positional point
light source l ∶= (lx , ly , lz , 1). Using homogeneous coordinates, any point on a
line between these two points is given by αl + βp, with α, β ∈ R (see infobox on
page 48). Consequently, the particular point p − l = (px − lx , py − ly , pz − lz , 0)
(for α = −β = −1) lies on the line that corresponds to the direction into which the
vertex should be extruded. Interestingly, this point also lies at infinity because its
w-coordinate equals zero. Consequently, to produce the extruded shadow-volume
quad for an edge defined by two vertices v1 , v2, we only need to output the vertices
v1, v2, v1 − l, and v2 − l. For clarity reasons, it is worth pointing out that the w-
component is thus equal to one for the first two vertices and zero for the two latter
vertices that are extruded to infinity.

For a directional light (lx , ly , lz , 0), the process is even simpler because the two
vertices at infinity are actually located at the same position (the quad becomes
a triangle); the light itself describes the direction into which the vertices should
be extruded. �ese extruded vertices simply become (−lx ,−ly ,−lz , 0), following
OpenGL’s convention where the light direction is the normalized vector to the
light. All points are transformed as expected by the projection matrices because
the pipeline does not differentiate between points at infinity and others. It is con-
ceived for general homogeneous points.

�e shadow-volume quads should be oriented in such a way that their plane
equations have the interior of the shadow volume on the inside and the exterior on
the outside. To create a quad with the correct orientation, we first need to check
on which side of the triangle plane the light source is located. Without loss of
generality, we can create the plane equation using the right-hand rule and test the
side of the light source by calculating ((v2 − v1) × (v3 − v1)) ⋅ (l − v1) ≥ 0. If this
result is positive, the correct vertex order for the three shadow-volume quads of
the triangle becomes (v2, v1, v1 − l, v2 − l), (v3, v2, v2 − l, v3 − l), and (v1, v3, v3 − l,
v1 − l). �e quad vertices are here given in counterclockwise order, when looking
at the quads on their front/outer side.5 If the result of the test is negative, then the
vertex order should instead be reversed internally for each quad.

5Direct3D o�en uses a le�-handed system, and for that, the vertex order should be inverted. See
also Appendix B.1.1.
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✎

✍

☞

✌

Homogeneous Lines

At first glance, it might look surprising that two real numbers are used to describe a line,
but this is only a consequence of the fact that any homogeneous coordinate is defined
up to a nonzero scalar. In order to gain confidence in this notation, let’s look at a point
on the line defined by p, l:

αl + βp = (αlx , αly , αlz , α) + (βpx , βpy , βpz , β)
= (αlx + βpx , αly + βpy , αlz + βpz , α + β).

In affine space, the coordinate w = 1. Hence,

(αlx + βpx

α + β ,
αly + βpy

α + β ,
αlz + βpz

α + β , 1)

= ( α

α + β lx + β

α + βpx ,
α

α + β ly + β

α + βpy ,
α

α + β lz + β

α + βpz , 1) .

One observation is that α
α+β
+ β

α+β
= 1. Consequently, renaming τ ∶= β

α+β
, we obtain

((1 − τ)lx + τpx , (1 − τ)ly + τpy , (1 − τ)lz + τpz , 1) = l + τ(p − l).
�e last equation is typically used for lines in affine space, but it does not describe all
points on the line for homogeneous coordinates. How come? We divided by α + β to
define τ, so implicitly, we assumed that this sum is not zero. �e latter happens for
α = −β, leading to βp − βl = β(px − lx , py − ly , pz − lz , 0), which corresponds to the
point at infinity that reflects the direction of the line.

Interestingly, although the two points p − l and l − p are the same from a
homogeneous-coordinate view (remember that homogeneous coordinates are defined
up to a scalar), they are not treated the same way by the graphics pipeline. �e reason
is that the GPU first performs a clipping against the view frustum before performing
the actual division by w. �erefore, the above choice leads to differing results. Fortu-
nately, it is simple to understand the clipping behavior. A point with a zerow-coordinate
should be considered a direction. Defining a vertex with such a direction will extrude
connected edges exactly along this vector. Here, we do not need to know more about
the pipeline, but more details on the clipping stage can be found in the OpenGL Pro-
gramming Guide [Shreiner09]. It also details why the choice of clipping before dividing
is crucial to ensure that geometry behind the camera is always ignored.

2.4 Stencil Shadow Volumes

It was not until 1991, with Heidmann’s stencil shadows [Heidmann91] that shadow
volumes became feasible for real-time dynamic scenes. One major benefit was that
no real geometric computations (intersections or containment tests) were used any
longer, but instead, were mapped on the existing z- and stencil-buffer operations.
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2.4.1 Assumptions

We will, for the moment, assume that the eye is located in light and not in shadow.
Later, we will show how to li� this constraint (see Section 2.4.4).

Heidmann’s core idea is related to the Jordan theorem [Jordan87] extended to
three dimensions. It states that for any closed shape, the set of points in space is
divided into two sets: those that define ray origins for which each ray has an even
number of intersections with the shape and those with an odd number of inter-
sections, where tangency is counted as two intersections. In simple words, closed
shapes, such as shadow volumes, always define an interior and exterior, and we can
test containment by shooting an arbitrary ray along which we count the number
of intersections with shadow volumes. If this number is odd, the origin of the ray
lies in shadow; otherwise, it is lit. For the moment, to simplify explanations, we
will assume that the scene geometry itself satisfies the Jordan condition, meaning
that it is watertight (see footnote on page 37). It exactly separates the space into an
interior and exterior region. For example, a single triangle would not satisfy this
condition, whereas a cube does. We li� this constraint in Section 2.4.6.

2.4.2 Overview

Heidmann decides to test the number of intersections along the rays from the eye
to each view sample. On the way, he counts how many times a ray enters versus
exits a shadow volume. More precisely, he increases/decreases the counter every
time the ray enters/exits a shadow volume. Based on our assumption that the eye
is located outside the shadow, the final count indicates the number of shadow vol-
umes containing the view sample (Figure 2.13). In particular, a count different
from zero implies that the view sample is located in shadow.

Instead of actually testing rays explicitly against the shadow volumes, Heid-
mann proposes a more GPU-friendly computation. His observation is that a ray
enters a shadow volume always through a front-facing polygon, while leaving it
through a back-facing polygon. As each ray is defined by a pixel in the image,
he concluded that one could implicitly test whether a ray enters a shadow volume
by simply drawing its front faces. All pixels covered by the drawn quad will ef-
fectively enter the volume. Rendering all back-facing quads equally determines
pixels whose associated rays would leave the corresponding volume. In order to
realize the counters, Heidmann proposes to rely on the stencil buffer. �e count-
ing can then be performed with the stencil buffer by rendering all shadow-volume
quads and incrementing/decrementing the stencil values for front- and back-facing
polygons, respectively, since it represents entering/exiting shadow volumes. �e
previously described shadow-volume construction (Section 2.3.2) ensures the cor-
rect orientation of each quad, but no near cap is needed. Finally, in order to only
treat those shadow volumes that lie between the camera and the view sample, stan-
dard z-culling is used, where the depth buffer contains the shadow receiving scene,
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Figure 2.13. �e figure illustrates the shadow volumes from two triangles. For a point out-
side the shadow (see upper ray), the difference in the number of intersected front- and back-
facing triangles is zero. For points in shadow, the difference is positive. �e lower ray in-
tersects two front-facing quads, but no back-facing quad, meaning that the lower point is
located inside two shadow volumes. �e difference directly corresponds to the number of
shadow volumes that the corresponding point is located within, and we are mainly inter-
ested in whether this count is zero or more. Notice that the rendering of the back-facing
quads is depth culled behind the cylinder, providing the proper stencil count for the lower
point.

and any updates to the z-buffer are disabled when rasterizing the quads (see pseu-
docode on page 51). In this way, the stencil buffer will contain the correct counter
per pixel a�er having rendered all quads.

In the following, we will give a detailed description to present all subtleties of
the technique.

2.4.3 Stencil Counting Implementation—Z-Pass

In the first step, the scene is rendered from the viewpoint to create the z-buffer.
Typically, the ambient-lighting contribution is computed into the color buffer at the
same step. Secondly, one deactivates the depth write (glDepthMask(GL FALSE)),
while keeping the depth test enabled. Now, all front-facing shadow-volume
quads are rendered to the stencil buffer and increment the stencil values
(glStencilFunc(GL ALWAYS, 0, 0xffff), glStencilOp(GL KEEP, GL KEEP,

GL INCR)), meaning that the stencil is incremented only when a shadow-volume
fragment passes the depth test. �is step is followed by rendering the back-
facing quads and decrementing the stencil values for the rasterized pixels
(glStencilFunc(GL ALWAYS, 0, 0xffff), glStencilOp(GL KEEP, GL KEEP,

GL DECR)). Rendering quads of the correct facing only can be controlled by
glEnable(GL CULL FACE) and glCullFace(GL FRONT/GL BACK). In the final pass,
the scene is rendered again, adding the specular- and diffuse-lighting contribution
into the color buffer, while using the stencil buffer as a mask to discard any pix-
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els in shadow (glStencilFunc(GL EQUAL, 0, 0xffff), glStencilOp(GL KEEP,

GL KEEP, GL DECR)).

Specialized Extensions

Heidmann’s stencil shadow volumes dramatically improved the usability and per-
formance of the shadow-volume technique and received strong support by hard-
ware vendors who even added an extension to increment and decrement the stencil
buffer depending on a triangle’s orientation (glStencilOpSeparate()). �ereby,
separate stencil operations can be set for front- and back-facing polygons, making
it possible to render the shadow-volume quads with incrementation/decrementa-
tion in a single render pass. Furthermore, with the introduction of multiple render
targets, it is standard to render the ambient and specular + diffuse contribution into
two separate buffers in one pass and then combine them when the stencil has been
computed.

✎

✍

☞

✌

Stencil Shadow Volumes (Z-Pass)

First pass: Render the scene with ambient lighting to one buffer and specular + diffuse
to a second buffer.
Second pass: Turn off z-buffer and color writing (i.e., draw to stencil buffer only, with
enabled depth test). Render shadow-volume quads to stencil buffer with increment/
decrement of stencil counter for front/back-facing quads, respectively.
Third pass: Output ambient buffer with the addition of the second buffer for pixels
where stencil counter = 0.

Stencil Precision

A stencil buffer of only 8 bits will overflow when the depth complexity of quads is
more than 256. To avoid such behavior, the increment/decrement operations are
preferably set to a wraparound mode (GL INCR WRAP and GL DECR WRAP that replace
GL INCR and GL DECR, respectively). �is mode avoids overflow/underflow prob-
lems by wrapping around values that exceed the upper/lower limit to the lower/up-
per limit (e.g., 255 + 1 becomes 0). Nevertheless, the 8-bit standard stencil buffer
can quickly become too limited for a complex scene (e.g., 256 superposing shadow
volumes basically cancel out). Stencil buffers of more than 8 bits are still rarely
supported in hardware, but today, using render to texture with additive blending
and a shader that outputs ±1 depending on the facing can be used to simulate the
same counters. In practice, a 16-bit buffer is more than enough.

Summary and Outlook

�e presented stencil updates are o�en referred to as the z-pass algorithm because
the modifications to the buffer are all triggered by fragments that pass the depth
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test. It is much more efficient than the previously described naive implementa-
tion, but several basic improvements remain possible that we will present in the
remainder of this chapter.

Furthermore, we will address the previous restrictions. First, we will no longer
have to assume that the camera is outside all shadows but can be located at an
arbitrary position in the scene (Section 2.4.4). Second, our scene will no longer
have to be watertight (Section 2.4.6). In this context, we will also explain one of the
most crucial accelerations, which is to not construct a shadow volume per triangle,
but, instead, to restrict oneself to a certain subset of edges, the so-called silhouettes.

2.4.4 Z-Fail

Eye Location Problem

If the eye happens to be located inside one or more shadow volumes, then the sten-
cil counts will be wrong (see Figure 2.14). �e stencil buffer will be offset by the
number of shadow volumes that the eye lies within. One solution is to readjust
the stencil buffer by computing the number of shadow volumes it is contained in
(e.g., with geometrical tests of the eye against the shadow volumes on the CPU).
�is could be complex and inflict a burden on the CPU. It would be preferable
to run the whole algorithm on the GPU. In addition, a more complex problem is
that the near plane of the viewing frustum might intersect one or more shadow-
volume planes, in which case, different portions of the screen would require dif-
ferent offsets (see Section 2.4.5). One possibility is to close the resulting shadow-
volume holes geometrically by adding capping planes on the near plane [Diefen-
bach96, Batagelo99, Bestimt99, Dietrich99, Kilgard00, Kilgard01]. Unfortunately,
such approaches are generally not robust [Everitt02, Akenine-Möller08]. Instead,
an alternative is to change the way we perform the stencil counting, which results
in the so-called z-fail algorithm. It was first invented and patented by Bilodeau and
Songy [Bilodeau99] in October 1998 and briefly hinted upon at GDC [Dietrich99].
In 2000, Carmack independently discovered the method at id So�ware and used it
in DOOM 3 [Carmack00]. Since Carmack announced the technique to a broader
audience, the algorithm is o�en referred to as Carmack’s reverse.

Main Principle

As implied by the Jordan theorem (see Section 2.4), to test the containment of a
view sample in the shadow volumes, one can shoot a ray to any arbitrary reference
point for which we know the number of shadow volumes in which it is contained
(i.e., this point does not necessarily have to be the eye). One good choice is to
select a reference point that is always in light. One such point is the position of the
light source itself, but shooting rays in this direction is only efficiently achievable
with current GPUs if we render the scene from the light source, which basically
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Figure 2.14. Eye location problem for the z-pass algorithm. Stencil counts will be offset by
the number of shadow volumes that the eye is located within.

transforms the method into the shadow-map algorithm, with the same pros and
cons, including aliasing and biasing problems.

However, if we restrict the shadow volumes to a finite extent (see Figure 2.15)
(e.g., restricting it to the bounding box of the geometry), all shadow tests inside
the scene would still work, but it is easy to find a point outside all shadow volumes:
a point at infinity. It is possible to use a reference point at infinity (i.e., infinitely
far away) for each pixel by simply reversing the depth test when rasterizing the
shadow-volume geometry.

By convention, the increment/decrement for front-/back-facing polygons are
also reversed, with the effect that the counting is done for virtual rays from each
view sample to infinity along the line through the eye (see Figure 2.15). Not switch-
ing the ”inc” for ”dec” and vice versa would only mean that negative stencil values

Near capping

Far capping

+2
0

Figure 2.15. �e z-fail algorithm. Counting is done from the point along the ray to infinity
instead, by simply inverting the z-test and stencil inc/dec. �e shadow volumes need to be
closed by near and far capping to ensure that the reference points at infinity are always in
light (i.e., outside any shadow volume).
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represent shadows instead. �is method is called z-fail, since the stencil buffer is
updated when the depth test fails. In practice, this is achieved by setting the depth
test to GL GREATER instead of the standard GL LESS.

One important catch is that the Jordan�eorem is only valid for closed shadow
volumes. A simple truncation to the scene extent would lead to holes in the shadow
volumes that need to be filled. Closing the shadow volumes means that we have
to render a near cap—the front-facing triangles themselves—and a far cap usually
based on the back-facing triangles. �e construction will be detailed next, where
we will also show that we can avoid truncating to a scene extent and instead pro-
duce closed volumes at infinity that still lead to a correct behavior with respect to
the z-fail algorithm. �is solution will solve many robustness issues.

Robust Z-Fail Far Capping

When rendering the shadow volumes, the polygons will be clipped by the near and
far planes of the view frustum. �e near-plane clipping cannot affect the rendering
of the z-fail algorithm in any harmful way, since the stencil buffer is only updated
for quads that are farther away from the eye than the scene geometry in the depth
buffer. �us, only clipping at the far plane causes concern. In order to fix this
problem in a simple and convenient way, Everitt and Kilgard [Everitt02] suggest
using an ad-hoc depth-clamping rasterization feature that was added in graphics
hardware by NVIDIA and, now, has become standard. �e easiest and most effi-
cient solution is to just turn on this GL ARB depth clamp extension, which bounds
z-values to the interval of [0, 1]. �is disables clipping at the near/far planes and
causes geometry behind the far plane to be rasterized on the far plane itself (i.e.,
with depth values set to the far value) (and analogously geometry in between the
eye and the near plane will be rasterized on the near plane). For a solution that
does not rely on clamping, see page 56.

2.4.5 Alternatives to Z-Pass and Z-Fail

Z-pass o�en performs faster than z-fail, partly due to not needing to rasterize any
caps and also for its general tendency to cull more quad fragments. It is not unusual
that the z-pass method is up to twice as fast as z-fail. It therefore makes sense to use
z-pass whenever possible, and only use the z-fail algorithm when the eye is inside
a shadow volume or when the near plane of the view frustum risks intersecting a
shadow volume (see Section 2.4.4). Hornus et al. [Hornus05] solved this problem
with a theoretically elegant approach, called ZP+. �is solution automatically han-
dles the eye-inside-shadow-volume problem, computing the correct stencil offsets
per pixel for a following standard z-pass rendering.

�e idea of ZP+ is to project the scene from the light onto the camera’s near
plane and thus initialize the stencil buffer from the view with the correct values to
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Figure 2.16. ZP+. �e idea of the algorithm is to solve the problem with the z-pass method
of having to initiate the stencil buffer with the number of shadow volumes that the eye is
located within. �is is done by rendering the near-capping triangles from the light’s position,
with the far plane identical to the near plane from the eye’s position. �is initiates the stencil
buffer, which can then be used when continuing with the standard z-pass from the eye’s
position. �is approach works unrestrictedly of the light and eye position (e.g., much more
differently than shown here), except for when the light source happens to lie in or very close
to the near plane, preventing the creation of a robust projection matrix.

allow the application of z-pass (see Figure 2.16). �e rasterization from the light
source counts the number of geometrical layers (i.e., shadow-volume near-capping
layers) per pixel, from the light up to the camera’s near plane, by incrementing the
stencil buffer for each generated fragment. �e algorithm is cheap and theoretically
simple, but numerical precision might lead to cracks for a few single pixels, and the
correction of these cracks is rather awkward, involving a specialized vertex shader.
�is vertex shader must identify four special cases concerning the polygon/near-
plane intersection, which makes the code complex. �e cause of the numerical
problems comes from the polygon clipping against the two different unit cubes.
�e polygons will be clipped differently, when rasterizing from the light source
(to initiate the stencil buffer per pixel) and from the camera (for the standard z-
pass step). Clipping produces new primitives whose vertices cover the triangle
part to be rendered, but the produced vertices can be different for the two cases.
�erefore, the generated fragments during the two render passes may be slightly
inconsistent, leading to inconsistent stencil values. �e specialized vertex shader
manually assures that the clipping results will be identical for the two different
projections.

When setting the camera at the light position and rendering the near-capping
triangles, it is important that no triangle intersects the near plane of the currently
used light frustum. Fragments that are culled against that near plane obstruct the
correct initiation of the stencil buffer. Hornus et al. proposed the introduction of
a hardware depth clamping only at the near plane and not at the far plane. At
the time, hardware clamping was only possible for both the near and far planes,
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✎

✍

☞

✌

Robust Z-Fail Far Capping without Depth Clamping

If the depth-clamping extension is not supported, and also for historical reasons, we will
here provide an alternate solution, which works for perspective, but not orthographic,
projections.

�e idea is to set the far plane at infinity. �is is done in such a way that the
shadow volumes, which are still extruded to infinity and closed, never will risk being
clipped by the far plane. To set the far plane at infinity, avoiding floating-point precision
problems, the projection matrix used when rendering the shadow volumes needs to be
tweaked [Blinn93, Everitt02].

�e standard projection matrix for OpenGL is constructed as follows (see also ma-
trix B.1 on page 315):

MP =

⎛⎜⎜⎜⎜⎜⎝

1
α

cot fovy

2
0 0 0

0 cot fovy

2
0 0

0 0 n+ f

n− f

2n f
n− f

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎠
,

where α is the aspect ratio, fovy is the vertical field of view, and n and f are the near-
and far-plane positions. If f is infinity, the third row becomes

(0 0 −1 −2n) .

For clarity, here is the full OpenGL projection matrix with the far plane at infinity:

Mp =

⎛⎜⎜⎜⎜⎜⎝

1
α

cot fovy

2
0 0 0

0 cot fovy

2
0 0

0 0 −1 −2n

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎠
.

Surprisingly, the numerical loss of precision for the z-buffer range when moving
the original far plane, fo , to infinity normally turns out to be small. �e amount of
numerical range lost is just n

fo
, which for normal values of n corresponds to a negligible

effect on precision [Akenine-Möller08, Kwoon03].

with the GL ARB depth clamp extension. Clamping at the light frustum’s far plane
(located at the eye’s near plane) would destroy the stencil counting of shadow
volumes up to the eye’s near plane. Since 2010, such a new extension exists
(GL AMD depth clamp separate) that enables us to choose the plane on which the
clamping is performed (here, glEnable(GL DEPTH CLAMP NEAR AMD)).

Another potential problem occurs when the light source happens to be in, or
sufficiently close to, the camera’s near plane, preventing the construction of a robust
projection matrix from the light onto the plane. Nevertheless, this latter situation
is very rare and does not impose much of a practical problem.
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++ZP Approach

In this book, we present a different approach that is much simpler and o�en robust
enough in practice. As mentioned above, the stencil buffer must be initiated with
the number of shadow volumes that the eye is located within for the z-pass to work
properly. In addition, the near plane of the view frustum may intersect shadow-
volume polygons, leading to different initialization values per pixel. �e latter can
be solved by enabling near-plane clamping. �erefore, the only remaining task
is to count how many shadow volumes the eye is located within. We notice that
testing the eye can be done rather efficiently on the GPU.�e idea is to set up a new
orthographic camera from the light’s position to the eye position. �is camera has
a 1×1 pixel-sized viewport. Now, render the scene, incrementing the stencil buffer
for each rasterized fragment, delivering the exact number of shadow volumes that
the eye is located within.

Why is this method not 100% robust? �e reason is that the counting by the
rasterization of the two steps (from the light source to the eye and the z-pass) must
be done exactly the same—without being affected by different clipping or different
32-bit float rounding issues when multiplying polygon vertices with the model-
view-projection matrix. �is is not the case, since the model-view-projection ma-
trices differ, resulting in both different geometrical clipping of the polygons and
different matrix rounding errors. In other words, the counting is done for scene
geometry that will be slightly different between the pass that counts to the light
source and the z-pass. Nevertheless, visible errors are rarely detected in practice.

✎

✍

☞

✌

Reasonably Robust Z-Pass Algorithm

Count shadow volumes containing the eye:

1. Set up orthographic camera between light position and eye position, with the
near and far planes coinciding with these positions, respectively. Use a viewport
with a size of 1 × 1 pixel.

2. Initialize the 1 × 1 stencil buffer to zero and render the scene, with the stencil
function set to increment.

3. Read back the stencil value, v, to the CPU.

Render the shadow-volume quads:

4. Restore the camera and viewport. Initiate the stencil buffer with v

(glClearStencil(v)), then glClear(GL STENCIL BUFFER BIT).

5. Enable depth clamping by glEnable(GL DEPTH CLAMP), or preferably glEn-

able(GL DEPTH CLAMP NEAR AMD) if available.

6. Render shadow volumes using standard z-pass.
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Figure 2.17. An interior edge makes two quads that cancel out (le�). Finding the silhouette
edges gets rid of many useless shadow-volume quads (right).

2.4.6 Silhouette-Based Shadow Volumes for General Models

For a watertight model, one realizes that adjacent shadow-casting triangles lead
to an “inner” boundary for which the generation of shadow-volume quads can be
omitted (see Figure 2.17) because these two quads basically cancel out. Any ray
piercing the quad would leave the current shadow volume and directly end up in
the adjacent shadow volume. �us, while moving along the ray, the count of the
number of shadow volumes that contain the current position does not change.
Consequently, such triangles should be merged and the quad omitted. In fact,
this observation was already pointed out by Crow [Crow77]. Ultimately, only the
model’s silhouette edges, as seen from the light, need to be extruded, where silhou-
ette edges of a watertight model are those edges that are adjacent to a front- and
back-facing triangle with respect to the light source. �e near cap of the shadow
volume is formed by the front-facing triangles (with a triangle normal oriented
towards the light). �e silhouette edges are typically found by searching for shared
edges between one triangle that is front facing and one triangle that is back facing
the light source.

Historical Implementations

�e shadow-volume algorithm used in DOOM 3 is described by van Waveren
[vanWaveren05], including Streaming SIMD Extensions (SSE) optimizations for
the Pentium 4. When vertex shaders appeared in graphics hardware, it was rapidly
shown how to use these to accelerate both the silhouette-edge detection and the
shadow-volume generation [Brennan02, Brabec03]. Microso� also provides ex-
ample code as part of the Direct3D SDK.6�e drawback of using the vertex shader
is that it cannot create new vertices. �us, degenerate quads are inserted between
each mesh edge, which are extruded in runtime by the vertex shader only for sil-
houette edges. Nowadays, it is easier to use the geometry shader [Stich07].

Manifold Models

However, creating shadow-volume quads only from the silhouette edges has a
caveat for nonclosed objects, which has led to the common misconception that ob-

6See ShadowVolume Sample at http://msdn.microso�.com/en-us/library/ee418792.aspx.
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Figure 2.18. Z-pass for a closed object (le�). Stencil counts fail for a nonclosed object (middle). Bergeron notes that
for nonclosed objects, silhouette edges with two adjacent triangles should create shadow quads that inc/dec the count
by two, while quads for open silhouette edges inc/dec by one (right).

jects need to be watertight for the shadow-volume algorithm to work properly. �e
middle image in Figure 2.18 illustrates what happens when shadow-volume quads
are created from the contours of a nonwatertight object. One main difficulty are
boundary edges (i.e., edges only belonging to one triangle). For an isolated triangle
to cast a shadow, its boundary edges need to define shadow volumes. Nonetheless,
just adding shadow volumes to boundary edges is not a general solution because
the stencil counting might become incorrect.

A first step in the right direction was made by Bergeron [Bergeron86] that deals
with manifold meshes (meshes that contain only edges with one or two adjacent
triangles). He noticed that objects should actually have two quads per silhouette
edge that is shared by two triangles, and only one quad if the edge is a boundary
(i.e., only belongs to one triangle). In other words, silhouette edges with two ad-
jacent triangles should increment/decrement the stencil buffer by a value of two,
while open edges should use a value of one (see Figure 2.18, right). To circumvent
the fact that the stencil buffer only allows modifications by ±1, additive blending
to an offscreen buffer could be used [McGuire07], instead of rendering the quads
twice.

General Models

As a matter of fact, Bergeron’s solution proves to be just a special case of a more
general observation, noted by Aldridge and Woods [Aldridge04]. Reformulating
their observation enables the description of a simpler and more efficient solution.
In particular, that and most previous methods rely on determining light front- and
back-facing triangles for the silhouette extraction. �e facing is by definition based
on the triangles’ winding order.7 �is means that the triangles’ winding orders
require some consistency. However, for a general polygon soup, the concept of
facing and consistent winding does not necessarily exist and imposes a superfluous
restriction.

7�e two triangles (v1 , v2 , v3) and (v1 , v3 , v2) are identical but with different winding order.
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A naive solution would call the shadow method twice—once for front-facing
and once for back-facing geometry. Nevertheless, it would lower efficiency. Kim et
al. [Kim08] presented the first solution that avoids this and any concept of facing or
consistent winding, by the addition of a minor modification. We will here present
that idea slightly differently and in more detail, but it follows the work by Kim et
al. closely.

�e idea is to not focus on triangles to determine shadow volumes but to con-
centrate on the edges in the scene. �ese edges do not need to be unique in order
to make the algorithm work, but if they are, it maximizes performance; that is, an
edge (v0 , v1) with three adjacent triangles could appear in the list twice (e.g., as
one instance with an identified connectivity for two of the triangles, and the other
instance with a single connectivity for the third triangle). �is will still generate
the same shadows, but by possibly drawing more quads than necessary.

For each scene edge (with an arbitrary number of connected triangles), the idea
is to generate a shadow-volume quad that increments/decrements by k, where k is
the number of noncanceling quads that would be generated if one quad was created
per triangle that is adjacent to this edge. If all quads cancel out, we do not output
a shadow-volume quad for the edge.

Before going into the details, let’s illustrate how Bergeron’s suggestion can be
rediscovered via this description. At a boundary edge, we have k = 1 because there
is only one triangle, and the two definitions coincide. For a nonsilhouette edge,
both triangles define adjacent shadow volumes that cancel out, leading to k = 0,
which means that no shadow volume is constructed, which reflects Bergeron’s sug-
gestion again. Finally, for a real silhouette with adjacent front- and back-facing tri-
angles, the shadow quad does not cancel out because both shadow volumes overlap.
Hence, k = 2, which shows that also the last case coincides.

�e question is how to formalize the notion of canceling out for more general
configurations where many triangles meet at the same edge. To explain this further,
let’s first take a step back and revisit the case for two shadow-casting triangles.
While moving along a shadow-volume counting ray (from the eye for z-pass or
from infinity for z-fail), as mentioned, we maintain a counter that indicates the
number of shadow volumes the ray is contained in. Now, two triangles cancel each
other out if the ray’s counter, when passing through the shadow-volume quad, does
not change. In the same way, for many triangles, we will be interested only in the
change of the counter when passing through the edge’s shadow-volume quad. �is
change is exactly the number k mentioned above. If k = 0, the shadow-volume
quad is unnecessary and can be ignored.

Principle. �e main structure of the algorithm follows.

1. Create a list of all edges with their adjacent triangles. Each edge in the list
also stores its adjacent triangles.
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2. To render the shadow-volume quads, loop through the edge list and for each
edge

• compute the number, k, of noncanceling quads—for each adjacent tri-
angle, modify k depending on whether a quad from that triangle edge
would inc or dec;

• output a shadow-volume quad that incs/decs by k; no quad is output if
k = 0.

Creating the triangle-connectivity list for each edge is similar to most previous
silhouette-edge extraction approaches, but the list does not need to assume any
edge direction and can have more than two connected triangles. �at is, edges
with the same vertices are considered identical, no matter the vertex order.

Implementation. �e edge list is preferably generated in a preprocessing step,
where each edge stores two vertices (indices or coordinates).

For reasons of compactness and also for avoiding random memory accesses
with pointers,8 the adjacent-triangle information is preferably stored as the trian-
gle’s plane equation and one boolean indicating if the triangle edge’s vertex order
is the same as the vertex order of the edge in the list. For every edge belonging to
the triangle, the exact same plane equation must be used for robustness (and the
assembler instructions should be identical for each computation per edge when us-
ing the plane equation, to avoid internal rounding differences). Otherwise, there
is a risk that the computations will result in inconsistency for the triangle facing
between the three edges. As long as this consistency is guaranteed, the algorithm
will robustly cope with both limited precision and degenerate triangles.

If the geometry shader is fed the list of edges, one by one, it can easily han-
dle both the computation of k and the generation of a quad when the value ends
up nonzero. In the fragment shader, determine eye-facing order for the shadow-
volume quad (e.g., by using the boolean gl FrontFacing in OpenGL), in order
to decide whether to inc or dec with the signed k. �e quad should be generated
with a vertex order corresponding to the right-hand rule (i.e., the same rule that we
used for computing the plane equations of all triangles). �at is, the quad’s vertices
should be in the order (v1 , v0 , v2 , v3), where v2 is the extrusion of vertex v0 and v3

the extrusion of v1. Since the geometry shader can only output triangle strips and
not quads, we have to output (v0 , v2 , v1 , v3) in reality.

�e reason the quad orientation becomes correct is because an explicit vertex
order v0 , v1 is stored per edge in the edge list. Furthermore, for each triangle, we
then check how quads from the triangle’s edges (which have a well-defined ori-
entation) would affect the number of noncanceling quads k for quads generated

8�is is particularly important on certain game consoles and, for example, when batching jobs on
the SPUs of the PS3 with their 256-KB storage.
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from the corresponding list edges. As just mentioned, these latter quads are al-
ways created with an orientation corresponding to a fixed vertex order. �erefore,
no ambiguity exists.

Without loss of generality, we compute the plane equations ntri ⋅x+dtri = 0 for
each triangle using the right-hand rule; that is,

ntri = (v1 − v0) × (v2 − v0),
dtri = −(v0 ⋅ ntri).

Here is an example of the data structure for an edge:

struct Edge {
v0 , v1 ;
// data for adjacent triangles:
list of {(ntri , dtri), bool reversed vertex order},

where reversed vertex order is true if the triangle edge’s
vertex order is (v1 , v0) and false if it is (v0 , v1).

}

In practice, it is rare that edges have more than two adjacent triangles, so for effi-
ciency, such edges could be stored in a separate list. �us, the main edge list can
have a constant size, storing up to two triangles.

For every frame during the rendering, process the edge list as follows:

for each edge in list
k = 0
for each adjacent triangle

1. Compute quad direction for the triangle’s edge
2. Update the counter k accordingly

if k ≠ 0, output quad that incs/decs with signed k

More explicitly, this corresponds to the following simple code:

for each edge e
k = 0
for each adjacent triangle tri

// Compute triangle facing with respect to the light source.
s = sign(ntri ⋅ light positionxyz + dtri) // sign of one 4-component dot product
// �is sign is dependent on the vertex order of the triangle used when
// computing the triangle’s plane equation (ntri , dtri). A light front-facing triangle
// generates a quad with vertex order, i.e., orientation, consistent with the
// triangle’s vertex order. If the sign is negative, the vertex order should be reversed
// for the triangle’s generated quad, which is identical to inverting the inc/dec
// term for the quad.
// In addition, the term should be inverted if the triangle edge’s vertex order
// (when computing the plane equation) is opposite of edge e’s vertex order.
if (reversed vertex order)
s = −s // edge e’s vertex order is opposite of the triangle edge’s vertex order

k += s
if k ≠ 0, generate quad from edge and send the k-value to the fragment shader
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Here is the fragment shader when rendering the shadow-volume quads:

if not gl FrontFacing, then k = −k
output k

For the z-fail algorithm (see Section 2.4.4), we also need to create the near- and
far-capping polygons. �en, for general nonclosed geometry, all triangles need to
be used as both near caps and far caps, since the theory states that each triangle
should give rise to a closed shadow volume. However, for watertight shadow cast-
ers, it is enough to use the front-facing triangles as near caps and the back-facing
triangles as far caps, with an inc/dec factor of two instead.

For deformable objects (e.g., skinned characters), it can be convenient to store
the information for edge-adjacent triangles as a vertex index per edge connectivity,
instead of as the plane equation. �is is more compact, even though extra infor-
mation needs to be stored on which order to use the vertices when computing the
plane equation. Again, the plane equation must be computed exactly the same way
for each of the triangle’s three edges, for full robustness. �e situation we want to
avoid is that the sign of the plane equation becomes different for the triangle’s three
edges, which otherwise could happen if the triangle is degenerate (a thin line) or
is edge-on to the light source.

2.4.7 Advanced Improvements

We have seen how to produce robust and accurate hard shadows based on shadow
volumes, but, unfortunately, the current approaches fall short when scenes are de-
tailed and contain many polygons. �e two bottlenecks are geometry processing to
create the shadow volumes and also the fill rate because shadow volumes produce
many pixels on the screen that update the stencil buffer. For this reason, shadow
volumes were particularly popular at the time of the release of DOOM 3. For the
first time, pixel shaders offered the possibility to simulate geometry details in form
of normal maps, thereby enabling the use of very simple geometry that was, in
turn, well suited for shadow-volume shadows. Nonetheless, today, typical game
scenes are relatively complex, and, with tessellation becoming increasingly popu-
lar, shadow volumes are difficult to apply directly. In this section, we will briefly
visit a couple of techniques that have been proposed to improve the speed of the
stencil updates. For complex scenes, these strategies lead to a significant improve-
ment. An overview is also given by Steiner [Steiner06].

Shadow Volumes and Level of Detail

�e geometric overhead of shadow algorithms can generally be reduced by sim-
plifying the geometry. Clark [Clark76] proposed to adapt shadow quality based
on covered screen area. Still today, it is interesting to approximate the geometry
that is used to cast shadows. For instance, the Spider-Man 3 game by Activision
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uses levels of detail (LODs) containing different amounts of geometry. Here, shad-
ows were rendered using a coarser resolution than the geometric complexity of the
original objects, thereby lowering the rendering cost of the shadow volumes. For
shadow volumes from lower LODs, such a change of the shadow-casting geometry
can produce shadows on the original geometry with visible artifacts.

In watertight scenes, there is a simple solution to avoid such unwanted shadows
for different LODs. �e idea is to not produce shadow volumes from the triangles
that are front facing the light source but to rely solely on back-facing triangles as
near capping. �ereby, the shadow volumes are no longer complete, but the miss-
ing part of the shadow volume lies inside the object itself. Hence, it can be useful
to simply reverse the way light front- and back-facing triangles are extended for
the near- and far-capping triangles of the shadow volumes [Zioma03]. It is less
sensitive because the capping triangles do not need to correspond exactly to the
original occluder geometry. �e reason is that they no longer enclose the entire
object but are only attached to the back faces. Hence, it becomes possible to rely
on a different level of detail for the shadow-volume computation. �is reversing
trick is not fully robust but works well in many cases. One important observation is
that the shading for triangles that are back facing the light source needs to produce
the same color, regardless of whether the point that is shaded is inside or outside
a shadow volume. Otherwise, shadow artifacts could occur on back faces. Using
LODs has also been proposed by Govindaraju et al. [Govindaraju03]. In general,
it is difficult to avoid artifacts in such cases, and the topic remains an area of future
work.

Reducing the Geometric Overhead by Caster Culling

It is also useful to cull shadow casters completely according to whether they can in-
fluence the final rendering that will appear on the screen. Such an idea was also al-
ready presented in 1976 by Clark [Clark76], before the birth of the shadow-volume
algorithm. Clark hierarchically culls shadow casters that themselves lie in shadow
and restricts computations to visible parts of the scene. Instead, we will concentrate
on useful methods particularly targeted for shadow volumes.

A significant cost comes from overlapping shadow volumes. Preferably, one
would like to only draw the outer shadow-volume geometry and skip the parts of
the volumes that are in shadow, since those are superfluous. Geometrically clip-
ping the volumes against each other [Batagelo99, Vlachos02] is, however, not a
viable option in real time. Instead, McCool [McCool00] examines extracting the
shadow silhouette edges from a shadow map and constructs the shadow-volume
quads from these. �is means that only a parity bit instead of a sum is needed in the
stencil buffer (we are either in a shadow volume or not). �e disadvantages are that
the shadow-volume quads are numerous, and it remains unclear how to better ap-
proximate the shape. Creating a volume per pixel leads basically to a shadow-map
equivalent and the potential advantage of geometric shadow boundaries vanishes.
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Lloyd et al.’s CC Shadow Volumes [Lloyd04] provide a more modern solution
to reduce rendering costs by shadow-caster culling, based on the earlier work for
geometric shadow generation by Govindaraju et al. [Govindaraju03]. �ey remove
those casters that are located completely in shadow or whose shadows are not visi-
ble to the eye. Furthermore, shadows that do not influence visible shadow receivers
are culled as well. �e tests are usually based on a shadow depth map from the
light’s view. In addition, the shadow receivers are rendered (still from the light’s
view) to the stencil buffer and set the stencil value whenever their depth test fails.
�e stencil buffer then reflects those pixels of the shadow map where shadowed
regions of the scene may occur. In other words, if the stencil buffer is not set, any
shadow volume created above those pixels wastes resources, as it will never shadow
any receiver.

�e so-created depth and stencil maps (depth/stencil map herea�er) can then
be used to cull casters. In order to test whether a shadow caster can be ignored, one
can use occlusion queries that allow us to count the number of pixels that are drawn
on the screen during rendering. We deactivate depth writing, and for each caster,
we render its bounding box from the viewpoint of the light into the shadow map
while relying on the depth and stencil test (where the stencil test fails for set values).
�e use of a bounding box is a conservative choice that avoids having to treat the
entire geometry of the caster. Via the occlusion-query counting mechanism, we
can recover the number of pixels that passed the test. If this pixel count turns out
to be zero, the shadow caster is either itself in shadow (the depth test fails) or does
not influence any visible shadow receiver (the stencil test fails). In this case, the
caster’s shadow volumes can safely be ignored.

A more recent approach [Stich07], used by Mental Images, exploits a scene
organization in the form of a bounding-volume hierarchy to reduce the shadow-
volume cost. Building such a scene hierarchy can typically be done rapidly even
for dynamic scenes. Organizing data in such a way is useful in general, as large sets
of objects (nodes in the tree) can potentially be culled quickly before descending
to each individual object. Instead of culling shadow casters in light space, the algo-
rithm simply performs an occlusion query in eye space. �is is done by rendering
the shadow volume of an axis-aligned bounding box of a potential shadow-casting
node in the tree. If this shadow volume is not visible, it means that any shadow
cast by an object inside the node cannot be visible. �us, the rendering of shadow
volumes for any of the objects in the node and its subtree can safely be skipped.

View-sample–based caster culling. �e idea of using the stencil buffer to test for
shadowed receivers can be further extended. Instead of using the stencil buffer to
test for the presence of shadow receivers, one can try to actually use only casters
that have an impact on the view samples—a�er all, these are the only locations in
space for which we need to compute a shadow.

One simple optimization during the depth/stencil-mask creation is to set the
stencil mask only when the corresponding pixels also fall into the view frustum.
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�e easiest solution to perform this operation is to first render the scene from the
light once to produce the depth values and then render the scene again from the
light to initiate the stencil values. During the second render pass, one only draws
pixels that fail the depth test and compute their projection in the view frustum via
the vertex shader. �is position is then passed to the fragment shader in the form
of texture coordinates. Here, looking at the texture coordinates allows us (like for
shadow mapping, the x , y-coordinates need to lie inside [−1, 1]2) to determine
whether the pixel actually projects inside the frustum. If not, it is simply culled.

To push this idea further, Décoret proposed the litmap approach [Décoret05].
Here, the algorithm first applies a rendering from the viewpoint to recover a depth
buffer Dv. While rendering casters into the depth/stencil mask, each fragment is
tested for containment in the view frustum but also against Dv to eliminate all
pixels that are hidden from the current view. Intuitively, this enables us to limit all
geometry that is rendered into the depth/stencil mask, to also be visible from the
eye. Consequently, if we now query casters against this new mask, only those that
affect the current view are kept. �is optimization leads to a substantial reduction
in geometric complexity.

Max culling. A final improvement, which is slightly more involved, is to keep the
maximum depth value for each pixel in the depth/stencil mask. In this case, we
can test if a caster is even farther away from the light than the visible scene, which
implies that the caster cannot project a shadow on the visible scene. Imagine, for
example, a game where the player is on one floor of a building and the tested casters
are on the floor below. Without storing the maximum depth value, one would not
be able to detect that the caster is on the floor below.

Instead of rendering the actual casters or their several-pixels-spanning bound-
ing boxes, Décoret [Décoret05] points out that simple point queries suffice when
relying on a so-called N-buffer constructed from the depth map. For each given
caster bounding boxB, this structure allows him to determine the maximum depth
value (and potentially also stencil value) of an axis-aligned bounding quad that
contains the projection of B into the depth/stencil map with a single texture look-
up. �e so-derived maximum depth is a conservative value that, if the caster’s
bounding box is farther away, can be used to safely cull the caster geometry. �e
construction and functioning of N-buffers is described precisely in Appendix D.

Improving Fill Rate

A relatively straightforward solution to reduce fill rate is to downsample the screen
buffer, for example, by a factor of two in both the x- and y-directions. �e shadow
volumes are then computed there, and finally the bufffer is upsampled again
[Röttger02]. Röttger et al. show that lowering the resolution to one-fourth provides
a roughly four-times speedup. Nonetheless, the resulting shadows can exhibit ar-
tifacts for detailed scenes, and one of the major benefits of shadow volumes, the
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accuracy, is reduced. Instead, there are solutions to reduce the fill rate without
compromising quality.

Light attenuation. One interesting case is to improve fill rate when there is a light
falloff. As we have seen in Chapter 1, the further the light is from the impact point,
the more energy is lost. In this chapter, we have so far assumed that the falloff is
negligible. In practice, it can make sense to limit the distance that light is emitted in
the scene. O�en, a quadratic falloff is used (e.g., 1/d2, where d is the distance to the
light). Such distance attenuation can easily be added to the fragment shader when
performing the final shadow-volume pass exploiting the stencil-buffer counters.
�e important observation is that the energy of the source can become very weak,
even weak enough that we can ultimately clamp away its contribution; that is, if its
influence on the view samples falls below the smallest displayable gray difference,
all farther pixels would appear black anyway.

To exploit this situation, one can make use of the scissor test, which in OpenGL
is controlled by the glScissor(x, y, w, h) command [Lengyel02, McGuire03].
�is operation restricts all pixel outputs to a window positioned at pixel (x , y)
with size w × h. It is therefore possible to restrict the shadow-volume rendering
to a small area on the screen. To apply this feature for shadow volumes, we first
compute a bounding sphere around the light that contains all points in space that,
if unshaded, still receive a noticeable light energy. Next, we can project this sphere
in the current view and bound it by a rectangle that is used for the scissor test.
Consequently, updates during the shadow-volume stencil pass will only be applied
to the restricted set of pixels.

One observation is that this optimization only considers restrictions in the im-
age plane of the view. �e fact that depth is excluded can lead to stencil computa-
tions in view samples that are contained in the scissor window but actually not in
the three-dimensional bounding sphere around the light. To remedy this situation,
another extension was proposed [Everitt03, McGuire04a] that adds depth bounds
along the z-direction of the camera. In this way, many view samples not contained
in the bounding sphere can be ignored because their depth is outside the range
defined by the depth bounds. �is is controlled by glDepthBounds(zMin, zMax)

of the GL EXT depth bounds test extension.
In general, attenuated sources can facilitate computations in the case of shadow

maps, as well as shadow volumes. Casters that are too distant from the light can
simply be ignored and the proposed LOD strategies merge nicely with such setups
as well.

Clamping. For lights without falloff, other solutions need to be applied. In addi-
tion to using culling (see above), Lloyd et al.’s CC Shadow Volumes [Lloyd04] also
use clamping of the shadow volumes to avoid unnecessary rasterization. �e idea is
to cut each shadow volume along its extrusion into parts, as shown in Figure 2.19.
All parts of the volume that do not englobe scene geometry can be eliminated and
do not need to be rasterized. �e key is to reduce the fill rate by drawing only



68 2. Basic Shadow Techniques

O

C

(a) caster culling (c) receiver culling

R'

R

C

(b) clamping

R'

R

C

B

Scene Shadow volumes

Culling only Culling and Clamping

Figure 2.19. Top: �e principle of shadow volume culling and clamping. (a) Shadow caster
C is fully in the shadow of O so its shadow volume can be culled. (b) �e shadow volume
for C needs only to extend through regions containing shadow receivers. (c) If a shadow
receiver R is not visible from the viewpoint, the shadow volume for C does not need to be
rendered around it. Bottom: Images showing the overdraw from standard shadow volumes
versus shadow volumes with culling and clamping (courtesy of Lloyd et al. [Lloyd04]).

parts of the shadow volume. Care has to be taken that these parts are still consis-
tent with the shadow-volume algorithm, meaning that for a given eye ray, it either
pierces no shadow volume or it passes through two of its quads, thereby leaving the
main method intact. �is creates a natural trade-off between geometric complex-
ity (many shadow-volume parts) and fill rate (avoidance of rasterizing in empty
space). Lloyd et al. present two different clamping methods that could be used in
combination.

�e first proposition is called continuous shadow clamping, where shadow vol-
umes are clamped using axis-aligned bounding boxes (AABBs) around the shadow
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receivers to achieve clamped shadow volumes only around the regions of inter-
est. �is is done as follows. For each shadow caster, the list of potential shadow
receivers are found by testing all receivers’ AABBs against the caster’s AABB for
overlap in light-projection space. �e depth range (min and max z from the light
source) of the identified potential receivers is used to clamp that caster’s shadow
volume to this z-min and z-max extrusion-range only. �us, rasterization for a
large part of the shadow volume that does not cover any receiver in eye space could
potentially be avoided.

�e second suggestion is called discrete shadow clamping and clamps the
shadow volumes to intervals defined by slicing planes that divide the rendered im-
age into bands. Shadow-volume parts are then defined according to these bands
(Figure 2.19(b)). �e bands in image space are usually oriented such that they are
as orthogonal to the projected light direction as possible. Each band boundary
represents a slicing plane in three dimensions that passes through the viewpoint
(simply imagine that a line in image space is extended in depth).

According to this setup, the scene is rendered multiple times from the light,
every time using two slicing planes, hence, representing a band in the view against
which geometry is clipped. �e rationale behind it is that potential receivers are
only rendered if they fall within the two delimiting planes. �e resulting query
image Q is binary and contains black pixels where no receiver is present and white
pixels where a receiver fell in the range between the two planes.

We test casters against this representation in order to decide whether the cor-
responding shadow-volume part can be eliminated. Whenever no receiver can be
found, it is possible to ignore the shadow-volume part, thereby reducing the fill
rate. To this extent, we need to test whether the caster covers any receiver pixel.
Consequently, we can render the caster in the light’s view and discard all its frag-
ments that do not lie above the lower slicing plane, as well as those that do not

B
R

C

R

O

(a) improved caster culling (b) improved receiver culling

C

Figure 2.20. Cases that benefit from pixel-accurate culling. (a) Instead of just culling the
shadow volume of C around the whole receiver R, the shadow volume can be clamped even
tighter, since a part of R (the one dashed) is actually shadowed by another caster O. (b) A
receiver R that is visible by the observer but cannot actually receive shadows, which also can
be accounted for with pixel-accurate culling.
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cover any white pixel in Q. If no fragments are output (tested with an occlusion
query together with, for instance, a stencil test for allowing rendering only to white
pixels in Q), the shadow-volume part can be clamped.

�is clamping was improved upon by Eisemann and Décoret [Eisemann06a].
Instead of rasterizing the entire scene multiple times, once for each slice, they use a
single-pass voxelization technique to derive the layers (presented in Chapter 8.2.2).
Further, they voxelize the geometry visible from the viewpoint again, in the same
way as for the previously explained caster culling (see Figure 2.20).

Split shadow volumes. An interesting observation is that one should actually
aim at a general reduction of the number of stencil updates, which motivated split
shadow volumes [Laine05a]. �e algorithm is based on the fact that from one ob-
ject to the next, one can toggle between z-fail and z-pass if we assure that the stencil
buffer is modified in a coherent way. For z-fail, only shadow-volume fragments that
fall behind view samples will lead to a stencil update, whereas for z-pass it is the
other way around. �erefore, the choice of z-fail and z-pass is based on which one
is likely to be the fastest (see Figure 2.21). In addition, the per-object toggle can be
decided on a per-pixel basis. It is an attractive idea, but in practice, since we still
lack hardware support, it is currently not efficient.

We will now explain the idea of the algorithm. Let’s for the moment assume
one single shadow volume. �e stencil operations are set such that if one side of the
shadow volume lies in front and the other behind the view sample p, both methods
(z-fail and z-pass) will result in a stencil buffer containing the value one. In other
words, z-pass should increment the stencil for the visible front-facing quads and
z-fail should increment for invisible back-facing quads. If the shadow volume lies
entirely in front or entirely behind p, both (z-fail and z-pass) lead to a value of zero
in the stencil buffer.

elminiated with
 z -fail

elminiated with
 z -pass

p

Figure 2.21. Split shadow volume: the idea is to select z-pass or z-fail on a per-pixel basis,
depending on which method is likely the most efficient, that is, culls the most shadow-
volume fragments during the rasterization.
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Using early z-culling, it is possible to reduce unnecessary stencil updates. �e
observation is that for z-fail, the stencil buffer is modified solely by fragments that
lie behind p, whereas for z-pass, the stencil buffer is modified only if fragments are
in front of p. �erefore, the better choice of the two options is the one that is more
likely to not perform any update for a given object, which means that z-fail should
be chosen if it is more likely that the entire volume lies in front of p. In the opposite
case, z-pass should be used.

To select an appropriate strategy, an additional value zsplit is computed per pixel
and object. Laine defines two ways to do this, but basically, they just aim at drawing
a quad that approximately splits the shadow volume. �is quad defines a barrier
that toggles between the two methods. Based on the depth of zsplit and the depth
of p, a per-pixel choice is made. If p is closer than zsplit, the volume is likely to be
behind p, and thus, z-pass is chosen (eliminating all fragments behind p). In the
opposite case, z-fail is used.

Of course, one would not gain much if zsplit was rasterized at full view reso-
lution because then each object would draw one supplementary quad, leading to
an again increased fill rate. But because the zsplit values have no influence on the
correctness of the result, only on performance, it is possible to render them in a
much lower resolution buffer—optimally one whose resolution matches the high-
est level in the hierarchical z-buffer [Greene93] to ensure the best early culling
behavior.

Hybrid of shadow maps and shadow volumes. It is interesting to see that depth
maps (which are similar to shadow maps) can be used to accelerate shadow
volumes. Nonetheless, they all made explicit use of the shadow-volume geometry
to reduce the fill rate. In this last example, we will present an algorithm to reduce
the fill rate by implicitly detecting shadow discontinuities in the image that
are only locally corrected by shadow volumes in the form of an image-based
solution.

Chan and Durand [Chan04] suggested having two shadow passes. �ey first
apply a shadow-mapping algorithm. Here, all shadows can exhibit zigzaggy bound-
aries, but they use the shadow map to mark and detect shadow boundaries. �ese
correspond to discontinuities of the shadow test. In other words, for a given view
sample, we not only compare the depth to its corresponding texel in the shadow
map but also to the surrounding depth values. If the depth tests do not all agree, the
pixel is considered to lie on a shadow boundary. Only those marked pixels will be
updated during the following shadow-volume pass. �ey set the depth buffer such
that it blocks all fragments outside the marked region and then apply the shadow-
volume algorithm. Because graphics hardware typically employs a hierarchical z-
test, the hardware quickly discards large areas of fragments, thereby rendering the
shadow-volume algorithm much more efficient.

A variant of this solution has been presented by Aila and Akenine-Möller
[Aila04a] who compute intersections of the shadow volumes with 8 × 8 pixel tiles
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and mark boundary tiles. Each tile that is not on a boundary lies entirely in the
volume, and they can restrict the shadow computations to a single pixel per tile.
On the contrary, for boundary tiles, all per-pixel computations are performed. �e
solution is accurate. �e algorithm, however, requires hardware modifications in
order to be efficient. If these additions could be included, the main drawbacks of
shadow volumes would be gone (i.e., the high fill rate demand). Without the hard-
ware modification, the algorithm is generally considered too costly, and thus, it has
not been much exploited.

2.5 Transparency

An aspect that we have overlooked so far is shadows from transparent objects, in-
cluding situations when using texture masks with no/full transparency or semi-
transparent textures. �e shadow maps automatically handle alpha-textured ge-
ometry where the alpha is either zero or one, as long as fragments with alpha equal
to zero are simply discarded from rendering into the shadow map. In order to
handle multiple layers of semitransparent textures, a solution with layered shadow
maps could be explored.

For shadow volumes, Hasselgren and Akenine-Möller [Hasselgren07] have
presented a solution that handles semitransparent textures (and thereby also tex-
ture masks). However, it requires an extra render pass where the shadow volumes
need to be rendered one by one per semitransparent triangle. �is could be very
costly and prohibit real-time performance if there are many thousands of such
semitransparent triangles in the current scene. On the other hand, there are several
common situations where there are only a few semitransparent textured polygons
in the scene, such as a textured glass window of a church, making this method
work great.

Kim et al. [Kim08] note that if individual objects in the scene have constant
color and transparency, then shadows from these objects can be rendered with
the shadow volume algorithm by modifying the stencil incrementation/decremen-
tation from plus/minus one to multiplication/division by the transparency of the
object, respectively. For reasons of numerical precision, this is preferably imple-
mented by incrementing/decrementing a floating-point buffer by log(1−α), where
α is the object’s opacity, and then by using the exponential of the resulting buffer.
Nevertheless, if there are transparent shadow receivers in the scene, then it might
be necessary to check more than one shadow-receiving point per screen pixel. �is
is not doable with a standard framebuffer that can only store one depth value per
pixel. Self-shadowing for the transparent objects thus can be problematic.

More information about transparency can be found in Chapter 8.
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2.6 Summary

When choosing a shadow algorithm and trying to decide whether shadow maps
or shadow volumes is the better choice, there are the following general character-
istics to consider. Shadow maps are generally faster. �e cost is roughly the same
as the cost involved in rendering the image for the viewpoint. Shadow maps can
also generate shadows from any rasterizable geometry, in contrast to shadow vol-
umes, where the shadow-casting geometry should be polygonal in order to be able
to extract silhouette edges. �e downsides of shadow maps are the biasing issues,
under-sampling artifacts in the form of jagged shadow edges, and the limitation to
a single frustum, so that omnidirectional lights typically require six shadow maps.
Shadow volumes, on the other hand, produce perfectly sharp shadows but are con-
sidered slow. �ey require three render passes, but more severely, the elongated
quads of the shadow volumes cause a high fill rate. In addition, extracting silhou-
ette edges has for a long time been considered expensive, although that should no
longer apply for the GPU-accelerated versions.





CHAPTER 3

Shadow-Map Aliasing

Even though shadow algorithms have been around for almost as long as computer
graphics itself, robust and efficient hard-shadow generation is still not a solved
problem. While geometry-based algorithms produce pixel-perfect results, they
suffer from robustness problems with different viewer–light configurations and are
o�en slow due to the enormous overdraw involved in rasterizing shadow
volumes.

Shadow-map algorithms, on the other hand, are very fast as their complexity
is similar to standard scene rendering, but they suffer from aliasing artifacts since
the sampling of the shadow map and the sampling of the image pixels projected
into the shadow map usually do not match up. In this chapter, we will analyze
aliasing in more detail. We first show the different components of aliasing in a
signal-reconstruction framework (Section 3.1) and then go into more detail on the
principal aliasing components, initial sampling error (Section 3.2) and resampling
error (Section 3.3).

3.1 Shadow Mapping as Signal Reconstruction

It is instructive to view shadow mapping as a signal reconstruction process similar
to texture mapping, but with a texture that is also sampled from the scene.1

1A good introduction to signal reconstruction in the context of computer graphics can be found
in Wolberg’s book [Wolberg94] or, more extensively, in Glassner’s basic textbook [Glassner94]. One
of the best treatises on resampling for texture mapping in particular is still Heckbert’s Master’s thesis
[Heckbert89].

75
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Figure 3.1. A continuous input signal is initially sampled (top) and then resampled (bottom)
for a particular output resolution a�er a transformation.

Signal-Reconstruction Pipeline

�e signal-reconstruction pipeline starts with an original (continuous) signal f (s).
Here, for easier illustration, f (s) is a function in one parameter, for example, a
one-dimensional image. �e goal is to first store this signal in a discrete (sampled)
form and then to allow resampling the signal at different output resolutions. �is
pipeline has the following steps (see also Figure 3.1):

1. Initial sampling. �is consists of two steps, which in practice are usually
combined:

(a) Bandlimit the original signal to remove frequencies higher than half
the sampling frequency in order to avoid aliasing, using an initial band-
limiting filter B i : fb = B i ⋆ f , where ⋆ is the convolution operator.

(b) Initially sample the signal fb , for example, by taking a picture with a
digital camera or by rendering a snapshot of a scene. Note that in the
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former case, B i is basically integrated in the optics and response func-
tion of the camera chip, while in the latter case, B i is usually approx-
imated by multisampling. Sampling multiplies the continuous signal
with an impulse train Sk with frequency ωk , so this step gives samples
f kb = S

k
⋅ fb(s).

2. Resampling. Here the sampled signal (texture, image) is resampled for a
particular output resolution, also accounting for a transformation of the
signal.

(a) Reconstruct (or interpolate) the signal from its sampled representation
to give fr(s) using a reconstruction filter R. In texture mapping, this
is usually done with bilinear filtering.

(b) Transform the signal into the output domain: ft(i) = fr(T−1(i)). �e
transformation is one reason for changes in sampling frequency.

(c) Bandlimit the reconstructed, transformed signal with a bandlimiting
filter Br so that frequencies higher than the output resolution are re-
moved. �e number of initial samples that need to be integrated can
be found by back-transforming the filter footprint, which is o�en two
to three image pixels wide in practice, into the original signal domain.
�erefore, both the output sample spacing as well as the transforma-
tion applied at the image pixel strongly influence the filter width. Since
the back-transformed filter footprint can become very large, especially
under perspective transformations, the bandlimiting step is usually
precomputed using mipmapping. �is step gives frb(i) = Br ⋆ ft .

(d) Resample the reconstructed signal at the final pixel positions: f lrb =

S l ⋅ frb .

Note that in practice, reconstruction and bandlimit filters do not re-create a
full continuous signal but are only evaluated for the final desired sampling
positions.

What Is a Good Initial Sampling Rate?

While this pipeline assumes a given initial sampling rate ωk , for shadow mapping
(and for any image-based rendering technique) ωk can be adapted. �erefore, the
question arises what is the optimal choice for ωk in step 1(b). For this, we consider
our output sampling rate ω l , which determines the maximum frequency that can
be represented in screen space. We know that the ideal screen-space shadow signal
f (T−1(i)) has infinite frequencies, so this signal has a frequency content that cer-
tainly surpasses ω l . We thus view the shadow map as a sampling of this signal that
should at least accurately reconstruct frequencies up to ω l . In shadow-map space,
this transforms to ωk = (dT−1/di)ω l . �is means that to represent the maximum
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Figure 3.2. Examples of combinations of different sampling errors. (a) �e le� part shows shadows from a strongly
magnified shadow map, which makes the pixel structure apparent. Strong reconstruction error appears for nearest-
neighbor reconstruction compared to bilinear filtering. Initial sample aliasing (absence of B i) cannot be avoided for
standard shadow mapping; remedies will be discussed in later chapters, and results using a box filter for B i are shown
in this image. (b) �e right part shows the shadow of a high-frequency fence. Omitting the bandlimiting step when
resampling the strongly minified shadow map leads to resampling aliasing, while even a simple box filter alleviates the
situation.

detail allowed by the screen resolution, the shadow-map sampling rate ωk should
correspond to the screen sampling rate ω l , multiplied by a scale factor given by the
transformation between the two spaces.

Errors and Typical Remedies in Signal Reconstruction

Errors can occur at several stages in the signal-processing pipeline. �ey can be
attributed to insufficient sampling (step 1(b)), missing or insufficient bandlimiting
(steps 1(a) and 2(c)), and insufficient reconstruction (step 2(a)). Errors in band-
limiting lead to so-called aliasing, which occurs when higher frequencies “alias”
as lower frequencies due to a sampling process. Errors in reconstruction lead to a
pixelated appearance, especially under magnification. Let us discuss the different
errors in more detail (see also Figure 3.2):
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1. Initial sampling errors

(a) Initial sample aliasing. In general, geometric structures projected to an
image plane have unlimited frequencies and therefore require a band-
limiting filter to avoid aliasing. �e major aliasing artifact from the
initial sampling phase are staircase artifacts. In texture mapping, the
original texture could be generated from a photograph (which includes
a bandlimiting filter already in the digital camera) or from a camera
rendering with supersampling. Shadow mapping, on the other hand,
samples depth values, which cannot be filtered in this stage.

(b) Undersampling. �is is by far the most plaguing problem for shadow
mapping. We call undersampling the problem where the initial sam-
pling frequency is lower than the final screen sampling frequency (i.e.,
a�er resampling). �is means that details in the original signal (like
thin structures) can be lost completely. Most importantly, undersam-
pling magnifies initial sampling aliasing, so that the pixel structure of
the shadow map will be visible as oversized staircase artifacts in the
final image. On the other hand, if initial sample aliasing has been re-
moved using a bandlimiting filter, undersampling will lead to overly
blurry edges.

2. Resampling errors

(a) Reconstruction error. �is is typically due to an inappropriate recon-
struction filter like nearest-neighbor sampling. Reconstruction error
is visible either as pixel-flickering artifacts under motion or by show-
ing obvious texel outlines under magnification. �is error is typically
reduced by employing bilinear filtering in graphics hardware, which
again is not trivially possible in the case of shadow mapping. How-
ever, even proper reconstruction can make up for neither missing de-
tail from the initial sampling phase nor initial sampling aliasing. In
particular, the latter will be visible as blurred staircases, even for an
ideal reconstruction filter.

(b) Resampling aliasing. �is happens when, a�er projection onto receiver
geometry and to the viewer camera, the frequency of the shadow-map
samples (and of the represented signal!) is higher than the pixel fre-
quency in the output image. �is occurs, for example, when a high-
frequency structure like a fence has been captured with sufficient ac-
curacy in a shadow map, but the resulting shadow is in a distant area of
the screen. �e same problem occurs for standard texture mapping in
the minification case and is usually solved using a bandlimiting filter
precomputed in a mipmap pyramid. Again, it is not possible to apply
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such a filter to a standard shadow map because the shadow-map com-
parison function depends on the fragment depth value, which cannot
be incorporated in the filter.

Shadow Mapping and Signal Reconstruction

In shadow mapping, we deal with functions in two parameters, that is, f (t) for
texture coordinates t = (s, t). Furthermore, the shadow signal depends on
another parameter, the reference depth z̃: f (t, z̃) = s(z(t), z̃), where the shadow-
comparison function s returns zero if a view sample is in shadow and one other-
wise. Maybe the easiest way to think about shadow mapping as a signal-
reconstruction process is to consider the function f0(t) = s(z(t), z̃0) for some
fixed reference depth z̃0 (i.e., the shadow projected to some fixed plane parallel to
the shadow map).

�ere are two main differences between standard signal processing, like texture
mapping, and shadow mapping: First, shadow mapping allows more control over
the initial sampling phase. Second, the shadow signal cannot be filtered before
evaluation because it depends on the depth value where it is evaluated.

Regarding the first point, it should be noted that changing the initial sampling
influences all types of error, and thus, most publications on shadow mapping take
this approach. In Section 3.2, we will therefore discuss initial sampling error in
more detail. In Chapter 4, we will discuss several ways to influence the initial sam-
pling phase to obtain a better sampling.

�e second point has an impact on resampling because neither reconstruction
nor bandlimiting can be done using standard texture-mapping methods. �e rea-
sons for this will be elaborated in Section 3.3, while several methods to overcome
the problem are the topic of Chapter 5.

Another error that needs to be taken into account in all shadow-map
approaches is temporal aliasing, which will be especially apparent for nonoptimal
reconstruction if undersampling occurs. �is manifests itself in flickering artifacts
if the rasterization of the shadow map changes each frame.

View-Sample Mapping

�e signal-reconstruction pipeline is valid for most shadow-mapping algorithms.
However, some algorithms find the exact sampling locations in light space and
do not perform any resampling (Section 4.5). �ese methods are, therefore, un-
affected by resampling errors and undersampling. �ey are, however, still prone
to initial sample aliasing as the infinitely high frequencies of a shadow transition
lead to staircase artifacts and missed shadow detail. �erefore, even view-sample
mapping methods require a bandlimiting step. Since the shadow boundaries are
not available when only individual samples are evaluated, exact bandlimiting (i.e.,
prefiltering) is not possible, but supersampling can be achieved.



3.2. Initial Sampling Error—Undersampling 81

✎

✍

☞

✌

Aliasing versus Undersampling

It should be noted that in this section and in Chapter 4, we use the term aliasing anal-
ogously to undersampling and ignore the required initial bandlimiting filter, as this is
most consistent with the prominent shadow literature. However, as discussed in the
previous section, one should keep in mind that even an image with no undersampling
at all will show aliasing at the pixel level if no initial bandlimiting filter is used, since
the edges in the shadow map exhibit infinitely high frequencies. Conversely, an ini-
tial bandlimiting filter could remove aliasing completely even if strong undersampling
occurs, resulting in a very blurred (but not aliased) image.

3.2 Initial Sampling Error—Undersampling

In this section, we will deal with the issue of undersampling, that is, when the initial
sampling frequency of the shadow-map samples—when projected to the screen—
is lower than the screen-space sampling frequency.

3.2.1 Definition of Sampling Error

At the root of most algorithms to reduce shadow-map sampling errors is an analysis
of the distribution of sampling errors in a scene.

Coordinate Systems

We assume the shadow map is given in (s, t) coordinates in the range [0, 1]×[0, 1].
Furthermore, we parametrize pixels in the camera image as p = (i , j), likewise in
the range [0, 1]× [0, 1]. �e shadow map has a resolution of rs × rt texels, and the
viewport has a resolution of r i × r j pixels. A lookup into the shadow map is an
evaluation of a mapping

(s
t
) = T−1(i , j, z) = (s(i , j, z)

t(i , j, z)) , (3.1)

where z is the eye-space z-coordinate of the geometry visible in a pixel (see Fig-
ure 3.3). Furthermore, to simplify notation, we use a le�-handed coordinate sys-
tem for this section and Chapter 4 (i.e., the viewer looks down the positive z-axis).
�us, the orthogonal eye-space distance of a point to the viewpoint corresponds
to its eye-space z-value.

Exact Sampling Error Using the Jacobian

�e sampling error is characterized by the Jacobian of the reverse mapping. �e
Jacobian matrix is made up of the partial derivatives of a given mapping and is
thus the linear approximation of the mapping. Its column vectors can also be in-
terpreted as the tangent vectors of the mapping, so in this case, the column vectors
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Figure 3.3. Coordinates used in the sampling-error analysis. Note that T need not be a
linear transform but can incorporate any (invertible) reparametrization of the shadow map.

define the extents of a shadow-map texel projected to screen space. In order to
take the actual shadow-map and screen resolutions into account, the entries are
also scaled with the respective resolutions:

(i
j
) = ⎛⎜⎝

r i ∂i
rs ∂s

r i ∂i
r t ∂t

r j∂ j

rs ∂s

r j∂ j

r t ∂t

⎞⎟⎠(
s
t
) . (3.2)

Note that the entries of the matrix also depend on z. While it is hard to make
general observations about sampling error using this exact formulation, it is actu-
ally very convenient for analyzing a particular frame in a practical application. �e
partial derivatives are readily available in the fragment shader using the dFdx and
dFdy instructions, defined as

dFdx = ⎛⎝
∂s
r i ∂i

∂t
r i ∂i

⎞⎠ , dFdy =
⎛⎜⎝

∂s
r j∂ j

∂t
r j∂ j

⎞⎟⎠ , (3.3)

and can be used to visualize sampling error through color coding.
In a full three-dimensional setting, to get a scalar value for the sampling error,

a suitable norm has to be chosen to evaluate the Jacobian. Similar to mipmapping,
the length of the longer of the two column vectors could be used, which would
ensure that no side of the projected texel footprint is longer than a pixel.
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Figure 3.4. �e terms used in the geometric interpretation of undersampling.

3.2.2 Geometric Interpretation

While the exact error formulation using the Jacobian is convenient for individual
pixels, our goal is to analyze undersampling over the whole view frustum. Later,
this analysis will be used to find better parametrizations that reduce undersam-
pling.

To understand aliasing geometrically, it is helpful to think about the beams
created by shadow-map texels and image pixels. In the following, we will assume
that the shadow-map t-direction is aligned with the view-space z-direction, and s
is aligned with x. We thus ignore the off-diagonal elements of the Jacobian and, in
the following, concentrate on the error in the two shadow-map axes, which we call
mt and ms :

mt =
r j∂ j

rt∂t
, ms =

r i∂i

rs∂s
. (3.4)

�e partial derivatives scaled by the respective resolutions describe the ratio
of pixel and texel sizes. �is ratio can also be expressed by the ratio of the beam
widths of an eye beam and a light beam projected on a particular surface element
(Figure 3.4 shows how the terms used in the following equations fit together). Let
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us start by constructing the eye beam in j-direction, with width w j :

w j =
Wj

r j

z

zn

cosφ j

cosψ j

. (3.5)

�e variable Wj is the height of the viewport in world space, so that Wj/r j
represents the size of a pixel in world space; z is the eye-space z-coordinate (in a
le�-handed coordinate system); φ j is the angle between the view direction and the
direction of the pixel at location j. �is corrects for pixel beams getting thinner
(when measured orthogonally to the beam direction) towards the border of the
view frustum. Finally, ψ j is the angle between the beam direction and the surface
normal. Note that this term is the only term that depends on the orientation of the
surface element. Similarly, we measure the widthw i of the eye beam in i-direction:

w i =
Wi

r i

z

zn
. (3.6)

�is analysis is somewhat simplified because we assume in Figure 3.4 that the
j-direction and t-axis lie in the same plane (the plane defined by the “paper” in
Figure 3.4), so that standard trigonometry applies. �e i-direction and shadow-
map s-axis, on the other hand, do not lie in the same plane but are parallel (they
both point orthogonally away from the plane defined by the paper). We therefore
measure the error on a surface element at the intersection of two planes: one de-
fined by the viewpoint and the horizontal pixel edge, and one defined by the light
position and the texel edge in s-direction. �is slightly simplified assumption basi-
cally eliminates the terms that depend on the orientation of the surface element for
ms . For symmetric view frusta, we observe that Wj/zn = 2 tan θ, with 2θ being the
view frustum field-of-view angle, and Wi/zn = 2a tan θ, with a being the aspect
ratio of the viewport.

Light beams are constructed somewhat similarly, but in this case, we need to
take into account the shadow-map parametrization. We do this by introducing an
intermediate coordinate system (u, v) on the shadow-map plane in world space in
the range [0,Wu]× [0,Wv]. A parametrization maps from this coordinate system
into the shadow-map coordinates (s, t). �us,

wt =
1

rt

dv

dt

d l

n l

cosφt

cosψt

, (3.7)

ws =
1

rs

du

ds

d l

n l

. (3.8)

Here, d l and n l are the distances of the surface to the light and to the near plane
of the light, respectively, similar to the term z

zn
in Equation (3.5). �e angle terms

are defined analogously to the eye beam. �e dependence of the beam on the light
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projection as well as any possible reparametrization is encoded in the differentials
dv
dt

and du
ds

, which transform from texel space to world space. In summary, aliasing
error can be written as

mt =
wt

w j

=
r j

rt

dv

dt

d l

n l

cosφt

cosψt

cosψ j

cosφ j

zn

Wj

1

z
, (3.9)

ms =
ws

w i

=
r i

rs

du

ds

d l

n l

zn

Wi

1

z
. (3.10)

Equation (3.9) is the most general geometric formulation of shadow-mapping
sampling error (i.e., undersampling). It does not assume an overhead or directional
light and takes into account the variation of error over the view frustum (φt , φ j).
�is formulation mostly follows Lloyd’s analysis [Lloyd08,Lloyd07a], with the ex-
ception that we parametrize (u, v) in world space instead of [0, 1].
3.2.3 Aliasing Components

As first noted by Stamminger and Drettakis [Stamminger02], sampling error can
be split into a component that depends on the orientation of the surface element,
called projection aliasing, and the remaining error that is mostly due to the per-
spective foreshortening of the camera, thus called perspective aliasing.

Projection aliasing is a local phenomenon that is greatest for surfaces almost
parallel to the light direction and is described by the term cosψ j/cosψt . Reduc-
ing this kind of error requires higher sampling densities in such areas. Only ap-
proaches that adapt the sampling density locally based on a scene analysis can
achieve this (Sections 4.4 to 4.7).

Perspective aliasing, on the other hand, is caused by the perspective projection
of the viewer. If the perspective-foreshortening effect occurs along one of the axes
of the shadow map, it can be influenced by the parametrization of the shadowmap,(s(v), t(u)). We therefore study mainly perspective aliasing and define this as
aliasing error with the projection-aliasing term (i.e., the cos term) canceled out:

m̃t = mt
cosψt

cosψ j

, (3.11)

m̃s = ms . (3.12)

If a different parametrization is chosen, this will lead to a different sampling
density distribution along the shadow map.

Perspective Error of Standard Shadow Mapping

�e standard uniform parametrization has du/ds and dv/dt constant, and there-
fore mt , ms are large when 1/z is large (Equation (3.9)). �is happens close to
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V V

Figure 3.5. �e uniformdistribution of a shadow map in world space (le�) degrades near the
observer due to perspective foreshortening. �is effect is visible in post-perspective space
(right). Much fewer samples are spent on nearby elements.

the near plane, which leads to very visible errors (compare Figure 3.5). In or-
der to reduce perspective aliasing, there are several approaches to distribute more
shadow-map samples near the viewer, either by using a different parametrization
or by splitting the shadow map into smaller parts (Sections 4.2 and 4.3).

3.2.4 Storage Factor

In order to remove perspective aliasing, one has to choose a shadow-map resolu-
tion so that the maximum perspective error over the whole view frustum is below
one. For a particular view frustum V , the maximum error along each shadow-map
axis is

Mt =max
p∈V
(m̃t(p)), (3.13)

Ms =max
p∈V
(m̃s(p)). (3.14)

One way to characterize the error in one scalar, and independently of the ac-
tual shadow-map and image resolutions, is the so-called storage factor S, which is
computed as

S =
rt

r j
Mt

rs

r i
Ms . (3.15)

�e storage factor describes the factor by which the shadow-map resolution (in
terms of total number of texels) has to be higher than the screen resolution in order
to avoid aliasing in both directions separately. Note that the storage factor assumes
that shadow-map resolutions are chosen independently in the s and t directions to
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make Mt = Ms = 1, so a particular storage factor might require a rectangular
shadow map, which can pose problems in practice. We will calculate the storage
factor for some reparametrizations in Sections 4.2.2 and 4.2.4.

3.3 Resampling Error

Reconstruction Error

Reconstruction error can be reduced by using a better reconstruction filter. In
the case of shadow mapping, percentage-closer filtering (PCF) [Reeves87] (Chap-
ter 5) is the equivalent to bilinear or higher-order reconstruction for texture map-
ping. Basically, PCF treats shadows as a projected texture by first evaluating the
shadow function and then applying the filter kernel. Better reconstruction can
also be achieved by changing the reconstruction algorithm itself (see Section 4.6).

Resampling Aliasing

Resampling aliasing is usually avoided in image processing by bandlimiting the
reconstructed signal before resampling it. For texture mapping, this is done effi-
ciently by precomputing filtered versions of the signal (mipmaps). However, for
shadow mapping, this is not possible. To see why, let us analyze the shadow-
mapping function in more detail. �e shadow-mapping function f for a fragment
that projects to shadow-map coordinates t = (s, t) and has a depth z̃ in shadow-
map space is the result of the evaluation of a depth comparison with the depth
value z(t) sampled from the shadow map:

f (t, z̃) = s(z(t), z̃) = H(z(t) − z̃), (3.16)

where the shadow comparison function s is implemented using the so-called
“Heaviside” step function:

H(x) = ⎧⎪⎪⎨⎪⎪⎩
1 x ≥ 0,

0 x < 0.
(3.17)

Any linear filter on the shadow signal would look like the following:

ffilter(t, z̃) = ∑
t i∈K

H(z(ti) − z̃)k(ti − t), (3.18)

where z̃ is the fragment depth in light space, and K is the set of filter samples. �e
problem here is that this expression cannot be precomputed because it depends on
the fragment depth z̃.

For shadow mapping, one option is to evaluate PCF with large filter kernels;
however, this is slow already for moderate filter sizes and does not scale to larger
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kernels. Recent research has proposed clever ways to reformulate the shadow func-
tion f so that it is separable in t and z̃:

f (t, z̃) = f1(t) f2(z̃), (3.19)

so that precomputed filtering can be applied to f1, both for initial sampling and for
resampling (see Chapter 5).

Another class of approaches drops the signal-theoretic view altogether and
treats filtering of the shadow map as a statistical problem: the question is what
is the probability that a given depth value z̃ is in front of a set of values stored in
the shadow map:

Pr(z̃ ≤ z(t)), (3.20)

where t is a random variable that represents the samples that lie in the desired filter
kernel. �is probability is then used as a grayscale value to represent the shadow
test result.



CHAPTER 4

Shadow-Map Sampling

In this chapter, we will concentrate on sampling error introduced in the initial sam-
pling phase (i.e., undersampling) and present several methods to improve sam-
pling. One of the simplest methods is to fit the frustum of the light source to
the view frustum (Section 4.1). �is is also a requirement for the more advanced
methods, for example, warping the shadow map to achieve a better parametriza-
tion (Section 4.2) or partitioning the shadow map globally (Section 4.3) or locally
(Section 4.4) in order to spend more shadow-map samples where they are needed.

Even higher quality can be achieved by calculating shadows for the exact view-
sample locations visible in the final image (Section 4.5). Alternatively, the recon-
struction algorithm can be improved to provide smoother edges (Section 4.6). Fi-
nally, temporal aliasing as well as sampling accuracy can be improved by temporal
reprojection of shadow-map samples (Section 4.7).

4.1 Fitting

One of the most straightforward ways in which the shadow-map sampling rate can
be improved is to make sure that no shadow-map space is wasted. Especially in out-
door scenes, if a single shadow map is used for the whole scene, then only a small
part of the shadow map will actually be relevant for the view frustum. �us, fitting
or focusing techniques, introduced by Brabec et al. [Brabec02a], fit the shadow-
map frustum to encompass the view frustum.

In order to produce correct results, we need to include all objects in the shadow
map that potentially cast a shadow on objects (receivers) in the view frustum.
�erefore, the first step is to find potential shadow receivers (PSRs).

89
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Finding Potential Shadow Receivers

We want to exclude receivers outside the viewing cone of the light source, outside
the view frustum, and outside the scene bounding box (especially for large view
frusta), as these objects can never receive a shadow that is visible in the final im-
age. �e volume of PSRs is thus given by the intersection of light frustum L, view
frustum V, and scene bounding box S:

PSR = L ∩V ∩ S.

Focusing on PSRs in Shadow-Map Space

�e focusing extent on the shadow map can be easily calculated from PSR when
working directly in (post-perspective) shadow-map space. One computes the
bounding rectangle (xmin , ymin), (xmax , ymax) of the vertices of PSR projected
onto the shadow map. It is applied through a scale/translate matrix F (in a way, an
“inverse” viewport matrix) that maps this bounding rectangle to the range [−1, 1]
in each coordinate:

F =

⎛⎜⎜⎜⎝

sx 0 0 ox
0 sy 0 oy
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
, (4.1)

where sx = 2/(xmax − xmin), ox = −(sx(xmax + xmin))/2 are the scale and offset
values for x; the values for y are analogous. �e matrix F is then simply multiplied
with the view-projection matrix of the light source to obtain the final shadow ma-
trix. Since we work in post-perspective light space, we automatically include all
potential shadow casters. �e reason is that in post-perspective space, all light rays
are parallel to the z-axis, which is not modified by the fitting matrix F. �us, if an
object blocks a light ray to a shadow receiver in the focused region, it is itself part
of the focused region in the x , y-plane.

Note that for standard shadow mapping, a fixed orientation of the shadow map
is usually assumed. However, most algorithms to improve sampling error (in par-
ticular, those in Sections 4.2 and 4.3) require the shadow-map up vector to be
aligned with the view vector, so that the view-frustum near plane is found at the
bottom of the shadow map and the far plane at the top.

Finding Potential Shadow Casters

In order to make best use of the available shadow-map depth resolution, it is also
advisable to calculate a suitable near-plane distance for the light view, for which we
need to identify the nearest potential shadow casters (PSCs). �is can be done by
calculating the convex hull of PSR and the light position l (for directional lights,
this position is at infinity), clipped by the scene bounding box:

PSC = (PSR + l) ∩ S. (4.2)
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Figure 4.1. Intersection body PSC used for focusing (top): point light (le�) and directional
light (right). Below are the corresponding bodies in light clip space.

Since we are dealing with convex bodies, the intersection of two bodies is easily
implemented by clipping all polygons of one body by all the planes defined by the
polygons of the other body, inserting a new polygon for each hole created by a
clipping plane. �e convex hull can be implemented by removing all light-facing
polygons from the body and connecting the open edges with the light position
using new polygons [Wimmer06] (see Figure 4.1).

Note, however, that this part can be completely omitted if depth clamping (e.g.,
GL ARB depth clamp) is available. �e observation is that the actual depth value
of shadow casters that do not themselves receive visible shadows is irrelevant as
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long as it is nearer than all objects in PSR. �erefore, when depth clamping is
enabled, the light-frustum near and far planes can tightly enclose PSR, and the
depth of invisible shadow casters will be clamped to the light-frustum near plane.
�is increases the accuracy of depth values in the shadow map.

Using Visibility Information

�e focus region can be further reduced using visibility information. Brabec et
al. [Brabec02a] originally proposed to find PSR through a separate render pass
from the light source. �e result of that render pass was read back and analyzed on
the CPU to find the extents of geometry visible from the light source, which gives
more accurate information than using the scene bounding box alone. Due to the
added complexity of the analysis step, this approach was not widely adopted.

It is much more promising to use visibility information from the camera
view. �is can be done by first rendering a camera depth-only pass with an on-
line occlusion-culling algorithm like coherent hierarchical culling (CHC)
[Mattausch08] before creating the shadow map. �en, the far-plane distance can
be reduced to just cover the furthest visible object, reducing PSR in the calcula-
tions above. To get an even tighter fit, the bounding box of all visible objects can
be used to reduce PSR, as proposed by Bittner et al. [Bittner11].

Lauritzen et al. [Lauritzen11] go one step further and analyze the distribu-
tion of actually visible z-values in the camera view in order to restrict the view-
frustum extents that go into the calculation of PSR. �is can be done by creating
a min/max-mipmap pyramid of the depth buffer and reading back the minimum
and maximum depth values, which allows constructing a fitting body that perfectly
adapts to the visible samples in the z-direction. On today’s hardware, this can be
feasible but it was actually already described in this way for the original perspective
shadow-map approach [Stamminger02]. However, it is possible to further improve
the result by including the x-values in the min/max pyramid. In this way, the body
can also be adapted in width. �is is most useful for the z-partitioning approaches
discussed in Section 4.3.1.

Simplified Fitting

In many cases, one can avoid actual clipping operations to find PSR. �e term V∩S

in the fitting equation (Equation (4.2)) can be approximated by an adapted view
frustum V′ where the near and far planes have been adapted to the scene extents or
to the extent of the visible objects as discussed above. �e remaining term V′ ∩ L

can also be calculated easily by transforming V′ into light space, clipping by the
near clipping plane of the light and projecting the clipped body onto the shadow
map. �e focus region is then given by the bounding rectangle (clamped to the
light frustum) of the projected vertices. However, an accurate determination of the
focused light-frustum near-plane distance still requires a convex hull and clipping
operation as described above.
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Temporal Aliasing

In general, fitting leads to temporal aliasing or so-called shadow swimming be-
cause the rasterization of the shadow map changes each frame. For example, when
nearing the borders of the scene, shadow quality can be very high when looking
towards the outside, while degrading dramatically when looking inside. Still, such
changes depend smoothly on the viewer’s orientation and position. However, when
adding occlusion information, strong temporal discontinuities can occur: consider
a city where distant skyscrapers are sometimes hidden by nearby buildings and
sometimes visible.

Temporal aliasing can be somewhat reduced by trying to keep texel boundaries
at fixed locations in light space. �is was first proposed by Valient [Valient08] for
translations, while scaling was basically disallowed. Later, Zhang et al. [Zhang09]
introduced an approximate solution that allowed quantizing the scale of the
shadow map as well. Both these techniques work only in the case of a fixed world-
space shadow-map orientation. For sampling-error reduction techniques that re-
quire alignment of the shadow-map orientation with the view vector, like warping
for example (see Section 4.2), the following is not applicable.

Maintaining light-space texel boundaries works by quantizing the values of the
fitting matrix F: the offset value o (ox or oy) should be quantized to texel incre-
ments assuming r is half the shadow-map resolution:

o′ =
ceil(or)

r
. (4.3)

�e quantization of the scale value should ensure a reasonable number of scal-
ing steps for the focus region, for example, by snapping the scale value to the near-
est value 1/ f , with f being an integer in a certain range.

4.2 Warping

�e error analysis of shadow mapping, in particular perspective error, shows that
higher sampling densities are required near the viewpoint and lower sampling
densities far from the viewpoint (Section 3.2.3). Fortunately, it is possible to re-
duce perspective aliasing in some cases by warping. Warping means changing the
shadow-map parametrization, that is, the function that maps from (u, v)-
coordinates on the world-space shadow-map plane to (s, t)-coordinates in the
actual shadow-map texture. �is was first discovered by Stamminger and Dret-
takis [Stamminger02] and used in perspective shadow maps (PSM).

Perspective parametrizations can be achieved using graphics hardware and
have thus attracted a lot of interest [Wimmer04, Martin04, Chong03, Chong04].
In Section 4.2.1, we thus show a practical implementation of such a parametriza-
tion. An important research problem has become how to optimally choose the
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parameters of perspective parametrizations. We show a solution for this problem
in Section 4.2.2. In Section 4.2.4, we will look for an optimal (not necessarily per-
spective) parametrization and find that perspective error can be eliminated by a
logarithmic parametrization in the t-axis and a perspective parametrization in the
s-axis of the shadow map. Unfortunately, this optimal parametrization is not fea-
sible for a practical hardware implementation. Finally, in Section 4.2.5, we discuss
alternative optimality criteria geared towards optimizing error on certain planes in
the view frustum.

Initially, warping was applied to a single shadow map; however, it has been later
combined with partitioning algorithms to further improve sampling rates (Sec-
tion 4.3.3).

4.2.1 Warping—Practice

As a representative of warping algorithms, we discuss light space perspective
shadow maps (LiSPSM) introduced by Wimmer et al. [Wimmer04], which is
mostly equivalent to trapezoidal shadow maps (TSM) introduced independently
by Martin et al. [Martin04]. In an insightful work, Lloyd et al. [Lloyd06b] proved
that for overhead lights, all perspective warping algorithms (PSM, LiSPSM, TSM)
actually lead to the same overall error (storage factor, Section 3.2.4) when consid-
ering both s and t shadow-map directions, but among these algorithms, LiSPSM
gives the most even distribution of error among the directions and is therefore
advantageous.

�e main idea of perspective shadow mapping is to apply a perspective trans-
formation to the scene before rendering it into the shadow map. �us, the distri-
bution of shadow-map samples is changed so that more samples lie near the center
of projection and less samples near the far plane of the projection (see Figure 4.2
for an illustration). �e near-plane distance of the perspective transformation de-
termines the strength of the warp (i.e., how strong the perspective distortion will
be).

Algorithm

�e only change that has to be applied to standard shadow mapping in order to
enable LiSPSM (or similar global warping algorithms) is to replace the shadow
transformation S, which transforms from model space to shadow-map space, with
a new warped transformation Sw. �is new transformation is then used for both
creating the shadow map and applying the shadow map during rendering.

�erefore, we only need to describe how to calculate Sw. Let us first fix the
notation for different spaces: a vertex is transformed via the model matrix M to
world space, then via the light view matrix Ml

v to (pre-perspective) light space, and
via the light projection matrix Ml

p to (post-perspective) light space. In standard
shadow mapping, a scale and bias fitting matrix F is used to focus the shadow
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P

V
V

Figure 4.2. An example configuration of LiSPSM with view frustum V and the frustum
defining the perspective transform P. Le�: directional light, a view frustum V , and the
perspective transformation P. Right: a�er the warp, objects near the viewer appear bigger
in the shadow map and therefore receive more samples.

map, giving a total transformation of S = FMl
pMl

vM. Recall that F is calculated by
transforming a fitting body PSR using Ml

pMl
v and calculating its bounds in (post-

perspective) light space.
To arrive at Sw for perspective shadow mapping, fitting is still the last step, but

before that, a warping matrix WpWv is inserted. Furthermore, the shadow map
needs to be rotated using a matrix Lr so that the shadow-map t-axis is aligned
with the viewer z-direction in order for the warp to be most effective. Also, the
strength of the perspective warp needs to be determined. �e total warping shadow
transformation is

Sw = FWpWvLrM
l
pMl

vM. (4.4)

�e algorithm to find Sw is as follows:

1. Calculate fitting body PSR (Section 4.1).

2. Calculate shadow-map orientation, giving a rotation matrix Lr (see below).

3. Find near and far planes of warping frustum using PSR transformed by
LrM

l
pMl

v.

4. Calculate parameter n that determines warping strength (Section 4.2.2).

5. Set up perspective warping view and projection matrix Wv and Wp using
info from steps 3 and 4 (see below).
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6. Transform PSR into warped light space using WpWvLrM
l
pMl

v.

7. Fit projection to PSR, giving a scale and bias fitting matrix F.

�e matrix Sw can be used directly instead of S as the model-view-projection
matrix for the shadow rendering pass. For the main rendering pass, like for stan-
dard shadow mapping (Section 2.2.6), we use an additional scale/bias matrix to
transform from the resulting coordinates in the range [−1, 1] to coordinates in
texture space in the range [0, 1].
Determining the Shadow-Map Orientation Lr

In order for the perspective warp to be effective, the warping direction needs to be
along the view-frustum z-axis. �is is most easily achieved by rotating the shadow
map so that the t-axis is aligned with the z-axis. �is also makes better use of the
space in the shadow map.

Normally, the warping direction vp can simply be chosen as the world-space
view direction v projected onto the shadow map (vp = Ml

vv, vp .z = 0). For point
lights, however, the view direction cannot be simply projected onto the shadow
map since the result depends on where the view vector originates. �erefore, we
take the line segment from the eye point to a point sufficiently far away from the
eye point along the view vector. We clip this line segment by the near plane of
the light frustum. Finally, we project the endpoints of the resulting segment onto
the shadow map and calculate the view vector from these endpoints. A suitable
rotation matrix Lr is then constructed using a standard look-at matrix in light space
using vp as the view direction and the light-space z-direction (i.e., (0, 0, 1)) as the
up vector.

In any case, the length of the projected view vector can become too small. In
this case, the light comes from behind or front, in which case we need to turn off
perspective shadow mapping and fall back to uniform shadow mapping.

Setting up the LiSPSM Warping Matrix WpWv

Given the correct shadow-map orientation, we need to find the near and far planes
of the LiSPSM matrix, as well as a center of projection p. �e near and far planes
are given by the bounding rectangle of PSR projected on the shadow map. �e
center of projection is located a distance n away from the near plane and a distance
f from the far plane. For now, we assume that n is given; later, we will discuss
how to calculate this value, which will allow influencing the warping strength. �e
distance f is calculated as n plus the distance between the near and far planes.

�e only remaining degrees of freedom are the x- and z-coordinates of p. �ese
two values basically define how “skewed” the warp is in x- and z-directions, where
z only influences the quantization of the depth values in the shadow map. A con-
venient choice are the coordinates implied by the center of PSR in projected light
space.
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V V

Figure 4.3. PSM problems. In the post-perspective space of the camera, a directional light can become a point light.

A perspective matrix can then be created using a translation of the center of
projection to the origin for Wv and the equivalent of glFrustum(-1,1,-1,1,n,f)
(along the t-axis) for Wp. Note that it is not necessary to exactly determine the
frustum x- and y-boundaries, as they do not influence the warping effect. In-
stead, we focus the frustum a�er carrying out the warp using the method dis-
cussed in Section 4.1 by transforming the fitting body PSR into warped space using
WpWvLrM

l
pMl

v.

LiSPSM versus TSM versus PSM

Perspective shadow mapping methods differ in the way the perspective transfor-
mation is set up. In the original PSM, this transform was chosen to be equivalent
to the viewer projection. However, this changes the direction of the light or even
the type of the light (from directional to point, or vice versa; see Figure 4.3) and
requires adjustments to include all potential shadow casters (see Figure 4.4). Most
importantly, PSM distributes the error in a nonoptimal way (see Section 4.2.2).

In LiSPSM, the perspective transformation is always aligned to the axis of the
light frustum, and therefore, lights do not change direction or type. In order to
deal with point lights, the projection of the point light is applied first, converting
the point light to a directional light, and LiSPSM is done in the post-perspective
space of the light. Applying the light perspective has a similar effect on the scene
as the transformation depicted in Figure 3.5, when interpreting the viewpoint as a
light source.

�e setup of the warp for TSM, on the other hand, although described differ-
ently, leads to the same transformation as LiSPSM.
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V

L

L

V

Figure 4.4. PSM problems. Shadow casters behind the camera would get “wrapped around”
at infinity and require moving the camera backward to include them.

4.2.2 Calculating the Optimal Parameter for Warping

�e most important factor influencing the shadow quality in perspective shadow
mapping is the choice of the warp parameter n (i.e., the near-plane distance of the
warping frustum). While this can be set manually or empirically (as is done in
TSM), it would be better to find an optimal parameter automatically. �e main
idea is to find a parameter n that minimizes the maximum errors Mt and Ms (Sec-
tion 3.2.4). While an analysis of the error over the whole view frustum is very
tedious, it is actually possible to find a closed-form solution under some restric-
tions. In particular, one can analyze the error m̃t along specific lines through the
view frustum and choose n in such a way that the maximum error along that line
becomes minimal. We will show a choice of line that gives a good approximation
for overhead lights and will gracefully transition to uniform shadow mapping for
lights where warping does not bring any benefit (e.g., directly behind). Note that
analyzing error along only one certain line can miss the actual point of maximum
error in the rest of the view frustum.

In the following, we will first discuss the necessary coordinate transforma-
tions for individual lines, then derive an optimal parameter, show some simpli-
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Figure 4.5. Warping frustum for overhead directional light.

fications for directional lights, and introduce optimizations that allow focusing
shadow quality on a subset of the view frustum.

Error along Certain Lines

In order to analyze error along a line through the view frustum, all variables in m̃t

or m̃s need to be expressed in terms of a suitable parameter along that line. For
example, u, v can be expressed in terms of z. We will consider only lines that are
parallel to the shadow-map plane and have constant u = Wu/2, where Wu is the
world-space width of the shadow-map plane. We also assume that the t-direction
of the shadow map is aligned with the z-axis of the viewer (this can be achieved
using fitting; see Section 4.1). �us, for the special case of an overhead directional
light, this line goes through the center of the view frustum, and v = z − zn and
u = x (see Figure 4.5).

For a more general configuration, the view frustum may be tilted around the
x-axis. For this configuration, we look at the z- and v-coordinates where the line
intersects the warping frustum (i.e., at v = 0 and v = Wv). Note that these points
lie on the near plane and the far plane of the warping frustum. Note also that
for stronger tilt angles, the near plane of the warping frustum will not touch the
near plane of the view frustum, but the far plane. Let us call the corresponding
z-coordinates z0 and z1 (see Figure 4.6).
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Figure 4.6. Configuration of a directional light with a tilted view frustum. �e variables z0

and z1 are the view-space z-values along a line parallel to the shadow-map plane. �e near
plane of the warping frustum P may touch the view frustum V at its near plane (le�) or far
plane (right), depending on the tilt angle. Due to focusing, z0 ≠ zn may occur (not shown
in image).

�en z can be transformed to v using

v =
z − z0

z1 − z0
Wv . (4.5)

Note that the x- and u-coordinates are not affected by a tilt, so we will only
analyze m̃t for now.

Furthermore, we will analyze error in terms of warping frustum coordinates
(i.e., a�er transforming (u, v) by WvMl

p). We call these coordinates (u′ , v′) and
note that they can be calculated using a simple scale and translate (note that we
assume we already know the parameter n for the moment—this does not matter,
as it will fall out later on):

(u′ , v′) = ((u 2Wu′

Wu

) −Wu′ , v
Wv′

Wv

+ n) . (4.6)

�us, for directional lights, Wu′ = Wu and Wv′ = f − n, and therefore v′ =
n + v. For spot lights, the frustum a�er the light perspective transformation is
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Figure 4.7. Configuration of a spotlight with a tilted view frustum, in world space (le�) and
a�er the perspective transformation of the spotlight (right).

normalized, so Wu′ =Wv′ = ( f − n) = 2, and therefore v′ = n + 2v
Wv

. See Figure 4.6
for directional-light configurations, and Figure 4.7 for a spotlight configuration.

Finding z0 and z1

For tilted view frusta, we need to find eye-space z-values that correspond to the
intersection of the line under consideration with the warping-frustum near and
far planes. We first construct p0 so that the projection of p0 back into the view
frustum has the nearest z-coordinate present in PSR. �e coordinate p0 can be
found by choosing a vertex of PSR with the smallest z-coordinate, constructing a
plane parallel to the frustum near plane through that point and intersecting that
plane with the light frustum and a plane with u = Wu/2. �e coordinate p1 is
constructed from the orthographic projection of p0 onto the warping-frustum far
plane (see Figure 4.6). �e coordinates z0 and z1 are then the z-coordinates of p0

and p1 back-projected into the view frustum (see Figure 4.7 for a spotlight con-
figuration). Note that using this construction, we have uniquely determined the
line we are going to use for our analysis. �ere may be other lines that give better
results, but we will not investigate this further.

Derivation of Optimal Warping Parameter for General Case

First of all, perspective shadow mapping uses a perspective reparametrization of
the shadow map, which, following the definition of a perspective projection in
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OpenGL (see definition of the gluPerspective() function) can be expressed as

s(u′ , v′) = u′

2v′ tan θ′
+ 1

2
, (4.7)

t(v′) = f + n
2( f − n) + f n

v′( f − n) + 1

2
, (4.8)

where θ′ is half the field-of-view angle of the perspective frustum in the x-
direction. From this, we can calculate

ds

du′
= 1

v′
1

2 tan θ′
, (4.9)

dt

dv′
= − 1

v′2
f n

f − n . (4.10)

Plugging this into Equations (3.9) and (3.10) to calculate the error yields

m̃t = r j

rt

d l

n l

cosφt

cosφ j

zn

Wj

v′2

z

Wv

Wv′

f − n
f n

, (4.11)

m̃s = r i

rs

d l

n l

zn

Wi

v′

z

Wu

Wu′
2 tan θ′ , (4.12)

using

du

ds
= du

du′
du′

ds
= Wu

Wu′

1

2

du′

ds
, (4.13)

dv

dt
= dv

dv′
dv′

dt
= Wv

Wv′

dv′

dt
. (4.14)

In order to find the optimal error along the t-direction, we analyze the error
along a line parallel to the shadow-map plane, as described before. We want to
deal with the general case of a tilted view frustum; therefore, we substitute z using
Equation (4.5), to obtain an expression that depends only on v. �en we calculate
dm̃t/dz and find that there is a local minimum in [0,Wv]. �erefore, the maxi-
mum error in this range is minimized if m̃t(0) = m̃t(Wv). �is corresponds to
(omitting all the constant terms as they cancel out)

n2

z0
= f 2

z1
. (4.15)

A�er some symbolic manipulation and solving a quadratic equation for n, this
results in a solution for the optimal parameter nopt:

nopt = f − n
z1 − z0

(z0 +√z0z1) . (4.16)
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Note that this optimal parameter is independent of all the constants in m̃t . Fur-
thermore, one has to understand what this parameter means. It basically equalizes
the perspective error m̃t along the t-axis between the near and far planes of the
warping frustum. For tilted frusta, the mechanism of calculating z1 leads to a re-
duced view-space z-range available for warping, which is the expected behavior,
since the shadow-map t-direction does not perfectly represent the view-space z-
direction that is responsible for perspective aliasing anymore. �is way of calculat-
ing nopt is only an approximation, since we still only analyze error along one single
line through the view frustum, and we ignore the angle-dependent terms φ j and
φt that might have a stronger influence for more tilted view frusta.

Simplified Optimal Parameter for Directional Lights

For directional lights, some simplifications apply. In particular, the depth range
depends on the tilt angle γ between view direction and light direction, so that z0 =
zn and z1 = zn + ( f − n) sin γ. �us,

nopt =
1

sin γ
(zn +√zn(zn + ( f − n) sin γ)) , (4.17)

which is the formula derived in the original LiSPSM paper [Wimmer04]. For over-
head lights (i.e., γ = π/2), we obtain the simplest formulation from that paper:

nopt = zn +√znzf . (4.18)

�e interpretation of the dependence on γ is that as the viewer is tilted towards
the light or away from it, the usable depth range decreases, as discussed before.
�us, n has to be increased, so that it reaches infinity when the viewer looks exactly
into the light or away from it. In this case, perspective warping cannot bring any
improvements; therefore, no warping should be applied. In practice, it is prefer-
able to use the general formulation with z0 , z1, as this can account for view frusta
clipped due to fitting.

However, Lloyd [Lloyd07a] showed that the falloff implied by the sin γ term
is not fast enough once the angle passes the point where one of the view-frustum
planes becomes parallel to the shadow-map normal. He proposes a different falloff
function that avoids this problem, but it is a bit too involved to reproduce here,
so we refer the reader to Sections 5.1.2.1 and 5.2.1 of Lloyd’s thesis [Lloyd07a] for
the exact equations. Another falloff function based on different simplifications has
been proposed by Zhang et al. [Zhang06b].

Pseudo-Frusta Optimizations

Many applications tend to use a generous far plane and a very tight near plane
to avoid near-plane clipping. �is creates a tension with shadow mapping since
perspective error increases as a function of zf/zn (see below).
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Pseudo near plane. An interesting solution is to use a different view-frustum
near-plane distance, a so-called pseudo near plane, for the computation of nopt.
�e rationale is that the nearest depth range does not o�en show shadows, but a
lot of precision is wasted on this range using the optimal warping parameter. If a
pseudo near plane is used, shadow quality will be optimized for the range between
pseudo near plane and far plane, but shadows will still appear on objects that are
closer, though with lower quality.

A pseudo near plane can be implemented easily by adding an offset δn to the
value zn in the square root (but only if this makes it larger than z0):

nopt =
f − n
z1 − z0

(z0 +√max(zn + δn , z0)z1) .

If δn becomes too large, Lloyd shows that the maximum does not occur in the
depth range anymore, and the optimal value should rather be calculated as (for
details see [Lloyd07a], Section 5.1.9)

nopt =
δn

2 − 3 δn
zf−zn

.

Pseudo far plane. Similar to a pseudo near plane, a pseudo far plane can be de-
sirable. Especially for large frusta, the optimal parameter will become closer to
uniform shadow mapping in order to keep quality in the distance high. However,
usually it is preferable to have high quality nearby, and thus an adapted zf can be
used in the calculation that specifies up to which point the shadow quality should
be good.

Final Formula

�e final formula for nopt is

nopt =
f − n
z1 − z0

(z0 +√max(zn + δn , z0)min(zf − δ f , z1)) ,

where n and f are near- and far-plane positions in light space, z0 is the first available
z-coordinate of the intersection body, and z1 is the corresponding z-coordinate
at the warping frustum space far plane, which for directional lights with simple
intersection bodies boils down to z1 = z0 + ( f − n) sin γ.

Exact Derivations for General Configurations

In the previous sections, we investigated parameter choices for n based on sim-
plifying assumptions. Let us now consider the feasibility of an exact solution for
general configurations. For an exact solution, we first need to be able to calculate
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the maximum perspective error over the whole view frustum. Lloyd [Lloyd07a]
has shown that the maximum perspective error along a light ray occurs on a view-
frustum face or, more precisely, at a face of the intersection body PSR. �erefore,
it is sufficient to consider the error on the faces of PSR.

An algorithm to compute an ideal parameter n would have to minimize the
perspective error over all faces of the body PSR. �is is not trivial, since the shape
of PSR can lead to multiple local minima for any particular parameter n. A possible
algorithm to find an exact solution would, therefore, be to sample the parameter
space of n and choose the value that leads to minimum error. �e error for any
particular n can be calculated by comparing error at view-frustum vertices and
possible local minima of error at view-frustum faces and edges. However, such
an approach is not only tedious, it is also not guaranteed to lead to better image
quality because the error might be distributed in a completely different way on the
view samples that are actually visible.

�ese considerations show that LiSPSM does not necessarily provide mini-
mum error over the whole view frustum, but only for a representative ray in the
center of the view frustum. While in the case of an overhead light, the resulting
error distribution for LiSPSM is still very good, it is difficult to predict the behavior
for more general cases, like a tilted view frustum or a more complex body PSR.

4.2.3 Storage Factor for Perspective Warping for Overhead

Directional Light

In this section, we will derive the perspective error for perspective warping for the
simple case of an overhead directional light. Following Lloyd et al. [Lloyd06b],
we show that in this case the overall perspective error is constant for a range of
warping parameters starting with nopt.

For directional lights, some simplifications apply; in particular, d l

n l
goes to one

as both terms approach infinity,

zn

Wj

=
azn

Wi

=
1

2 tan θ
, and

Wv

Wv′
=

Wu

Wu′
= 1.

We also decide to ignore the view-frustum angles φt , φs and φ j , φ i .
�e restriction to an overhead light allows us to set v = z − zn and tan θ′ =(zf/ f )a tan θ. By plugging this into Equation (4.11), we obtain

m̃t(z, n) = r j

rt

1

2 tan θ

(n + z − zn)2

z

f − n
f n

, (4.19)

m̃s(z, n) = r i

rs

1

2a tan θ

n + z − zn

z
2 tan θ′ . (4.20)

It can be shown that the maximum of m̃s always occurs on the near plane,
while the maximum of m̃t(z, n) occurs on the near plane for n > nopt and on the
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far plane otherwise, thus the maximum errors along t and s in dependence of the
warping parameter n are

Mt(n) = r j

rt

zf − zn

2 tan θ

⎧⎪⎪⎨⎪⎪⎩
f

nzf
n ≤ nopt ,

n
f zn

n > nopt ,
(4.21)

Ms(n) = r i

rs

nzf

zn f
. (4.22)

An interesting result is that the combined error S, which measures the required
factor between shadow-map and screen resolutions for reconstruction free from
perspective aliasing, is constant for n ≤ nopt:

S = rt

r j
Mt(n) rs

r i
Ms(n) = zf/zn − 1

2 tan θ

⎧⎪⎪⎨⎪⎪⎩
1 n ≤ nopt ,
n2zf

f 2zn
n > nopt .

(4.23)

However, to obtain such an alias-free reconstruction, the shadow map needs
to be rectangular, as it needs to allocate the resolution to the s- and t-axes in a way
that Mt = Ms = 1. �is may lead to strongly rectangular shadow maps depending
on the choice of n. If we look at the ratio between the two errors for n = nopt,

R = rt

r j
Mt(nopt)/ rs

r i
Ms(nopt) = (1 − zn/zf)

2 tan θ
, (4.24)

we can see that the optimal parameter leads to an even distribution of error be-
tween the shadow-map axes; that is, for an alias-free reconstruction, the shadow
map can be almost square for all but very short view frusta, while if we decrease
n, we need more and more resolution for the t-axis. In practice, this means that
if square shadow maps are used, nopt is a good choice for the warping parameter.
Note that for square shadow maps and R ≠ 1, error could theoretically be further
improved by adapting n so that R becomes one.

�is behavior can also be seen in Figure 4.8, which compares the aliasing er-
ror along the shadow-map t- and s-axes for uniform shadow maps, perspective
shadow maps with warping parameter as in the original PSM paper, and the opti-
mal warping parameter.

A side result of Equation (4.23) is that the storage factor for uniform shadow
mapping is

S = zf

zn

zf/zn − 1

2 tan θ
, (4.25)

so a uniform shadow map requires a factor of zf/zn more texels, which is quite
significant for common view frusta.
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Figure 4.8. Perspective aliasing errors plotted against z-coordinate for different shadow
mapping techniques for an overhead directional light.

4.2.4 Optimal Parametrization for Overhead Directional Light

Finally, we investigate the question of what would be an optimal parametrization if
we consider more general warping functions, beyond perspective transformations.
An optimal parametrizationwould make m̃t and m̃s constant at one over the whole
available depth range. We will analyze this case only for an overhead directional
light, along a line in the center of the view frustum; similar to the previous section,
some simplifications apply: n l /d l converges to one, cosφt will be constant, and
since the light is overhead, u = x and v = z − zn.

Pluggin this into Equation (3.9) results in

m̃t(z) = r j

rt

dz

dt

1

2 tan θ

1

z
= Ct

dz

dt

1

z
= 1, (4.26)

m̃s(x , z) = r i

rs

dx

ds

1

2a tan θ

1

z
= Cs

dx

ds

1

z
= 1, (4.27)

with constant terms represented asCt andCs . �ese are ordinary differential equa-
tions of first order, which are easy to solve by integration:

t(z) = ∫ dt

dz
dz = ∫ Ct

z
dz = Ct ln(z) + C0 , (4.28)

s(x , z) = ∫ ds

dx
dx = ∫ Cs

z
dx = Cs

x

z
+ C1 . (4.29)

Taking into account the boundary conditions,

t(zn) = 0, t(zf) = 1, s(0, zn) = 1/2, s(zfa tan θ , zf) = 1, (4.30)
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leads to

t(z) = ln z/zn

ln zf/zn
, (4.31)

s(x , z) = x

z

1

2a tan θ
+ 1

2
. (4.32)

�is means that applying a perspective transform before rendering the shadow
map will lead to an optimal error in the s-direction, at least in this particular con-
figuration. �is observation is the basis for perspective shadow mapping, as dis-
cussed in the previous sections. Unfortunately, the error in t-direction cannot be
optimized so easily. �e formulation above shows that the scene needs to be trans-
formed with a logarithmic function in the z-direction, which is nonlinear and,
thus, cannot be implemented efficiently in existing hardware.

Furthermore, it is interesting to study the actual error achieved by the opti-
mal parametrizations by plugging Equation (4.32) into the definition of m̃t(z) and
m̃s(x , z):

m̃t = r j

rt

ln zf/zn

2 tan θ
, (4.33)

m̃s = r i

rs
. (4.34)

�is means that a perspective parametrization of the shadow map can achieve
sampling free from perspective aliasing in the s-direction if the shadow map has
the same resolution as the screen. For the t-direction, however, even the optimal
logarithmic parametrization requires a factor of

S = ln zf/zn

2 tan θ
(4.35)

higher resolution than the screen, which is also the storage factor for the combined
parametrization.

Logarithmic Perspective Shadow Maps

In more recent work, Lloyd et al. [Lloyd08] have revisited the logarithmic map-
ping and combined it with a perspective warp, leading to logarithmic perspec-
tive shadow maps (LogPSM). In a very involved mathematical treatise, they derive
warping functions that approach the optimal constant error very closely, based
on the exact sampling-error formulation. �ey also consider fully general three-
dimensional configurations. Unfortunately, such a parametrization is not practical
for implementation on current hardware. Lloyd et al. [Lloyd07b, Lloyd06a] pro-
pose simple modifications to the current rasterization pipeline to make logarithmic
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rasterization feasible, but we do not expect this to be available until rasterization
becomes fully programmable.

�e logarithm could be applied in a vertex program. However, pixel positions
and all input parameters for pixel programs are interpolated hyperbolically. �is
makes graphics hardware amenable to perspective mappings, but not logarithmic
ones. As a proof of concept, logarithmic rasterization can be evaluated exactly in
the fragment shader by rendering quads that are guaranteed to bound the final
primitive and discarding fragments that fall outside the primitive. However, this is
too slow for practical implementation.

4.2.5 Plane Optimal Perspective Warping

�e approaches discussed so far consider perspective error in the whole view frus-
tum. �e original motivation for perspective shadow mapping, however, came
from the observation that perspective warping leads to a constant error when the
shadow is projected to a particular plane in the scene [Stamminger02]. It is im-
portant to note that in this case, constant error stems from a combination of per-
spective and projective errors, not from perspective error alone. As we already saw,
constant perspective error (along the t-axis) can only be achieved by logarithmic
warping. Figure 4.9 illustrates the difference between these two views. �e figure
shows small edges that all project to the same height on the image plane. To get con-
stant error, one needs to introduce a warp that makes the projections of these edges
to the shadow map exactly equal. �e element that is translated along the z-axis
has a constant projective error term, and thus, only considers perspective aliasing.
�erefore, the projection of these elements to the shadow map corresponds to the
logarithmic spacing. �e element that is translated along the plane, however, has
a varying projective error (in particular, the term cosψ j varies along the plane).
�erefore, making the projections of these elements constant in the shadow-map
plane will lead to an ideal error distribution along that particular plane, but not
along the whole view frustum. �is corresponds to the perspective shadow-map
spacing. As can be seen, the spacing of the shadow-map projections becomes very
large for distant edges.

However, optimizing the error on a number of particular planes may still be
useful, for example, with scenes that have a small number of dominant planes
(ground plane, etc.). Chong and Gortler [Chong04] generalized the observation
shown in Figure 4.9. �ey observed that perspective warping can also be achieved
by an affine transformation of the shadow-map plane. So instead of deriving pa-
rameters of an additional perspective transform in the shadow-map matrix, they
observed that the resulting transform is still a projective transform and optimize
for the parameters of that combined transform directly. In this way, the projec-
tion can be optimized by solving a small linear system, delivering constant error
along a specified plane in the scene. If there is more than one dominant plane in
the scene, one shadow map is created for each plane, and during rendering, the
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Figure 4.9. Difference between perspective and logarithmic error optimization. All ele-
ments project to the same image-space length d j but to different shadow-plane lengths dv i .
Logarithmic error optimization leads to constant error for an element translated in the z-
direction. Perspective error optimization leads to constant error for an element translated
along a given plane. �e variation in dv i is much stronger in this case, which is not desirable.

fragment shader decides which of the shadow maps to use. �e problem with that
approach is that the dominant planes have to be specified beforehand. �e au-
thors later [Chong07] presented an optimization approach that reads back a low-
resolution framebuffer and uses a numerical optimization scheme to find the pa-
rameters of the shadow-map projection based on the actual content of the scene.
For dynamic scenes, this obviously leads to temporal aliasing. Furthermore, it is
likely that the information gained by a read back of the scene can be even better uti-
lized by an approach that also reduces projective error, as presented in Section 4.4.
A similar, but more heuristic, approach was discussed by Forsyth [Forsyth06].

4.3 Global Partitioning

While warping works very well in some configurations, especially if the light is
overhead, there are other configurations where no benefit can be reaped, for ex-
ample, if the light is directly behind the viewer. In this case, one global perspective
warp will not change the sampling densities along the z-axis of the viewer, and
therefore, warping must degenerate to uniform shadow mapping to avoid increas-
ing error. A much better alternative is to use more than one shadow map. �ere are
two main ways to do that: z-partitioning, where different shadow maps are created
for different z-ranges of the view frustum, and frustum-face partitioning, where
one shadow map is created for each view-frustum face.
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Figure 4.10. PSSM: the shadow map for the middle of three partitions of the view frustum
(side view).

4.3.1 Z-Partitioning

�e most prominent approach and one of the most practical algorithms to improve
initial sampling for shadow mapping is to subdivide the view frustum along the z-
axis and calculate a separate equal-sized shadow map for each sub-frustum. �is
approach goes by the names of cascaded shadow maps (CSM) [Engel06], parallel
split shadow maps (PSSM) [Zhang06a], or z-partitioning [Lloyd06b]. �e original
idea of using multiple shadow maps for a distant light source was already discov-
ered much earlier by Tadamura et al. [Tadamura99, Tadamura01]. �ey describe
the special case of the sun as a light source, also including considerations for the
penumbra caused by the sun. Figure 4.10 shows an example of a PSSM where
the view frustum is split into three partitions, and the shadow map for the middle
partition map is shown. Using this approach, the sampling density decreases for
each successive partition because the same number of shadow-map samples cover
a larger and larger area, also depending on the split positions.

In the most naive implementation, a PSSM scheme with n partitions requires
n shadow rendering passes. Zhang et al. [Zhang07a] describe different methods to
reduce the number of rendering passes, for example, by using the geometry shader
to replicate each triangle into each of the required shadow maps during the shadow
rendering pass. On the other hand, they also show a multipass method that does
not require shaders and runs on older hardware.

In contrast to global warping schemes, the effect of z-partitioning is not limited
to the directions implied by the axes of the shadow map, but even works for cases
where the axes of the shadow map are orthogonal to the view direction (i.e., when
the light is directly behind the viewer). �is is the main advantage of z-partitioning
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Figure 4.11. �e nearest shadow map covers a smaller area than the farthest shadow map
and therefore leads to higher resolution.

over warping approaches and the reason why z-partitioning is much more robust
in general configurations. Figure 4.11 shows the nearest and farthest partition in a
situation with the light directly behind the viewer. �e shadow map for the nearest
partition covers a much smaller area, and therefore, the perceived resolution is
higher, just as is the case for the viewer projection.

Algorithm

For z-partitioning, the view frustum is split into n partitions according to one of
the split-placement rules discussed later on. To create the shadow maps, for each
partition i, we calculate the set of potential shadow receivers PSRi (Section 4.1)
and render a shadow map focused on it.

During the main rendering pass, in the fragment shader, the z-coordinate of
the fragment is compared to the split boundaries, and the appropriate shadow map
is sampled accordingly.

Placing the Splits

�e most important question in this method is where to position the split planes
(see Figure 4.12).

Logarithmic splits. One way is to go back to the derivation of the shadow-map
resampling error. Each shadow-map partition could be interpreted as a big texel of
a global shadow map, so that z-partitioning becomes a discretization of an arbitrary
warping function. We have shown before that the optimal warping function is
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Figure 4.12. Logarithmic splits without (le�) and with (right) a pseudo near plane (dashed
line). Not using a pseudo near plane wastes a complete partition in this example.

logarithmic; therefore, the split positions C i should be determined by

C
log
i = zn ( zf

zn
) i
m

, (4.36)

where m is the number of partitions [Lloyd06b]. �is can be seen easily by solving
Equation (4.31) for z. Replacing z by C i and t by i/m then gives Equation (4.36).
A variant of logarithmic splits was already used by Tadamura et al. in their original
work concerning plural sunlight depth buffers [Tadamura99, Tadamura01].

Practical splits. Zhang et al. [Zhang06a] note that the optimal partition scheme is
not practical because it allocates most resolution close to the near plane, which is
o�en not populated with objects. �ey therefore propose computing the split posi-
tions as a weighted average between the logarithmic scheme and a simple equidis-
tant split-plane distribution:

C
pract
i = αC

log
i + (1 − α)(zn + i

m(zn − zf)) . (4.37)

Pseudo near plane. An alternative solution to improving the logarithmic split
scheme that better respects the theoretical properties of shadow-map aliasing is
to use a pseudo near plane, just as in warping [Lloyd07a, Section 5.1.8]. �is can
be achieved simply by replacing zn by an adapted value z′n in Equation (4.36) for
C i , i > 0, with C0 remaining fixed at zn.



114 4. Shadow-Map Sampling

Sample distribution splits. As mentioned in Section 4.1, Lauritzen et al. [Lau-
ritzen11] propose analyzing the actual distribution of the depth values in the view
frustum. A min/max mipmap pyramid allows extracting accurate near and far
planes for the view frustum, so that the logarithmic splitting scheme can be applied
without wasting resolution on invisible parts of the scene. �e bounds for each split
region can be further improved by creating a separate pyramid for each split that
takes into account only the relevant z-values for the split and also generates bounds
in the x-direction. Especially for farther regions, this can significantly reduce the
size of the fitting body and thus improve shadow-map resolution. Lauritzen et al.
also describe advanced solutions that create a depth histogram on the GPU using
DirectX 11 compute shaders and compute the split positions using k-means clus-
tering. Even if the required operations are available in hardware, the added cost
has to be compared against adaptive subdivision approaches (Section 4.4), which
might provide even better quality.

Other Considerations

Zhang et al. [Zhang09] discuss a number of practical issues related to z-partitioning
regarding flickering artifacts, shadow-map storage strategies, split selection, com-
putation of texture coordinates, and filtering across splits. An interesting obser-
vation is that, in some cases, a point belonging to one partition could actually be
shadowed using a shadow map generated for a different partition. �is happens
when the light is almost parallel to the view direction. In this case, the shadow
maps for the partitions nearer the viewpoint will provide better resolution.

�ere are various strategies for how to store the shadow maps: in separate tex-
tures, which requires more samplers to evaluate but is also compatible with older
hardware; in a texture array, which only runs on DirectX 10.1-class or later hard-
ware, or in a texture atlas, which might limit the maximum texture resolution but is
the most practical solution otherwise. For example, the texture atlas for four splits
would consist of four equally sized shadow maps arranged in a 2 × 2 pattern.

�ere are also various strategies for how to sample the shadow map: in multiple
passes, which works on all hardware, or using a comparison in the fragment shader
to determine the split for each fragment, which is faster. Zhang et al. [Zhang07a]
discuss various implementation strategies, including a method that uses the geom-
etry shader to generate all shadow maps in a single pass.

Special care needs to be taken when filtering across splits (Chapter 5). If only
the neighboring texel is accessed by the graphics hardware upon a shadow-map
lookup, a one-texel border is sufficient to avoid artifacts. Precomputed filtering
methods (Section 5.3), however, calculate derivatives by comparing texture coor-
dinates from neighboring pixels, which might index different partitions and would,
therefore, be meaningless. To avoid this, the required derivatives can be calculated
analytically by properly scaling derivatives calculated for standard shadow map-
ping for the respective split [Zhang09]. In any case, the transition from one split to
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the next usually remains visible. �is effect can be slightly reduced by combining
z-partitioning with warping (Section 4.3.3).

4.3.2 Frustum-Face Partitioning

An alternative global partitioning scheme is to use a separate shadow map for ei-
ther each front face or each back face of the view frustum as projected onto the
shadow-map plane and use warping for each shadow map separately. �is can also
be interpreted as putting a cube map around the post-perspective view frustum
and applying a shadow map to each cube face [Kozlov04]. Each frustum face can
be further split to increase quality.

�is scheme is especially important because it can be shown that it is optimal
for LogPSM (i.e., the combination of logarithmic and perspective shadow map-
ping introduced by Lloyd et al. [Lloyd08]). However, we will not elaborate this
scheme here because Lloyd et al. [Lloyd06b] also showed that for practical situ-
ations, such as a large far plane to near plane ratio and a low number of shadow

Figure 4.13. Examples of z-partitioning with one to three partitions (le� to right). �e
shadow map used for each fragment is color coded: camera view (top row), close-up of
shadowed region (middle row), and outside view showing the view frustum, the partitions,
and the intersection bodies (bottom row). Inlays show the depth maps.
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maps, z-partitioning (optionally combined with warping) is superior to frustum-
face partitioning with perspective warping.

4.3.3 Combining Warping and Global Partitioning

Z-partitioning can be combined with warping by rendering each partition using
perspective warping. �is increases quality, especially for situations where warp-
ing works well (overhead lights). Indeed, the combination of the two methods is
straightforward as each sub-frustum can be handed off to the warping algorithm in
a completely independent way. Another advantage is that transition artifacts can
be reduced, as error in the t-direction matches up more closely at split boundaries
if warping is used for each partition.

One special case of such a combination is to use one uniform shadow map
and one perspective shadow map and calculate a plane equation that separates ar-
eas where the one or the other provides better quality [Mikkelsen07]. �is will
improve error, especially in the farther region, compared to warping alone, but

Figure 4.14. Examples of z-partitioning with and without warping for one to three partitions
(le� to right). �e shadow map used for each fragment is color coded: camera view, uniform
(top row); camera view, warping (middle row); and outside view showing the view frustum,
the partitions, and the intersection bodies (bottom row). Inlays show the depth maps.
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the maximum error (assuming the same overall number of samples in the shadow
maps) actually increases, so this method has to be applied carefully.

Figure 4.13 shows the effect of z-partitioning. �e split distances are cho-
sen according to Zhang’s practical split scheme. Figure 4.14 shows the effect of
z-partitioning versus warping and the combination of the two. Warping alone
has a similar effect as z-partitioning and can further improve the quality of z-
partitioning if used in combination. Figure 4.15 shows a case that is not amenable
to warping due to a nearly overhead light, while z-partitioning still improves qual-
ity. All examples use a directional light source.

Further examples of different combinations of warping and z-partitioning can
be found in Figures 4.16, 4.17, and 4.18. �ese figures show the observer image,
the light views, a visualization of the view frustum and its partitions, and the plots
of m̃t and m̃s . Note that m̃t and m̃s do not depend on the actual geometry, so
surfaces visible in the images might exhibit different error than predicted by the
shown curves. �e views also show the texel grid of the shadow map projected

Figure 4.15. Examples of z-partitioning with and without warping for one to three partitions
(le� to right), here showing an example that is not amenable to warping. Using hardware
PCF, the quality differences become more obvious: camera view, uniform (top row); camera
view, warping (middle row); and outside view showing the view frustum, the partitions, and
the intersection bodies (bottom row). Inlays show the depth maps.
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Figure 4.16. Comparison of logarithmic (log) and practical split schemes for warping and uniform shadow mapping.
�e partitions are marked with different colors (le�), and the shadow map texel grid as well as the light views are
overlayed (middle). �e error graph (right) shows m̃t (blue, “x-dir”) and m̃s (orange, “y-dir”).
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Figure 4.17. Similar comparison as Figure 4.16, for a terrain scene with near and distant shadows. �e rows show
logarithmic (log) versus practical split scheme, warping versus uniform shadow mapping, and the use of a near plane
adjusted to the minimum read-back z-value (min z).
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Figure 4.18. Continuation of Figure 4.18, including comparisons with a single shadow map (single).
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onto the terrain. Figure 4.16 compares the logarithmic split scheme with Zhang’s
practical split scheme (parameter 0.5), both for uniform shadow mapping and for
warping with n = nopt. It can be seen that for the logarithmic split scheme and
warping (first row), the error m̃t (blue plot) matches up at the split boundaries,
leading to the lowest maximum error among the shown examples. �e error m̃s

(orange plot) has a peak at the beginning of each partition and then falls off. In the
observer view, this fact is demonstrated by the texel grid visualization. While the
(screen-space) height of the texels does not change significantly at split boundaries,
the width of the texels almost doubles.

Figures 4.17 and 4.18 show a terrain scene with detailed shadows both near
and far from the observer. A common problem with the logarithmic split scheme
is that the first partition is o�en not used because it is very short (see Figure 4.17,
second row). While Zhang’s practical split scheme alleviates this (third row), a
similarly good distribution of split boundaries with even better maximum error
can be achieved by determining the minimum z-value in the scene through a read
back of the z-buffer and adjusting the near plane accordingly. Using this method,
the near-plane distance can be pushed from one (second/third row) to 13 (first
row). We also show uniform shadow mapping with the two split schemes (Fig-
ure 4.17, fourth row, logarithmic split scheme; Figure 4.18, first row, practical split
scheme). Figure 4.18 shows shadow mapping without z-partitioning for reference:
uniform shadow mapping (second row), warping with n = nopt (third row), and
warping with the near plane distance pushed to the minimum z-value of the scene
(fourth row). �e so�ware that was used to create these visualizations is available
for download at the book’s webpage.

4.3.4 Partitioning—Error Analysis

We will base some general observations on a simplified error analysis. Figure 4.19
[Lloyd06b] shows the overall error (here called storage factor), which takes into
account error in both shadow-map directions, of different schemes for different
numbers of shadow maps for overhead lights (ideal for warping) and a light behind
(no warping possible). It is interesting to see that for a moderate number of shadow
maps, z-partitioning combined with warping provides the best results for overhead
lights, and is equivalent to z-partitioning for light behind.

Adding warping to z-partitioning has another advantage: since warping with
the optimal parameter nopt equalizes error m̃t for near and far planes, the error of
two adjacent partitions at a boundary will be the same, at least if the logarithmic
split scheme is used. �is is because for nopt, the maximum error of a partition
is proportional to the ratio of far plane to near plane (i.e., C i+1/C i), and for the
logarithmic splitting scheme, this ratio is constant. �is reduces visible transition
artifacts in the t-direction. For the s-direction, warping also reduces transition
artifacts, but they remain noticeable. Only a perspective warp with n = zn, as in
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Figure 4.19. Total error of different schemes for varying shadow-map numbers. FP is
frustum-face partitioning, ZP is z-partitioning, W is warping (courtesy of Brandon Lloyd).

PSM, would remove transitions in m̃s . Also, warping leads to the largest quality
difference between different light directions, which may not be desirable.

More exactly, using the results from Section 4.2.2, the error of combined warp-
ing and partitioning can be characterized by the storage factor, which for k parti-
tions is simply k times the storage factor for an individual partition if the logarith-
mic split scheme is used. So for uniform shadow mapping, using Equation (4.25):

Suniform
k = k(zf/zn)1/k (zf/zn)1/k − 1

2a tan θ
. (4.38)

For warping with n ≤ nopt, the (zf/zn)1/k factor goes away (Equation (4.23)), so

S
warping
k

= k
(zf/zn)1/k − 1

2a tan θ
. (4.39)

As k increases, it can be shown, via expansion of

(zf/zn)1/k = exp1/k ln zf/zn

= 1 + 1

k
ln

zf

zn
+ ( 1

k
ln zf

zn
)2

2!
+ . . . ,

that this expression converges to the optimal parametrization (Equation (4.35)):

S logarithmic =
ln zf/zn

2a tan θ
. (4.40)

�is is another significant advantage of z-partitioning over warping alone: z-
partitioning gives a better approximation to the optimal parametrizations because
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the splits can be chosen optimally. Each partition could be seen as a (huge) texel
in a very low-resolution logarithmic shadow map.

4.4 Adaptive Partitioning

�e advantage of global partitioning algorithms is that they are very fast. On the
other hand, they completely ignore surface orientation and can therefore not im-
prove undersampling due to surfaces that are viewed almost edge-on by the light
source (projection aliasing).

In this section, we show a number of algorithms that try to allocate samples
in a better way by analyzing the scene before creating the shadow map. �is in-
evitably incurs some overhead due to the analysis step (which o�en necessitates a
read back) but leads to much better results in general cases. Furthermore, to make
best use of the shadow-map resolution, even global partitioning algorithms rely on
a scene-analysis step to discover the depth distribution of samples in view space,
for example, to obtain tight near and far planes. �us, it is only a small step towards
using the gathered information for a more thorough analysis. Given the constantly
growing power of GPUs, it is becoming feasible to carry out the scene analysis pass
directly on the GPU, so that read backs can be kept to a minimum.

Prominent examples are queried virtual shadow maps (QVSM) [Giegl07b],
adaptive shadow maps (ASM) [Lefohn05], fitted virtual shadow maps (FVSM)
[Giegl07a], resolution matched shadow maps (RMSM) [Lefohn07], and tiled
shadow maps (TiledSM) [Arvo04a].

All of these approaches rely on a hierarchical data structure (usually a quadtree)
to refine the shadow map. �ey differ mainly in the termination criteria and the
measures that are required to determine this termination criterion.

4.4.1 Iterative Hierarchy Refinement

One approach to adaptive partitioning is to start with a shadow map (e.g., 2,048×
2,048) for the whole scene and iteratively split the shadow map into sub-tiles with
the same resolution. For each sub-tile, a new shadow map is created. �is process
is repeated recursively until a termination criterion is met.

Queried Virtual Shadow Maps

QVSM, introduced by Giegl and Wimmer [Giegl07b], are maybe the simplest
adaptive partitioning scheme to implement because they do not require a read back
to compute the termination criterion and do not require implementing hierarchi-
cal data structures on the GPU. �e idea is very simple: a�er each refinement step,
check whether the shadow generated by the refined shadow maps differs from the
shadow generated using the lower-resolution shadow map.
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Figure 4.20. Standard 4,0962 shadow map with perspective warping, rendering at 64 FPS
(le�). QVSM with a maximum refinement level of 32 × 32 and 1,0242 tiles, rendering at
32 FPS (right).

For this, the shadow generated by each tile is written to a so-called shadow
texture (in screen space), and the number of changed pixels is counted. If a cer-
tain threshold is exceeded, refinement continues. �e way to make this fast is to
do all calculations on the GPU by using the occlusion query mechanism to count
the number of changed pixels. �is works by instructing the fragment shader to
emit a fragment only if the result differs from the shadow texture generated in the
previous pass.

QVSM require quite a high number of scene-rendering passes, one for each
refinement attempt. In order to avoid re-rendering the scene multiple times, Giegl
and Wimmer propose to first render the scene into a linear depth buffer from the
camera viewpoint, so that each rendering pass just uses this buffer to calculate
shadows. In a deferred shading system, the G-buffer can be used. �e authors also
describe heuristics that allow skipping refinement levels in certain situations.

Figure 4.20 shows a comparison of a large standard shadow map with QVSM.

Adaptive Shadow Maps

While QVSM use a heuristic based on the resulting shadow texture as a termi-
nation criterion, Fernando et al. [Fernando01] propose using a scene analysis to
determine the required shadow resolution. �is analysis is based both on the pro-
jected size of a texel in the shadow map and on the observation that higher shadow
resolution is only required for shadow edges. �erefore, for each iteration, an edge-
detection step is run on the new shadow-map tile, and only those samples mapping
to shadow edges are considered for node refinement.



4.4. Adaptive Partitioning 125

In particular, the mipmap mechanism is used to estimate the size of the foot-
print of a texel in the shadow map and, thus, the required resolution level. For each
node, the number of silhouette texels with insufficient resolution are counted, and
refinement is terminated if this number is lower than a threshold.

GPU implementation. While the original ASM were based on a read back of the
complete camera view (containing the calculated mipmap levels for each sample),
a GPU-based version was also proposed [Lefohn05]. �is version uses a GPU
quadtree, which basically corresponds to a mipmapped page table stored in GPU
memory. Each page-table entry stores whether the corresponding shadow tile has
been generated. A�er each refinement step, the algorithm iterates over all view
samples containing edges; looks them up in the page-table texture at the correct
mipmap level; and if the corresponding tile is missing, a refinement request is gen-
erated. GPU-based stream compaction [Billeter09] is used to condense these re-
finement requests into a compact list containing only unique tiles that need to be
refined. Note that in comparison to QVSM, each iteration step can generate several
refinement requests in different locations of the shadow map.

However, ASM in general suffer from significant problems. First, the varying
number of iterations required to converge each frame makes performance unpre-
dictable. Second, iterative refinement starting from a coarse depth image poses
severe problems in accuracy: if an edge does not exist in the coarse depth image,
refinement will never find it unless by luck (e.g., if the missing edge gets refined
because it ends up on the same page as a detected edge). �ird, it is not suited for
dynamic scenes, since the whole hierarchy has to be iteratively regenerated if the
light or an object moves.

4.4.2 Direct Hierarchy Evaluation

Iterative refinement has proven expensive due to its iterative nature: both ap-
proaches require repeated evaluations of shadow maps, and ASM, in addition, re-
quire an edge-detection pass in each iteration that is not guaranteed to robustly find
edges that might appear in more detailed levels. �erefore, both ASM and QVSM
have been evolved into algorithms that generate the hierarchy directly, without in-
termediate refinement. RMSM [Lefohn07] are an evolution of ASM that also drop
the edge-detection pass. Giegl and Wimmer [Giegl07a] introduced FVSM, which
improve upon QVSM.

�e main idea of both algorithms is to determine the required resolution for
each view sample directly, without intermediate rendering passes. �e main idea
of direct hierarchy evaluation is to create information about the required shadow-
map resolution for each view sample during the camera-rendering pass and create
a hierarchy to match these requirements. �e main challenge is to convert the in-
formation generated in the camera pass into a hierarchy because this requires a
projection of this information into the shadow map, which is a scatter operation
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that is not directly supported by the standard graphics pipeline. �e direct hierar-
chy evaluation that is the basis for both RMSM and FVSM works as follows:

1. Camera pass. In a camera-rendering pass, create for each view sample both
the shadow-map lookup coordinates and resolution-requirements informa-
tion (s, t, r, l) (with (s, t) the shadow-map coordinates, r the light-space
depth value, and l a resolution information, for example, a mipmap level).

2. Determine shadow maps to create. Iterate over the view samples and convert
them to a hierarchy of required shadow-map tiles.

3. Create and apply shadow maps. Render the required shadow-map tiles and
shadow the scene with them.

In both RMSM and FVSM, the required resolution for each view sample is de-
termined using the texture gradients dF
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Figure 4.21. Shadow mapping using a page table. A first rendering pass generates a buffer
containing texture coordinates and mipmap levels. �is buffer is converted into a set of tile
requests. �e requested tiles are rendered to a GPU tile store, and the page table is updated
to mark the available tiles. �e page table is a small mipmapped texture that stores a GPU
tile ID if the respective tile resides in memory (for RMSM) or the number of samples that
request this tile (for FVSM). Here, for a page table size of 4 × 4 and a tile size of 512 × 512,
a shadow map resolution of 2,048 × 2,048 can be obtained.
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ents bound the projection of a pixel into the shadow map. For example, if
du
dx
= 0.001, then the resolution of the shadow map should be at least 1,000 tex-

els in u-direction to handle the image’s x-direction (for that view sample). �e
two algorithms use different metrics to calculate the desired resolution from the
texture gradients.

Both algorithms create a hierarchical data structure in shadow-map space to
coalesce the shadow map requests from the previous step. �is data structure ba-
sically corresponds to a mipmapped page table known from virtual texturing, that
is, it contains one entry for each possible shadow-map tile. For example, for a 32 K× 32 K “virtual” shadow-map resolution and 1 K × 1 K shadow-map tiles, the page
table has a resolution of 32× 32, one entry for each tile (see Figure 4.21). �e page
table is mipmapped so that, for example, 16 × 16, 8 × 8, etc., versions exist, which
corresponds to a quadtree hierarchy. For example, the 2 × 2 version of the page
table corresponds to a 2 K × 2 K shadow map resolution. �e information stored
in the page table is different for the two algorithms.

FVSM and RMSM differ in the specifics of how each individual step is imple-
mented. In particular, FVSM uses the CPU to carry out step 2, while RMSM uses
parallel processing primitives on the GPU for that step.

Fitted Virtual Shadow Maps

Camera pass. FVSM calculate the gradients in step 1 by finite differencing on a
linear eye-space depth buffer created in a previous step. �e required resolutions
are derived from the axis-aligned bounding box of the gradients in shadow-map
space.

Determine shadow maps to create. FVSM determine the required shadow maps
by creating a mipmapped page table in four steps (the page table stores the mini-
mum required resolution for the corresponding tile in both x- and y-directions):
(1) Read back the buffer generated in the previous step to the CPU. (2) Project
all view samples, along with the resolution information, directly into the full-
resolution page table (e.g., 32 × 32) and compare it with the resolution stored in
the corresponding page-table entry. Each page-table entry keeps track of the high-
est requested resolution among any sample projected to it. Requested resolutions
are maintained separately for the x- and y-axes, derived from the dimensions of
the axis-aligned bounding boxes of the pixel footprints. (3) Create a max mipmap
from the page table. (4) Traverse the hierarchy (i.e., page-table mipmap chain) top-
down (from low to high resolution), and terminate when the requested resolution
stored in a page-table entry matches the tile resolution corresponding to that entry.
�e traversal uses binary or quadtree splitting, depending on whether only one or
both shadow-map axes require refinement. �is can lead to rectangular shadow
maps, which better adapt to the required resolutions.
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As an example, consider the situation where the recursive traversal processes
a page-table entry in the 8 × 8 page table. If the entry contains a required resolu-
tion value larger than 8,096 in both the u- and v-directions, then a quadtree split
is done and the four child nodes in the 16 × 16 page table are traversed. If the re-
quired resolution value is lower than 8,096 in both directions, then a 1 K × 1 K
shadow-map tile for the entry is created, rendered, and used to shadow the scene
(see below). If only the u-direction requires a resolution larger than 8,096, then
only the u-direction is split. Note that in this case, subsequent recursive evalua-
tions need to consider rectangular subregions of the page table. Only if all splits
are quadtree splits will each region correspond to exactly one page-table entry.

FVSM uses a lower-resolution camera pass, so that read back and CPU analysis
of the camera view do not become a bottleneck. While this may lead to a few
pixels that do not obtain the required shadow-map resolution, these pixels typically
correspond to areas of inhomogeneous shadows, where artifacts are not readily
apparent.

As a further optimization, the authors propose using a simple histogram per
page-table entry to count the number of texels that require a specific resolution
(for example, using three bins). �us, resolutions that are only requested by a low
number of view samples can be discarded.

Create and apply shadow maps. In FVSM, shadow maps are created and applied
already during the recursive traversal of the mipmap chain. Since only leaf nodes
in the hierarchy are used as actual shadow-map tiles, these tiles constitute a par-
tition of the total shadow map, and each view sample is shadowed using exactly
one of them. Like for QVSM, it is necessary to solve the problem that the scene
has to be rendered multiple times using different shadow-map tiles. Again, the so-
lution is to first render the scene into a temporary depth buffer. For each render
pass applying a requested shadow-map tile to the scene, the view samples to be
shadowed are not created by rendering, but by reconstruction from this eye-space
depth buffer. View samples that project outside the current tile are discarded. �e
results of the different render passes are accumulated in an eye-space shadow tex-
ture. For shadow-map tile rendering, tight view-frustum culling should be used to
avoid multiple rerenderings of the same objects. Note that because each tile is im-
mediately used for shadowing, only one shadow-map buffer is required to shadow
the whole scene. In a final pass, the shadow texture is used to calculate the shading
of the framebuffer.

Resolution-Matched Shadow Maps

Camera pass. RMSM calculate the required texture gradients directly in the frag-
ment shader. �e required shadow-map resolution is estimated using the area of
the projected pixel, A = ∣ dF

dx
× dF

d y
∣, which gives a more accurate result for anisotropic

pixel footprints than taking the longer diagonal, as in standard mipmapping. �e
resulting mipmap level is then log2(√A).
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Determine shadow maps to create. RMSM determine the required shadow maps
directly on the GPU. While FVSM can afford recursive traversals of the page table
on the CPU, for RMSM, the page table is maintained in a very similar manner to
virtual texturing [Chajdas10]. �e main conceptual difference to FVSM here is
that lower-resolution nodes are also created if requested by a view sample, while
FVSM only creates tiles with the highest requested resolution in the hierarchy. �is
simplifies the tile-determination step, since each view sample can be converted
directly into a tile request, and no hierarchical dependencies between view samples
exist. �e drawback is that more tiles are created than necessary, since tiles for
interior nodes of the hierarchy have to be created.

More specifically, the following steps have to be carried out: (1) Each view sam-
ple is converted to a tile request. A tile request (or tile ID) consists of the mipmap
level and the integer coordinates of the page-table entry the view sample projects to.
(2) All tiles for which a tile request has been issued are determined and transferred
to the CPU. �is step requires sorting of tile requests by tile ID and compaction
of the resulting buffer to eliminate all duplicates. Both of these tasks can be car-
ried out efficiently on a GPU using parallel sort and scan primitives, which, for
example, allow stream compaction in O(n) time [Billeter09].

As an optimization, the authors propose to eliminate tile requests from homo-
geneous areas, that is, for view samples whose (e.g., le� and bottom) neighbors
request the same tile. Followed by a stream-compaction step eliminating such un-
necessary tile requests, the performance of the subsequent sort can be greatly im-
proved.

Create and apply shadow maps. A�er all unique tile requests have been trans-
ferred to the CPU, all tiles are created by standard shadow-map rendering. Sim-
ilar to FVSM, tight view-frustum culling should be employed to avoid duplicate
renderings. In contrast to FVSM, RMSM requires enough free graphics memory
to store all requested tiles. �e address of each tile in graphics memory is then
stored in the page table and transferred to GPU memory. Finally, the scene is ren-
dered again using shadow mapping. Similar to virtual texturing, each shadow-map
lookup first accesses the page table to determine the relevant tile.

Tiled Shadow Maps

An early attempt at the idea of adaptive shadow-map subdivision was presented by
Arvo [Arvo04a]. Instead of a hierarchical subdivision of the shadow-map texture
space into a hierarchy of equal-sized shadow-map tiles, Arvo subdivides a given
shadow map consisting of a fixed number of tiles using a binary cut algorithm that
recursively shi�s the tile boundaries. �e subdivision borders are placed so that
more “important” regions are assigned larger partitions.

�e importance is calculated in a separate rendering pass, creating a low-
resolution shadow map. �e importance value for a region is the sum of the im-
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portance values for the individual shadow-map samples contained in that region.
�e importance value for a shadow-map sample takes into account depth discon-
tinuities in the shadow map: for discontinuity pixels, it is the magnitude of that
discontinuity and, for other pixels, the distance of that pixel from the viewer.

While this algorithm shares some ideas with the subdivision approaches pre-
sented earlier in this section, it is of a more heuristic nature. In particular, all the
other algorithms directly treat view samples and their projections into the shadow
map, whereas this algorithm only looks at light samples, which precludes an accu-
rate heuristic.

4.4.3 Comparison

While FVSM and RMSM differ in a number of aspects, the components of both
algorithms could easily be mixed. For example, RMSM uses a more straightfor-
ward way to determine texture gradients in the shader, which could also be used
in FVSM. On the other hand, the memory requirements in RMSM could be re-
duced by rendering and applying shadow maps iteratively, just as in FVSM. Since
each view sample requests exactly one shadow-map tile, each rendering pass would
loop over all view samples (by rendering a full-screen quad) and shadow only those
that correspond to the current shadow tile. Rectangular tiles, on the other hand,
would be more difficult to accommodate in RMSM. Similar to FVSM, it would be
possible to start with a low-resolution eye view in order to reduce the number of
view samples that have to be transformed into page requests. While this is not
as critical as in FVSM, where read back and CPU treatment of view samples is a
bottleneck, it could still improve performance. With DirectX 11-class hardware, it
should be possible to implement both algorithms fully on the GPU, with the only
traffic to the CPU being the information of which shadow pages to render.

Furthermore, it is interesting to compare the choice of allowing shadow tiles
to be generated for intermediate nodes or not. For FVSM, the tiles constitute a
partition of the shadow map, and no intermediate nodes are required. On the
other hand, some of the nodes might actually not even be required, for example, if
shadow detail is only visible in one of the sub-tiles of a tile. In that case, it is more
efficient to just generate the tile and one of its sub-tiles. Note that even in RMSM,
intermediate nodes are only generated if view samples actually request them—if
all view samples request high-resolution tiles, the lower-resolution tiles are never
generated.

Comparing RMSM and ASM, both approaches use a page-table texture and
carry out all important steps on the GPU using GPU sort and stream compaction.
But while ASM only accesses the current hierarchical shadow-map structure and
then determines whether refinement is necessary, RMSM creates the complete hi-
erarchy in one pass.

Note that all adaptive subdivision algorithms share aspects with view-sample
mapping (see Section 4.5), which also maps view samples to shadow-map space,
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but drops the idea of a shadow-map quadtree completely and instead decides to
just shadow the transformed view samples directly. Another observation is that
the calculation of the required shadow-map resolution is very similar to the cal-
culation of the required tiles in a virtual-texturing solution. Basically, the shadow
map can be interpreted as a large virtual texture [Chajdas10] whose tiles are gen-
erated on demand depending on the current view. �us, adaptive shadow-map
subdivision should integrate easily into an existing virtual-texturing system, as has
become popular in modern game engines. Actually, RMSM is a GPU-based imple-
mentation of virtual texturing, such as that discussed by Chajdas et al. [Chajdas10].
�e main difference is that requested tiles are not streamed from disk but generated
by shadow rendering.

4.5 View-Sample Mapping

�e aliasing artifacts in hard shadow mapping stem from the fact that the shadow-
map query locations do not correspond to the shadow-map sample locations. Ide-
ally, one would like to create shadow-map samples exactly in those positions that
will be queried later on. Difficult as that may seem, it is actually possible and has
been proposed independently by Aila and Laine [Aila04b] under the name of alias-
free shadow maps and Johnson [Johnson05] under the name of irregular z-buffers.

�e algorithm proceeds by rendering an initial eye-space pass to obtain the
desired sample locations, similar to adaptive shadow-map subdivision methods.
�ese sample locations are then used as pixel locations for the subsequent shadow-
map generation pass. �e challenge is that these new sample locations do not lie
on a regular grid anymore. �erefore, view-sample–accurate shadow algorithms
have to solve the problem of irregular rasterization. While Johnson [Johnson05]
proposes hardware modifications to implement dynamically managed linked lists
to maintain a so-called irregular z-buffer, Sintorn et al. [Sintorn08b] manage to im-
plement irregular rasterization on current GPUs using the NVIDIA CUDA frame-
work. Another hardware implementation [Arvo07] is based on depth peeling, re-
quiring one render pass per depth layer, and is therefore slower.

�e basic idea of irregular rasterization algorithms is similar. A�er the eye-
space pass, the generated view samples are projected into light space and stored in
a light-space buffer. Each pixel of this buffer contains a list of view samples that
fell into this pixel. Some lists will be empty, while some lists will contain several
samples. �ese view samples are then tested for shadows by rasterizing the shadow-
casting triangles (typically all triangles in the scene) from the light’s viewpoint.
Note that this rasterization has to be conservative, i.e., it has to include all pixels
that are intersected by a triangle. �is can be achieved by extending each triangle
by a half-pixel size. For each covered rasterized fragment, the fragment shader tests
all view samples in the corresponding per-fragment lists of the light-space buffer.
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If a view sample is in shadow, this is indicated by flagging it. Finally, a screen-
space quad is rendered in eye space, where each fragment does a shadow query by
testing its corresponding list entry for the shadow flag. �e method is suited to be
combined with reparametrization methods.

4.5.1 Hardware Implementation

An efficient hardware implementation of irregular rasterization faces two prob-
lems: first, the projection of view samples into light space is a data-scattering op-
eration that cannot be easily implemented using the standard graphics pipeline.
Second, when rasterizing shadow casters, multiple view samples have to be repeat-
edly updated per shadow-map texel. Since rasterization can only output to the
render targets associated with one pixel, the number of view samples per pixel is
limited by the number of bits available in the render targets associated with the
light buffer.

a) b)

c) d)

101110

011

Figure 4.22. (a) In a hardware implementation of view-sample mapping, the view samples
are first projected from screen space into the light view. (b) �e image shows some shadow-
map texels on a concrete object. (c) �e view samples for each texel are stored compactly
in a buffer created using CUDA. (d) Visibility information for each view sample is stored in
bitmasks that are generated by rasterizing the occluding geometry into the light view.



4.5. View-Sample Mapping 133

In Sintorn et al.’s implementation, the first problem is solved using the efficient
scattering capabilities available through CUDA. �e projection of view samples
happens in two passes (see Figure 4.22): in the first pass, only the number of sam-
ples falling onto each shadow-map texel are counted, as well as the local index of
each new view sample in a pixel. At this stage, the projected samples are not yet
stored. Using a running-sum scan, the sample counts are then converted to offsets
into a global memory buffer. In the second pass, the view samples are projected
again and stored at the appropriate offset (taking into account their local index)
in the global buffer. �rough this data-scattering operation, the size of the global
view-sample buffer is given by the number of samples. Note that recent GPUs allow
scattering in the standard graphics pipeline through the append buffer functional-
ity (DirectX 11).

�e second problem is solved by representing the shadowed/lit flag of each
view sample using only one bit. �e rasterization of shadow casters is carried out
using the standard graphics pipeline into a framebuffer that contains, in each pixel,
a bitmask of shadow flags for all view samples that project into that pixel. When
rasterizing a shadow caster, the fragment shader first calculates the shadow status
of each view sample with respect to the shadow caster and updates the framebuffer
with that information using a logical OR blending operation. On newer GPUs, at
least 128 bits can be written per output render target. Using multiple render targets
(currently eight are possible) allows us to store and treat up to 1,024 view samples
per shadow-map texel. �e algorithm uses multipass rendering if more bits are
needed. �e final rendering is quick because each view sample knows its corre-
sponding bitmask entry through its local index and simply fetches the appropriate
value. Note that the second problem could alternatively be solved by implement-
ing the rasterization in CUDA as well and using scattering to update the shadow
flags.

4.5.2 Transparency

Irregular rasterization approaches allow the use of transparent shadow casters.
Each view sample stores, in addition to its shadow flag, a transparency value, which
is initialized to fully transparent. Whenever a semitransparent shadow caster is
rasterized and lies in front of a view sample, the transparency of that view sample
is multiplied with the transparency of the caster. Colored transparency requires a
full RGB transparency value to be stored with each view sample. However, only a
few bits can be used for transparency in a hardware implementation, so only a few
levels of transparency are possible.

4.5.3 Supersampling

While view-sample mapping techniques eliminate initial sampling (under-
sampling) and resampling artifacts, they are still prone to initial sample aliasing,
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like any other part of the rendering pipeline that discretizes hard-edged geomet-
ric primitives. A common remedy against initial sample aliasing is multisampling,
where multiple samples per pixel (so-called subpixels) are evaluated to determine
the coverage of a geometric primitive, but the fragment shader for that pixel is only
computed once. Since view-sample mapping is computed in the shader, this shader
needs to be evaluated for each subsample as well, which corresponds to the more
expensive supersampling.

Pan et al. [Pan09] have come up with a method to evaluate just the shadow term
for multiple subpixels at a cost that is practically independent of the number of
subpixels. �e remaining shading computations are carried out at pixel level. �eir
first observation is that subpixel sampling is only required for pixels that contain
shadow boundaries. �erefore, in a first step, a silhouette-mask map is created that
marks all shadow-map texels that contain a (visible) shadow edge. �eir second
observation, and the main idea of the approach, is that the evaluation of multiple
subpixels can be carried out efficiently using visibility masks [Eisemann07], which
allow a shadow-casting triangle to instantly mark several subpixels as occluded or
nonoccluded with respect to that triangle.

Eisemann et al. [Eisemann07] show that the intersection of a half-plane with
a number of regular samples can be precomputed, storing bitmasks in a table that
contain one coverage bit per sample. When transforming a shadow-caster triangle
into pixel space, the coverage of the subpixels can be determined by combining the
bitmasks of the half-planes given by the three triangle edges using bitwise AND.
�us, evaluating multiple subpixels is a constant-time operation, and only the cost
for combining the subpixels depends on the number of samples.

To determine the actual pixels and caster triangles that should interact in that
way, Pan et al. represent each pixel by a rectangular facet and rasterize that facet
into the shadow map to determine which texels might influence that pixel. �is
corresponds to the view-sample projection step in the original view-sample map-
ping technique, but instead of projecting only the pixel center, the whole pixel rect-
angle is projected. If a pixel only covers non-silhouette texels, it will be evaluated
using standard view-sample mapping. �en, shadow casters are rasterized into the
shadow map, projected to each pixel stored in that texel, and subpixel tests using
visibility masks are carried out. �e visibility-mask test complements the simple
proximity test in standard view-sample mapping by determining which of the sub-
pixels are actually affected by the shadow caster.

4.6 Shadow-Map Reconstruction

All methods discussed so far have assumed that shadow maps are sampled at cer-
tain positions, and reconstruction accesses these samples. In this section, we will
introduce methods that focus not on the sampling but on the reconstruction. �e
main observation is that a more accurate reconstruction of shadow edges, by stor-
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ing, for example, information about silhouettes in the shadow map, can improve
shadow quality.

4.6.1 Forward Shadow Mapping

Zhang et al.’s forward shadow mapping [Zhang98] splats the texels seen from the
light to the view. �is inverses the usual test, which would look up depth values
in the shadow map, and instead looks up depth values from the eye view to test
whether they match. If they do, it is actually illumination and not shadows that
will be splat into the eye view. �e splat can have a smooth degrading kernel that
leads to so�er transitions between the samples. Currently, the practical relevance
of this method is rather low, but it is an interesting idea to build upon, and in fact,
splatting of illumination has become a common solution for recent methods in the
context of global illumination [Lehtinen08].

4.6.2 Silhouette Shadow Maps

A method that reconstructs piecewise linear shadow boundaries was presented by
Sen et al. [Sen03]. �e method is relatively simple and could be implemented on
current graphics hardware. �e idea is to store additional information about sil-
houettes in a so-called silhouette map. If an object’s silhouette edge intersects a
texel of the silhouette map, an (arbitrary) point of that silhouette is stored in that
texel. Texels that intersect no silhouettes are marked empty. �e stored silhouette
points allow reconstructing the silhouette edges using the neighboring texels.

To determine the shadow status of a view sample, it is projected into the silhou-
ette map. �en, five samples are looked up in the silhouette map: the center and
its four neighbors. Virtual edges connecting the stored silhouette points are added
between these positions, creating four quadrants. For each quadrant, an evaluation

silhouette-map sample

shadow-map sample

queried view sample

Figure 4.23. Silhouette shadow maps: the area around a silhouette map texel is partitioned
into four quadrants by connecting to the neighboring samples. �e shadow status of the
queried view sample depends on the shadow-map sample that is located in the respective
quadrant.
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of the shadow map decides whether that quadrant is considered shadowed or lit.
For this to work, the shadow map needs to be shi�ed by a half-pixel in each coordi-
nate with respect to the silhouette map (see Figure 4.23), so that the depth samples
fall within the quadrants. Finally, the algorithm determines which of the quad-
rants the view sample lies in and returns the shadow status of the corresponding
quadrant as result.

Major limitations are that each pixel only stores one silhouette point. In areas
where two silhouettes project close to each other, noticeable artifacts can appear.
Furthermore, the curvature of silhouettes is limited by the piecewise linear ap-
proximation and, thus, by the resolution of the shadow map. �e creation of this
map involves a silhouette-determination step, which can be done on the geometry
shader on today’s hardware, and the rasterization of silhouette edges to create the
representative silhouette points in the silhouette map. �is rasterization is rather
costly because each edge needs to be rendered as a quad to make sure all adjacent
pixels are touched.

Silhouette shadow maps can be interpreted as a deformation of the regular
shadow-map grid according to the silhouette-map entries. �is idea has also been
used later to preserve sharp edges for texture magnification [Sen04].

4.6.3 Alternative Shadow-Map Storage

Dai et al. [Dai08] go one step further and propose storing the complete actual tri-
angle information (via the three vertex positions) in each shadow-map texel. To
find the silhouette, or rather the triangle that actually occludes the view sample,
the triangles in neighboring texels have to be taken into account using consis-
tency checks. �e method fails, however, if not all occluding triangles are hit by a
shadow-map sample.

Arvo and Hirvikorpi [Arvo05] leave the concept of traditional shadow maps
altogether and use a data structure that stores only scan lines. �is leads to a com-
pression for scenes with homogeneous depth values because only startpoints and
endpoints of scan lines need to be stored. �is allows higher shadow-map resolu-
tion, but no interactive algorithm for the generation of such compressed shadow
maps has been presented.

4.7 Temporal Reprojection

Finally, one way to increase the sampling rate is by reusing samples from previous
frames through reprojection [Scherzer07]. �e main idea is to jitter the shadow-
map viewport differently in each frame and to combine the results over several
frames, leading to a much higher effective resolution.

�is method requires an additional buffer, called the history buffer, to store the
current accumulated shadowing result (in view space). In the current frame, the
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result of the shadow-map lookup is combined with the result from the previous
frame, which can be looked up in the history buffer using reprojection. If a depth
discontinuity between the new and the reprojected sample is detected, then the
old result is not used since it is probably due to a disocclusion. �e result is again
stored in the history buffer.

Reprojection requires some application support, as the complete transforma-
tion matrices for both the current and the previous frame need to be passed to the
vertex shader. �e transformation matrix for the previous frame gives the texture
coordinates for the lookup in the history buffer.

In order to make shadow quality converge to a pixel-perfect result, the weights
between the current and the previous frame result have to be chosen carefully. In
particular, Scherzer and Wimmer have proposed determining the weight accord-
ing to the confidence of the shadow lookup:

conf x ,y = 1 −max (∣x − centerx ∣ , ∣y − centery ∣) ⋅ 2,

where conf x ,y is the confidence for a fragment projected to (x , y) in the shadow
map and (centerx , centery) is the corresponding shadow-map texel center.

�e confidence is higher if the lookup falls near the center of a shadow-map
texel, since only near the center of shadow-map texels is it likely that the sample
actually represents the scene geometry.

Note that reprojection-based approaches take a few frames to converge a�er
quick motions. Also, they cannot deal well with moving objects or moving light
sources.

4.8 Cookbook

We want to give some practical hints as to which algorithms to use in what situa-
tions. In general, we can observe that achieving higher quality goes hand in hand
with obtaining more information about the scene. While global partitioning algo-
rithms require only bounding volumes, adaptive partitioning algorithms already
look at information gained from a rendering of the scene, while view-sample map-
ping analyzes each individual pixel in view space to obtain perfect results.

If the requirement is that only a single shadow map should be used (i.e., the al-
gorithm should run at the same speed as standard shadow mapping), then LiSPSM,
with the modification by Lloyd et al., is the best algorithm. �is algorithm will
achieve excellent quality in many configurations, especially in outdoor scenarios
with roughly overhead lighting; however, it can easily degrade to the quality of
(focused) uniform shadow mapping. With the modification by Lloyd et al., it will
never degrade below the quality of uniform shadow mapping. LiSPSM is relatively
easy to integrate in a rendering engine, but it does require some care when im-
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plementing focusing, shadow-map rotation, and the relevant z-range. �ese are
geometric calculations that will influence the robustness of the approach.

If more than one shadow map is allowed (i.e., some performance loss can be
accepted), the best-known tradeoff between efficiency and quality is achieved by
z-partitioning (CSM, PSSM). �e distribution of multiple shadow maps mimics a
very rough approximation of the optimal logarithmic shadow-map parametriza-
tion. Furthermore, each shadow map can adapt optimally to one part of the view
frustum, thus improving the quality in each spatial dimension, independent of the
orientation of the view frustum. It is possible to combine z-partitioning with warp-
ing; however, temporal aliasing is increased by this approach, and the gain is not
very high. If warping is not used, the flickering artifacts due to focusing can be
reduced by snapping to texel boundaries. Z-partitioning requires some applica-
tion support because multiple shadow maps have to be rendered. On the other
hand, fewer geometric operations than in warping are required, making it simpler
to implement.

One major advantage of the aforementioned algorithms is that they are scene-
independent, and thus do not require interaction (e.g., read back) with the scene.
On the other hand, this is also a strong limitation. It can be observed that a very
simple scene analysis providing minimum and maximum depth values already
greatly increases the quality and robustness of both warping and partitioning al-
gorithms. Given the speed and flexibility of today’s GPUs, the scene-analysis pass
can be carried out completely on the GPU (e.g., by creating a min/max mipmap
pyramid), and only a few values have to be read back from the bus. �e complex-
ity of today’s deferred-rendering pipelines with several full-screen passes makes it
easy to hide the latency of read backs.

Furthermore, warping and z-partitioning deal with perspective aliasing only,
while local aliasing effects due to different surface orientations, causing projec-
tion aliasing, cannot be improved. Given the fact that these approaches work best
with a scene analysis, it is a rather small step towards fully adaptive partition-
ing algorithms that handle both perspective and projective aliasing. Of particu-
lar interest are subdivision approaches with direct hierarchy evaluation (RMSM,
FVSM). In particular, RMSM is virtually identical to current virtual-texturing ap-
proaches, and for engines that already support virtual texturing, it is straightfor-
ward to include RMSM as well. �e only limitation could be the time required for
the high number of shadow rendering passes when compared to global approaches.
It stands to reason that soon, even irregular sampling approaches, which really re-
sult in a pixel-accurate solution, will become feasible.

All of the covered approaches, in particular, the more accurate ones, are useful
for a small number of light sources that cover a large part of the scene. If many light
sources are required, light-culling techniques become important, and a fallback to
standard shadow mapping may be necessary. For example, standard shadow map-
ping could be used for local light sources that have a limited region of influence,
while a more accurate sampling method is used for sunlight shadows.



CHAPTER 5

Filtered Hard Shadows

We have seen in Chapter 3 that image-based hard shadows are prone to aliasing.
Recall that errors due to the discrete shadow-map sampling can be categorized into
initial sampling errors (which happen when creating the shadow map) and resam-
pling errors (which happen when rendering using the shadow map). Chapter 4
showed several approaches to reduce initial sampling error (i.e., undersampling)
by adapting the shadow-map resolution in various manners.

In this chapter, we will discuss several filtering methods for shadow mapping,
which are mainly useful for reducing resampling error. Furthermore, filtering is
also o�en used to make undersampling artifacts less pronounced by smoothing
or blurring the shadow boundaries. In fact, simple upscaling techniques for low-
resolution images also rely on filters to remove the quad appearance induced by
the pixels of the input image. At second glance, this becomes even more inter-
esting because it results in shadow boundaries that resemble to some extent the
appearance of physically based so� shadows at a much lower computational effort.
However, none of the following methods in this chapter give physically meaningful
so� shadows—their main purpose is to address the aliasing problem efficiently.

In practice, most of the techniques presented in this chapter, as well as their
extensions, which we will discuss in Section 6.5.3, are standard solutions in game
contexts and are of high practical value. �e simplicity of the implementation, the
relatively good performance, the simple tradeoff between performance and quality,
and the reasonable outcome (at least for most configurations) make them usually
a good choice.

�e interested reader is also referred to the talk by Bavoil at GDC08 [Bavoil08a].
�is talk summarizes many of the practical implementation aspects and serves as
a good overview for the techniques that will be presented in this chapter.

We will first discuss why filtering shadow maps needs special attention (Sec-
tion 5.1), then show the applications of filtering (Section 5.2), namely blurring,
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proper filtering and reconstruction, and faking so� shadows. Section 5.3 will deal
with the important topic of accelerating the evaluation of larger filter kernels using
precomputation.

5.1 Filters and Shadow Maps

In this chapter, we call filtering any approach that takes into account several
shadow-map samples in order to calculate a final shadow result value for a spe-
cific view sample. In principle, filtering can be used for several purposes: reduc-
ing resampling error (for reconstruction and bandlimiting the signal), smoothing
shadow boundaries to hide undersampling artifacts, and faking a so�-shadow ap-
pearance. However, while filtering shadows is useful, the nature of the shadow
test makes filtering significantly less straightforward than for other signals, like
standard textures. In the following, we will first show why simply filtering the
depth map does not work and then present a reference solution, percentage-closer
filtering.

5.1.1 Filtering Notation

Let us first recall some important notation from Section 3.3, where the depth func-
tion was defined as z(t) in dependence of the shadow-map coordinates t = (s, t).
Standard shadow mapping evaluates the shadow comparison function s: f (t, z̃) =
s(z(t), z̃) for a reference depth value z̃ (i.e., the light-space depth of a view sample),
returning zero if the view sample is in shadow and one otherwise. �e standard
shadow comparison function is the Heaviside step function: s(z, z̃) = H(z − z̃).

Filtering aims to average a set of samples from a filter kernel K (also called
window). Note that while our filtering notation is defined in shadow-map space, at
this moment, we do not yet specify in which space the filter samples themselves are
determined, since this depends on the application case (see Section 5.2). Finally,
the samples are averaged using a kernel function k, which takes the distance of the
reference sample to the current sample from the kernel as a parameter.

5.1.2 Fail: Blurring Shadow Maps

A first intuition could lead one to perform filtering by blurring the depth values
stored in the shadow map and then performing a standard shadow test. �is would
correspond to averaging the depth signal using some filter kernel k and shadow
testing the result:

f blur
filter(t, z̃) = H ⎛⎝∑t i∈K k(ti − t)z(ti) − z̃⎞⎠ . (5.1)

Unfortunately, such a blur does not make much sense. �e depth values would
be averaged, but the resulting shadows would still show the same aliasing artifacts
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because for each view sample, the shadow test still leads to a binary outcome. Fur-
thermore, averaging depth values across discontinuities would lead to nonintuitive
results.

To extend this idea, one might be tempted to replace not only the shadow
map by a blurred version but also the binary shadow test function H with some
smoother, continuous variant Hc . �is solution has been used by Lu� and Deussen
[Lu�06]. With some parameter tweaking, those shadows can be visually pleasing
for simple configurations but can be very far from any physical reference. Fur-
thermore, nearby superposing objects, as seen from the light, might lead to light
bleeding. On the other hand, the method by Lu� and Deussen was proposed in
the context of non-photorealistic rendering in order to abstract shadows and give
a visually smoother result. For this latter purpose, such an algorithm is well suited,
but it can hardly fool the observer into taking the shadows for real.

5.1.3 Defining a Reference: Percentage-Closer Filtering

A more plausible outcome can be achieved by realizing that the goal is to filter the
shadow signal f , not the depth signal z. �is approach is called percentage-closer
filtering (PCF) [Reeves87]. Formally, it is as simple as changing the order of depth
testing and filtering:

f
pcf
filter(t, z̃) = ∑

t i∈K

k(ti − t)H(z(ti) − z̃)). (5.2)

�e simplicity and relatively satisfying quality of this approach makes it par-
ticularly interesting. Figure 5.1 shows some of the results obtained with this tech-
nique. �e entire algorithm is summarized in Figure 5.2. However, the cheapness
of the method needs to be put into perspective. Even though at first glance, Equa-
tion (5.2) might resemble a convolution of the shadow map, which could be pre-
computed, it is not: the depth test needs to be performed before the filtering. �is

Percentage-Closer 

Filtering

Shadow 

Mapping

Figure 5.1. PCF suffers less from shadow-map aliasing (le�) and results in reasonable shad-
ows for smaller light sizes (middle). For larger sources, some inconsistencies can occur
(right, shadow under le� foot).
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Figure 5.2. Overview of the PCF algorithm.

test implies a large performance penalty because the complete filter kernel needs
to be evaluated for every shadow lookup. For a small window (3 × 3), it might not
seem problematic, but for larger windows, the cost grows rapidly, and we will see
in Section 5.3 several ways to accelerate this computation.

5.1.4 PCF Implementation

Regular Nearest-Neighbor Sampling

�ere are several ways to implement PCF. �e simplest version and the one im-
plied by many simple explanations is to sample the shadow results from a kernel
K using a regular grid of n × n sample values around the texel t and a constant
kernel function k (i.e., equal weights or a box filter). Each shadow result returns
either zero or one, so only n2 + 1 “shades” of shadow are possible (for example,
0, 0.25, 0.5, 0.75, 1 for a 2× 2 filter kernel). �is leads to obvious banding artifacts.

Bilinear Sampling

Better results can be achieved using a tent-shaped kernel function k, which cor-
responds to bilinear filtering in standard texture mapping for a kernel K contain-
ing the 2 × 2 neighborhood of a sample location t. �e bilinear filter weights are(dudv , du(1 − dv), (1 − du)dv , (1 − du)(1 − dv)), where du = ∣u − clamp(u)∣,
and (u, v) are the texel coordinates of a sample. Bilinear filtered PCF has even
been integrated in graphics hardware and is automatically enabled for shadow-
map queries if the appropriate bilinear filtering mode is used (in DirectX 10, the
filter mode has to be COMPARISON MIN MAG LINEAR MIP POINT). Higher-order fil-
ters could also be implemented using appropriate kernel functions, for example,
bicubic filtering. In particular, Sigg and Hadwiger [Sigg06] showed how to exploit
hardware bilinear lookups (e.g., bilinear PCF) to implement third-order filtering
at low cost. Bilinear lookups can also be used to remove the obvious quantization
of larger regular sampling patterns by evaluating each sample using a bilinear PCF
lookup.
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Poisson Disk Sampling

Another popular sampling set K is a set of samples taken from a Poisson disk
distribution (see the overview of Lagae and Dutré for a comparison of methods to
generate such a set [Lagae08]). Poisson disk sampling makes very good use of the
samples, so less samples are needed for equal quality than with a regular sample set.
Also, since the sample set is irregular, banding artifacts are basically treated against
noise, which is visually less objectionable. �e actual sample locations are usually
precomputed and stored in a lookup table in a texture or in uniform storage.

�e shadow-map lookups required for the individual samples can be done us-
ing nearest neighbor or bilinear sampling, with the latter giving smoother results.
In order to avoid banding, the sample set can also be rotated for each pixel. �is
could be implemented by storing a random rotation in an m × m texture that is
sampled using the pixel coordinates, so that the same sampling pattern is only re-
peated every m pixels [Isidoro06].

Interleaved Sampling

�e burden of evaluating larger filter kernels can be distributed among different
pixels by using interleaved sampling [Keller01]. For this, the sample set is split
into k × k random subsets. Each pixel uses only one of these subsets, determined
by the tiling of a k × k pattern onto the screen. An approximation to the original
sampling pattern is recovered by applying an average filter on the resulting shadow
values with a k× k kernel. In order to avoid averaging over different unrelated sur-
faces, a cross-bilateral filter [Paris06] sensitive to depth discontinuities should be
used.

Adaptive Sampling

One approach that attempts to overcome the performance hit for large filter kernel
sizes in PCF was presented by Uralsky [Uralsky05]. �e solution performs well if
efficient branching is possible on the GPU and the scene is not too complex. In a
first step, only a small set of samples is used. If the shadow result is not unanimous,
only then are more samples evaluated. �is leads to a strong speed-up, and samples
are added mostly in the penumbra region, where they are needed.

Similar to Poisson disk sampling, Uralsky uses different sample sets for differ-
ent pixels to trade banding artifacts against noise. �e original sampling pattern
is generated by warping a set of samples that are jittered on a regular grid to a
disk and jittering again for each pixel. Alternatively, rotated Poisson disk sampling
could be used. In order to ensure a continuous result, the sample set in the first
iteration should be representative of the samples in the filter window. �is means
again that a larger window implies more initial samples, which reduces the overall
effectiveness of the approach for larger filter windows.
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PCF Self-Shadowing

For larger PCF filter kernels, the assumption of a constant reference depth value
z̃ might not hold anymore. Especially if the receiver plane is tilted with respect to
the shadow-map plane, one part of the receiver will be strongly self-shadowed (see
Section 2.2.3, and Figure 5.3, right). A remedy proposed by Isidoro [Isidoro06]
is to use an individual z̃ for each sample lookup by reconstructing the receiver
plane from the partial derivatives of the texture coordinates in a pixel. However,
in contrast to many cases where screen-space derivatives are applicable, in this
case, we need the derivatives of depth with respect to texture coordinates. �ese
can be calculated by applying the chain rule and using the inverse transpose of
the Jacobian of the texture coordinates with respect to screen space to transform
screen-space derivatives to texture-space derivatives:

⎛⎝
∂z̃
∂u

∂z̃
∂v

⎞⎠ =
⎛⎜⎝

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

⎞⎟⎠
−T ⎛⎜⎝

∂z̃
∂x

∂z̃
∂ y

⎞⎟⎠ . (5.3)

Note that planar approximations fail in areas of high curvature. Similar ap-
proaches were proposed to reduce the need for depth bias by Schüler [Schüler05]
and by Lauritzen [Lauritzen07] in the context of variance shadow maps. Bur-
ley [Burley06] proposes a simpler method in the context of percentage-closer so�
shadows (see Section 6.5.3).

5.2 Applications of Filtering

�ere are several ways in which filtering, in particular PCF, can be used. �ey differ
mainly in the choice of samples K and the filter kernel k.

5.2.1 Smoothing or Blurring Shadows

�e simplest application of filtering is to smooth or blur the shadows coming from
shadow mapping. For this, the filter kernel K contains a set of samples that are
symmetrically arranged in shadow-map space around the projected view sample.

One common example are regular filters, for example, a kernel taking into ac-
count 3×3 or 5×5 samples around the current sample in the shadow map. Another
popular arrangement is to distribute a fixed number of samples in a Poisson disk
fashion, so that samples have roughly the same mutual distance from each other.
Such sampling patterns are usually precomputed (as offsets to t texture coordi-
nates) and stored in a lookup texture.

Using simple blurring, undersampling artifacts can be hidden but not removed.
For best quality, the filter kernel function k is usually chosen as a Gaussian.
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5.2.2 Reducing Resampling Error: Reconstruction versus

Bandlimiting Filter

Reconstruction

�e most basic and important use of PCF is to reduce resampling error by pro-
viding proper reconstruction filtering. Recall that the first step in resampling is
to reconstruct the continuous shadow signal f from its sampled representation.
Similar to bilinear filtering in texture mapping, looking up a value in the shadow
map will usually not fall exactly in the center of a texel. �erefore, we need to
reconstruct the shadow-map value at the desired sampling location by interpolat-
ing from the neighboring texel location. But in contrast to texture mapping, we do
not have a sampled representation of the shadow signal itself available, only a depth
map, from which we need to recover shadow values using the reference depth value
as described above. Hardware bilinear PCF reconstruction as described above
achieves this with quality equivalent to standard bilinearly filtered texture mapping.

Bandlimiting

�e second source of errors in resampling is oversampling due to minification in
the transformation T between shadow-map space and screen space, for example,
when viewing shadows from a distance. �is needs to be avoided using a band-
limiting filter, which removes high frequencies before resampling. Bandlimiting
can be implemented using PCF by calculating the approximate footprint of the
back projection of a pixel into the shadow map using similar calculations as for
the mipmap LOD factor. �e radius of this footprint then defines the radius of the
filter kernel set K in shadow-map space. Samples within this kernel size can be
generated using any of the methods already described for blurring (Section 5.2.1).
Likewise, the kernel function should incorporate a falloff away from the sample
evaluation point t. Ideally, the kernel function should be a sinc function, but since
this function has problematic properties in practice, a Gaussian kernel is usually
used.

Unfortunately, using PCF for bandlimiting is not feasible in practice. Since the
filter kernel size can vary arbitrarily, a single shadow-map lookup could lead to the
evaluation of a huge number of samples, especially in distant regions where many
shadow-map samples project to a single pixel in screen space. In Section 5.3, we
will therefore discuss methods how to precompute the bandlimiting filter similar
to mipmapping for texture filtering.

5.2.3 Filtering versus Soft Shadows

When using PCF to blur shadows, one observes that a larger filter kernel window
leads to smoother shadows, a smaller one to hard shadows. �is can be used to
emulate the look of physically based so� shadows.
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Figure 5.3. Why PCF does not compute so� shadows. Averaging is done over the shadow map instead of over the scene
(le�). Example of wrong disocclusion and error due to constant fragment depth assumption (right).

In practice, if the window remains of reasonable size, the shadows still look
convincing because the overall look of the hard shadows is not altered too much,
giving the impression of a very small, but not point, source. �e eye-pleasing look
that results from the blur has even been used in various movie productions, the
first being the Pixar movie Luxo. From today’s point of view, one can see that the
resulting umbra is too large and the penumbra too small when compared to the
shadows from a real large lightbulb. Nonetheless, no aliasing is visible, leading to
appealing and cheap shadows, which was the main goal.

It has to be underlined again that the resulting shadows are not physically
based. We saw in Section 1.3 that we should integrate rays over the light source.
PCF, however, tests for each point of the scene depth samples from a constant win-
dow around the projection into the shadow map (Figure 5.3, le�, dashed border).
�is is a coarse approximation. First, these windows should have different sizes
depending on the distance to the light (Figure 5.3, le�, p, q); second, the tested
rays should leave from the impact point towards different locations on the light
(Figure 5.3, le�, transparent areas). Except for the shadow-map texels that contain
the point itself, none of the shadow-map texels corresponds to a ray that originates
at the impact point. Instead, each texel corresponds to a ray through the light itself.
Consequently, the shadow estimate is o�en approximate. Umbrae are introduced
where a physically based shadow would still be partially lit, or a point is considered
to be in the penumbra, although it already lies in the umbra (Figure 5.3, right, p).

However, in Chapter 6, we will introduce a method called percentage-closer
so� shadows (PCSS), which uses PCF with a varying filter kernel size to more ac-
curately simulate so� shadows.
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5.3 Precomputing Larger Filter Kernels

As already discussed above, an important drawback of PCF is that larger filter win-
dow sizes require evaluating more samples. �is quickly becomes prohibitive, es-
pecially for bandlimiting filters. In this section, we will describe the theory and
application of approaches that precompute parts of the filter to solve this problem.

5.3.1 Precomputed Filter Theory—Linear Signal Processing

versus Statistics

Precomputing filters on shadow maps as is common for texture mapping is im-
possible because the result relies on the reference depth. But if we cannot apply
filtering to the shadow test function directly, we can still try to reformulate the
shadow test function so that precomputed filtering becomes possible.

Fixing Filtering for Linear Signal Theory

Let us look again at Equation (3.18), respectively Equation (5.2):

ffilter(t, z̃) = ∑
t i∈K

H(z(ti) − z̃)k(ti − t) = ∑
t i∈K

s(z(ti), z̃)k(ti − t), (5.4)

with shadow comparison function s(z, z̃) = H(z − z̃). A standard approach to
speeding this up is to precompute the convolution for different filter kernel radii,
so that at runtime, a lookup into an appropriate texture is sufficient. �is is called
mipmapping. For shadow mapping, however, the expensive convolution cannot
be precomputed because the result depends on the value of z̃, which changes for
every visible fragment. Nor is it possible to draw the convolution into the function
evaluation because the function s(z, z̃) is not linear in its first argument (as we

✎

✍

☞

✌

Prefiltering versus Precomputation

Before we proceed, we need to clarify some o�en mistaken terminology. In shadow
mapping and texturing literature, the term prefiltering is o�en used for approaches that
precompute filter values. However, prefiltering in signal theory is just a different term
for a bandlimiting filter (see Chapter 3). It is called prefiltering because the signal is
bandlimited before it is sampled. �is is in contrast to postfiltering, which in computer
graphics is equivalent to supersampling: the signal is first sampled at a higher resolu-
tion and then filtered to obtain an approximation to a bandlimited version of the signal.
Postfiltering shi�s the problem of aliasing to higher frequencies but cannot avoid alias-
ing, whereas proper prefiltering can do so.

In this chapter, however, we discuss the precomputation of filter kernels, regardless
of whether they are used for prefiltering (i.e., bandlimiting) or blurring.



148 5. Filtered Hard Shadows

already found in Section 5.1.2):

∑
i

α i s(z i , z̃) ≠ s (∑
i

α iz i , z̃) . (5.5)

�is is due to the use of the step function H. �e main idea is now to decom-
pose the shadow comparison function in a way that it becomes “simultaneously”
linear in factors that are separate from z̃:

s(z, z̃) = s(B1(z), B2(z), ..., z̃), (5.6)

so that

∑ α i s(B1(z i), B2(z i), ..., z̃) = s (∑
i

α iB1(z i),∑
i

α iB2(z i), ..., z̃) . (5.7)

�is is especially the case if s can be written as a (usually infinite) expansion of
additive basis function B i :

s(z, z̃) =∑
k

ak(z̃)Bk(z). (5.8)

�is means that the convolutions of the basis functions, Bconv
k = ∑i α iBk(z i), can

be precomputed and stored in memory. In our case, the summation comes from
taking into account neighboring shadow-map samples, so

Bconv
k (z) = ∑

t i∈K

k(ti − t)Bk(z(ti)). (5.9)

At runtime, for evaluating the shadow test for a certain filter radius, we need
to look up the values Bconv

k in the appropriate precomputed map, calculate ak(z̃),
and multiply and sum up the results.

�is idea was first introduced as convolution shadow mapping (CSM) [An-
nen07], using a Fourier series as expansion, and will be discussed in more detail
in Section 5.3.4.1 Later, a simpler expansion into one exponential function was
discovered (exponential shadow maps (ESM); see Section 5.3.5).

Ditching Linear Signal Processing in Favor of Statistics

Another fundamentally different approach to solving the problem of precomputing
filter kernels is to completely abandon linear signal theory and not try to evaluate
specific filter kernels through convolution. Instead, the idea is to turn to statistics
and try to answer the basic question, “What is the probability that my view sample
is in shadow with respect to a given set of depth samples?”

1�e abbreviation CSM is also used for cascaded shadow maps, see Section 4.3.
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�e depth samples would be given by the same filter kernel set K as in linear
approaches, so depending on whether bandlimiting or so� shadows are desired,
the set of samples would adapt. But then, the depth of the samples would be inter-
preted as realizations of a random variable D, and we would calculate

f (t, z̃) = Pr(z̃ ≤ D). (5.10)

�is probability would be used as a scalar value to determine shadow intensity.
�is works by using the samples z(ti), ti ∈K to estimate a number of parameters,
p1 , p2 , . . ., of the probability distribution of the random variable D as a function of
those parameters and then use the knowledge about the distribution to calculate
the probability given above.

Precomputed filtering using statistics works in the way that the parameters that
are estimated from the distribution are precomputed for all required filter kernel
sizes, similar to the basis functions Bk in linear filtering. For example, variance
shadow mapping [Donnelly06], the most prominent example of a statistical filter-
ing method, estimates an upper bound to the desired probability from the mean
and variance of the kernel samples. So, only the first and second moments, depth
and squared depth (from which the variance can be recovered) need to be pre-
computed and stored in a mipmap pyramid. Precomputation is more efficient if
the parameters for larger filter sizes can be derived from the parameters for the
smaller filter sizes. Fortunately, this is true for many statistical estimators, like the
first and second moments.

�e major difference to linear filtering is that statistical estimators need not
be linear in the sense of Equation (5.5), and have the potential to provide better
estimations than linear filtering. Also note that the samples from K can still be
weighted using the kernel function k, for example, to implement Gaussian filters.
�is basically changes the measure of the distribution.

In another method based on statistics, Gumbau et al. [Gumbau11] use the
shadow map samples to estimate the cumulative distribution function (CDF) of
the depth distribution. �e CDF is approximated using a power function that in-
creases smoothly between the minimum and maximum depth values.

5.3.2 Variance Shadow Maps

Variance shadow maps (VSM), which were introduced by Donnelly and Lauritzen
[Donnelly06], are a beautiful example of a simple mathematical formula that leads
to a powerful algorithm. VSM are the first example of using statistics to facilitate
precomputation of shadow-map filtering. Figure 5.4 shows some results obtained
with the method.

Instead of sampling each entry in the shadow map, Donnelly and Lauritzen
observed that simple statistics can be used to estimate the depth-sample repartition
inside the filter window. �ey rely on the mean µ and variance σ of the depth
samples.
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Figure 5.4. Variance shadow maps result in shadows that resemble PCF (le�). �e algorithm
achieves much higher frame rates by approximating the computation. �is may lead to slight
light leaks (middle le�); these can be addressed with simple solutions (middle right), but this
affects the shadow smoothness. Especially for larger light sources (right, five times larger),
the performance gain is tremendous.

Fortunately, mean and variance can be obtained efficiently from a linearized
depth map. Although one might assume that depth values are typically nonlinear,
in this chapter, we will always consider linearized depth values.

To find the mean µ and variance σ of the depth samples, one only needs to
apply a simple box filter of the size of the filter window (K) to the depth and a
squared-depth map.2 �e resulting textures then hold what is called the first (M1)
and second moment (M2). �e simple relationships µ = M1 and σ = M2 − M2

1

allow us to derive the mean and variance inside the PCF window, and we avoid the
usual high cost of evaluating all samples during the shadow computation.

Once this depth-distribution information is available, the outcome of the
shadow tests in the filter window can be estimated. In order to avoid any further
assumptions on the distribution, the Chebyshev inequality is used, which provides
a bound for the outcome independent of the actual distribution. Precisely, given a
shadow-map depth-value distribution with mean µ and variance σ , the probability
Pr(z̃ ≤ z) that a random depth value z drawn from this distribution is greater or
equal to a given depth value z̃ has an upper bound of

p(z̃) = σ 2

σ 2 + (z̃ − µ)2
≥ Pr(z̃ ≤ z). (5.11)

�is means that, at most, a percentage p(z̃) of the shadow-map region contained
in the filter region is not closer to the light than a receiver point p with light-space
depth z̃ = pl

z̃ and, hence, cannot occlude it. Note that the Chebyshev inequality
is valid only for z̃ > µ. Hence, the value of p is set to one if z̃ ≤ µ. �is is a
continuous extension of this function. �e key is that this simple, rational function

2Fast box-filter approximations can be applied and need significantly less lookups (e.g., using
summed area tables [Hensley05]; see box on page 329). Such an extension was proposed by Lau-
ritzen [Lauritzen07].



5.3. Precomputing Larger Filter Kernels 151
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Figure 5.5. Variance shadow maps estimate the depth-sample repartition inside the filter
kernel window solely based on the variance and mean. Such an approximation leads to
light bleeding. �e light is coming from above, the shadow casters in the depth map are
indicated in red, and the gray levels illustrate what the shadow value would be if a receiver
were located at the corresponding position in space.

depends solely on the reference distance z̃ and the mean/variance (µ, σ) of the
depth distributions in a given filter window.

Figure 5.5 illustrates what the computed shadow would look like for view sam-
ples placed at arbitrary locations in the scene. �e gray levels indicate the blackness
of the cast-shadow approximation. Because the Chebyshev inequality is a bound,
the correct shadow could be darker, but never brighter, than this estimate. Un-
fortunately, if the variance is high (one occluder on top of another), light leaks can
occur, and the error might become very pronounced, making shadowed areas ap-
pear lit. �is is somewhat coherent with the missing information from the depth
map (does the lower occluder have a hole where the upper is hiding it?), but shows
a clear limitation of the distribution estimate. Nonetheless, in the special case of a
parallel planar receiver and planar occluder, one should point out that the bound
is actually exact and becomes an equality.

�e results generated with variance shadow maps are similar to percentage-
closer filtering with large kernels. Performance-wise, the method is ground-
breaking in comparison to standard PCF and of very high practical value. �e
memory overhead is small. Typically, only one 2-channel 32-bit texture is used to
represent the moments. �e major disadvantages are the resulting light leaks, for
which we will discuss remedies in the following. In order to avoid self-shadowing,
the variance has to be clamped to a user-defined minimum value.

Self-Shadowing in VSM

As discussed in Section 5.1.4, self-shadowing can appear for larger filter kernels.
In the context of VSM, Lauritzen [Lauritzen07] proposed an elegant solution in
the spirit of the approach by Isidoro et al. [Isidoro06]. Instead of considering the
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depth distribution to be constant over the entire shadow-map texel, a local linear
approximation is computed in the form of a plane equation. Inside a texel, the
surface is thus represented as

f (u, v) ∶= z + u ddx(z) + v ddy(z), (5.12)

where z is the depth value encountered during rendering into this VSM texel and
ddx and ddy are derivative operators applied to this quantity. �e first moment is
given by M1 = z; the second moment can be written as

M2 = z2 + E(u2) ddx(z)2 + E(v2) ddy(z)2 (5.13)

because E(u) = E(v) = E(uv) = 0. Representing the pixel as a Gaussian distribu-
tion with half a pixel variance implies E(u2) = E(v2) = 1

4
, and consequently,

M2 = z2 + 1

4
(ddx(z)2 + ddy(z)2) . (5.14)

5.3.3 Layered Variance Shadow Maps

Initially, Lauritzen [Lauritzen07] presented very simple solutions to deal with light
leaks. One possibility is to map all values smaller than some threshold ε directly
to black, hence removing subtle leaks. In order to maintain continuous shadow-
boundary variations, all shadow values bigger than ε need to be remapped to the
range [0, 1], for example, using a smoothstep function. Even though light leak-
ing is reduced, such a tampering also makes shadows look darker and shrinks the
smooth boundary regions. Another possibility is to clamp the variance to some
maximum value, but this also affects the quality of the penumbra regions.

Layered variance shadow maps (LVSM) [Lauritzen08] aim at solving the light-
leaking issue in a more elegant fashion. �e observation is that strongly differing
depth samples result in a large variance value, which in turn makes Equation (5.11)
very unreliable. It would be much better if the depth samples were close together.
Unfortunately, these depth values depend on the scene, and we cannot choose them
the way we want.

�e property that allows us to shi� depth values together is that the outcome
of filtering does not depend on the actual depths, but rather on the comparison
with the reference depth z̃. �e exact same result is obtained if all depth samples
closer to the light than z̃ are moved to the depth z̃ − ε. �e actual distance from
which the depth samples are away from a receiver depth z̃ = pl

z̃ is not interesting,
only whether they are above or below. �is insight led to the idea of a warping
function that will adjust the depth values in order to make the approximation via
Equation (5.11) more accurate.
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Imagine that all depth samples in the shadow map were warped by

φd(z) = ⎧⎪⎪⎨⎪⎪⎩
1, if z ≥ d ,

0, if z < d ,
(5.15)

then the result for a reference depth d using VSM would be equivalent to the ac-
curate result of PCF filtering. It would be costly to perform this warping per view
sample. Basically, we would again have to go over all samples in the PCF window.

Hence, instead the scene is sliced into depth intervals {[d i , d i+1]}ni=0
. Inside each

such layer, the original depth values are warped linearly, whereas outside they are
clamped:

φ i(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if z ≥ d i+1 ,

(z − d i)/(d i+1 − d i), if z ∈ [d i , d i+1),
0, if z < d i .

(5.16)

�is leads to smaller variance estimates and, thus, better shadow behavior. In par-
ticular, the linear warping ensures that the quick momentum computation remains
valid.

One could uniformly space the layer depth bounds d i , but the authors also
propose an algorithm to estimate the light bleeding based on the current depth
map. �e interested reader is referred to the original paper [Lauritzen08] for more
details.

�e method is very efficient because, for evaluation, each sample only needs to
test the layer into which it is projecting. �e algorithm leads to much better results
than standard VSM, but to avoid light bleeding completely, many layers are needed
and, hence, many filtering operations.

Further, many layers increase the memory usage, although it is possible to re-
duce the texture’s precision with respect to VSM: 16 bits are sufficient, but o�en,
even 8 bits lead to an artifact-free solution.

5.3.4 Convolution Shadow Maps

Convolution shadow maps (CSM) [Annen07] are the first approach to allow filter
precomputation based on a linear signal-theory framework as described in Sec-
tion 5.3.1. To derive suitable basis functions for the approximations of the shadow-
comparison function, Annen et al. use a Fourier expansion. In theory, this expan-
sion has unlimited coefficients, but a truncation leads to an approximation of the
final result. In contrast to variance shadow maps, the Fourier approximation con-
verges to the correct result when more coefficients are added (Figure 5.6).

Recall the PCF evaluation from Equation (5.4):

ffilter(t, z̃) = ∑
t i∈K

s(z(ti), z̃)k(ti − t). (5.17)
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Figure 5.6. Convolution shadow maps lead to reasonable results (middle). �e main prob-
lem are light leaks due to insufficient coefficients, such as under the foot. Nevertheless, the
strong speed-up makes it an interesting alternative, especially for large sources (right).

As discussed in Section 5.3.1, we need to transform this equation in such a
way that the filtering (convolution) can be performed beforehand. To do so, the
shadow-map comparison function s is developed into a series of basis functions
Bk (Equation (5.8)) that are separable in z̃ and z:

s(z, z̃) =∑
k

ak(z̃)Bk(z). (5.18)

�rough this expansion, the depth test becomes linear with respect to separable
terms. Using Equation (5.18), one can conclude

ffilter(t, z̃) =∑
k

ak(z̃) ∑
t i∈K

k(ti − t)Bk(z(ti)). (5.19)

�e resulting formulation is a weighted sum of convolutions. By looking at the
terms, we see that it amounts to applying the basis function Bk to the depth map
and blurring the result values with the kernel function k.

�e main question is how to choose Bk and ak . �e authors tested several
possibilities and concluded that a solution via Fourier analysis is the best choice.
�e shadow-comparison function is a step function s(z, z̃) = H(z − z̃), which is
now approximated by a smooth function Ĥ (e.g., 0.5 sigm(z− z̃)+0.5, where sigm
is a sigmoid (s-shaped) function). A Fourier expansion leads to an equation of
form Equation (5.18). More precisely, we exploit the fact that the function is a real
function and has no imaginary component. �is avoids the complex exponential
function and allows a decomposition into cosine and sine terms. �e final equation
truncated to M terms is

s(z, z̃) ≈ Ĥ(z − z̃)
≈ 1

2
+ 2

M∑
k=1

1

ck
cos(ck z̃) sin(ckz) − 2

M∑
k=1

1

ck
sin(ck z̃) cos(ckz). (5.20)

�e precise coefficients ck can be found in Section 3.1 of the original paper [An-
nen07]. In practice, the sum is usually truncated at 16 coefficients stored using
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CSM with 4 coefficients CSM  with 16 coefficients Reference

Figure 5.7. Convolution shadow maps can show light leaks due to an insufficient number
of coefficients. �e image illustrates the shadow result on a cube illuminated from the top
scaled by a factor of four. Where four coefficients show strong ringing and significant light
leaking at the top of the cube (le�), 16 coefficients result in a much better estimate (middle).
Nevertheless, the difference to the reference (right) remains visible.

8-bit values. Nevertheless, it should be kept in mind that sin(ckz) and cos(ckz)
need to be stored separately, hence, 16 coefficients result in 32 values to store.

Ringing Artifacts

Any Fourier truncation can lead to ringing artifacts, which reflect the sinusoidal
nature of the representation (Gibbs phenomenon). Figure 5.7 shows this effect on
a real scene. �e ringing artifacts cause light to be propagated into the shadow.

To hide the ringing artifact, the coefficients of higher frequencies are attenu-
ated, but there is no guarantee that the ringing disappears. �e red curve in Fig-
ure 5.8 shows the result of these damped coefficients for M = 8.

Light Leaking

�ere is still some significant light leaking and shadow leaking. In particular, the
approximation Ĥ always results in aC∞-continuous function, whereas a step func-
tion is not even C0-continuous. �is has important consequences. On the ex-
act shadow boundary (Ĥ(0)), we will encounter a value of 0.5 due to symmetry,
leading to a reduced intensity for actually visible surfaces and, more generally, to
shadow and light leaking.

�e authors decided that light leaking is less objectionable. �eir solution is to
virtually shi� the function by applying an offset o: Ĥo(x) = Ĥ(x − o) (Figure 5.8,
le�). A second improvement results from scaling Ĥ and clamping the shadow re-
sult (Figure 5.8, right). �is gives a steeper approximation that sharpens shadows
and can potentially reintroduce aliasing. Using a scaling by two ensures that view
samples no longer shade themselves.

Usually, the method needs to rely on at least four 8-bit RGBA textures (16 co-
efficients) to achieve a good quality. For this setting, the method is reasonably
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Figure 5.8. Damping the coefficients is not sufficient to avoid artifacts. �e example shows
the result of an approximation with 8 coefficients. To improve the solution, one can shi�
(le�) or scale (right) the approximated step function.

fast for complex scenes and gives good antialiasing because mipmapping or even
anisotropic filtering are meaningful when applied to the basis functions.

5.3.5 Exponential Shadow Maps

In concurrent work, Annen et al. [Annen08b] and Salvi [Salvi08] (who developed
a similar solution that was presented slightly earlier at GDC) proposed new basis
functions for the CSM approach. �ey suggested replacing the Fourier expansion
by a simple exponential. �is choice voids much of the storage requirements and
thus addresses one of the major issues.

�e main insight is that the depth map stores the nearest surface, thus, any view
sample or point in the scene should project on or behind, but never in front of, any
stored depth sample. With this assumption, z − z̃ ≤ 0. Hence, Equation (5.21)
(below) behaves almost like a step function that becomes steeper for an increasing
constant c:

s(z, z̃) = Ĥ(z − z̃) = exp (−c(z − z̃)) . (5.21)

In practice, c = 80 seems to be a good choice. Larger values can lead to an overflow
due to numerical inaccuracies. Applying the filtering operation to this function
leads to

ffilter(t, z̃) = exp(cz̃) ∑
t i∈K

k(ti − t) exp(−cz(ti)).
�us, the two terms are again separated, but a single 32-bit information is sufficient
this time.

Unfortunately, for a ti coming out of aneighborhood of z̃, the assumption z(ti)−
z̃ ≤ 0 does not necessarily hold. As a consequence, large positive values can oc-
cur. �is is a problem because it invalidates the summation: the exponential no
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✎

✍

☞

✌

Link to Image Processing

Convolution shadow maps show a resemblance to methods [Paris06] focusing on image
processing with the bilateral filter [Tomasi98,Smith95], which found many applications
in computational photography. It is actually interesting to see that PCF can be linked to
these filter accelerations, and it gives a new way of looking at the problem.

�e goal of fast bilateral upsampling [Paris06] is to provide an approximation for
the bilateral filter:

bilateral(x) = ∑y∈N(x) I(y) g(y − x) h(I(y) − I(x))
∑y∈N(x) g(y − x) h(I(y) − I(x)) ,

where I(y) describes the value of the image at position y. �e variables g, h are usually
Gaussian kernels. �e filter thus combines pixels that are not only close in distance
(g) but, further, have similar color (h). Paris and Durand compute the numerator and
denominator separately. Let’s first look at the denominator. It bears some similarity to
CSM. We see that g(y − x) takes the place of k. But if h is chosen to be a step function,
then it is similar to

s(z, z̃) = H(z − z̃).
We thus obtain the same equation.

Paris and Durand then use a similar key insight to replace h by an approximation
via basis functions:

h(I(y) − I(x)) =∑
i

δ(I(x) − I i)h(I i − I(x)),
where δ is measuring the similarity between I(x) and the fixed samples I i . �is equation
is already of the same form as Equation (5.18). �e computation is thus separable, and
both approaches perform similar computations. In a shadow context, this weight is
already the final output. It describes how many pixels participate in the computation (let
light pass). However, the derivation of the basis functions does differ. Paris and Durand
rely on a linearization similar to previous work by Durand and Dorsey [Durand02],
which slices the function with respect to a set of reference values. It could be interesting
to see whether one approach could benefit from the other’s solution.

longer behaves like a step function. Even though for many pixels this assump-
tion does hold, the larger the kernel size, the less likely it is that artifacts can be
avoided. �is makes exponential shadow maps less usable for large kernels, and it
mostly finds application to smooth the boundary of hard shadows without achiev-
ing penumbra-like effects.

In order to address this robustness issue, Annen et al. propose detecting those
pixels where the assumption might fail. For these, a standard PCF filtering is ap-
plied. �is PCF filtering can still be performed with the exponential map by simply
clamping each single value before the summation.
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Two possibilities are presented to classify erroneous pixels. A first strategy tests
if the filtered value exceeds one. �is solution is very approximate, but fast. A
better classification can be performed by creating a lookup texture that gives the
maximum z-value in each filtering window. �is could be done using a min/max
mipmap approach. �is is conservative, but costly in practice.

Although (using the approximate classification) this approach leads to an ap-
proximate speed-up of two to three over CSM, the performance depends highly on
the scene and the kernel size. For example, whenever silhouettes from the light are
visible in the camera view, these will need to be evaluated with PCF. Grass on the
ground, unstructured surfaces, or other fine geometry can result in many pixels
being treated with PCF up to the point that the gained speed-up can completely
vanish. Memory costs, on the other hand, are always improved by an important
factor of around eight. For simpler models with less details, this method is a very
good choice.

✎

✍

☞

✌

PCF Extension

Related, but more general than PCF, are multiple-depth shadow maps [Pagot04]; de-
spite little practical relevance, the idea is intriguing. Instead of using all samples in a
neighborhood of size l , a best selection of k elements is chosen (e.g., smallest/largest
depth values). �ese samples are then evaluated with PCF. If k is small compared to l ,
then there is a potential gain. Unfortunately, the selection of the k elements is usually
costly and the paper further limits the choice to k = 2, 3. Nevertheless, such a selection
process is an idea to keep in mind for the future.

Exponential Layered Variance Shadow Maps without Layers

Surprisingly, the concurrently published layered variance shadow-map paper by
Lauritzen and McCool [Lauritzen08] proposes an alternative warping based on
exponential functions and without the need for layers.

�ey suggest using the variance shadow-map approach (see Section 5.3.2) and
applying it to depth maps that were warped by an exponential function. �ey pro-
pose to use two such warped depth maps, using the functions − exp(−cz) and
exp(cz). Both functions map the depth values monotonically, hence allowing them
to use the standard variance shadow-map framework, and the mentioned Cheby-
shev inequality related to Equation (5.11) gives valid bounds in both cases. Con-
sequently, for both functions, corresponding bounds p−, p+ are computed and the
shadow is finally defined by p ∶=min{p−, p+}.

In practice, this method has little memory overhead, is the easiest to imple-
ment, and performs very well. For the case of antialiased shadows, this seems cur-
rently a very good choice.
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VSM LVSM CSM ESM

2 × F32 n × 16 2M × 8 F32
2 × F32 4 × 16 16 × 8 F32

Table 5.1. Comparison of memory requirements of different precomputed filtering ap-
proaches, in bits. For LVSM, n is the number of layers; for CSM, M is the expansion order.
�e last row compares typical configurations listed in the respective papers. �e abbrevia-
tion F32 refers to a 32-bit floating-point component, 8 to an 8-bit byte component, and 16
to a 16-bit fixed point component.

5.3.6 Comparison

Common Observations

One aspect that needs to be taken into account for all filter precomputation meth-
ods is that shadow receivers have to be rendered into the shadow map even if they
do not cast shadows themselves (e.g., a ground plane). �e reason is that other-
wise, the precomputation step would calculate an average based on depth values
that are at the light far plane. For example, in VSM, this would imply a very large
standard deviation and thus light bleeding.

Memory Requirements

�e presented methods differ in the amount of memory they require for storing the
approximation to the shadow-comparison function. In all cases, multiple targets
can be created simultaneously by writing a full-screen quad to a multiple render
target (MRT). Currently, in one render pass, four 8-bit or 32-bit RGBA-render tar-
gets can be written simultaneously. According to Table 5.1, all methods can be
created in a single pass, except CSM with M = 8, which requires two rendering
passes.

Tradeoffs

�e different methods offer different parameters that need to be tweaked in or-
der to achieve good results. For VSM, the minimum allowable variance and a
bleeding reduction factor have to be set. LVSM introduce the number of layers
as parameter. In CSM, the approximation order M has to be chosen, as well as
the absorption factor to avoid ringing. ESM requires setting the scale factor to
tune the falloff of the approximated step function. �e original algorithms, like
VSM and CSM, are particularly prone to light bleeding (see Figure 5.9), while
newer algorithms like LVSM and ESM can be tweaked to reduce these artifacts
significantly.
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Variance 

Shadow Maps

Convolution 

Shadow Maps

Figure 5.9. CSM (le� pair) and VSM (right pair) show light bleeding artifacts. �is can be
made more visible when scaling the light intensity by a factor of four (right of each pair).
Newer approaches are able to reduce these artifacts significantly, hence, such solutions are
a good choice when high performance is needed.

5.4 Summary

In this chapter, we investigated the use of filtering hard shadows in order to cre-
ate smooth shadow boundaries. Although not physically accurate, the methods
can provide smooth transitions and visually pleasing results. In practice, these
methods and their extensions to so� shadows that we will visit in Section 6.5.3 are
relevant for practical real-time applications.

One advantage we did not point out sufficiently is the fact that filtering ap-
proaches like convolution, variance, or exponential shadow maps all support mul-
tisampling and can address aliasing due to foreshortening. When looking up values
from the filtered textures, one can use anisotropy, supported natively as a texture-
filtering mode, to reflect the pixel’s projected footprint. �is allows us to fight an-
other source of aliasing.

�e drawback is that the light source cannot be too large, otherwise the draw-
backs of the constant filtering size become very obvious and contact shadows can
suffer significantly. �e methods are intended to fight aliasing, not to simulate so�
shadows. �e fact that aliasing removal can result in a pleasing and so�-shadow-
like appearance is a welcome side effect.



CHAPTER 6

Image-Based

Soft-Shadow Methods

6.1 Introduction

While exploring various aspects of computing shadows in the previous chapters,
we have always restricted ourselves to point lights as the source of illumination.
However, when you look around, you will notice that one rarely encounters point
lights in the real world; instead, most light sources have a certain spatial extent.
�ey come in several flavors, ranging from huge, distant environmental lights, like
an overcast sky, to spatially well-confined area lights, like the sun or the ceiling
lighting in an office. Whereas a point light can only be occluded either entirely or
not at all, such extended light sources may additionally be partially visible. �ere-
fore, cast shadows are not necessarily “hard” but may feature transition regions of
intermediate illumination levels.

Such so� shadows are tougher and more costly to compute, and hence, a wide
spectrum of approaches have been proposed that serve different needs, varying in
aspects like the accuracy provided, the attainable speed, and the supported kind of
light source. Exploring these methods, we first focus exclusively on nearby lights of
simple shape, like rectangular or spherical light sources, in this and the next chap-
ter, not least because it is o�en such kinds of lights that are responsible for produc-
ing visually dominating and distinctly recognizable so� shadows. Techniques for
dealing with environmental light sources, like the skylight, will then be covered in
Sections 10.5 and 10.6.

When determining the shading for a scene point p, a point light merely requires
considering the resulting simple point-to-point relationship for evaluating the di-
rect illumination and checking for occlusion. By contrast, a whole light region has
to be accounted for when dealing with area lights. To make the computation of the

161
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according integral

Lo(p, ω) = ∫
L
fr(p, ω, p→ l) Le(l, l→ p)G(p, l)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Shading

V(p, l)´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
Visibility

dl, (6.1)

as introduced in Section 1.1.3, more tractable, typically two main approximations
are made. First, visibility is separated from shading, enabling the independent
computation of both terms. Second, the shading computation is simplified to treat
the extended light as a single point light, that is, only some point l′ of the extended
light source, usually its center, is considered. Consequently, we are le� with the
task of determining the fraction of the light source visible to the scene point p and
simply using the resulting visibility factor

VL(p) = 1

∣L∣ ∫L V(p, l) dl (6.2)

to modulate the direct illumination term computed for a point light at l′:

Lo(p, ω) = directIllum(p, ω, l′)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Point-light shading

⋅ VL(p)´¹¹¹¹¹¸¹¹¹¹¹¶
Extended-light
visibility factor

.

In this and the subsequent chapter, we will explore various approaches for deter-
mining this visibility factor efficiently. Some of these methods also readily support
computing the accurate integral from Equation (6.1), and we briefly cover how to
do this in Section 10.1.2.

Occluder, blocker

Receiver

Penumbra
Inner penumbra

Hard shadow boundary
from point light

Outer penumbra

Lit

Umbra

Area light source

Figure 6.1. Terms encountered when speaking of so� shadows.
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6.1.1 Properties and Terms

With so� shadows cast by extended light sources, three different kinds of illumi-
nation regions can be distinguished (see Figure 6.1):

• the umbra, where the light source is completely occluded and which, hence,
comprises scene points entirely in shadow;

• the lit region, from which the light source is fully visible;

• the penumbra, the intermediate transition region where the light is only par-
tially occluded and, hence, still some partial illumination is received.

Figure 6.2. �e size of the light source influences the shadow cast by a blocker. Shadows
become wider and so�er as the light’s size increases.
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Figure 6.3. So� shadows harden towards regions of contact.

Features of the penumbra and the umbra, like their shapes and extents, convey
perceptually valuable information about the scene objects, like, for instance, the
directional position or size of lights, the silhouette and location of shadow-casting
occluders, or the surface geometry of receivers.

For example, as illustrated in Figure 6.2, a so� shadow directly reflects any
change in the size of its casting light source; enlarging the source causes the penum-
bra to increase and the umbra to shrink and eventually even to disappear. Concern-
ing terminology (see Figure 6.1), the part of the penumbra growing outwards with
respect to the umbra at point-light size is sometimes called outer penumbra, while
the portion extending inwards and successively replacing the umbra is referred to
as inner penumbra.

Similarly, if we keep the light fixed but move the occluder towards the receiver,
the overall shadow size gets reduced and the relative penumbra portion decreases.
A direct consequence is that if an occluder touches a receiver, the cast shadow
essentially only comprises an umbra at the region of contact but, with increasing
distance, becomes wider and dominated by a growing penumbra, which ultimately
may supersede the umbra completely, as demonstrated in Figure 6.3. Such shadow
hardening on contact is a prime example of the important cues [Mamassian98] pro-
vided by so� shadows and their significance for a realistic appearance.

6.1.2 Classification of Approaches

Given the large spectrum of different approaches for computing so� shadows, nat-
urally several aspects exist for which various options have been explored and which
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thus may serve as basis for a classification. For instance, approaches may be dis-
tinguished according to1

• which set of occluders is considered (e.g., not all but only those visible from
the light’s center);

• in which space visibility computations are performed (e.g., in screen space);

• in which order occluder information is processed (e.g., looping over all re-
ceiver samples potentially affected by an occluder);

• how information about occluders is provided (e.g., by rendering a primitive
for each occluder that covers all affected receiver samples);

• what kind of visibility information is determined (e.g., visibility of selected
sample points on the light source).

Typically, however, the occluder representation is chosen as the primary cate-
gorization criterion. One major class of algorithms utilizes an image-based repre-
sentation of the considered occluding scene objects. By contrast, geometry-based
methods employ an explicit geometric primitive for each processed occluder to
derive the so� shadows. Following this line of distinction, which also corresponds
to how we organized the presentation in Chapter 2, we first cover image-based
approaches in the remainder of this chapter. �e following chapter is then dedi-
cated to geometry-based methods, including hybrid approaches that feature both
image-based and geometry-based components.

Image-based algorithms offer several advantages. First, current graphics hard-
ware offers direct support for both the generation and the query of shadow maps,
which are pivotal to many such techniques. Second, they typically scale better with
scene complexity than geometry-based approaches. �ird, such methods can read-
ily deal with geometry altered in the fragment stage via alpha masking, pixel kills,
or depth modifications. Especially the selective discarding of fragments is funda-
mental to many recent techniques for ray-casting surfaces [Loop06,Stoll06] and for
adapting the silhouette in per-pixel displacement-mapping algorithms [Oliveira05,
Chen08]. On the other hand, an image-based representation involves sampling,
leading to aliasing problems. In particular, fine structures may be missed, and sil-
houettes are easily captured at a too coarse resolution. Moreover, biasing of the
depth values recorded in a shadow map is required to avoid surface-acne artifacts
due to incorrect self-shadowing (see Section 2.2.3).

By contrast, geometry-based approaches avoid aliasing problems thanks to
working with the exact occluding geometry. However, such algorithms are typi-
cally slower than image-based methods and may also suffer from numerical preci-
sion problems.

1A more detailed discussion is provided in our SIGGRAPH Asia 2009 course notes [Eisemann09,
Section 5.1.1].
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6.1.3 Section Guide

Before we start elaborating on any concrete so�-shadow algorithm, we will first
spend Section 6.2 discussing some basic concepts that are repeatedly encountered
as important elements in various algorithms and that thus highlight some general
solution strategies. �ey also find application in the geometry-based approaches
covered in the next chapter.

�en, in Section 6.3, we describe a rather slow but simple-to-implement, brute-
force method and variants thereof for computing a high-quality solution, which
commonly establishes the reference against which computationally cheaper and
faster methods are compared. Such less accurate but o�en real-time algorithms
are subsequently discussed in detail, with the order of the sections roughly corre-
sponding to increasing degrees of physical correctness and hence agreement with
the reference.

We begin with approaches that start off with hard shadows and augment them
with inner and/or outer penumbrae, but which are nowadays mainly of histor-
ical interest (Section 6.4). By contrast, the family of spatially adaptive shadow-
filtering approaches covered next (Section 6.5), which likewise is only aiming at
phenomenologically plausible so� shadows, is extremely popular, not least due to
ease of implementation, and is utilized in many games. �ese methods actually can
produce (close to) accurate results, but only in a very restricted setting—for which
faster approaches based on convolution exist. We cover them and their application
to general scenes in Section 6.6.

Making a significant leap in attainable physical correctness, we then turn to al-
gorithms that reconstruct occluder approximations from a shadow map and back-
project them onto the light source (Section 6.7). When using information from
multiple shadow maps, even better results can be obtained, and several related
methods are briefly described in Section 6.8. Finally, we close the chapter with
a summary of the techniques covered (Section 6.9).

6.2 Basics

With the plethora of so�-shadow algorithms around, there are some basic, recur-
ring principles and strategies, which we discuss in this section, so that the reader
is already armed with knowledge about common solution components and their
properties and an understanding of limitations and challenges when delving into
the description of actual algorithms.

6.2.1 Penumbra-Width Estimation

Several so�-shadow algorithms make use of the size of the penumbra effected by (a
silhouette of) a blocker, for instance, to choose the amount of blurring accordingly
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Cast penumbra

wlight

zoccl

zrcv

wpenumbra

Figure 6.4. Computing the penumbra size in a general configuration (le�) is nontrivial even
in two dimensions, but it becomes straightforward in a simplified, restricted setup (right).

(see Section 6.5). While in a general setting the penumbra width can become quite
involved to compute, a reasonable estimate is easily derived by assuming a planar
light source, planar occluder, and planar receiver and that all of them are parallel to
each other. In that case, the intercept theorem (or equivalently, looking at similar
triangles) yields the relationship

wpenumbra =
zrcv − zoccl

zoccl
wlight , (6.3)

where zoccl and zrcv are the distances from the light to the occluder and receiver
planes, respectively, and where wlight denotes the size of the light source (see Fig-
ure 6.4).

6.2.2 Occluder Back Projection

While knowing the size and the boundaries of the penumbra may suffice for com-
puting so� shadows accurately in some very restricted configurations, like the one
assumed in the previous subsection, in general, more action is required for cor-
rectly determining the light visibility factor VL(p) from Equation (6.2) for an ar-
bitrary receiver point p. Recalling that this factor reflects the fraction of the light
source L that is visible to p, one seemingly natural approach is to take the point of
view of p and project all blockers that occlude some part of the light from p onto
the light and measure the remaining unoccluded light area Aunoccl(p). Putting this
in relation to the overall light area AL = ∣L∣ then directly yields the sought-a�er
visibility factor

VL(p) = Aunoccl(p)
AL

.

�e projection onto the light source is o�en referred to as back projection, and we,
too, adopt this term in the following, allowing for easy distinction from other types
of projections.
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In practice, two general computational orders exist for determining Aunoccl(p)
via occluder back projection:

• Gathering (of occluder information by receiver points):

All receiver points are visited in an outer loop. For each point, all relevant
occluders are then back-projected in an inner loop and the final visibility
factor is determined.

For each receiver point p
For each (relevant) occluder B

Back-project B onto light L
Update information about unoccluded light parts

Compute visibility factor VL(p)
Since running the inner loop in a fragment shader mandates having access to
some representation of all the (relevant) occluders in the scene, this strategy
is primarily adopted by image-based approaches, where o�en some sort of
shadow map provides this scene information.

• Scattering (of occluder information to receiver points):

Essentially reversing the loop order, all occluders are processed in the outer
loop. For each, all receiver points whose light visibility might be affected by
the occluder are considered in the inner loop, updating their light visibility
factors.

For each occluder B
For each (potentially affected) receiver point p

Back-project B onto light L
Update information about unoccluded light parts

For each receiver point p
Compute visibility factor VL(p)

�is approach is o�en realized by rendering a geometric primitive for each
occluder that covers at least all those pixels where the corresponding receiver
point is shadowed by this occluder. Consequently, one o�en encounters this
strategy in geometry-based so�-shadow algorithms.

Note that unlike before, where the information about unoccluded light parts
only needs to be maintained for the currently considered receiver point and
hence can be kept in shader registers, this computational order necessitates
storing such intermediate visibility information for all receiver samples in
some buffer.

Concerning the actual data stored about unoccluded light parts, various rep-
resentations are encountered in practice, including

• a single, accumulated visibility factor, which, however, prevents accurate re-
sults, as we will see in the next subsection;
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• per-sample values for multiple light-source samples (see Section 6.2.4 be-
low);

• explicit geometric descriptions of the unoccluded parts [Drettakis94, Stew-
art94].

Since back-projecting an occluder identifies the concrete part of the light
source that gets occluded, this technique directly supports accounting for nonuni-
form, multicolored light sources, which we cover separately in Section 10.1.

Conceptually, the back-projection approach is equivalent to rendering all
blockers from the viewpoint of the receiver point onto the light’s surface, con-
stituting a “visibility image,” and several algorithms actually adopt such a strat-
egy. �e earliest such algorithm is probably the hemi-cube method [Cohen85]
from 1985, o�en used in radiosity systems [Cohen93, Sillion94]. A more recent
example that targets modern graphics hardware is the bitmask-so�-shadows algo-
rithm [Schwarz07], which we will discuss in Section 6.7.

6.2.3 Occluder Fusion

When multiple occluders block light from a receiver, the same light region may
be occluded by more than one occluder, causing their back projections to overlap
and hence these occluders to “fuse” from the perspective of the receiver. Gener-
ally, three basic scenarios can be distinguished in case of multiple occluders (see
Figure 6.5):

(a) All blockers occlude disjoint parts of the light source.

(b) �ere is one master blocker whose back projection comprises the back pro-
jections of all other blockers.

(c) At least two back projections overlap partially.

Master
blocker

Overlap

(a) Disjoint. (b) Master. (c) Partial overlap.

Figure 6.5. When multiple blockers occlude the light source, three general configurations
concerning their back projections can be differentiated.
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(a) (b) (c)

Figure 6.6. �e aggregate occlusion factor for multiple blockers generally cannot be derived
from the individual blockers’ occlusion factors alone, as the same light region may be oc-
cluded by several blockers. In all three depicted cases, the red ellipse occludes 30% of the
light and the green triangle occludes 70%. However, the overall occlusion due to these two
blockers is different each time, ranging from (a) 70% to (b) 90% to (c) 100%.

Let’s assume there are n occluders Bi , with the fraction of the light area that
the back projection of blocker Bi occludes being O i ∈ [0, 1]. In scenario (a), the
overall visibility factor is then directly computed from these occlusion factors O i as

V = 1 −∑
i

O i , (6.4)

and in scenario (b), we have

V = 1 −max
i

O i . (6.5)

Note, however, that given just the occlusion factors, we cannot know which sce-
nario applies and hence which formula to use. And for the more general sce-
nario (c), an expression utilizing merely the occlusion factors does not even exist.

In practice, this means that accurate so� shadows cannot be computed by sim-
ply combining individual occlusion factors for all occluders (see Figure 6.6). In-
stead, the spatial relationship of the back projections on the light area has to be
taken into account. On the other hand, working just with occlusion factors is easy
to implement and runs faster than more accurate variants. Consequently, many
real-time algorithms are based on utilizing individual occlusion factors and adopt
some heuristic to derive an estimate of the overall visibility factor from them.

Most assume disjoint occluders and hence simply accumulate the occlusion
factors (Equation (6.4)). Rarely, the master blocker scenario is adopted, picking
the maximum occlusion factor (Equation (6.5)). Noticing that these two extremal
cases establish lower and upper bounds on the accurate visibility factor, it has also
been suggested to use some weighted average of them, for example [Soler98b],

V = 1 − 1

2
∑
i

O i − 1

2
max

i
O i .
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Another proposed heuristic [Eisemann06b] takes the probability that an arbitrary
point on the light source is unoccluded as the visibility factor estimate, treating the
occlusion factors as such probabilities and combining them:

V =∏
i

(1 − O i).
6.2.4 Point Sampling of Light Visibility

Computing accurate so� shadows requires that occluder fusion be correctly ac-
counted for. One powerful approach that makes this manageable and avoids hav-
ing to deal with complicated geometric representations of occluded regions is using
Monte Carlo integration for computing the visibility integral from Equation (6.2):

VL(p) = 1

∣L∣ ∫L V(p, l) dl ≈∑
i

w i V(p, li). (6.6)

�at is, visibility is only determined at n light sample points li ∈ L with associated
weights w i , where ∑i w i = 1. �e weighted average of these visibility samples is
then used as estimate of the visibility factor VL(p). With increasing sample count
n, this Monte Carlo estimator converges to the accurate solution.

�is reduction of the challenging light-area visibility problem to a set of simpler
binary light-point visibility problems can be traced back to at least 1984 [Cook84,
Brotman84]. It is o�en encountered in high-quality offline rendering systems,
constituting the standard approach in ray tracing (see also Section 10.4). How-
ever, only in 2007 had graphics hardware grown powerful enough for real-time
approaches to appear [Schwarz07, Eisemann07]. Since then, multiple GPU-based
algorithms have been proposed and, for moderately complex scenes, it is now pos-
sible to compute accurate so� shadows at highly interactive frame rates, as we will
see in Section 7.4.

Obviously, the number n of considered sample points li directly influences
speed and quality. An optimal choice depends on many factors, like the width
of the penumbra, the utilized sampling pattern, and the complexity of the surface
texture. For very thin shadows on dark surfaces with high texture masking, even 16
sample points, providing just 17 discrete degrees of shadowing, may yield excellent
visual results. On the other hand, wide penumbrae on a smooth white surface may
still suffer from some undersampling artifacts, even with 4,096 sample points. In
our experience, choices between 256 and 1,024 sample points typically work very
well for most scenes if an appropriate sampling pattern is used.

Generally, regular, uniform sampling patterns should be avoided, as they are
susceptible to causing banding artifacts. In particular, if an occluder edge is aligned
with the sampling grid, a tiny change in the edge’s position may affect a whole row
of sampling points, drastically reducing the effective number of discrete visibility
factors encountered in a certain penumbra. Instead, a stratified, jittered sampling
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(a) Uniform. (b) (Regularly) jittered. (c) Quasi-random. (d) Poisson disk.

Figure 6.7. Examples of sampling patterns (64 samples).

pattern, a pattern constructed from a quasi-random sequence like the Hammersley
sequence, or a Poisson disk pattern should be employed (see Figure 6.7). With
them, a minor translation of an occluder edge usually affects just one sampling
point; moreover, undersampling manifests itself as noise in the final image, which
is far less objectionable than stepping artifacts and also more easily masked by
surface textures.

6.3 A Reference Solution

�e point-sampling approach of treating an area light source as a collection of point
lights enables leveraging techniques developed for hard shadows for computing
accurate so� shadows. First note that the Monte Carlo estimate for the visibility
factor VL(p) from Equation (6.6) essentially boils down to determining, for each
light sample point li , the hard shadow cast by a point light source located at li , and
averaging these shadow values together. Naturally, shadow maps may be used to
compute these hard shadows for all visible receiver points p in parallel. �is leads
us to the following simple algorithm:

1 Clear screen-sized visibility buffer
2 For each light sample point li
3 Compute shadow map for point light at li
4 Determine hard shadow using shadow map for all receiver pixels (view samples)
5 Add shadow result to visibility buffer
6 Apply visibility buffer to shaded scene

Here, the visibility for each screen pixel, corresponding to a receiver point, is
accumulated in a visibility buffer, for which typically a single-channel 16- or 32-
bit floating-point texture is used. �e accumulation is realized by outputting the
determined hard-shadow visibility value in the fragment shader and using additive
blending to incorporate the result into the visibility buffer.
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While the algorithm yields accurate so� shadows, it is rather costly because
n shadow maps have to be computed in case of n light sample points, and each
shadow-map generation involves rendering the scene, that is, overall, the scene
needs to be rendered n times. To avoid having to render the scene another n times
to apply the shadow maps (line 4), typically a deferred shading approach is pur-
sued. Initially, the scene is rendered from the camera into a G-buffer (see Ap-
pendix E.1) recording either the position in world space or, even better, just the
depth in camera space, from which the world-space position is quickly computed
given the inverse view-projection matrix. �en, to apply the shadow map and de-
termine visibility, merely a screen-sized quad needs to be rendered. In the trig-
gered fragment shader, the receiver point’s world position is determined from the
G-buffer, transformed into light space, and compared against the corresponding
shadow-map data, yielding the visibility value. Similarly, drawing a quad suffices
to eventually use the computed visibility value for shading the scene (line 6).

Even though the presented algorithm is routinely used for producing refer-
ence solutions and we consider it to yield “accurate shadows,” one should be aware
that some inaccuracies may occur due to being based on shadow mapping, like
surface-acne issues. However, if the light-sample count n is sufficiently high, such
inaccuracies typically remain basically imperceptible, as they usually only occur
for a subset of the samples at a certain point and thus don’t contribute enough to
the final visibility factor to evoke a noticeable artifact.

Towards Real-Time Performance

Despite the tremendous advances in graphics hardware performance, rendering
the scene n times to produce the shadow maps may still consume seconds except
for simple scenes or low sample counts, where interactive frame rates are attainable.
Since not only hardware performance keeps growing but also scene complexity,
we are supposedly still a very long way from making this brute-force approach
generally applicable to real-time rendering.

Till then, one may resort to progressively computing and displaying the so�
shadows. By distributing the shadow-map generation over multiple frames, real-
time feedback is feasible but requires the user to wait many frames to get a suf-
ficiently converged result. Scherzer et al. [Scherzer09] build on this strategy and
determine one shadow map per frame, each time choosing a different light sam-
ple point. For each pixel, the resulting visibility values are successively aggregated,
providing a continuously improving estimate. In order to provide a good initial
visibility value for fragments that become visible for the first time, they don’t use
the hard shadow result for the currently processed light sample, but utilize the
shadow map to compute an approximate visibility value with the PCSS algorithm,
discussed later in Section 6.5. Furthermore, to suppress flickering due to jumps
in visibility factors during convergence, some smoothing is performed in screen
space.
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Recently, it was also suggested [Schwärzler09] to start with only four sample
points at the corners of a rectangular light source and to incrementally add new
points until a metric indicates convergence. �e proposed metric looks at two
opposing light samples and compares their associated shadow maps, checking the
pixel-wise depth differences a�er reprojection in camera space. If some of them ex-
ceed a threshold, an adaptive subdivision of the light is performed and new sample
points are added. Unfortunately, the simple metric may easily fail, stopping refine-
ment too early. Moreover, the resulting regular placement of the sample points is
typically undesirable, as discussed in Section 6.2.4. Nevertheless, such incremen-
tal approaches will evolve and may eventually prove pretty relevant. For instance,
more involved refinement strategies are already successfully employed in offline
global-illumination rendering techniques.

Variants

We should note that, historically, it was the advent of the accumulation buffer [Hae-
berli90] that introduced the general approach of averaging shadow-map results
on graphics hardware. �e proposed original algorithm rendered and shaded the
scene once for each point light, computing not only the shadow-map–based visibil-
ity factor but also the direct illumination for this light, and accumulated the results.
�at is, the whole lighting integral from Equation (6.1) was computed with Monte
Carlo integration and not just the isolated visibility factor, producing physically
correct results (if the shading part in Equation (6.1) is computed correctly). We
will come back to solving the lighting integral in Section 10.1.2.

Also nowadays only of historical interest is the variant proposed by Herf and
Heckbert [Herf96, Heckbert97, Herf97]. Instead of using shadow maps and com-
puting light visibility for all pixels in screen space, they generate a so�-shadow
texture for each receiver that is then applied during rendering. To this end, for a
given receiver face and a light sample point li , the pyramidal frustum with apex
li and the receiver face as base is picked as viewing volume. All scene objects in-
side this volume are then rendered in black, effectively yielding the hard shadow
on the considered receiver face in a surface texture. �is step is performed for all
light sample points, combining the individual results to yield the face-specific so�-
shadow texture. Overall, the scene has thus to be rendered n ⋅ nrcv times, where
n is the number of light samples and nrcv denotes the number of receiver faces
in the scene. �is quadratic complexity makes the method prohibitive already for
moderately complex scenes.

6.4 Augmenting Hard Shadows with Penumbrae

Phenomenologically, it is primarily the existence of a penumbra that distinguishes
a so� from a hard shadow. Exploiting this insight, early methods aiming for pro-
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(a) Hard shadow. (b) With outer penumbra. (c) With inner penumbra. (d) With both penumbrae.

Figure 6.8. Plausible so� shadows may be created by augmenting hard shadows with outer and/or inner penumbrae.

ducing so�-shadow effects in real time concentrated on introducing some kind of
penumbra, thus trying to fake so� shadows in a phenomenologically plausible way.
�e algorithms we are considering in this section all start with the hard shadow ob-
tained for a point light source placed at the center of the extended light and then
enlarge this shadow outwards [Parker98] and/or inwards to generate a penumbra
region (see Figure 6.8 and also Section 7.1). To this end, for each receiver point p all
algorithms basically search for hard-shadow boundaries in the point’s vicinity and
then determine which occluder sample (i.e., which shadow map texel) is respon-
sible for this hard shadow. With this information, the penumbra’s extent can be
estimated (see Section 6.2.1), and the relative placement of p within the penumbra
is determined to yield a visibility factor.

Before looking at concrete strategies to realize this basic approach, we should
note that at the time the first algorithms were developed, the targeted consumer
graphics hardware was still in its infancy. In particular, the programmability nowa-
days taken for granted was rudimentary at best. Consequently, the sophistication
of the algorithms was limited by hardware features and most steps could nowadays
be implemented in an easier and more direct way than presented in the original pa-
pers.

6.4.1 Light-Space Search

�e first algorithm was presented by Brabec and Seidel [Brabec02c]. A�er creating
a standard shadow map, they query this map to determine whether a receiver point
p is lit or in (hard) shadow. If it is lit, a radial search in the shadow map (executed
on the CPU) is initiated to find the closest shadow-map texel whose light-space
depth is smaller than p’s and which hence corresponds to an occluder. �e search
radius r is successively increased up to rmax, which is chosen as a function of the
distance from p to the light’s center (i.e., the shadow-map origin). Once an oc-
cluding shadow-map texel is found, the visibility factor is computed as 1

2
r/r′max,
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where r′max is obtained by shrinking rmax as a function of the distance from the
found blocker to the light. �is establishes an outer penumbra. Analogously, if p

is initially determined to be in shadow, the closest nonblocking shadow-map texel
is searched for to derive the inner penumbra. Note that by construction, the origi-
nal hard-shadow boundary, where inner and outer penumbrae meet, is assigned a
visibility factor of 50% (see Figure 6.8(d)).

To avoid wrong self-shadowing, object IDs are used (see Section 2.2.4); on the
downside, this also prevents correct self-shadowing. �e major problem of the al-
gorithm, however, is its greedy approach. Once a blocker is found, the search is
stopped. Consequently, only the occlusion to one single blocker is accounted for,
and this blocker might not even be the one responsible for most of the receiver
point’s shadowing. Shadow quality is further affected by the way the visibility fac-
tor is computed from the found occluder, which makes several approximations.
Finally note that the maximum width of penumbra regions is limited by the cho-
sen maximum search radius.

Restructuring the search step, Kirsch and Döllner [Kirsch03] move all involved
computations to the GPU. As a side effect, their method is restricted to handling
only inner penumbrae, that is, the resulting faked so� shadow is not larger than
but has the same extent as the hard shadow, which easily looks unrealistic unless
the penumbra is rather thin.

In their algorithm, once a shadow map has been determined, a so-called
shadow width map is constructed iteratively in light space; it essentially encodes
the distance to the closest lit pixel (with respect to a plane below all occluders).
�e iteration starts by recording a 1 for blockers and 0 otherwise. Subsequently,
the (normalized) distance to the lit region is propagated to a texel’s neighbors, in-
creasing it by ∆. �at neighbor’s value is only updated if the propagated value is
smaller, that is, if it reduces the current distance estimate. In practice, the prop-
agation is realized by rendering a quad and gathering values from four neighbors
in the x- and y-directions (incremented by ∆) from the previous shadow width
map in a fragment shader, resulting in a new shadow width map. �is is repeated
several times, each iteration doubling the neighbor distance and the increment ∆.

A�er the shadow width map is constructed, the visibility factor for a receiver
point p that is in hard shadow can be computed as a function of the shadow width,
queried from the shadow width map, and the distance from p to its hard-shadow
occluder. �at is, the radial search from Brabec and Seidel’s algorithm has been
replaced by a lookup in the shadow width map. On the downside, outer penumbrae
are no longer supported. Note that it is now the number of iterations in the shadow
width map construction that bounds the maximum size of penumbra regions.

A more advanced strategy is pursued by de Boer [deBoer06], which yields both
inner and outer penumbrae. First, blocker silhouettes are determined in light space
by applying an edge detection filter to the shadow map, yielding a skirt buffer that
stores a 1 for edge pixels and 0 otherwise. Subsequently, these edges are widened
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to skirts by applying a 3 × 3 filter for r times, with r being the light’s radius. More-
over, the minimum shadow-map depth encountered during filtering is recorded
for each texel. �e final skirt buffer thus provides an estimate of relative placement
within the penumbra as well as a conservative light-space depth estimate of the
responsible occluder (see also Section 7.2.1).

During rendering of the scene, this information is leveraged for computing the
visibility factor. If the shadow map indicates that a receiver point p is lit, the skirt
buffer is queried to check whether p might be in an outer penumbra. In that case,
a visibility factor is computed from the skirt-buffer data and p’s light-space depth.
An analogous procedure is pursued if p is in hard shadow according to the shadow
map, except for one addition to avoid wrong inner penumbrae with some concave
objects: if the skirt buffer indicates that p might lie in an inner penumbra, a disk
centered on p (whose radius is chosen according to the blocker depth from the
skirt buffer) is tested for being completely in hard shadow. if this is the case, p is
assumed to be in umbra; otherwise, the visibility factor is computed analogously
to the lit case.

6.4.2 Screen-Space Search

In slightly earlier work, Arvo et al. [Arvo04b] spread information about blockers
outwards from blocker silhouettes in screen space instead of in light space. First,
they determine a shadow map and compute hard shadows with it. By applying
a Laplacian filter kernel, boundary pixels are detected.2 �e remaining pixels are
classified as outer (outside the hard-shadow boundary) and inner pixels, again us-
ing the shadow map.

In the next phase, the boundary pixels propagate their shadow-map coordi-
nates to their surrounding nonboundary pixels. To this end, conceptually, an eight-
connected recursive flood-fill in screen space is performed. In practice, however,
several iterations of a gathering approach are pursued, where instead of spreading
the information to neighbors, it is the neighbors that actually collect this informa-
tion. Initially, the visibility factor for all boundary pixels is computed and these
pixels are marked as processed. In each subsequent iteration, a screen-filling quad
is rendered, and for each unmarked pixel p, the eight neighbors surrounding the
pixel are inspected in the invoked fragment shader. If such a neighbor is a marked
pixel, its shadow-map coordinates are used to compute a visibility factor for p.
Eventually, that visibility factor is picked which is highest or lowest, depending on
whether p is an inner or an outer pixel, respectively, corresponding to an extremal
occluder-fusion heuristic. In that case, the processed pixel is marked and attributed

2As they are found in screen space, they may not correspond to silhouettes in the shadow map but
can also be due to occlusion in camera space. �erefore, an edge-detection filter is applied to the shadow
map to verify that the screen-space shadow border is caused by a blocker silhouette in the shadow map,
before marking a pixel as boundary pixel. However, as noted by Rong et al. [Rong06], this additional
verification is not always sufficient.
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with the shadow-map coordinates used for determining the picked visibility fac-
tor. �at way, the boundary pixels’ occluder information is spread outwards. �e
whole procedure is executed until all newly marked pixels are completely lit or a
maximum number of iterations has been reached.

Visibility is computed by shooting a ray from the pixel p through the point
specified by the considered boundary pixel’s shadow-map coordinates and the cor-
responding shadow-map depth and determining the intersection with the light-
source plane. �e light is split into two parts at the intersection point via a line
perpendicular to the direction from the intersection point to the light’s center, and
the fraction of the unoccluded part of the light area is computed.

Note that only hard-shadow borders visible in screen space can give rise to
penumbrae. To avoid artifacts at the screen’s border, all screen-space computations
should be performed with an appropriately enlarged camera frustum. As with the
light-space techniques discussed before, the number of iterations performed for
propagating the boundary information limits the maximum width of the penum-
bra.

Rong et al. [Rong06] show that their jump flooding approach can be applied
to reduce the number of iterations. However, in some settings, light holes in the
shadow regions may wrongly occur. �ey also introduce a variant that operates in
light space, but it only produces outer penumbrae.

6.5 Blurring Hard-Shadow-Test Results

As we have seen in Chapter 5, blurring the results of the shadow-map test with
PCF can produce shadow results that appear like so� shadows. Actually, some
games and game engines implement just this and call it “so� shadows.” However,
irrespective of the physical incorrectness of such an approach, using a fixed-size
filter window is unable to reproduce varying penumbra widths and, hence, visually
prominent so�-shadow behavior, like hardening on contact. However, this major
shortcoming can be alleviated by adaptively varying the filter window size. In this
section, we explore several algorithms that perform such an adaptive blurring and
are thus o�en able to yield visually plausible so� shadows.

6.5.1 Projected Soft-Shadow Textures

Some very simple algorithms don’t even use shadow maps but build on shadow
textures (see Section 2.1.2). Mitchell’s Poisson shadow blur [Mitchell04b], for in-
stance, assumes that the occluder is illuminated from the side by the light, causing
the part of the occluder touching the ground to appear at the bottom of the shadow
texture. He then simply blurs the shadow texture using a Poisson disk sampling
pattern, varying the filter width from almost no blurring at the bottom, simulating
contact shadows, to strong blurring at the top, thus replicating the widening of the
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penumbra with increasing distance to the region of contact. As usual, this filtered
shadow texture is finally applied to the shadow receivers. A related, less ad-hoc ap-
proach is so� projected shadows [Pranckevičius06], where the filter width is chosen
according to the distance between the blocker and the receiver.

6.5.2 Fractional-Disk Soft Shadows

Most algorithms are based on shadow maps, however. One of the earliest published
methods was fractional-disk so� shadows by Valient and de Boer [Valient04], which
assume a circular light source with radius rlight. Following the considerations from
Section 6.2.1, in the presence of a single occluder at light-space depth zoccl, this
light basically gives rise to a penumbra of half-width,

rpenumbra =
zrcv − zoccl

zoccl
rlight , (6.7)

on a planar receiver parallel to the light at depth zrcv. �is observation is utilized
to derive an approximation of the visibility factor for a receiver point p by consid-
ering a disk of radius rpenumbra centered on p (with zrcv = pl

z̃) and determining the
fraction of the disk that is unoccluded as seen from the center l′ of the light source.
Computing this fraction boils down to performing percentage-closer filtering on
a shadow map obtained from l′ using a circular kernel of radius

r =
znear

zrcv
rpenumbra , (6.8)

where znear denotes the shadow map’s near-plane distance.
To obtain the occluder depth zoccl and avoid redundant PCF operations, this

basic approach is pursued within a more involved algorithm. At first, a shadow
map is computed, and for each texel t, the distance d(t) to the nearest edge (even-
tually corresponding to a hard-shadow boundary) and the occluder depth ze(t) at
this edge are determined. �is is achieved using edge detection and a propagation
process similar to what we have encountered in the previous section. Utilizing this
augmented shadow map, the visibility factor can subsequently be determined in a
fragment shader as follows: First, the processed receiver point p is tested for being
in hard shadow with a standard shadow-map test. If it is inside the hard shadow,
zoccl is taken from p’s shadow-map entry; otherwise, the previously determined
occluder depth ze(ps) for the closest shadow edge is picked (in case no closeby
shadow edge could be found while preprocessing the shadow map, p is consid-
ered to be lit). With this occluder depth, the disk radius r can be computed using
Equations (6.7) and (6.8). If r is larger than the distance d(ps) to the nearest hard-
shadow boundary, p is either in umbra or completely lit, depending on whether it
is in hard shadow or not, respectively. Only if this is not the case, PCF has to be
performed to determine the unoccluded disk fraction.
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Valient and de Boer also propose an alternative algorithm that doesn’t necessi-
tate augmenting the shadow map with d(t) and ze(t). One main difference is that
without the distance to the nearest hard-shadow boundary being available, one can
now no longer directly detect umbra or lit regions, and hence, PCF is always per-
formed. Moreover, in case p is outside the hard shadow, the occluder depth zoccl

used for deriving the disk radius has to be determined on the fly, which involves
sampling the shadow map within an appropriately sized disk.

6.5.3 Percentage-Closer Soft Shadows

Pursuing a similar approach as this latter algorithm, but also building on earlier
work of his own [Fernando02], Fernando [Fernando05] introduced percentage-
closer so� shadows (PCSS) in a one-page sketch. Designed to merely require the
substitution of the standard shadow-map test in an existing code base to turn hard
shadows into visually plausible so� shadows, the algorithm is simple both to un-
derstand and to implement. Hence, it is no wonder that PCSS and its variants enjoy
popularity in many real-time applications (e.g., games).

A�er acquiring a shadow map for the scene, PCSS queries this shadow map to
identify blockers that affect the receiver point p and derives a representative (vir-
tual) planar blocker. Utilizing the penumbra-width estimate from Section 6.2.1,
a filter size is determined, and the shadow map is sampled again to perform
percentage-closer filtering accordingly. We will now have a closer look at these
steps (see Figure 6.9).

Blocker search. At first, the shadow-map region Rs containing samples of rele-
vant occluders is determined. It is defined by the intersection of the light–receiver-
point pyramid (with the area light as base and the receiver point p as apex) with the
shadow map’s near plane. �is region is then searched for blockers. �ese are sim-
ply identified by performing a standard shadow-map test, that is, all shadow-map
entries that are closer to the light source than p are considered to be blockers.

Penumbra-width estimation. To derive the penumbra width required for blur-
ring the shadow-test results, PCSS makes the simplifying assumption that there is
only one occluder that is furthermore planar and parallel to the area light source’s
plane. �is planar blocker is chosen to lie at the average depth zavg of the block-
ers encountered in the blocker search. Further assuming that the receiver point p

belongs to a planar receiver that is likewise parallel to the planar occluder, Equa-
tion (6.3) from Section 6.2.1 can be applied, yielding

wpenumbra = pl
z̃ − zavg

zavg
wlight , (6.9)

where wlight denotes the size of the light source.
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(a) Blocker search. (b) Penumbra width estimation. (c) Filtering.

Figure 6.9. Percentage-closer so� shadows first search the shadow map for blockers. Assuming a single planar occluder
at the found blockers’ average depth zavg , an estimate of the penumbra width is derived, and the corresponding filter
window size is determined. Finally, the shadow-map results are filtered accordingly to get approximate so� shadows.

Filtering. Given the penumbra width wpenumbra, a suitable PCF window width wf

is then derived. �is can be achieved by projecting the penumbra width onto the
shadow map’s near plane:

wf =
znear

pl
z̃

wpenumbra . (6.10)

Finally, the shadow map is queried and filtered according to this window size.

Wrap-Up

In summary, the following fragment shader code has to be executed for each re-
ceiver point p:

// Blocker search
Determine shadow-map region Rs of relevant occluders
zavg ← 0, noccl ← 0
For each texel t in Rs

If s(z(t), pl
z̃) = 0, i.e., if z(t) < pl

z̃

zavg ← zavg + z(t)
noccl ← noccl + 1

// Penumbra-width estimation and filtering
Return 1 (= lit) if noccl = 0
zavg ← zavg/noccl

Determine wf using Equations (6.9) and (6.10)
Perform PCF with filter size wf
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Limitations

�e PCSS approach can produce visually pleasing results, especially for simple set-
tings. However, one should be aware that the created so� shadows are typically
not correct (except for some special cases). One major reason is the assumption
of a single planar occluder parallel to the shadow map’s near plane. While it en-
ables simple processing, it is not always a good approximation. Moreover, when
determining the average blocker depth zavg, occluders are identified by a simple
shadow-map test. Consequently, shadow-map entries that are outside the light–
point pyramid and hence don’t block the light at all from p are wrongly considered
as occluders if they are closer to the light than the receiver point p. �is can easily
lead to incorrect estimates for zavg.

�e same imprecision occurs during filtering, manifesting itself in wrong vis-
ibility values (see Figure 6.10). Furthermore, filtering essentially assumes that the
fraction of the light source that is occluded by a blocking shadow-map sample
equals its PCF filter weight, which is generally not true.

Another line of problems arise from the fact that both searching the shadow
map for occluders as well as performing percentage-closer filtering requires many
shadow-map accesses, thus limiting the achievable performance. Consequently, in
practice, the relevant shadow-map region Rs is not searched exhaustively, but the

zavg

p

Visibility: 50%

Blocker search region

Filter region

zavg

p

Visibility: 75%

Figure 6.10. Percentage-closer so� shadows can easily lead to wrong results. In the le�
example, all samples considered as occluding (colored blue and black) during the blocker
search are actually not blocking any light from the receiver point; analogously, the black
sample in the resulting filter window is wrongly treated as occluding in the filtering step.
Consequently, the algorithm erroneously yields a penumbra response (75% visibility, one
sample blocking, three not) for the entirely lit receiver point p. Similarly, in the setup on the
right side, the receiver point is wrongly considered to be in penumbra (50% visibility, two
samples blocking, two not) instead of in umbra.
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blocker-depth estimation takes just a limited number of samples into account. �e
resulting subsampling in case of large search windows Rs can cause neighboring
pixels to choose largely varying average blocker depths, leading to different PCF
window sizes and hence degrees of shadowing. Similar issues can arise if the num-
ber of samples employed for PCF is smaller than the number of texels in the filter
window.

Fortunately, solutions to these latter, performance-related problems have been
devised, ultimately rendering PCSS a constant-time algorithm. We cover them in
the next two subsections.

Practical Quality Enhancement

A method rather similar to PCSS, developed independently and earlier in-house
at Walt Disney Feature Animation, was presented by Burley [Burley06]. It offers
several improvements to enhance the so�-shadow quality.

Since in practice the receiver will rarely be planar and parallel to the shadow
map’s near plane, biasing is required to alleviate incorrect self-shadowing (see Sec-
tion 2.2.3). In principle, the farther the considered shadow-map sample is away
from the receiver point’s projection into the shadow map, the larger a bias has to be
chosen. Consequently, using wide filters necessitates prescribing large bias values.
But such large bias values can significantly affect the so� shadow’s appearance, for
example, by precluding contact shadows. Burley hence suggests not using a fixed
bias but increasing the bias linearly with distance from p, describing a “bias cone.”

Furthermore, he notes that both subsampling and the unweighted averaging of
blocker depths in determining zavg foster missing regions of shadow contact. As
a simple remedy, Burley advocates concentrating the taken shadow-map samples
near p and reducing the sample weights with increasing distance from p.

6.5.4 Accelerating Adaptive Filtering

As we discussed in Chapter 5, several alternative shadow-map representations ex-
ist that allow for prefiltering (i.e., precomputing the filter response). Hence, it is
rather obvious that the filtering cost in the PCSS algorithm can be reduced sig-
nificantly by resorting to a technique like VSM or CSM. Note, however, that since
the filter window size is chosen separately for each receiver point and thus varies
across screen to accommodate different penumbra sizes, prefiltering has to support
variable window sizes. To this end, typically one of the following two approaches
is adopted: mipmapping or summed-area tables (see also Appendix D).

Mipmapping. �e easiest and cheapest option is to create a mipmap chain of the
shadow map representation (e.g., of the VSM), with each coarser level resulting
from blurring the next finer one with a fixed-size filter kernel and downsampling.
Filtering with a certain window size is then simply approximated by appropriately
sampling this mipmap with trilinear interpolation.
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On the downside, mipmapping provides only prefiltering for several discrete
filter sizes and requires filtering with intermediate sizes to be approximated by in-
terpolation. Moreover, the spatial resolution of the prefiltering solution decreases
with increasing filter sizes, which can easily cause artifacts. �is particular short-
coming can be alleviated by employing an N-buffer-like representation [Décoret05,
Eisemann06b], which, however, consumes more memory and is more costly to
build.

Summed-area table. Superior results can be achieved by constructing a summed-
area table (SAT) [Crow84], which supports box filtering for arbitrary rectangular
filter windows—utilizing just four texture fetches. However, SATs require more
memory and are more expensive to create than mipmaps. An important issue is
that summing up vast amounts of a certain quantity (e.g., the first moment in the
case of VSMs) can easily lead to a loss of numerical precision. �erefore, start-
ing at a certain shadow map resolution, it becomes necessary to adopt a 32-bit
integer/fixed-point (or, if available, 64-bit floating-point) representation to avoid
related artifacts. Lauritzen [Lauritzen07] provides more detail and discusses using
SATs together with VSMs.

6.5.5 Accelerating Blocker Search

CSMs and VSMs are not only helpful for accelerating the filtering step but can
also be adapted to speed up the derivation of the average blocker depth zavg. Even
more, the resulting methods actually search the relevant shadow-map region Rs

exhaustively, that is, in contrast to subsampling none of the blockers within Rs is
omitted from consideration. �is is beneficial for the shadow quality, as it avoids
subsampling-related spatial and temporal inconsistencies that can easily show up
as artifacts.

Convolution Soft Shadows

Utilizing the machinery of CSM, Annen et al. [Annen08a] observe that averaging
the depths z(t) of all entries t within Rs that are closer to the light and hence pass
the complementary shadow test

s(z, pl
z̃) = 1 − s(z, pl

z̃) = 1 −H(z − pl
z̃) = ⎧⎪⎪⎨⎪⎪⎩

1, z < pl
z̃ ,

0, z ≥ pl
z̃ ,

can be expressed as a convolution:

zavg(p) = ∑t∈Rs
kavg(t − ps) ⋅ (s(z(t), pl

z̃) ⋅ z(t))∑t∈Rs
kavg(t − ps) ⋅ s(z(t), pl

z̃) ,

where kavg is the averaging kernel and the denominator performs normalization.
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While the denominator can readily reuse the basis images from the regular
CSM (since it essentially equals 1− ffilter(ps , pl

z) from Equation (5.19) on page 154),
the numerator requires computing additional basis images for the product
s(z(t), pl

z̃) ⋅ z(t). With these, the blocker search boils down to performing a lin-
ear combination of basis images, thus becoming a constant-time operation like
CSM-based filtering. However, this improvement in execution complexity comes
at the price of necessitating many basis images, which incur both additional stor-
age and creation cost compared to the original PCSS approach of simply sampling
the shadow map for blockers.

Variance Soft Shadow Mapping

Dong et al. [Dong10, Yang10a] show that an estimate of the average blocker depth
zavg can also be obtained solely from the information contained in a (prefiltered)
VSM. Assuming the shadow-map region Rs comprises n texels and noccl of them
are closer to the light than the receiver point p, the average depth within Rs can
be expressed as

zRs = noccl

n
zavg + (1 − noccl

n
) zoccl .

�e fraction noccl/n of blocker samples corresponds to the probabilityPr(z < pl
z̃) =

1 − Pr(z ≥ pl
z̃), z ∈ Rs, a lower bound of which can be estimated with the Cheby-

shev inequality from Equation (5.11) on page 150. �e involved mean µ = zRs

and variance σ 2 can be obtained from a prefiltered VSM representation. Further
assuming that all nonblocker samples and p lie on a common planar receiver par-
allel to the light source (i.e., the nonblocker samples’ average depth zoccl = pl

z̃),
solving for zavg yields the estimate

zavg = zRs − Pr(z ≥ pl
z̃)pl

z̃

1 − Pr(z ≥ pl
z̃) . (6.11)

As discussed in Section 5.3.2, VSMs easily suffer from light-leaking artifacts,
especially when using larger filter kernels. Since this negatively affects so�-shadow
quality, Dong et al. embed their average blocker-depth estimation scheme within a
larger algorithm, termed variance so� shadow mapping (VSSM), that pays special
attention to alleviating the light-leaking problem.

Recall that with VSMs, the probability of interest Pr(z ≥ pl
z̃) is estimated using

the Chebyshev inequality, which provides an upper bound, thus tending to under-
estimate occlusion. Furthermore, if the average depth µ = zR within a VSM region
R is larger than the receiver point’s depth pl

z̃ , the Chebyshev inequality is no longer
valid and a value of one is assumed, meaning lit. However, unless the region R is
rather small, it is not that unlikely that some samples in this region have a depth
smaller than pl

z̃ and, hence, that some occlusion indeed occurs, rendering the con-
servative lit assumption wrong. Building on this insight, Dong et al. propose to
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subdivide R if zR ≥ pl
z̃ and then work on the resulting subregions Ri . �ose sub-

regions Ri for which zR i
< pl

z̃ holds can readily be processed with the Chebyshev
inequality. Any other subregion Ri , for which this inequality is still not applicable
because its average depth zR i

≥ pl
z̃ , is handled by performing ordinary PCF with a

2 × 2 kernel.

A�er having created the VSM, the VSSM algorithm constructs a summed-area
table for it as well as a hierarchical shadow map (HSM), which we will cover later
in Section 6.7.4. For each receiver point p, a blocker search area Rs is then deter-
mined. Utilizing the HSM, it is first checked whether the samples within Rs are
either all closer to the light than the receiver point p, causing p to be in umbra, or
all farther (or equally far) away, making p be lit. If this is the case, we are already
done. Otherwise, the average blocker depth zavg is computed according to Equa-
tion (6.11), subdividing Rs if necessary (i.e., if zRs ≥ pl

z̃ holds). Subsequently, the
filter kernel size is computed, and the visibility factor is derived for the resulting
VSM filter regionRf by consulting the SAT and evaluating the Chebyshev inequal-
ity. Again, subdivision of Rf is performed if necessary.

6.5.6 Screen-Space Approaches

While PCSS and its variants operate on some shadow-map representation, there
exist also a few algorithms that work directly on shadow information in screen
space. Adopting PCSS’s general strategy, they perform an initial blocker search to
estimate the penumbra width, followed by an adaptive blurring of hard shadows.
To this end, edge-ware filtering techniques are employed, for instance, some kind
of bilateral filter (see also Appendix E.2.2).

Image-Space Gathering. In their image-space gathering (ISG) approach, Robison
and Shirley [Robison09] assume a screen-space map as input that encodes, for each
view sample, the distance to the closest occluder towards the light center as well
as whether the view sample is in hard shadow or not. �is map can be generated,
for instance, by applying a shadow map or invoking a ray tracer. To determine the
so� shadow response for a view sample p, at first, a search radius is determined
based on the light’s size and p’s depth, and an accordingly sized bilateral filter is
applied on the distance part of the input map. �is filter ignores texels that are
not in hard shadow and weights the remaining ones according to how close the
corresponding view samples are to p in world space, favoring nearby samples. �e
resulting estimate of the so�-shadow–casting (virtual, planar) occluder’s distance
is then used to derive the penumbra width and an according filter radius for the
hard shadow blurring. �is spatially varying blurring is subsequently performed
with a similar bilateral filter as before, this time operating on the hard shadow part
of the input map.
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Screen-Space PCSS. Similarly, it has been proposed [MohammadBagher10] to
start with a conventional shadow map and derive from it both a screen-space hard
shadow map, storing for each view sample whether it is in shadow or not, and
a screen-space projected shadow map, recording for each view sample in hard
shadow the occluder’s depth. �e blocker search is then performed in the projected
shadow map, and, a�er determining a penumbra estimate, filtering is applied to the
hard shadow map, yielding the final visibility value. Each time, a bilateral filter is
used that takes camera-space depth differences into account. It is also suggested
to use a separable approximation of the bilateral filter, resulting in significant per-
formance benefits. Note, however, that as the filter size is not constant but varies
across screen, separability does not hold (i.e., it is incorrect to first filter horizon-
tally and then vertically, or vice versa).

Overall, PCSS-like screen-space approaches don’t really offer a performance
advantage over the classical PCSS, let alone more advanced variants like VSSM.
�is is not surprising given that essentially the same costly sampling steps (i.e.,
blocker search and filtering) have to be executed. Since they rely solely on screen-
space information, and hence on less information than the non-screen-space al-
gorithms, they also don’t manage to excel when it comes to so� shadow quality.
Consequently, such approaches are mainly useful in those niche scenarios where
no light-space information (e.g., a shadow map) is available but only screen-space
information, like when wanting to turn ray-traced hard shadows into plausible so�
shadows.

6.6 Filtering Planar Occluder Images

While PCSS and its variants can o�en produce plausible so� shadows, they are typ-
ically not physically correct. A notable exception where these methods fare pretty
well when it comes to accuracy is exactly the setup assumed in PCSS’s derivation:
a planar area light, a single planar occluder parallel to the light as well as a planar
occluder, also parallel to the light. However, for this special case, a nice theoretical
result exists that enables a more rapid computation of correct so� shadows (Sec-
tion 6.6.1). Moreover, it also gives rise to a fast real-time so� shadow algorithm
that is applicable to more general scenes (Section 6.6.2).

6.6.1 Convolution-Based Soft Shadow Textures

Let us consider an arbitrarily shaped planar occluder B. It can be fully described
by its supporting plane ΠB and the characteristic function

δB ∶ ΠB ↦ {0, 1} with δB(x) = {1, if x ∈ B,

0, otherwise.
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Analogously, a planar area light L may be specified by its plane ΠL and a charac-
teristic function δL. If the planes ΠL and ΠB are parallel, then the visibility factor
at a point p on a planar receiver parallel to ΠL can be computed as

VL(p) = 1 − 1

∣L∣ ∫
L

δB
⎛
⎝
(zrcv − zoccl) lΠ

xy + zoccl pΠ
xy

zrcv

⎞
⎠ dl, (6.12)

where pΠ
xy are p’s in-plane coordinates (we make all planes use the same 2D co-

ordinate system), zoccl denotes the distance between ΠL and ΠB, and zrcv is the
distance between ΠL and the planar receiver. �at is, we integrate over L and, for
each considered light point l, query δB at the intersection of the occluder plane
ΠB with the line from p to l to check whether the occluder blocks l.

As shown by Soler and Sillion [Soler98b], Equation (6.12) can be expressed as
a convolution:

VL(p) = 1

∫R2 l(x) dx
∫

R2
l(x) o(pΠ

xy − x) dx, (6.13)

where

l(x) = δL (− zoccl

zrcv − zoccl
x) and o(x) = 1 − δB ( zoccl

zrcv
x)

are scaled versions of the light’s and the occluder’s characteristic functions.
�is result directly leads to an efficient algorithm to compute so� shadows in

such a restricted setup. First, a sampled representation of the involved character-
istic functions is created by encoding the binary function δL in a source image and
the function 1 − δB in a blocker image. Subsequently, these two images are con-
volved according to Equation (6.13), yielding a so� shadow texture for the planar
receiver that stores a regular sampling of the visibility factors for the points on this
receiver. �e convolution can be carried out by multiplication in Fourier space,
involving two forward 2D fast Fourier transforms (FFTs) and one inverse 2D FFT.

General Setup

In a general setup where, in particular, occluders are not planar, the convolution
formula from Equation (6.13) can obviously no longer be applied directly. To sup-
port such configurations, Soler and Sillion [Soler98b] suggest establishing a virtual
planar light, a virtual occluder, and a virtual receiver; projecting the real entities
onto them; and performing the convolution-based computation on these virtual
elements. �e obtained so� shadow texture can then be projected onto the real
receiver.

Since the projection onto virtual, parallel planes is only an approximation of
the real situation, the computed so� shadows are generally no longer accurate. Es-
pecially, occluders with a larger extent orthogonal to the plane can cause quality
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problems, like with contact shadows. �ese may be alleviated to some degree by
subdividing the occluder and/or receiver, thus breaking the setup into multiple
simpler configurations where the approximation with virtual planar entities may
be more accurate. However, combining these partial solutions can be challeng-
ing. On the pro side, the algorithm’s speed essentially doesn’t depend on the light’s
size and, thanks to filtering the blocker image with the light’s footprint, smooth
penumbrae are produced in the so� shadow texture.

6.6.2 Occlusion Textures

Not least because computing a general convolution of two images is rather costly,
even if performed by multiplication in Fourier space, the discussed algorithm is
not really suitable for real-time setups. However, by assuming a rectangular area
light, the computation becomes significantly simpler, eventually enabling a faster
approach that can more easily deal with general setups.

More precisely, if L is an axis-aligned rectangular light source, then the convo-
lution in Equation (6.13) boils down to applying a box filter to the blocker image,
that is,

VL(p) = 1

∣K(p)∣ ∫K(p) (1 − δB(x)) dx,

where K(p) is the rectangular region in the plane ΠB resulting from intersect-
ing this plane with the light–receiver-point pyramid (see Figure 6.11). �e size of
K(p) (and hence of the box filter) can easily be determined by scaling the light’s
size according to the ratio of distances of p to the occluder and the light, that is,

size (K(p)) = dist(p, ΠB)
dist(p,L) size(L) = zrcv − zoccl

zrcv
size(L).

Light L

Blocker B Box filter region K

ΠB

p

(a) Setup. (b) Blocker image. (c) Filtered blocker image.

Figure 6.11. Occlusion textures build on the observation that for a rectangular light and a parallely aligned planar
occluder, the light visibility from a receiver point p corresponds to a box filter response.
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Slice
Project

Planar occluder

Figure 6.12. Occlusion textures are constructed by slicing the scene and projecting a slice’s
content to its bottom plane, recording covered parts.

Since a box filter is separable, the filter response can be computed rapidly for a
planar receiver parallel to the light source, where all points have the same distance
to the light and, therefore, the filter size is constant. Alternatively, by constructing
a summed-area table for the blocker image, box filter responses of arbitrary size
can be determined in constant time. �is means that we are no longer restricted
to a planar receiver but can quickly determine the visibility factors for arbitrary
receiver points p. Note that instead of an SAT, cheaper approximations may be
employed in practice, as discussed in Section 6.5.4 (see also Appendix D).

Algorithm

Describing and leveraging these simplifications, Eisemann and Décoret
[Eisemann06b,Eisemann08b] devised a real-time algorithm, termed occlusion tex-
tures, that can deal with general scenes. To this end, a given scene is approximated
by a set of planar occluders. �ese are established by slicing the scene parallel to
the light source and projecting the geometry inside a slice away from the light onto
the slice’s bottom plane, with the covered parts being recorded in a (binary) blocker
image per slice, referred to as an occlusion texture (see Figure 6.12). Note that since
each layer is treated as a planar occluder, intraslice shadowing cannot be captured
correctly.

In practice, between 4 and 16 slices are typically chosen. Each slice is stored in a
separate color channel of one to four RGBA textures, as this allows for
easy creation: rendering to these textures simultaneously via multiple rendering
targets and performing additive blending, one merely has to choose the appro-
priate color channel based on the fragment’s light-space depth in the fragment
shader.
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Once the occlusion textures have been determined, prefiltered versions are
computed, resorting either to mipmapping, to N-buffers, or to summed-area ta-
bles. While mipmapping potentially leads to noticeable artifacts, using the accu-
rate SATs is costly. N-buffers are hence advocated by the algorithm’s authors as a
currently best option.

�e shadow at a receiver point p can then easily be determined by processing
all slices lying in between the light and p. For each slice of occluders, the box-filter
sizeK(p) is determined, and the corresponding occlusion texture’s prefiltered rep-
resentation is sampled accordingly to obtain the approximate occlusion caused by
the slice. �e resulting visibility values for all planes are finally combined multi-
plicatively, thus performing occluder fusion heuristically (see Section 6.2.3).

�e occlusion-textures algorithm o�en manages to yield plausible shadows but
generally doesn’t produce accurate ones. Apart from not treating occluder fusion
correctly, this is mainly due to the discretization of the scene into some small num-
ber of slices. �is approximation can also lead to light leaks, especially in the case
of thin structures, although a heuristic to combat them was devised. On the other
hand, the algorithm’s performance is independent of the light’s and the penumbra’s
sizes, routinely achieving real-time frame rates. Note that occlusion textures are
one of the rare algorithms available with this property (PCSS with CSM-accelerated
blocker search and filtering as well as VSSM are two others; see Section 6.5). Al-
together, this renders the technique attractive for compact indoor environments
illuminated by a large area light.

6.7 Reconstructing and Back-Projecting Occluders

So far, we have only encountered approaches throughout the previous three sec-
tions that employ some gross approximations (at least for general scenes). While
o�en managing to yield visually plausible so� shadows, they hence may easily fail
to produce physically correct ones.

�is situation is significantly improved by a group of algorithms that are o�en
subsumed under the term so� shadow mapping or are alternatively referred to as
back-projection methods.3 Being shadow-map–based like most other techniques,
they attain more physically precise results than the previously covered approaches,
mainly thanks to two reasons. First, they utilize a more accurate approximation
of the occluding geometry than just one or a few planar occluders. Second, the
contribution of shadow map samples to light occlusion is treated more precisely.
In particular, samples of geometry not occluding the light source at all are ignored

3Both terms are rather fuzzy. Actually, only one algorithm of this class [Atty06] creates a “so�
shadow map,” but all algorithms utilize a shadow map to compute so� shadows—like most other image-
based techniques discussed in this chapter. Concerning back projection, again, several other algorithms
perform some kind of projection onto the light (see Section 6.2.2), particularly most geometry-based
techniques covered in the next chapter.
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Shadow map
Unprojected micropatch

Back-projected micropatch

p

Figure 6.13. Basic so� shadow mapping derives occluder approximations by unprojecting
shadow-map texels into world space. �e resulting micropatches are then utilized to com-
pute a visibility factor by back-projecting them onto the light source and accumulating the
occluded areas.

correctly. By contrast, recall that PCSS, for instance, simply takes a sample’s light-
space depth as the sole occlusion criterion.

In a nutshell, so�-shadow-mapping algorithms employ a shadow map obtained
from the light source’s center and reconstruct potential occluders in world space
from it. �ese are then back-projected from the currently considered receiver
point p onto the light’s plane to estimate the visible fraction of the light area (see
Section 6.2.2). �e various methods mainly differ in what kind of occluder approx-
imation is employed, how the computations are organized, and how the occluded
light area is derived. Among others, these choices directly influence performance,
generality, robustness, and visual quality.

�e general approach was initially introduced by Atty et al. [Atty06]. �ey
adopt shadow map texels unprojected into world space as micro-occluders, termed
micropatches. Looping over all micropatches, the occlusion caused by them is
then distributed to all affected pixels in a so-called so� shadow map, which finally
gets projected onto the scene. However, such a light-space computation of the
scene shadowing has major shortcomings and limitations, like requiring a sepa-
ration of objects into shadow casters and shadow receivers. �erefore, all other
subsequently devised techniques choose to operate in screen space and reverse
the computational order, making each receiver point process all occluders rele-
vant to it, instead.4 According approaches have been concurrently published by

4�is corresponds to a change in computational order from scattering to gathering, as described in
Section 6.2.2.
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Guennebaud et al. [Guennebaud06], Bavoil and Silva [Bavoil06], and Aszódi and
Szirmay-Kalos [Aszódi06], with all following so�-shadow-mapping papers essen-
tially building and improving on them.

In the following, we initially detail the basic approach, concentrating on the
variant introduced by Guennebaud et al. [Guennebaud06]. Serving as the foun-
dation for more advanced techniques, we then look closer at the largely orthogo-
nal aspects of visibility determination, occluder approximations, and acceleration
strategies in the subsequent subsections.

6.7.1 Basic Approach

At first, a standard shadow map is generated from the center of the extended light
source.5 �is depth map provides a point sampling of the scene geometry visi-
ble from the light center, and hence a representation of a subset of the occlud-
ers. An approximation of the captured geometry is generated by constructing a
micro-occluder for each shadow map element. Typically, the whole texel is just
unprojected into world space, resulting in a rectangular micropatch parallel to the
shadow map’s near plane, as illustrated in Figure 6.13. Alternative occluder ap-
proximations have been devised and are discussed below in Section 6.7.3.

�e light visibility for a receiver point p is then computed in a fragment shader,
where the shadow map is traversed, and for each texel, a micropatch is constructed
on the fly. If a micropatch is closer to the light source than p, it potentially blocks
some part of the light. In this case, the micropatch is back-projected from p onto
the light plane and clipped against the light’s extent to determine the occluded
light area. �e individual covered light areas of all back-projected micropatches
are summed to get an estimate of the overall occluded light area. Relating this to
the total light area AL yields a visibility factor describing the percentage of light
visible to p.

Overall, we end up with the following basic algorithm, to be executed in a frag-
ment shader for each receiver point p:

Aoccl ← 0
For each (relevant) shadow map texel

If texel is closer to light than p
Construct micropatch and back-project it onto light L
Determine light area A i covered by micropatch
Aoccl ← Aoccl + A i

VL(p) = max(0, 1 − Aoccl)/AL

6.7.2 Visibility Determination with Occlusion Bitmasks

�e simple approach of combining the occlusion of individual micropatches by ac-
cumulating the light areas covered by them is only correct if the projections of the

5In principle, any sample point on (or behind) the light source may be used instead of the center.
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Micropatch

Overlapping
back projections

Back projection
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p

(a) Overlapping micropatches. (b) Light sample points.

OR =

(c) Occlusion-bitmask update.

Figure 6.14. (a) �e back projections of multiple micropatches o�en overlap. (b) �is can
be correctly dealt with by considering the binary visibilities at many light sample points.
(c) �ese are efficiently encoded in a bit field; this occlusion bitmask is successively updated
by ORing in the samples occluded by a certain micropatch.

micropatches onto the light source don’t overlap (see Section 6.2.3). �is, however,
is typically not the case (see Figure 6.14(a)), although initially recording only oc-
cluders visible from the light’s center surely helps obviate overlaps. �e resulting
incorrect occluder fusion leads to overestimating light occlusion and may cause
clearly objectionable artifacts.

Occlusion Bitmasks

A robust solution for visibility determination that properly deals with arbitrary
such overlaps was introduced by Schwarz and Stamminger [Schwarz07]. In their
bitmask so� shadows (BMSS) algorithm, the visibility determination is approached
via point sampling (see Section 6.2.4). Concretely, sample points are placed on
the light source, and a bit field is used to track which of them are occluded. �e
resulting occlusion bitmask provides a discrete representation of which light area
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parts are occluded. By counting the set bits (see Section 10.1.3), the visibility factor
can easily be determined (see Equation (6.6)).

�e occlusion bitmask for a receiver point p is computed as follows. First,
it is initialized by unsetting all bits, indicating that all light samples are visible.
Subsequently, all relevant micro-occluders are processed. When back-projecting a
micro-occluder, rather than computing the light area covered by it, a bitmask re-
flecting which light samples are occluded by it is determined. �is is then incorpo-
rated into the existing occlusion bitmask with a bitwise OR, thus marking all light
samples blocked by the processed micro-occluder as occluded. In case of overlap-
ping micro-occluders, the same bit gets set multiple times, that is, occluder fusion
is automatically dealt with correctly. Obviously, as it realizes the point-sampling
strategy from Section 6.2.4, this technique is not restricted to so� shadow mapping
but provides a general, practical solution to the occluder-fusion problem.

Sampling pattern. In principle, the sample points can be placed arbitrarily on the
light source. However, for performance reasons, Schwarz and Stamminger suggest
restricting the positioning and number of sample points such that fast updates of
the occlusion bitmask are possible using only arithmetic operations, exploiting the
fact that a micropatch’s back projection is just an axis-aligned rectangle on a rectan-
gular light source. Concretely, they advocate a sampling pattern with 256 regularly
jittered sample points corresponding to an 8 × 8 tiling of the 2 × 2 rotated grid su-
persampling (RGSS) pattern commonly used for antialiasing [Akenine-Möller08].

Note that arbitrary sampling patterns are possible but require three texture
lookups per micropatch [Schwarz09]6 (or one lookup per edge of the back pro-
jection in case of other occluder approximations like microquads, detailed below)
and hence lead to a significantly lower performance.

Since visibility is determined by point sampling, encountered light visibility
factors can only take on a limited number of different discrete values, defined by
the size of the bit field. Recall from Section 6.2.4 that consequently discretization
artifacts may arise and that it is hence pertinent to employ a large enough number
of light samples, with 256 usually sufficing (if jittered).

Advanced Applications

Since occlusion bitmasks can correctly handle arbitrarily overlapping micro-
occluders and also provide explicit information about which parts of the light
source are blocked instead of offering just a visibility factor, new applications be-
yond standard so� shadow mapping become possible.

Most notably, occluder information from multiple shadow maps (e.g., obtained
via depth peeling) can easily be incorporated, thus basically enabling capturing all

6Since the back projection is an axis-aligned rectangle, a strategy similar to summed-area tables can
be used (see Appendix D.3).
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occluders instead of just the subset visible from the center of the light.7 Note, how-
ever, that rendering cost increases essentially linearly with the number of consid-
ered shadow maps.

Leveraging the provided spatial information about the occluded parts of the
light source, it further becomes possible to correctly deal with multicolored light
sources (see Section 10.1) and even evaluate the area lighting equation from Equa-
tion (6.1).

6.7.3 Occluder Approximations

Reconstructing an approximation of the captured occluders from the point sam-
pling provided by the shadow map is central to so�-shadow-mapping approaches.
Various options with different strengths and weaknesses have been proposed,
which we briefly review in the following (see also Figure 6.15).

Micropatches

Let us first look closer at the historically first option already introduced above, mi-
cropatches, before covering alternatives that try to improve on them. Recall that a
micropatch is constructed by unprojecting a shadow map texel into world space.
Together, micropatches provide a piecewise-constant approximation of the cap-
tured occluders. Since they are parallel to the light plane, such that their back pro-
jections are axis-aligned rectangles, many operations are rather simple and hence
fast to execute. However, this simplicity also causes micropatches to suffer from
several problems. For instance, occluders are frequently overestimated, potentially
leading to noticeable enlargements of the penumbra’s extent. On the other hand,
potentially overestimating an occluder’s extent helps to capture fine structures.

A major issue is that gaps can occur between neighboring micropatches. Usu-
ally, such gaps are not actual occluder-free regions but undesired holes in the re-
construction of surfaces, which lead to disturbing light leaks. Given the lack of in-
formation allowing a correct discrimination, it is hence reasonable to try to close
gaps. To this end, Guennebaud et al. [Guennebaud06] consider the le� and bottom
neighbors in the shadow map for each micropatch, dynamically extending it ap-
propriately to the borders of these neighbors (see Figure 6.16(a)). However, gaps
towards the diagonal neighbor may still exist [Schwarz07], which can be allevi-
ated by explicitly accounting for this neighbor, too [Bavoil08a]. As a significantly
more expensive alternative, Bavoil et al. [Bavoil08b] advocate using a multilayered
shadow map obtained via depth peeling and, for a given texel, using only the layer

7Another option to capture more occluders and hence decrease artifacts due to ignored occluders
is to split the light into multiple sublights and treat each sublight separately [Assarsson03b, Yang09]
(see also Section 7.3.4). However, this comes at the cost of rendering a shadow map (and creating an
according multiscale representation; see Section 6.7.4) multiple times. Moreover, while this approach
is orthogonal to the chosen visibility determination technique, overlapping-related artifacts still occur
unless occlusion bitmasks are used.
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(a) Micropatches. (b) Microquads. (c) Occluder contours.

Figure 6.15. Examples of occluder approximations that can be derived from a shadow map.

farthest away from the light that is still closer to the light than the receiver point
for micropatch construction.

Furthermore, micropatches easily lead to surface acne and require biasing to
alleviate such self-shadowing artifacts. Using a midpoint shadow map (see Sec-
tion 2.2.4) for depth comparisons [Bavoil08b] helps but incurs additional costs.

Finally, note that Bavoil and Silva [Bavoil06] employ the bounding sphere of a
micropatch as occluder and compute the subtended solid angle to determine visi-
bility of a spherical light source.

Microquads and Microtris

A more complex micro-occluder is proposed by Schwarz and Stamminger
[Schwarz07]. �ey take the unprojected centers of the shadow map texels as ver-
tices, which, along with their texture-space adjacencies, implicitly define a regular
quad mesh. Each face serves as a micro-occluder, called a microquad. It is created
from four vertices corresponding to 2 × 2 neighboring texels and gets taken into
account during visibility determination only if all four vertices are closer to the
light source than the point for which light visibility is computed.

Microquads provide a piecewise-(bi)linear approximation and hence adapt
better to the actual geometry than micropatches. �ey are thus less prone to caus-
ing surface acne. Another advantage is that because adjacent microquads share a
common boundary, no unwanted gaps occur in the first place (see Figure 6.16(b)),
and hence, light leaks are avoided. Moreover, because two neighboring micro-
quads are connected by an edge, their back projections usually don’t overlap. �is
is in strong contrast to the situation with micropatches, which are just isolated
primitives. But overlaps can still occur, and hence, utilizing occlusion bitmasks is
still advisable for high quality.
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(a) Micropatches. (b) Microquads. (c) Occluder contours.

Figure 6.16. �e various occluder approximations have different characteristics. (a) Micropatches suffer from light
leaks, which can be (approximately) closed by dynamically extending them. (b) By contrast, microquads implicitly
avoid such gaps in the occluder reconstruction but can miss thin structures. (c) Occluder contours are also essentially
gap-free but may ignore occluders captured by the shadow map.

Since a quad’s back projection onto the light area does not yield an axis-aligned
rectangle in general, correct clipping and area determination as well as occlusion-
bitmask updates are complicated. While accurate solutions have been devised
[Schwarz08a], they are rather expensive. �erefore, in practice, usually the sim-
ple approximate approach by Schwarz and Stamminger [Schwarz07] is employed,
which yields results that are visually hardly distinguishable and which is roughly
as fast as micropatch processing.

In contrast to micropatches, microquads have a tendency to underestimate oc-
cluders and miss thin geometry, like twigs and branches covering only a single
shadow map texel in width. Augmenting microquads with microtris [Schwarz08a]
helps reduce the underestimation and also improves smoothness at features lying
diagonal in shadow map space. A microtri is simply a triangle that is constructed if
a microquad gets ignored because only three of its four vertices pass the distance
test, using these three vertices. However, this o�en merely slight visual-quality
improvement incurs a considerable performance impact.

Occluder Contours

Another, rather different occluder approximation was introduced by Guennebaud
et al. [Guennebaud07], who construct an occluder contour for each connected re-
gion of shadow map texels that pass the depth test. To this end, they slide a window
of 2 × 2 adjacent texels across the relevant shadow-map region Rs. For each win-
dow position, the corresponding binary depth-test results are determined. �ese
are then employed to consult a lookup texture for deriving a set of oriented edges,
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✎

✍

☞

✌

Treating Gaps as Reconstruction Errors

Invariably closing gaps is a necessary approximation. It knowingly accepts over-
occlusion artifacts due to blockers that are wrongly introduced by assuming that two
adjacent shadow map texels sample the same surface. Actually, correctly dealing with
such gaps in absence of further information is a general problem also encountered in
ray tracing of depth images [Lischinski98,Keating99]. While heuristics were developed,
like performing gap filling between two adjacent micropatches only if their depth dif-
ference is below a user-specified threshold [Agrawala00], they are far from robust.

which together ultimately form the contours. Each edge is back-projected, and the
signed areas of the resulting radial segments with respect to the light center are ac-
cumulated to derive light visibility.8 Because only contour edges have to be back-
projected, and their number is typically smaller than the equivalent micropatch
count, some computations are saved. However, all shadow map texels within the
considered region Rs still have to be accessed, nevertheless.

Since a contour encompasses all neighboring shadow map samples passing the
depth test, light leaks are implicitly avoided. However, because contours are ex-
tracted in 2D instead of 3D space, occluders recorded in the shadow map may be
missed (see Figure 6.16(c)). �is can lead to noticeable popping artifacts, as the
depth values at the 2D contour may jump when the light moves relative to the
occluder (even if the triggering occluder is captured in both the old and the new
shadow map).

On the other hand, the way contours are constructed o�en causes neighboring
receiver pixels to exclusively process the same occluder contours. �is coherence is
exploited by Yang et al. [Yang09] in their packet-based approach to speed up visibil-
ity determination. �ey group N ×M receiver points to a packet and treat them at
the same time (allocating a single GPU thread per packet, unlike packet-based ray-
tracing methods), sharing the time-dominating contour-extraction computation
among them. In case the receiver points of a packet don’t have identical contours,
the packet-based evaluation is aborted and all NM points are processed indepen-
dently.

6.7.4 Acceleration with Multiscale Representations

For a reasonably high performance, it is essential to avoid useless computations,
like processing micro-occluders that don’t affect the result. An effective tool for
approaching this obvious goal are multiscale representations of the shadow map
(see also Appendix D), which can yield significant acceleration.

8�is radial area integration bears some resemblance to how visibility is computed with penumbra
wedges, covered later in Section 7.3.3.
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Figure 6.17. �e intersection of the shadow map’s near plane with the light–point pyramid
yields an initial search area for extracting occluder approximations. If the minimum depth
zmin of this area is known, it becomes possible to refine the search area iteratively.

Search-Area Determination

Instead of naively looping over all shadow map texels, ideally only those micro-
occluders that actually project onto the light source and hence block some light
are processed for a certain receiver point. In practice, a corresponding rectangular
shadow-map search area encompassing these relevant micro-occluders is deter-
mined, and only the shadow map texels in the search area are considered. Note
that we already silently assumed such a procedure in our exposition so far, un-
specifically speaking of relevant shadow map texels and of a relevant shadow-map
region Rs, which we now can define to equal the search area.

A conservative first estimate of the search area is given by intersecting the
shadow map’s near plane with the light–point pyramid defined by the point p. It
can be further tightened if the depth range [zmin , zmax] of the samples within the
search area is known [Guennebaud06]: by intersecting the plane z = zmin with the
pyramid and projecting the result onto the near plane (from the light center), a re-
fined search area is obtained (see Figure 6.17). �is procedure may then be applied
iteratively.

Knowledge about the depth range of the search area further allows identifying
fragments in umbra and lit regions, where no micro-occluders need to be pro-
cessed at all [Guennebaud06]. More precisely, if pl

z̃ > zmax holds, it can safely be
assumed that the light is totally blocked. Similarly, pl

z̃ ≤ zmin ensures that the whole
light source is visible.

Hierarchical Shadow Map

To quickly determine a conservative bound of the depth range of a shadow-map
region, a multiscale representation of the shadow map proves useful. �e hierar-
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(a) So� shadows. (b) HSM. (c) MSSM.

Figure 6.18. While an HSM is cheaper to create than an MSSM, the latter offers signifi-
cantly better classification results, considerably reducing the number of pixels where back
projection has to be actually performed to determine light visibility (colored reddish).

chical shadow map (HSM) [Guennebaud06], which essentially equals a hierarchi-
cal z-buffer [Greene93], is a mipmap-like pyramid for the original shadow map
that stores successively aggregated minimum and maximum depth values at each
coarser level. To answer a depth-range query, typically the finest level is chosen
where up to 2 × 2 adjacent texels conservatively cover the area in question. While
this keeps the number of required texture fetches constant, the actually consid-
ered shadow-map area is usually larger than the specified area, resulting in looser
depth bounds. As a consequence, the search area is o�en unnecessarily large, and
classifications as entirely shadowed or completely lit may be prevented.

Multiscale Shadow Map

An alternative multiscale representation that allows for much more fine-grained
area queries than the HSM, thus drastically reducing the amount of so� shadow
computations, is the multiscale shadow map (MSSM) [Schwarz07]. Here, a texel
at level i (with i = 0 denoting the finest level) stores the minimum and maximum
depth values in a neighborhood region of size 2i × 2i centered on the texel (see
Appendix D.2.2). Typically, an MSSM gets stored in a 2D array texture, enabling
the dynamic selection of the sampled level within a shader.

Key to the improved results obtained with the MSSM is its ability to directly
support queries for arbitrarily placed squares of power-of-two size. By contrast,
the HSM, essentially being a quadtree constructed over the shadow map, is re-
stricted to squares corresponding to quadtree tiles. �erefore, an arbitrary power-
of-two-sized square typically has to be grown to the next-coarser encompassing
tile, quadrupling its size. Consequently, the depth range is looser, o�en precluding
a classification as completely lit or in umbra (see Figure 6.18).

Hybrid Y Shadow Map

Unfortunately, both its construction and its memory footprint render the MSSM
too expensive for shadow map sizes greater than 1,0242 because the resolution is
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not reduced across levels. By contrast, the HSM entails significantly lower costs
thanks to its pyramidal nature, which, however, is also responsible for the usually
much more conservative results. To get the best of both approaches, a hybrid be-
tween the HSM and the MSSM, the Y shadow map (YSM) [Schwarz08b], is a good
choice in practice. It is constructed by combining the first n levels of the HSM with
an MSSM built from level n − 1 of the HSM.

Hierarchical Occluder-Approximation Extraction

Since the HSM constitutes a quadtree constructed over the shadow map, it is also
possible to hierarchically traverse this tree to identify and process relevant mi-
cropatches [Dmitriev07] instead of determining a tight search area and looping
over all texels within it. Similarly, the MSSM can be used to hierarchically extract
occluder contours [Yang09].

6.7.5 Acceleration by Adapting Accuracy

Another popular and effective possibility to speed up shadow computations is to
adapt the accuracy, typically by reducing the sampling density.

Micro-occluder Subsampling

Even if only relevant shadow map texels are considered, their number can easily
reach and exceed several thousand for a single receiver point. Such large counts
take a considerable amount of time to process, frequently preventing real-time
performance. One simple possibility to deal with this situation is to restrict the
number of micro-occluders that are actually processed and perform an accord-
ing subsampling of the search area. Proposed variants include sampling according
to a center-biased Poisson-disk sampling pattern [Bavoil06] and regular subsam-
pling [Bavoil08b].

Coarser Occluder Approximations

Another possibility to limit the number of processed shadow map entries is to re-
sort to a coarser-resolution shadow map for constructing the occluder approxima-
tion. To avoid overhead and allow a different effective shadow map resolution per
receiver point, in practice, simply the minimum channel of an appropriate level of
the HSM is employed [Guennebaud06], instead of actually rendering additional
shadow maps. Given an imposed upper bound on the number of shadow map
texels considered during visibility determination, typically the finest HSM level is
selected where the search area comprises few-enough texels to meet this budget
(see Figure 6.19). Note that an MSSM can be used equally well, as the information
stored in the MSSM is essentially a superset of that in the HSM.

Picking the minimum depth value of 2 × 2 adjacent shadow map texels as their
representative is simple and also conservative in that it ensures that if at least one
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(a) Level 0. (b) Level 1. (c) Level 2. (d) Level 3. (e) Level 4.

(f) Multiple levels. (g) Selected level. (h) With blending.

Figure 6.19. (a)–(e) Coarser micropatches can be constructed by utilizing a coarser HSM
level. (f)–(g) In practice, each receiver pixel chooses the finest level that still satisfies an
imposed upper bound on the number of micropatches. (f)�is, however, leads to noticeable
transition artifacts. (h)�ese can be alleviated by adopting a blending strategy, which incurs
some overhead, though.

of the original samples passes the depth test, then the coarser texel does so as well.
Generally, this strategy preserves the tendency of micropatches and microquads
to over- and underestimate occluders, respectively. In particular, fine structures
are implicitly enlarged with micropatches at each coarser level, whereas micro-
quads increasingly miss thin occluders. Occluder contours behave similar to mi-
cropatches in this respect, but they may be moved inwards to reduce the occluder-
approximation size and hence counter some overestimation; however, this may at
the same time also introduce some underestimation.

In addition to that, approximation quality is negatively affected by the missing
flexibility of the micro-occluders, entailed by their simplicity. Since, for instance,
micropatches have a uniform size in texture space, with them it is o�en not possible
to represent the occluder samples from the original shadow map well at coarser lev-
els. Better results can be achieved by generalizing micropatches, as demonstrated
with the so-called microrects [Schwarz08b], but this naturally incurs some addi-
tional overhead due to more expensive generation and representation.

Another source of problems, especially when using an occluder approximation
that provides merely a piecewise-constant approximation, is the depth-bias deter-
mination for the coarser levels. In particular, simply using the same bias value for
all levels can lead to visual artifacts, like surface acne or missing contact shadows.9

9Note that this effectively precludes adding a bias during shadow map generation, which should be
avoided anyway, as it affects the back projection’s position and size, leading to inaccurate shadowing
results.
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Furthermore, selecting the level for constructing the occluder approximation
individually per receiver point can lead to noticeable transition artifacts (see Fig-
ure 6.19(f)). If different levels are used for two adjacent pixels, different occluder
approximations get employed, and these generally yield an unequal amount of light
blocking. To alleviate related artifacts, the employed level can be made a continu-
ous quantity. �e visibility is then determined by considering the two closest inte-
ger levels and combining the results obtained for them via alpha blending [Guen-
nebaud07, Schwarz08b] (see Figure 6.19(h)). Note that this involves processing
more shadow map texels, causing some overhead. Furthermore, a scheme has been
suggested by Schwarz and Stamminger [Schwarz08b] where the budget of shadow
map texels to process can be specified locally in screen space, for instance, lower-
ing it in regions of high texture masking. �is effectively allows smoothly varying
the so� shadow level of quality (LOQ) across screen.

Subsampling in Screen Space

Apart from adapting the sampling of the occluders, performance further profits
from reducing the sampling density in screen space. Guennebaud et al. [Guen-
nebaud07], for instance, suggest an according sparse sampling scheme for their
so�-shadow-mapping algorithm, enabling high speed-ups. �ey derive an esti-
mate of the penumbra’s screen-space footprint and employ it to adjust the sam-
pling density by appropriately skipping visibility computations for some pixels.
�e resulting subsampled visibility solution is then subjected to a pyramidal pull-
push reconstruction to determine the final so� shadows. On the downside, with
increasing sparseness, objectionable patterns can appear. Moreover, because the
underlying sparse sampling pattern is fixed in screen space, these patterns can be
expected to become particularly noticeable in animated scenes.

6.8 Using Multiple Depth Maps

A single shadow map only captures the occluders closest to a dedicated light point.
Since we are dealing with area lights, though, further occluders may actually in-
fluence the light visibility. However, these are incorrectly ignored when relying
on just one shadow map for occluder identification, which basically all algorithms
covered so far do. While they still o�en manage to produce pleasing so� shadows,
accurate results require that all contributing occluders be taken into account.

�e situation can be significantly improved by computing additional shadow
maps and processing all of them during visibility computation. Basically, any algo-
rithm can be augmented accordingly if it is capable of performing correct occluder
fusion, like bitmask so� shadows (see Section 6.7.2).

Furthermore, there also exist several dedicated approaches. �ey typically em-
ploy a single extended shadow map for the light center l′. At each texel, it en-
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(a) Layered attenuation maps. (b) Penumbra deep shadow maps.

Figure 6.20. (a) Layered attenuation maps store multiple depth samples per texel (obtained from warped shadow maps
from multiple light sample points) and the resulting attenuation at these samples. (b) Similarly, penumbra deep shadow
maps encode attenuation as a function of depth (only contribution from one light sample shown). It is derived from
the visibility events encountered along a ray from the light center.

codes several occluder samples encountered along the ray emanating from l′ and
passing through the texel’s center. �is map is constructed by generating shadow
maps from multiple points on the light source and subsequently merging them.
Two basic options for the representation have been utilized: layered depth im-
ages [Shade98] and deep shadow maps [Lokovic00].10

Layered attenuation maps. Agrawala et al. [Agrawala00] chose layered depth
images (LDIs) as representation for their layered attenuation maps (see Fig-
ure 6.20(a)). An LDI stores at each pixel a list of depth samples (i.e., several depth
layers). For each recorded depth sample, the depth value as well as a counter re-
flecting the number of shadow maps and hence light points from which the sample
is visible are maintained. In a preprocess, for all sample points on the light source,
shadow maps are successively rendered and warped into the reference view from
the light’s center, with the warped samples being added to the LDI. If the LDI pixel
already features an entry whose depth matches the warped sample’s one within
some small tolerance ε, the entry’s counter is incremented. Otherwise, a new layer
is inserted, with its counter being initialized to one. Finally, an attenuation map is
computed by dividing all counters by the number of considered light points.

During rendering, this attenuation map is consulted to determine whether a
depth sample has been recorded for the receiver point (again within tolerance ε),
with the accompanying attenuation value indicating the fraction of the light (i.e.,

10Occlusion textures (see Section 6.6.2) also employ a multilayered occluder representation. How-
ever, unlike extended shadow maps, the layers do not correspond to per-texel depth samples but result
from slicing the scene. Consequently, they store whether any occluder exists in the corresponding slice,
and not at which light-space depth an occluder is located.
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Ray Tracing against Multilayered Shadow Maps

Extended shadow maps storing several depth values per texel provide an augmented
image-based scene representation compared to ordinary shadow maps. �is is exploited
by several (offline) methods that compute so� shadows by casting rays from the receiver
point to sample points on the light source, utilizing such multilayered shadow maps to
determine intersections with the scene. Early examples include the works by Lischin-
ski and Rappoport [Lischinski98], as well as Keating and Max [Keating99]. Agrawala
et al. [Agrawala00] introduced several quality and performance improvements with
their coherence-based ray-tracing technique. More recently, Xie et al. [Xie07] presented
an algorithm that further supports semitransparent objects.

the percentage of light sample points) from which the receiver point is visible. If
no entry is found in the attenuation map, the receiver point cannot be seen from
any (considered sample) point on the light source and, hence, is in umbra.

Penumbra deep shadow maps. By contrast, St-Amour et al. [St-Amour05] adopt
deep shadow maps (see Section 8.1), storing occlusion as a function of depth for
each texel. For each light point, a shadow map is rendered. To incorporate its in-
formation, for each texel of the deep shadow map, a ray is cast against the shadow
map, recording changes in visibility (events) along the ray (see Figure 6.20(b)).
More precisely, the ray from the light center through the texel’s center is consid-
ered and projected onto the shadow map, with all covered shadow map texels being
processed. Finally, attenuation as a function of depth is computed by integrating
the visibility changes. �e function is subsequently compressed by reducing the
number of stored function samples such that a prescribed bound on the approx-
imation error is respected. During rendering, the receiver point is projected into
light space and the according attenuation factor is read from the penumbra deep
shadow map.

Although such methods allow for rendering rather accurate so� shadows in
real time once the extended shadow map has been created, the generation of this
structure is typically only possible at interactive rates, at best. In particular, high
quality usually requires considering many light sample points and thus acquir-
ing and incorporating a large number of shadow maps. Consequently, these ap-
proaches are limited to static scenes in practice.

6.9 Summary

In this chapter, we covered a wide range of different algorithms for producing so�
shadows. While all of them employ some image-based representation, they differ
significantly in their complexity, speed, and accuracy. Generally, a higher quality
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is paid for with a slower performance, but clever formulations, prefiltering tech-
niques, and multiscale representations can provide a competitive edge.

�e phenomenologically motivated approach of adaptively blurring hard-
shadow-test results (Section 6.5) o�en yields visually satisfying so� shadows. Its
most prominent representative, PCSS, is extremely simple to implement and,
hence, frequently employed in real-time applications. However, as the blocker
search and the filtering steps involve sampling the shadow map, the attainable per-
formance is quite limited if many samples are taken. To avoid this, the light size
should be kept rather small, which is also advisable to prevent inaccuracies due
to the underlying approximations made to become too pronounced. Alternatively,
subsampling may be performed, which negatively affects quality, though. Con-
sequently, if both speed and quality matter, a more advanced variant should be
adopted. A prime candidate is VSSM, whose performance is almost independent
from the scene complexity and the light size once a VSM has been created. How-
ever, it is considerably more complex than PCSS.

For scenes of smaller extent, occlusion textures (Section 6.6.2) offer another
practical solution with high performance and reasonable so� shadow quality.
Building on prefiltering like CSSM and VSSM, this algorithm’s running time is
essentially independent of the light’s size, rendering it a good solution for interior
scenes with large light sources. Note, however, that the method does not scale well
for large scenes.

If more accurate results are desired, so�-shadow-mapping algorithms (Sec-
tion 6.7) are a natural choice. Generally, the highest quality is obtained when us-
ing occlusion bitmasks, ideally combined with microquads. Occluder contours
and simple area accumulation usually also yield good results and further allow
for a rather fast implementation by adopting hierarchical contour extraction and
packet-based processing [Yang09]. O�en, achieving high performance may neces-
sitate resorting to coarser occluder approximations, though. �is requires care to
avoid artifacts, like noticeable transitions. Otherwise, one may easily end up with
visually less-pleasing shadows compared to the approximate solution obtained
with simple PCSS.

Finally, if required, accuracy can be further improved by considering multiple
shadow maps. However, this entails a significant cost that is supposedly only justi-
fiable in very few cases. But even then, the sampling-related limitations of the em-
ployed image-based representation generally preclude producing completely ac-
curate so� shadows. To overcome these restrictions, we turn to geometry-based
approaches in the next chapter, which are o�en slower, though.





CHAPTER 7

Geometry-Based

Soft-Shadow Methods

�is chapter presents so� shadow methods that are based on creating the geom-
etry for the penumbra regions rather than purely relying on images of the scene
sampled from the light source. �ese algorithms come in several flavors, where we
generally will move to higher and higher correctness. Geometry-based so� shadow
approaches are build upon the idea of creating geometry for the penumbra regions
and rasterizing these to compute smooth shadows for receivers (see Figure 7.1).
�ey typically do not share the aliasing and visibility problems of image-based
methods. On the other hand, they are usually more computationally expensive.

First, we will describe some simple and highly approximate, but very fast,
methods to add a so� appearance to hard shadows. �en, we will go into more
accurate but slower methods that belong to a type of algorithm called so� shadow
volumes. �e chapter will end with a class of methods called view-sample mapping,
which, if desired, can produce correct sample-based light visibility for each point
on the screen.

7.1 Plausible Shadows by Generating Outer Penumbra

We will start by describing a category of techniques that we classify as outer penum-
bra methods. Image-based equivalents have been covered in Section 6.4. �e
common denominator is that these methods first compute a hard shadow that is
then smoothed outwards to simulate the penumbra (see Figure 7.1, le�). �e first
geometry-based algorithms were designed to work either without pixel shaders, or
with very rudimentary shaders, since pixel shaders just started to appear around

209
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Penumbra

Using whole penumbra 

region (inner + outer)

Umbra UmbraPenumbra

Outer penumbra

Figure 7.1. �e geometry-based so�-shadow methods create polygons for the penumbra
regions, which then are rasterized with fragment shaders that compute so�-shadow values
for receivers inside the penumbra. �ere are two categories of approaches—one that creates
polygons for the whole penumbra region, generally slower but resulting in higher quality
(le�), and the other that only considers the outer half of the penumbra region (right), since
this is considerably simpler. For both approaches, the umbra part is filled in by a standard
method for hard shadows, such as shadow maps or shadow volumes.

2002. Most of the techniques described in this section can be considered obsolete,
nowadays, but have historical interest. �e techniques that we will cover are single-
sample so� shadows [Parker98], so� planar shadows using plateaus [Haines01],
penumbra maps [Wyman03], and smoothies [Chan03].

7.1.1 Single-Sample Soft Shadows

Single-sample so� shadows presented by Parker et al. [Parker98] provide a sim-
ple technique to achieve a so�-shadow–like effect in the context of ray tracing.
�e main principle is to derive shadow intensity from a single-sample ray based
on how closely the ray passes to the original object. To find this distance, each
object is surrounded by an englobing geometry that is tested for intersection (see
Figure 7.2). �e paper states that each triangle is enlarged per ray. Many people,
however, assumed or proposed the less costly approach with bounding shapes that
were chosen conservatively in advance.

�e assumption is that the shadow-casting surface is locally a plane hiding a
part of a spherical source (as illustrated in Figure 7.2, right, where the plane is
outlined in red).

Parker et al. derived the following formula that describes the amount of the
light source that is hidden:

s(τ) = 1 + sin(πτ − π
2
)

2
,
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Figure 7.2. Single-sample so� shadows [Parker98]. A light source, blocker (red), and corre-
sponding penumbra region (le�). �e blocker is virtually enlarged before shooting a shadow
ray (green) to create outer penumbra (middle). Looking from the view sample to the light
source, the blocker is assumed locally to be a plane that partially hides the light source
(right).

where τ corresponds to the relative location in the penumbra region of the shadow
ray, which is shot from the point to be shaded to the light-source center. �ey point
out that a polynomial matching (of values and derivatives at the extremities) gives
the simple expression s(τ) = 3τ2−2τ3. To further reduce computational costs, the
value can be precomputed and stored in a texture [Haines01, Chan03].

Another contribution was the way to approximate the penumbra region. �is
is illustrated in Figure 7.2 (middle). �e goal is to provide a smooth variation
of size equivalent to W on the le� side. �e light source is replaced by a point
light and each view sample shoots a single ray towards it. Inside the hard shadow,
the illumination is still assumed to be zero (only an outer penumbra is added).
Otherwise, the shortest distance x of the ray to the object is computed. �e variable
b should be aD/A because W ≈ aD/(A − a); τ can then be set to x/b to achieve
the wanted behavior.

7.1.2 Soft Planar Shadows Using Plateaus

So� planar shadows using plateaus [Haines01] avoid ray tracing by attaching the
outer-penumbra region to shadow boundaries on a planar ground. �e camera
is placed orthogonally to the planar receiver to create a shadow texture for the
ground. Each vertex and silhouette of an occluder are transformed into a three-
dimensional shape that, when projected onto the ground, delivers a quad or tri-
angle for a silhouette edge and a circular approximation to outline the penumbra,
according to Figure 7.3. One smaller problem is that the construction of the plateau
volumes may contain hyperbolic surfaces if, for example, two vertices adjacent to
an edge are not at the same distance from the light. �e algorithm was adapted to
graphics hardware when shaders were still not supported.
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Figure 7.3. So� planar shadows using plateaus [Haines01].

7.1.3 Penumbra Maps

Wyman and Hansen later proposed a related solution, called penumbra maps, for
arbitrary receivers, that exploits the fragment-shader capability that recently had
appeared at the time [Wyman03] . Penumbra maps are based on the observation
that, by definition, the outer-penumbra region is always visible from the light cen-
ter (while the inner-penumbra region is not). �is allows for rasterizing the so�
shadows directly into a texture that can then be applied just like a shadow map.
�e algorithm starts by computing a standard shadow map. In a second pass, the
penumbra map is created by rasterizing outer-penumbra geometry into a separate
buffer, still from the light’s point of view and using the same depth buffer, but with
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Figure 7.4. Construction of the penumbra maps—a texture storing the so�-shadow values
for the scene.
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further depth writes disabled (see Figure 7.4). Each vertex on the silhouette is ex-
truded to a cone corresponding to the spherical light source projected through
the vertex. Silhouette edges are transformed to sheets connecting these cones tan-
gentially, which is a similar construct as used for the accurate penumbra-region
determination.

While rasterizing these sheets in the light’s view, a shadow intensity is derived
and stored in the penumbra map. To compute this value, they rely on an ad-hoc
formula that combines the current height of the rasterized sheet, ztri; the receiver
point from the underlying depth map, zrec; and the distance of the occluding ele-
ment from light, zoccl (see Figure 7.4).

Finally, the scene is rendered from the camera, and for each rasterized pixel,
the so�-shadow value is looked up in the penumbra map, while the hard-shadow
value is looked up in the shadow map.

�e approach delivers overestimated shadows and uses a discretized map de-
spite the geometry extraction.

Penumbra Map Construction

As depicted in Figure 7.4, the penumbra map is created in the following way from
the scene geometry for every frame. For each silhouette edge of an occluder (blue),
shadow influence cones (light blue) are extruded for the two vertices, all the way
to a plane (gray) at an appropriate distance beyond all shadow-receiving objects.
An outer quad between the cones is created per edge (orange). In addition, spe-
cial polygons are added for the outer-cone boundaries to connect adjacent quads.
�ese quads and polygons are then projected, from the light position, down onto
the far plane to rasterize shadow into the penumbra map. �e fragment shader
computes a shadow-percentage value that varies linearly from the hard shadow
border to the outer-penumbra limit by using the relationship between the occlud-
ing edge’s z-value (interpolated between the edge vertices), the quad-fragment’s
z, and the receiver’s z-value, according to the formula shown on the right in the
figure.

7.1.4 Smoothies

Smoothies [Chan03] are theoretically very similar to penumbra maps. However,
instead of polygonizing the outer-penumbra borders, they use small quads called
smoothies, produced per frame and attached at each silhouette and vertex. �ese
small quads are parallel to the light plane and of constant extension in the penum-
bra direction in the light’s view. Nevertheless, the amount of rasterization work
is the same for penumbra maps and smoothies, since the smoothie quads and
penumbra polygons have equally large footprints in the light’s view.

�e main difference between smoothies and penumbra maps is that the
penumbra maps create three-dimensional cones and sheets for the penumbra re-
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Figure 7.5. Smoothie construction.

gions, while smoothies create only flat quads parallel to the light plane (see Fig-
ure 7.5). Penumbra maps store only the depth of the blocker, while smoothies also
store so�ness as an α-value. To deal with superposition of smoothies, a min blend-
ing is used to keep the lowest penumbra value per pixel. �e resulting mask can
then be queried via texture lookups.

Since smoothies and penumbra maps produce a so� shadow texture as seen
from the light, the algorithms inherit similar resolution artifacts and biasing prob-
lems as shadow maps. Nevertheless, as long as the resolution is adequate, the nature
of so� shadows o�en hide aliasing along sharp shadow borders well. Biasing can
be a problem where a blocker is close to the receiver.

�e smoothies method is related to the method used by Crytek in their game
engine CryENGINE for the game Far Cry, from 2004.1

Smoothie Construction

Figure 7.5 illustrates the process for creating the smoothies and how these are used
to create a so� shadow texture that is then used in runtime to look up penumbra
values when rendering the scene from the camera. (A shadow map is used for the
umbra.)

1�at method is described in US patent application no. US 2003/0112237A1, filed by Marco Cor-
betta on behalf of Crytek GmbH in December 2001.
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�e smoothies algorithm creates a so� shadow texture, the smoothie buffer, by
extending a fin (top orange outline) outwards from each occluder’s silhouette edge
horizontally (i.e., parallel to the light plane). �e amount of extension is equal for
all fins, and they are all textured by the same shadow falloff texture. Special fins
are created to patch the corners (not shown in the figure). �en, each fin is pro-
jected onto a plane (gray) (i.e., the smoothie buffer), where the fragment shader
looks up the falloff α from the fin texture and rescales the value to α′, according to
the given formula in the figure, to create a varying penumbra width. Furthermore,
zrec is the receiver’s z-value from a depth map (the shadow map) that also has been
created from the light’s view. Finally, when the scene is rendered from the camera,
the smoothie buffer is used to look up the shadow values as follows: for each ras-
terized potential shadow-receiving fragment, if zfragment > zoccl, where zoccl is the
occluder’s z-value (stored together with the α′ value in the smoothie buffer), the
so�-shadow value α′ is applied.

7.2 Inner and Outer Penumbra

In this section, we will treat methods that are similar to the outer-penumbra meth-
ods in the sense that they use silhouette-edge information to create a separate
buffer used for so� shadows. �e first two methods are skirt buffers and multi-
layered shadow fins, which are nearly identical to smoothies and penumbra maps,
although they are capable of producing both inner and outer penumbra. Secondly,
we will describe the so� shadow occlusion camera.

7.2.1 Skirt Buffers

De Boer has presented an algorithm that is very similar to penumbra maps and
smoothies [deBoer06]. �e main difference is that it uses image-based methods
to construct the equivalent to fins in the smoothies method or penumbra regions
in the penumbra-maps method. In addition, it produces both inner and outer
penumbrae. �is method was also partially covered in Section 6.4.1.

Starting with the depth values of a standard shadow map and applying an edge-
detection filter on this, the silhouette edges as seen from the light source are out-
lined and the result is stored in a new buffer—still in light space. Each silhouette
edge is then grown inwards and outwards, by repeatedly using an image-based 3× 3 filter where the number of iterations depends on the light source’s radius. �e
rationale is to create a penumbra skirt for each silhouette edge, and the correspond-
ing buffer is called the skirt buffer. �is skirt buffer is then used in a final render
pass from the camera to apply a so�-shadow value per pixel that depends on the
ratio of distances between the receiving pixel, the occluder, and the light source in
an identical manner as in the penumbra-maps method.
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7.2.2 Multilayered Shadow Fins

Cai et al. [Cai06] extend the idea of using smoothie fins to not only extend them
outwards but also inwards in order to handle inner penumbra. In other words, both
an inner- and an outer-penumbra map is created. Another important advantage of
this method is that by using multiple layers of fins, they ameliorate the problems of
overlapping penumbrae that afflicts the other methods. Cai et al. use 16 layers of
fins, unequally distributed in depth from the light source. �is is achieved by first
sorting the fins into 1,024 equally distributed layers of depth from the light and
then merging the layers in such a way that each of the 16 final layers a�erwards
holds approximately the same number of fins.

An illuminance buffer is created for each of the 16 fin layers, storing the amount
of so� shadow per pixel in light space. Since a fin of one layer affects all illuminance
buffers of layers further from the light source, each buffer is computed incremen-
tally in order from the light and copying the result of the previous layer’s illumi-
nance buffer.

7.2.3 The Soft Shadow Occlusion Camera

Mo et al. present the so� shadow occlusion camera [Mo07]. �is method has sim-
ilarities with the fin-related methods in the sense that quads are rendered for each
silhouette edge into a special buffer (here called a distortion map) so that both
inner- and outer-penumbra regions can be handled.

�e idea is to create a camera that sees around edges. Such a camera has been
suggested by Popescu and Aliaga [Popescu06]. A shadow map does not contain
enough information to determine visibility for the full penumbral regions. For
instance, the inner-penumbra regions are never represented. �erefore, the occlu-
sion camera warps the input geometry in the vertex and fragment shaders in such
a way that geometry in the penumbral regions (i.e., near silhouette edges) become
fully visible.

�e algorithm starts by detecting silhouette edges on the CPU in light space.
For each edge, a quad (much like a skirt, or two fins—one on each side of the edge)
is extruded perpendicular to the light’s view direction. �is quad is rendered into
the distortion map, storing the required amount of warp for the geometry in the
edge’s neighborhood. �is information is stored as the image-space coordinate for
the nearest point on the silhouette edge, the two-dimensional edge surface normal
and the magnitude of the depth discontinuity znear and zfar.

A standard shadow map is also created. �en, the main principle for com-
puting so� shadows goes as follows: A fragment shader computes the amount of
shadow intensity by, for each pixel, checking if it lies near a depth discontinuity
in the distortion map. If not, the shadow map is used for determining visibility.
Otherwise, the fragment position is warped according to the distortion map. If
the point is still in hard shadow, then it is completely shadowed. If it is no longer
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near a discontinuity, then it is completely lit. Otherwise, the visibility is approxi-
mated by the distortion magnitude. �e rationale for the latter is that there is some
relationship between the penumbra value and the amount of distortion.

Like for skirt buffers and the outer-penumbra methods, the algorithm has
problems when multiple penumbrae overlap, resulting in visible artifacts. But for
well-behaved objects, all these methods are capable of creating nice-looking so�
shadows very rapidly.

7.3 Soft Shadow Volumes

�e algorithms of this class are also capable of creating inner and outer penum-
brae. Silhouette edges are used here as well, but the main difference lies in how
the visibility values are computed. For these methods, the so�-shadow value for
a view sample is computed by calculating the occluded area of the light source by
integrating over the silhouette edges. In addition, the renderings are typically done
in eye space instead of light space.

7.3.1 Overview

Geometry-based so� shadows were launched into quite a different direction by a
series of methods that led to the so� shadow volume algorithm, which will be de-
scribed in this section. �e so� shadow volume algorithm stems from the concept
of using penumbra wedges [Akenine-Möller02, Assarsson04].

�e initial penumbra-wedge approach suggests encapsulating the penumbra
regions by geometrically creating a wedge from each silhouette edge, where the
wedge encloses the penumbra cast by the corresponding edge (Figure 7.6).
Shadow-receiving points that lie inside the wedge receive a shadow value solely
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Figure 7.6. Penumbra wedges are tangent to silhouette edges and the source.
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based on interpolation between the inner and outer wedge borders. Wedges are
not allowed to overlap or artifacts appear, which leads to several complicated wedge
situations (Figure 7.7). �e so� shadow volume technique li�s this restriction of
the penumbra-wedge algorithm by proposing a method to split the shadow contri-
bution unambiguously between all edges [Assarsson03a]. �e penumbra wedges
then only need to be conservative. A nice feature is that so� shadow volumes
create shadows without any discretization artifacts or undesirable discontinuities,
which o�en leads to a visually pleasing result. Later approaches improve on the
speed [Assarsson03b,Lengyel05,Johnson09], ameliorate the approximations [For-
est06], and also show how to get correct sample-based results [Laine05c, Lehti-
nen06, Forest08]. We will now treat the different approaches in more detail.

7.3.2 Penumbra Wedges

�e major idea of penumbra wedges is to adapt the shadow-volume separation into
umbra and lit regions for so� shadows. �e observation is that silhouette edges as
seen from the light source should contain all the information that is needed to
derive shadows. �erefore, the algorithm starts by creating a hard shadow in the
scene. �en, wherever a light silhouette is interacting with the shadow, the initial
solution is overwritten. To compute the influence region of each light-silhouette
edge (determined from the center of the source), the concept of penumbra wedges
is introduced (Figure 7.6). For each silhouette edge, two tangential points are found
on the source that correspond to light-tangent planes containing the edge. �e
penumbra wedges are then defined by the shadow volumes created from the tan-
gential points on the light. On the sides, two infinite triangles close these tangent
faces to a volume. �e first algorithm exploiting this representation was introduced
for graphics cards without shader support [Akenine-Möller02]. Consequently, the
shadow computation was necessarily simple, since CPU rasterization was used.
�e authors decided to linearly vary intensity inside of the penumbra wedges (not
unlike [Wyman03]). To achieve a continuous behavior in this scenario, care has to
be taken for adjacent silhouette edges. �e penumbra-wedge side triangles should
be shared, and this results in a very involved construction that needs to distin-
guish between several geometrical situations that can occur. Figure 7.7 depicts
some of the problematic light-source/edge configurations that could not easily be
handled. �e interested reader is referred to the paper by Akenine-Möller and
Assarsson [Akenine-Möller02] and its amelioration [Assarsson04]. Because these
methods can be considered outdated due to their successors, we will not discuss
them in more detail here. �e important message is that a simple scheme to inter-
polate the penumbra contribution between the inside and outside of the penum-
bra wedge quickly runs into insurmountable robustness problems. Overlapping
wedges have to be dealt with. Clipping the wedges against each other only works
for very simple shadow casters. All these problems called for a solution where the
wedges can be constructed per silhouette edge, in a streaming fashion, disregard-
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silhouette edge

Figure 7.7. Problematic penumbra-wedge situations. (a) A standard nonproblematic case.
(b) Here, the edge lies totally within the penumbra, cast by the edge itself. (c) �e edge
is inside the penumbra cast by its adjacent (upper) neighboring edge, which makes a ge-
ometrical separation between the wedges very complicated. �is illustrates the desire to
separate the geometrical wedges from the penumbra computation and motivates the so�
shadow volume technique, described in Section 7.3.3. (d) Example showing that silhouettes
from real objects can be complicated, making it virtually impossible to create reasonably
nonoverlapping wedges that separate adjacent wedges with a shared side plane.

ing other wedges and where the penumbra contribution only depends on the edge
itself and not adjacent edges. �is leads us into the next topic—the so� shadow
volume algorithm.

7.3.3 Basic Approach

�e main principle of so� shadow volumes is very similar to the penumbra-wedges
approach. Each light silhouette gives rise to a penumbra wedge. �e main dif-
ference is that they are now constructed independently for each light-silhouette
edge or adjacent edge (see Figure 7.8). For each penumbra wedge, shadows are
no longer determined by interpolation; instead, a fragment program is executed
on the contained view samples. Each view sample projects the silhouette onto the
light source and computes its blocking contribution. �is degradation of penum-
bra wedges to enclosing volumes of the transitional shadow region allows us to sim-
plify construction of the wedges substantially because they can be allowed to be
very coarse bounding volumes. �ey are no longer used to directly interpolate
shading. Many of the complex cases (e.g., (almost) alignment with the source—
see Figure 7.7(b))—can be circumvented by shi�ing the wedges’ vertices (see Fig-
ure 7.8(a)).

Wedge Construction

�e construction is as follows: both silhouette vertices are li�ed to the same height
(the nearest distance to the light), and the front and back quads are constructed
as before. �e sides are based on tangential planes to the light, which contain the
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Figure 7.8. Wedge-construction steps. (a) Move the vertex furthest from the light center lc
towards lc to the same distance as the other vertex. (b) Create the front and back planes.
(c) Create the le� and right planes. (d) �e final wedge is the volume inside the front, back,
le�, and right planes.

edge extremity and the cross product of the edge and the vector connecting the
extremity with the light’s center. �e resulting volume is a conservative bound for
the penumbra region generated by the light silhouette edge. Nevertheless, their
determination is performed from the light’s center, which is an approximation and
can even result in temporal incoherence when an edge is suddenly becoming a
silhouette (see Figure 7.10, le�).

Computing the Soft-Shadow Value

�e next step is to compute the actual shadow intensity. �is works almost like the
approach for computing the area of a polygonal closed shape: choose an arbitrary
reference point (e.g., the center of the light source) and sum up the signed areas of
all triangles defined by edges and the reference point. �e nice observation is that,
as long as the edges have a consistent orientation, the final sum can be computed
by treating the edges independently and accumulating the result.

�is is actually an example of using Green’s theorem in a plane to compute an
area by integrating over the curve enclosing the area. In our case here, the curve
consists of the silhouette edges projected onto the light-source plane. �e resulting
area is divided by the light-source area to get an occlusion value between [0,1]. �e
integration constant is measured using shadow volumes constructed from the cen-
ter of the light source. �is measures how many shadow volumes the view sample
is located within, and this value is added to the result from the integration. �e
shadow-volume pass is also used to create hard shadows for the umbra regions in
the image.

One minor detail is worth noticing. We only want to compute the area inside
the light source, and thus, we can clamp the edges to the light-source borders.
�en, the computation becomes much simpler if, instead, one sums the opposites,
meaning the sector inside the light source (described by the two clamped-edge
extremities and the center) minus the triangle formed by the clamped edge itself
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Figure 7.9. Computing the blocked area for an occluder at a shadow-receiving view sam-
ple. Each silhouette edge is treated separately. �e blocking contribution of an edge is the
intersection of the light source with the sector described by the center of the light source
and excluding the triangle described by the edge and the center. Depending on the edge’s
orientation, the area is subtracted or added. �is leads to an integration of the occlusion
area once all light-intersecting edges are processed.

and the reference point. (Figure 7.9 shows an example of the process.) �e solution
works because the sector area is restricted to the light-source region resulting in a
finite value.

�e projected edge orientation, which defines the sign of the integration con-
tribution, is chosen according to the view sample and the light’s center. For this,
each penumbra wedge is virtually divided into an inner and outer half-wedge by a
hard-shadow quad created from the light’s center. If the view sample is outside the
hard shadow quad, then the contribution is positive since we add light-source oc-
clusion; otherwise, the contribution is negative to add visibility. �is classification
is equivalent to whether the light center is in the “blocked” half-space by the edge
or not. To compute the covered light area efficiently, a four-dimensional texture
can be derived in a precomputation (four dimensions because it is queried by a
pair of two-dimensional endpoints of the projected and clamped edges). �en the
blocking contribution of each clamped edge boils down to a single lookup. �is is
especially efficient for textured light sources, which is covered in Section 10.1.1.

Problems

Some shortcomings of this solution are that occluders are necessarily additively
combined (see Figure 7.10, right). Otherwise, a more expensive method is needed
where the shadow information for each occluder is derived separately [Assars-
son03b] (see Section 7.3.4). Unfortunately, this can lead to a strong umbra overes-
timation. On the other hand, for nonoverlapping silhouettes, the method derives
an accurate solution. �e main reason it has not yet been used in practice is the cost
of the approach. It inherits the deficits of shadow volumes with strong overdraw.
Historically, silhouette determination was also considered costly, and correspond-
ing wedges need to be created.
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Figure 7.10. Approximations: When finding the silhouette edges, the silhouette is assumed
as seen from the center of the light source, which is an approximation, since the true silhou-
ette varies over the light source (le�). �e original so� shadow volume algorithm ignores
correct treating of overlap between different occluders (i.e., incorrect occluder fusion), since
each silhouette contributes a constant amount, disregarding which part it occludes (right).
�us, the le� and right situation will incorrectly produce the same amount of shadow. �is
is solved in more recent so� shadow volume algorithms.

7.3.4 Improvements

Several improvements have been presented since the first so� shadow volume al-
gorithm, both in terms of speed and quality.

Lengyel [Lengyel05] presents a way to use orientation and z-tests to optimize
the penumbra-wedge rendering. He also passes the plane equations for the inner,
outer, and hard-shadow planes into the fragment shader to classify the samples
based on their plane distances.

�e quality of the shadows can easily be improved by splitting the light source
into smaller patches and using the algorithm for each light patch [Assarsson03b].
�is is somewhat similar to an approximation via several point lights but here us-
ing small patches. By splitting the light source into 2 × 2 or 3 × 3 patches, the
artifacts from both using only the silhouette edges as seen from the center of the
light patch and ignoring correct treating of overlapping occluders, are significantly
improved. However, the execution time grows roughly linear with the square root
of the number of patches. Splitting the light source is actually an approach that
can be used in general—even for image-based methods—to improve the shadow
quality.

Forest et al. [Forest06] provide an amelioration over the several passes (for each
region of the light). �ey break the light virtually into four regions and compute the
blocking contributions during a single pass for all four regions (the key is that the
silhouettes are detected for the common corner of all four light regions). Further,
they keep track of already-created blocker surfaces by maintaining a bounding box.
Whenever a new silhouette is added, the overlap of the bounding boxes is tested
and the shadow contribution is decreased by a relative amount, according to the
detected intersection. Of course, this is a coarse heuristic, but it results in better-
looking, lighter shadows.
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Figure 7.11. Illustration of the depth-complexity function. (a) Each sample point on the
light source (typically 256 to 1,024 samples) is represented with a depth counter. (b) Two
occluders are located between point p and the light source. (c) �e occluders projected on
the light source from p. (d) �e depth-complexity function tells us the number of surfaces
that overlap a point on the light source. During the integration, when adding the contribu-
tion from each silhouette edge, the affected depth counters are increased or decreased ac-
cordingly. (e) �e visibility function is reconstructed from the depth-complexity function.
(f) Finally, a ray is shot towards any unoccluded sample to determine whether the light
source happens to be fully covered by any object whose silhouette edges do not intersect the
light source.

Depth-Complexity Sampling

So� shadow volumes have also been used successfully in the context of offline ren-
dering using ray tracing. Just like for image-based methods, the light visibility can
be point sampled (see Section 6.2.4). Laine et al. [Laine05c] use several light sam-
ples, each with a counter that counts the number of layers of occlusion, instead
of only an occlusion value for the whole light (see Figure 7.11). A�er integration
of all silhouette edges, the result indicates, up to some offset that is the unknown
integration constant, how many surfaces are intersected by a ray from the view
sample to each light sample. As a result, only one final ray needs to be shot per
view sample to derive the correct values for all light samples. Mathematically, this
corresponds to finding the integration constant, which is still ambiguous a�er just
having done the covered-region integration from the silhouette edges. To illustrate
the necessity of this last ray, imagine that not a single penumbra wedge interacted
with a view sample. �is does not necessarily mean that the sample cannot lie in
shadow; for instance, it can lie deep in the umbra region (see Figure 7.11(f)). To
find silhouette edges related to view samples, they use a hierarchical hemicube-like
structure. �en each view sample finds potential silhouette edges from this struc-
ture and tests which ones of these are actual silhouettes that will be integrated in
the process.

�e work by Lehtinen et al. [Lehtinen06] improved the method by taking ad-
vantage of the fact that locally clamping penumbra wedges based on the adjacent
triangles can significantly reduce their size (see Figure 7.12). Futher, they use a
three-dimensional kd-tree to recover the potential light silhouette edges that are
also silhouette edges for the view sample in question. �e point of using a three-
dimensional kd-tree is that, compared to the original two-dimensional grid used
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Figure 7.12. �e green region is the wedge from standard creation [Laine05c] . �e wedge
can, however, be cropped by the planes of the adjacent triangle planes, since the silhouette
(red dot) is only a silhouette for points in the blue region [Lehtinen06].

by Laine et al., when questioning the data structure for potential silhouette edges
from a certain point in space, the returned set of edges is significantly less conser-
vative, which both reduces memory usage and improves speed.

Depth-Complexity Sampling for Real-Time Rendering

Forest et al. present an algorithm that can be seen as an adaptation of the work by
Laine et al. [Laine05c] for the GPU [Forest08]. No hierarchical structures are used.
Instead, penumbra wedges are directly involved to determine the view samples
with which the light silhouette edges interact. �e counters are packed into bits of
floating-point numbers, allowing maintaining several counters in a single variable.
Nevertheless, care has to be taken to ensure that there is no overflow because it
would pollute the neighboring counters. Lookup tables are used to evaluate the
result, but imprecisions can lead to stronger artifacts in this case. �e solution
achieves interactive performance if the number of light samples is low (typically
16) because of the necessity to maintain counters. Instead of tracing a reference
ray, in order to find the integration constant [Laine05c], Forrest et al. use shadow
volumes, like the original so� shadow volume algorithm [Assarsson03a]. �is is,
however, not fully robust here, since imprecisions from using 32-bit floating-point
operations in the projection of edges onto the light source could cause nonrobust
(inconsistent) results for light samples very close to the edge. If the value for the
reference sample becomes wrong, all light-sample values will be wrong. �erefore,
preferably, the reference sample should be chosen from safe samples. No such safe
samples are guaranteed to exist, but more care could be achieved by using shadow
volumes from more than just one sample position on the light source and using
voting to find a value that is correct with a higher probability.

Soft textured shadow volumes. Forest et al. combine textured shadow volumes
(see Section 2.5) with so� shadow volumes to achieve so� textured shadow vol-
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umes [Forest09]. Like for textured shadow volumes, a shadow volume is created
per triangle that can cast a textured shadow. �ese are then rendered one by one,
where the fragment shader looks up a colored shadow value per light-source sam-
ple using the triangle’s texture. �is is particularly efficient for few large textured
objects that represent complicated fine-grained geometry, such as a net or metal
fence. �e textures need to have a binary transparency value—so a texel is either
fully transparent or fully opaque.

7.4 View-Sample Mapping

7.4.1 Rasterizing in Light Space

One of the major problems with so� shadow volumes reaching high frame rates,
together with the fairly expensive fragment shader, is the fact that so� shadow vol-
umes have the same tendency to produce a huge amount of fill due to large elon-
gated polygons as hard shadows do. One way to avoid this is to do the rendering
of the wedges in light space instead of screen space. �us, each wedge’s influence
region only becomes a polygon corresponding to the bottom face of the wedge,
which typically results in a significantly smaller rasterized area. �is is related to
how penumbra maps and smoothies work, as described in Section 7.1, but without
using their highly approximate approach. Two algorithms that utilize this idea are
the ones by Sintorn et al. [Sintorn08b] and Johnson et al. [Johnson09]. But before
we describe these methods, we will explain the concept of view-sample mapping,
which is used by these two and more shadow algorithms. �e basic concept is to
store view samples in a light-space map (hence the name view-sample mapping)
and perform the shadow computations for these sample points with respect to one
or many light samples. We have already briefly encountered this for hard shad-
ows, in Section 4.5. �e advantage is that the shadow map stores the exact points
that we want to sample in screen space, eliminating resolution and biasing prob-
lems, and at the same time, trying to avoid the high fill-rate demands of shadow
volumes.

7.4.2 Theory

View-sample mapping methods compute accurate visibility relationships between
a set of light-source samples si , 1 ≤ i ≤ s, placed on the light and a set of view
samples r j , 1 ≤ j ≤ r (points for which we want to determine the shadow) in
the presence of occluding triangles Tk , 1 ≤ k ≤ t. �e situation is illustrated in
Figure 7.13 (le�).

Such methods derive a discretized solution of the initial shadow definition in
Equation (1.1); that is, for each view sample r j , the set of light-source samples not
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Figure 7.13. Eisemann and Décoret consider a sampled planar light-source patch, a sampled planar receiver patch,
and a set of triangular occluders placed between them (le�) [Eisemann07]. For each triangle separately, they produce
a conservative penumbra approximation on the receiver plane (middle). For each view sample inside this estimated
region, the triangle is back-projected onto the light-source plane and all light samples are tested against it (right). �e
occluded samples are then added to the blocked-sample set stored in the view sample.

visible from view sample r j is computed. �is can be written formally as

B j ∶= {si ∣ ∃k [si , r j] ∩ Tk ≠ ∅} , (7.1)

which is read out loud as B j is the set of all light-source samples, si , such that
there exists a k for which the intersection between the triangle Tk and the closed
(line) segment between si and r j is nonzero. One thing to notice is that if the
light is uniformly sampled, the ratio of the set’s cardinality ∣B j ∣ (i.e., the number of
samples in the set) and the total number of light samples s gives an approximation
of the blocked light as seen from sample r j and, hence, of the visibility integral
from Equation (1.6); that is, the percentage of occluded light samples corresponds
to the amount of shadow in r j . In fact, it should be pointed out that the set in
Equation (7.1) also contains all information necessary to sample Equation (1.4) to
produce truly physically based shadows.

Despite this major precision benefit, computing this set is challenging. Fun-
damentally, computing B j requires a triple loop with an inner intersection test,
which can be expressed as

∀i ∀ j ∀k [si , r j] ∩ Tk

?≠ ∅, (7.2)

which in pseudocode becomes:

For each light-source sample si
For each view sample r j

For each triangle Tk

Test if triangle Tk intersects ray between si and r j

�e commutativity of the “for each” operators results in six different ways of or-
ganizing the computations. In fact, due to the reciprocity of view and light samples,
only three major algorithmic choices arise. For si and r j fixed, testing intersections
against triangles is basically equivalent to ray tracing. For si and Tk fixed, finding
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the r js that pass the intersection test is very similar to the idea of creating a shadow
map from si with all triangles Tk . Testing the shadow status of r j then amounts to
performing a shadow-map test. �e same computation structure was at the basis of
the algorithm in [Heckbert97]. An off-center perspective view of the occluders is
rendered from each light sample to obtain a black and white occlusion mask. �ese
views are accumulated to obtain an image that represents exactly ∣B j ∣. In fact, by
drawing a shaded occlusion mask, it is further possible to sample the physically
based integral in Equation (1.4).

Even though highly precise, this latter approach has some limitations. First,
it only computes the cardinal numbers of the sets, not the sets themselves, and is
thus limited to visibility-only integrals like in Equation (1.6). Second, it requires as
many renderings as there are light samples. For 1,024 samples, this can drastically
impact performance. �ird, all view samples r j are located on a receiver plane.

In the following, we will show how view-sample–mapping algorithms can eval-
uate visibility by performing a single rendering pass. �e principle is to compute all
blocking contributions of a single triangle while it is processed by graphics hard-
ware. �is corresponds to the third algorithmic permutation derivable from Equa-
tion (7.2).

7.4.3 Triangle-Based Approach

Basic Principle

To facilitate explanations of this method, we will first focus on the particular case
of a receiver plane that contains all samples r j arranged on a regular grid (hence
the name view-sample mapping) and a light-source plane that contains all sam-
ples si . We will explain later in this section how this assumption was removed
in [Sintorn08b] to allow a computation for a general placement of view samples
and, hence, arbitrary scenes.

Laine and Aila [Laine05b] utilized the idea that it can be efficient to perform all
computations involving a particular triangle while it is at hand instead of travers-
ing the geometry several times. �eir suggestion was to work on the Cartesian
product2 between the set of light and view samples, resulting in all possible com-
binations between elements of the two sets. Each entity in this set can then be
associated to a segment running from a light sample to a view sample. In their ap-
proach, they successively cull elements from this set that correspond to segments
that would intersect the triangle at hand. A�er having looped over all triangles,
the remaining elements describe the visibility relationships.

Even though their algorithm did not aim at real time and would be hard to re-
alize on graphics hardware, it laid important groundwork for more adapted GPU

2�e Cartesian product of two sets X and Y is the set of all possible pairs where the first pair element
is from X and the second element is from Y .
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computations [Eisemann07,Sintorn08b]. Eisemann and Décoret proposed the fol-
lowing algorithm:

1. Traverse all triangles.

2. Traverse all view samples that are potentially affected by the current triangle.

3. Find light samples that are hidden by the current triangle from the current
receiver sample.

4. Accumulate result with the result determined by previously treated triangles.

�is approach requires a single rendering pass and can be implemented using ver-
tex, geometry, and fragment shaders. An overview of the steps is illustrated in
Figure 7.13.

�e viewport of rendering is chosen to coincide with the planar receiver patch.
Hence, the receiver samples correspond to pixels on the screen and the view sam-
ples are mapped into a texture. Each of these pixels will be used to store the blocked
sample list of the corresponding view sample. �e algorithm proceeds by treating
each triangle separately. First, the triangle is projected in this view, such as to cover
all view samples whose visibility of the light is potentially affected by this triangle.
For each of these view samples, the actual set of light samples that are blocked
by this triangle is derived. �is result is encoded as a bit pattern in the form of a
color, and the blending capacities of the hardware allow updating the current set
of the blocked light samples. Proceeding in this way, once all triangles are treated,
the correct blocked sample set is represented in the form of a color at each view
sample’s position.

Determining Potentially Affected View Samples

For a single triangle, the region where occlusion can occur contains those view
samples for which the triangle is hiding a part of the light source. �is region
can be equivalently defined as the union of all projections of the triangle from the
light samples on the receiver plane or as the shadow produced by the light source
and the triangle. To compute the influence region of a triangle, one can use the
so� shadow volume wedges that were described in Section 7.3.3. �ese wedges
are guaranteed to enclose the penumbra region cast by the triangle. It is enough
to compute the intersection of the three wedges with the receiver plane and then
compute the convex hull of this intersection. An efficient CUDA implementation
for this convex hull is described by Sintorn et al. [Sintorn08b].

Since blocked light samples will be determined in a second pass, it is enough to
find a conservative penumbra estimate. �erefore, one simpler choice is to com-
pute an axis-aligned bounding quadrilateral [Eisemann07]. In the particular case
of a planar receiver, there is a special reason why a bounding quad is a good idea: it
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enables an efficient interpolation of values from the vertices of this quad and there-
fore avoids some of the costly computations in the second part of the algorithm
(i.e., where the blocked light samples are computed). Such a solution would be
more expensive if many corners were present. For a nonplanar receiver, however,
the overly conservative shape of a bounding quad would be too inefficient in terms
of fragment-shader invocations, not to motivate using a more precise penumbra
estimate.

Back Projection on a Planar Light Source

For each potentially affected view sample, one needs to find which light samples are
hidden by the triangle. In a first step, the triangle is back-projected onto the light
source.3 As explained below, each light sample is subsequently tested for contain-
ment in the triangle’s projection. Note that the back-projection matrix depends
on the view sample and can, therefore, not be passed as a uniform. Hence, in
general, the projection matrix needs to be built in the fragment shader, but it is
worth mentioning that in the particular case of a planar receiver, a more efficient
computation is possible because more values can be interpolated across view sam-
ples [Eisemann07].

To enable a simpler computation of the blocked light samples in the next step,
the back-projection matrix is defined such that the coordinates of the back-
projected triangle are in a normalized clip space for the light, where the light is
a square x = ±0.5, y = ±0.5, z = 0. �is naturally allows handling rectangular
light sources by reverting their stretch in the projection matrices. �is is achieved
by scaling the entire scene according to the light such that the rectangular light is
of unit size. �is can be done with a matrix. �us, from now on, we can simply
assume that our light is of uniform size.

At this stage, fragments corresponding to view samples inside the triangle’s
penumbra have computed the coordinates of the triangle’s back projection. �e
next step is to find the light samples inside the back-projected triangle.

Determining Blocked Source Samples

�e first idea is to store the set of blocked light samples as a color. To make this
possible, each light sample is associated to one bit of the output color. Typically, for
RGBA8, this means that 32 light samples can be treated (but on today’s hardware
using multiple render targets and integer textures, 1,024 samples are possible). A
light sample is blocked if the corresponding bit is one; otherwise, it is visible for
the current view sample.

One solution to produce the blocked sample set is to loop over all light samples
and perform a containment test against the back-projected triangle. Depending
on the outcome, the bits are set accordingly. �ough conceptually simple, it is

3Back projection was also covered in Section 6.2.2 but in the context of image-based methods.
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Figure 7.14. Overview of the light-sample evaluation. Preprocessing the le�-sample map for a set of 32 light-source
samples (le�): For every texel (θ , r), (a) the line corresponding to this Hough space value is built and (b) samples
located on the le� of it are determined. �ese samples are then (c) encoded as a bitmask in the form of (d) the color
of the texel. (�e sine wave in the resulting textures corresponds to the Hough dual of the sample points.) Using the
le�-sample map (right): To find the light samples within (a) the back projection of a triangle, one can use the bitmask
texture. (b) Looking up bitmasks for each edge and (c) combining them using a bitwise AND results in the contained
samples.

highly inefficient for a general triangle. Instead, a precomputation allows a parallel
execution of this test for multiple samples.

�e set of samples inside a two-dimensional triangle is the intersection of the
set of samples on the le� of the supporting line of each (oriented) edge. �is allows
us to devise a better method based on a precomputed texture.

An oriented line in the two-dimensional plane of the normalized light space
can be represented by its Hough transform [Duda72], that is, an angle θ ∈ [−π, π]
and a distance r to the origin. �e distance can be negative because the lines are
oriented. However, only those lines intersecting the normalized light square are
needed. In consequence, it is possible to restrict the domain to r ∈[−√2/2,+√2/2].
In a preprocess, the Hough space is then sampled in a two-dimensional texture
called the le�-sample map. For every texel (θ , r), the samples located on the le� of
the corresponding line are found and encoded as a color (Figure 7.14, le�).

At runtime, the fragment shader evaluates which samples lie within the back
projection as follows. First, one ensures that the back projection is in counter-
clockwise orientation, reversing its vertices if not. �en the lines supporting the
three edges of the back projection are transformed into their Hough coordinates,
normalized so that [−π, π] × [−√2/2,+√2/2] maps to [0, 1] × [0, 1]. �ese co-
ordinates are used to look up three bitmasks (one for each edge). Each bitmask
encodes the samples that lie on the le� of each edge. �e Hough dual is periodic
on θ. �us, the correct wrapping modes are GL REPEAT for θ and GL CLAMP for r.
�e latter correctly results in either none or all samples for lines not intersecting
the normalized light square. �ese three bitmasks are ANDed together. �is logi-



7.4. View-Sample Mapping 231

cal operation is available on Direct3D 10–class graphics cards. �e result is a single
bitmask representing the samples inside the back projection, which is then output
as the fragment’s color (Figure 7.14, right).

Combining the Occlusion of All Triangles

As explained above, for each scene triangle, a polygon covering the shadow in-
fluence region is created and rasterized onto the shadow receiver. For each such
generated fragment during the rasterization, the fragment shader sets the receiver’s
bits for the light samples occluded by the scene triangle. �e set output by the frag-
ment shader for a receiver sample r j and a triangle Tk can be formally written as

B j ,k ≡ {i ∣ [si , r j] ∩ Tk ≠ ∅} . (7.3)

It can be seen that B j = ⋃k B j ,k . In other words, the blocked samples can be
computed for each triangle separately, and the resulting sets only need to be com-
bined. Performing this union is possible using graphics hardware again. Because
the blocked samples are stored as a bitmask, indicating with ones the light samples
that were blocked, a union between two such sets can be realized by ORing the bit-
masks. To perform this operation on the graphics card, one can rely on a logical op-
eration blending mode. Note that this mode is currently only exposed in OpenGL
but not in Direct3D up to version 11. Setting the blending to OR will ensure that
the previously stored set of blocked samples is combined with the incoming set of
blocked samples for the current triangle. Once all triangles are processed, the bit-
mask stored in the view sample then reflects the samples blocked by the geometry
of the entire scene.

Once having the bitmask, it is easy to count the number of set bits to receive
the visibility percentage of the light source (see Section 10.1.3).

Light Source

One feature of precomputing the le�-sample maps is that the light samples can be
arranged in an arbitrary way without performance penalty. �is offers an inter-
esting option for better sampling by using more irregular distributions of the light
samples between pixels. One can choose from a set of precomputed light-sample
textures depending on the current view sample. �is increases quality if particular
alignments are present in the scene or for very large light sources. Also, the method
allows working with colored light sources by clustering the samples in groups of
constant colors that are passed as uniform values.

Volumetric light source. To work with volumetric light sources, Sintorn et al.
[Sintorn08b] mentioned a different way of evaluating the shadows. Instead of a
back projection, they construct the frustum defined by the triangle’s edges and the
view sample. �e resulting plane equations can also be transformed into a three-
dimensional Hough space (resulting in two spherical angles describing the normal
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Figure 7.15. Efficient determination of visible light samples for volumetric light sources.

of the plane and its distance to the light source). �e le�-sample map then corre-
sponds to a three-dimensional texture encoding the samples lying on the same
side of the plane as the triangle. �is is illustrated in Figure 7.15. It also relates
to [Kautz04], where the light source is assumed to be an environment map and
hence only the plane normal is used to look up the blocked samples.

Receiver

To li� the restriction of a planar receiver, Sintorn et al. [Sintorn08b] proposed an
efficient algorithm to store a list of view samples in each pixel. We have already
reviewed this technique in the context of hard shadows in Section 4.5, and the
same principle can be applied for so�-shadow rendering, too.

We here quickly repeat the main steps, which are outlined in Figure 7.15. First,
all view samples are transformed from view space into light space and stored in a
light-space buffer, where each pixel holds a list of the view samples that fall into its
position (in the figure, two view samples (black) are stored in the same pixel (red)).
Details on these lists were also given in Section 4.5. �en, for each shadow-casting
scene triangle, a conservative shadow influence footprint (light blue at bottom) into
this buffer is created. �is footprint is polygonized and rasterized into the light-
space buffer, and for each fragment, the fragment shader loops over the lists of view
samples (here two for the red pixel). For each view sample, the fragment shader
computes the occluded light-source samples according to steps 1 and 2 in the top
le� and right parts of Figure 7.15. Step 1 illustrates a plane through the view sample
and one of the triangle edges. A lookup is done into a three-dimensional texture
for this plane to find which light samples are inside the plane. Step 2 illustrates that
three such lookups (one per triangle edge) is performed and the result is ANDed
to receive the light samples that are inside all three planes (i.e., occluded by the
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triangle). �e fragment shader outputs this bitmask to the view sample with logical
OR blending. �us, the view samples’ lists of occlusion bits per light sample is
updated by the occlusion from the triangle. In this way, a�er all shadow-casting
triangles have been processed, each view sample’s bitmask will identify its occluded
light samples.

Optimizations

In general scenes, shadows only need to be computed for light-facing view samples.
In addition, if the caster is watertight (i.e., it encloses a volume), one can perform a
front-face culling. In consequence, every triangle that is front facing for all points
on the light source can be ignored as a caster. Indeed, a ray blocked by such a
triangle is necessarily blocked by a non-front-facing one (it must enter and exit
the volume). Culling the front faces is more interesting because it yields smaller
influence regions. In the geometry shader, triangles are tested by checking if it
is front facing for the four corners of the light source. If yes, it is safe to let the
geometry shader discard it. �is optimization eliminates roughly half the faces,
and thus doubles the frame rate for watertight objects.

✎

✍

☞

✌

Implementation on Direct3D 9–Class Cards

�e algorithm for planar receivers (and even height-field surfaces) can be implemented
also on older hardware lacking a geometry shader [Eisemann08a]. �e solution is to
create a shadow mesh from the original triangle mesh. For this structure, each triangle
is replaced by a quad, storing in its texture coordinates the three vertex positions of the
original triangle. �e position information of each vertex indicates what corner of the
bounding quad it is supposed to represent (there are four entries in the position vector;
setting the corresponding component to one defines what corner the vertex will corre-
spond to). With this representation, it is possible to determine the bounding quad of
the triangle in the vertex shader using the texture coordinates and to select the corre-
sponding corner. �e other obstacle is the sample evaluation. Bitwise operations are not
supported, and one needs to resort to texture-based evaluations to encode the AND op-
eration. Performing a bitwise logical AND between three values in the fragment shader
requires integer arithmetic. However, if not available, it can be emulated [Eisemann06a]
using a precomputed 2563 texture such that

opMap[i , j, k] = i AND j AND k. (7.4)

�en, to perform the AND between three RGBA8 values obtained from the le�-sample
map, a three-dimensional texture lookup is sufficient. �is approach is general: any
logical operation can be evaluated using the appropriate opMap texture. Further, 32-bit
textures do not support blending, but this restriction can be overcome by using multiple
render passes and computing 128 samples (four color channels each with 8 bits and four
MRTs) per pass.
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7.4.4 Silhouette-Based Approach

Soft Irregular Shadow Mapping

Johnson et al. present a combination of image-based and geometry-based
methods [Johnson09]. �ey essentially use an irregular shadow map to compute
the umbra contribution. �en, for each silhouette edge (as seen from the cen-
ter of the light source), a penumbra wedge is created that is projected, in light
space, onto a representation of the screen-space samples that we want to com-
pute shadows for. �is representation is a light-view spatial acceleration struc-
ture in the form of a three-dimensional grid shaped as the light frustum. �e cells
of the grid contains the screen-space samples. For each projected wedge, the af-
fected screen-space samples are tested for penumbral occlusion against this sil-
houette edge, like previous real-time so� shadow volume algorithms. In other
words, the penumbra contribution is computed by integrating the occluded light-
source area from the shadow silhouette edges. One difference, though, is that they
note that doing an inverse cosine function call is faster than using a lookup table
of inverse tangent values [Assarsson03b]. Like the faster real-time shadow vol-
ume algorithms, this approach only uses the silhouettes as seen from one point
on the light source, while the true silhouettes actually vary between light sam-
ples. Also, penumbrae from separate occluders are just added instead of account-
ing for the situation that they may cover the same parts of the light source (see
Figure 7.10). On the other hand, this comes with the advantage of higher per-
formance compared to the more exact view-sample–mapping methods. To mea-
sure the integration constant, Johnson et al. use a modification of their irregu-
lar shadow-map method that computes the total depth complexity between a re-
ceiver point and the light. Johnson’s method was highly adapted for Intel’s Larrabee
graphics card that was expected to arrive but later was cancelled by Intel. Never-
theless, real-time performance was expected for modern game scenes (∼30 fps is
reported).

On a high level, the algorithm by Johnson et al. and the one by Sintorn et al.
have several similarities in that they both utilize light space and an irregular z-
buffer for computing umbra. By moving this to light space, the algorithms come
closer to shadow maps, which normally have a considerable lower fill-rate demand.
One major difference is that Sintorn et al. use the triangles to compute visibility per
pixel, whereas Johnson et al. use the silhouette edges.

7.5 Tradeoffs

When selecting an appropriate geometry-based or view-sample-mapping–based
so� shadow algorithm, there are several choices to consider.



7.5. Tradeoffs 235

Triangles or Silhouette Edges

Visibility can be determined either from all shadow-casting triangles or by inte-
gration from all silhouette edges plus measuring the integration constant. �e in-
tegration constant can be computed by either shooting a shadow ray (most effi-
ciently to a sample with the lowest depth complexity) [Laine05c], using shadow
volumes [Forest08], or using an irregular shadow map [Johnson09] that calcu-
lates the total depth complexity from a sample on the light source to all shadow-
receiving points. Using silhouette edges has the advantage that they typically are
much fewer in number than all scene triangles. �e average number of silhouette
edges in a mesh of n triangles is around n0.8 [McGuire04b]. �e disadvantage is
that probing for the integration constant is prone to robustness problems, whereas
computing the visibility from the triangles is not. �e shadow ray has to be shot
towards a light sample that is some epsilon distance away from all edges that are
projected onto the light source [Laine05c]. Numerical imprecision may cause an
edge to end up on the wrong side of the sample a�er projection. �is is particu-
larly bad, since the outcome of the integration constant affects all sample values for
a pixel, which typically results in a totally black or white shadow value at the wrong
place. Nevertheless, careful treatment of this problem by choosing a light sample
not too close to a projected edge results in a fully robust algorithm [Laine05c].

�e same rule applies when using shadow volumes or irregular shadow maps
to sample the depth and selecting a suitable light sample. If the true silhouette
edges are used for each shadow-receiving point (instead of only the silhouettes as
seen from the light center), then it is most likely hard to find a light sample that lies
at least a distance epsilon from all silhouette edges for all shadow-receiving points.
Instead, as partially hinted upon in Section 7.3.4, shadow volumes or irregular
shadow maps could be created, for example, for three samples and voting could be
used to select the integration constant. We believe this is enough to lower the error
rate to less than one faulty shadow value per frame, but it has yet not been tried, to
the best of our knowledge.

Number of Light Samples

Choosing only one light sample obviously provides the cheapest fragment shader,
but also has the advantage of providing smooth penumbrae without undesirable
discontinuities. �e problem lies in the occluder fusion, where the shadow contri-
butions from overlapping occluders are simply added. �is can easily result in too
dark penumbra regions.

Using four or more light samples is more expensive but drastically improves
the quality and o�en becomes indistinguishable from the ground truth (see Sec-
tion 7.3.4).

�e view-sample–mapping techniques reviewed in this chapter typically use a
huge number (256 to 1,024) of light samples but only compute a binary visibility
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value per sample, in contrast to computing a smooth value in the range [0,1] per
sample. �us, the number of samples typically needs to be much higher than 256
in order to avoid visible discretization artifacts. Storing the intermediate result for
all light samples per pixel during rendering comes with a higher memory cost. On
the other hand, fully correct sample-based visibility values are produced.

Light-Space Rasterization of Wedges

Rasterizing the wedges or triangles’ shadow footprint in light space instead of eye
space reduces the number of rasterized fragments and significantly reduces the
amount of generated fill. On the other hand, currently, it comes with the disad-
vantage of more complicated rasterization algorithms, since a list of view samples
needs to be stored per pixel in light space and then be checked during the wedge
rasterization.

7.6 Summary of Soft-Shadow Algorithms

So� shadows are more pleasing to the eye than hard shadows. �ey increase real-
ism in scenes but are much more difficult to compute.

Image-Based Methods

Image-based solutions are generally faster than geometry-based methods. �e
varying interpretations of the shadow map allow us to eliminate many of the alias-
ing artifacts. �e shadows look good for smaller light sources, but can become less
convincing for larger lights because, in many cases, only a single depth map is used.
One such depth layer contains insufficient information about the scene. One possi-
bility is depth peeling, but this implies that one pass is needed per layer, which can
quickly outweigh the performance advantage of using image-based approaches.

Geometry-Based Methods

�e main directions in the field of geometry-based approaches include so� shadow
volumes, which create shadow-volume-like primitives bounding the penumbra re-
gion with wedges. �is delivers alias-free shadows. On the other hand, a problem
is that incorrect occluder fusion can result in disturbing artifacts. While later ap-
proaches deal with this problem, it requires more computations, which lowers the
frame rate. �e cost of creating shadow volume primitives makes the methods
rather expensive and, even on the latest hardware, acceptable runtimes are diffi-
cult to achieve even for average-sized scenes.
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View-Sample Mapping

View-sample mapping computes visibility between a set of view samples and a set
of light samples, and it is part of more recent so� shadow algorithms. Since the
so� shadows are sample based, the number of light samples has to be high to avoid
visible sampling artifacts. An advantage is that the method can compute visibil-
ity between one view sample and several light samples for a potentially blocking
triangle very fast using lookup tables. Nevertheless, the overall costs of current al-
gorithms are still high, and acceptable frame rates are only achieved for moderate
scene complexities.





CHAPTER 8

Image-Based Transparency

Computing shadows in the presence of semitransparent objects or even gaseous
phenomena is a difficult challenge. Currently, there is no algorithm that is capable
of doing so in real time for a scene with arbitrarily colored semitransparent oc-
cluders. In this chapter, we will present techniques that made significant advances
in this direction.

Early methods dealing with transparency effects in combination with shadows
o�en relied on a precomputation step and stored the result in a memory-intensive
three-dimensional texture [Behrens98]. A less costly approach was proposed by
Lokovic and Veach [Lokovic00], which created the basis of many of the recent
techniques to address semitransparent objects. �e major simplifying assumption
was to restrict light paths to straight lines. By excluding any kind of scattering, it
is possible to utilize a simplified representation of the attenuation that is inflicted
by the occluders. In other words, when thinking in terms of a shadow map, each
pixel does not store a depth, but a one-dimensional transmittance function.

In the case of standard shadow maps, we have seen (Chapter 2) that the shadow
test can be seen as a step function. In the presence of semitransparent occluders,
the situation can be more complex because it encodes visibility as a function of
distance to the light. In other words, it represents how much an element at a given
distance will be visible from the light. Depending on the nature of the occluders,
this function can vary significantly. Figure 8.2 illustrates some different cases.

In this chapter, we will examine several methods to construct, represent, and
exploit the transmittance function efficiently. We will explain the background be-
hind the transmittance function and illustrate how to extend it to arbitrarily col-
ored materials in the next section. Interestingly, we will show that this function
is also useful to composite semitransparent objects from the viewpoint. We then
present various approximations and efficient real-time execution schemes (Sec-
tion 8.2).

239
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Figure 8.1. �e images illustrate the importance of taking transparency into account while computing shadows (images
use the method by [Sintorn08a]).

8.1 Deep Shadow Maps

�e goal of deep shadow maps [Lokovic00] is to compute shadows from a point
light in the presence of nonopaque occluders. A simplifying assumption is that
light will pass straight through each occluder. Light is attenuated on its way, but
it does not change direction. Figure 8.2 illustrates this principle and an example
showing the outcome of this simulation.

Deep shadow maps are a specialized shadow map. Instead of storing a single
depth value, each pixel holds a one-dimensional function that describes the atten-
uation of light along the corresponding ray.
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Figure 8.2. Deep shadow maps store in each pixel of the shadow map a one-dimensional attenuation function. De-
pending on the nature of the scene, these functions exhibit different shapes: semitransparent occluders result in steps
in the transmittance function (le�), volumetric occluders result in a more continuous attenuation (middle), and partial
occlusion inside the pixel can lead to both (right).
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8.1.1 Light Attenuation of Semitransparent Occluders

To understand this function better, let’s first assume semitransparent surfaces.
Semitransparent surfaces are usually defined by a transmittance function that en-
codes how light is attenuated when passing through the surface. �ese functions
can be complex (just like reflectance functions for reflected light; see Appendix C).
A simplifying assumption is to use a single value, or an RGB-tuple (for colored
shadows), basically encoding a per-channel opacity (zero being totally transpar-
ent, one totally opaque). Let a0 ∶= (a0

r , a0
g , a0

b), . . . , an ∶= (anr , ang , anb) be the val-
ues encountered by a ray from the point light towards a point p. �e incoming
radiance at p is then defined by the light’s emitted energy c l , while taking the light
interaction at the intersection points into account. �e final radiance arriving at
p is given by c l ∏n

i=0(1 − a i). �is expression is a well-known result from volume
rendering (e.g., [Max95]) and also exists as a continuous version that we ignore
here for the sake of simplicity and relevance for our purposes, to some extent, we
will come back to this in Chapter 9.

Let’s illustrate the expression with a simple example. Imagine two semitrans-
parent occluders, one being a0 ∶= (0.5, 0.5, 1), which lets past yellow light with
half-intensity and a second surface being a1 ∶= (0.75, 1, 1), which implies that it
is red and blocks one-quarter of the light. When light encounters the first surface,
50% will be reflected (because the surface is 50% opaque), 50% will pass, but the
blue component is blocked by the material. A�er this interaction, the light’s energy(lr , lg , lb)will become (lr∗(1−0.5), lg∗(1−0.5), lb∗(1−1)) = (lr∗0.5, lg∗0.5, 0).
�e next interaction then modifies the remaining energy again. �is time, the sur-
face is only 25% transparent and only lets past red light. In other words, 75% of the
red channel will be blocked, leading to (lr ∗ 0.5 ∗ (1 − 0.75), 0, 0). �is reasoning
results in the aforementioned formula c l ∏n

i=0(1 − a i).
8.1.2 Accumulation of Semitransparent Surfaces from the Eye

Although we have not explained yet how to perform the computations efficiently,
we have seen how light is attenuated on its way from the light. Still, when drawing
an actual scene with transparent objects, it is important to be able to render the
light response on each surface correctly and take their interaction from the point
of view into account. If an observer looks through the set of n+ 1 semitransparent
materials, their reflected light also plays a role. Let ck be the RGB-tuple encoding
the color of the k + 1th surface. Usually, because the light that is not reflected
passes through the surface and vice versa, this color is o�en defined as akck . �at
is the color of the object modulated by its opacity. �en the formula to compute
the observed color, which is a combination of all surfaces, is given by

n∑
k=0

(k−1∏
i=0

(1 − a i)) akck . (8.1)
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Let’s explain this expression step by step. Let’s look at one term in the sum(∏k−1
i=0 (1 − a i))akck . �e term akck encodes the color at the kth surface that has

to pass through all surfaces in front of it to reach the eye. �e term ∏k−1
i=0 (1 −

a i) encodes exactly this attenuation, precisely, how the light is attenuated a�er
passing through the first k surfaces towards the eye. All these light contributions
are additive, which explains the sum that leads to the above formula.

Usually, the transparent objects are combined in an iterative manner. If all sur-
faces are sorted, then Equation (8.1) can be obtained by iteratively adding contri-
butions based on a blending formula; in the case where all absorption values are the
same for all components, standard alpha blending is an option. �e scene is drawn
back to front and each incoming fragment is evaluated to akck and combined with
the framebuffer value f via

akck + (1 − ak) f .

Sorting is a very costly process, but as observed in [Sintorn09] and [Patney10],
the sorting is not needed. Instead, if we could compute each incoming fragment’s

visibility attenuation ∏k−1
i=0 (1 − a i), Equation (8.1) becomes commutative, and

each incoming fragment can be treated independent of the others. We simply

multiply the color akck with the corresponding visibility ∏k−1
i=0 (1 − a i) to obtain∏k−1

i=0 (1−a i)akck , which is exactly one of the terms in the sum. Now, all we need to
do is sum up these contributions to obtain the correct result, which is independent
of the order of these fragments.

While solutions have been proposed to hierarchically compute these terms in
an efficient manner [Patney10], we will pursue a more general observation [En-

derton10]. When looking at the coefficients∏k−1
i=0 (1 − a i) that are applied to each

surface color, we realize that it is the same term that we need to compute the at-
tenuation from the light. Our goal in this chapter is to present solutions to encode
these terms as a transmittance function [Lokovic00]. In other words, for a given
distance d, the transmittance function is

vis(d) ∶= ∏
d<z i

(1 − a i),
where z i are the distances of the semitransparent surfaces to the observer/light. In
other words, for a given distance d, the function returns the visibility through all
surfaces nearer to the camera/light than the distance d [Lokovic00].

In the following, we will concentrate on computing the transmittance function
from the light because we focus on shadows, but the reader should be aware that
the same function computed from the camera can be used to composite the final
results from the semitransparent surfaces.
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8.2 Approximating the Transmittance Function

A precise representation of the transmittance function could be derived by depth
peeling [Everitt01] (see Appendix A) from the light, but such an approach is too
costly in practice. If we stick to the case of semitransparent surfaces, each single
such occluder introduces a step in the transmittance function. For complex objects,
such as hair, grass, or smoke particles, quickly hundreds of such primitives can
overlap in a pixel, leading to a very complex result. Instead, it can make sense to
represent the transmittance function in an approximate but efficient way. In this
section, we will present several such solutions.

�ere are different types of algorithms. Reconstruction-based approaches start
by creating lists in each pixel. Each fragment that is produced in a pixel and not
occluded by opaque objects is attached to its list. �ese fragments are then used
to approximate the transmittance function. �e second type is layer-based ap-
proaches. Here, the transmittance function is captured directly from the scene in a
discretized form. �e third type is stochastic methods, where stochastic rendering
is used to approximate transparency. Finally, specialized function-based solutions
that project the influence of each primitive into a specialized set of basis functions
can be used. �e projection leads to varying coefficients for each primitive. �e
coefficients, as they correspond to the same basis functions, can then be added
to yield a complete representation of visibility expressed in terms of the function
basis.

8.2.1 Reconstruction-Based Approaches

�e main principle of reconstruction-based solutions is to first capture all transpar-
ent fragments that are not occluded by opaque surfaces. To perform this operation,
a first depth-only rendering pass fills the depth buffer with all opaque objects. �e
second pass does perform a depth test, but no depth writes, and renders all trans-
parent objects. All produced fragments are then attached to a list, which can be
implemented in various manners. 2More on this topic can be found in Section 4.5.
Here, we assume that such a list per pixel is given.

Per-View-Sample Evaluation

Irregular rasterization [Aila04b, Johnson05, Sintorn08b] (see Section 4.5) ap-
proaches can also be used for semitransparent shadow casters. �e list of all view
samples is stored in each shadow map pixel and the incoming semitransparent
fragments are then directly attributed to the view samples. In this particular case,
we do not even need to store a list of the incoming semitransparent fragments
but can directly accumulate their contribution. Precisely, each view sample stores
a transparency value, which is initialized to fully transparent. Whenever a semi-
transparent shadow caster is rasterized and lies in front of a view sample, the trans-
parency value of that view sample is multiplied with the transparency of the caster.
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Figure 8.3. �e deep-shadow-map algorithm simplifies the transmittance function in an iterative and greedy fashion.
Iteratively new segments are added until the piecewise-linear representation well describes the function.

Colored transparency requires a full RGB transparency value to be stored with
each view sample. However, for an efficient GPU implementation [Johnson05,Sin-
torn08b], the number of used bits per view sample should be kept low, so that only
a few levels of transparency are possible.

Deep Shadow Maps

�e approach that introduced the transmittance function [Lokovic00] did not store
an accurate representation of the transmittance. Instead, an optimization scheme
was used to reduce the complexity of the function.

Representation. Given some error threshold ε, the optimization scheme approx-
imates the original function vis with a piecewise-linear representation vislin, such
that ∣vis(d) − vislin(d)∣ ≤ ε for all depths d. In other words, the approximation
differs from the original function never more than some given value ε.

Construction. While optimal solutions could be used, it proved more efficient to
rely on a greedy solution. �e approach first sorts all list elements by depth and
then processes them in ascending order. Initially, a starting point p is chosen at
depth zero and full visibility (one). For each new element, the algorithm tries to
define a line segment with starting point p that ensures that all values between the
depth of p and the newest element stay within the given error threshold ε. Pre-
cisely, an interval with the minimum and maximum slope [mlow , mhigh] that satis-
fies the distance condition is maintained. At some point, this interval becomes
empty. Let {v i , v i+1 , ..., v j−1 , v j} be the list of processed list elements since the
last starting point. �e algorithm then defines the line segment with the values{v i , v i+1 , ..., v j−1} (all but the last, which broke the property) by using the slope(mlow +mhigh)/2. Its endpoint becomes the new starting point for the next linear
segment, which will be matched against v j and all following list elements (Fig-
ure 8.3).
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Adaptive Volumetric Shadow Maps

�e simplification scheme of deep shadow maps was also ported on the GPU [Had-
wiger06] in the context of volume rendering. Here, it is particularly important to
consider the transfer function from density to opacity. Similar to pre-integrated
volume rendering [Engel01], where one stores the variation between two density
samples in a precomputed texture, the opacity variations need to be taken into
account to avoid artifacts when applying the deep shadow map. �e process is it-
erative, as above, and can require several rendering passes to obtain the simplified
transmittance function.

While the GPU mapping seems straightforward, the approach benefits dras-
tically from the fact that volume rendering is used because the correct order of
surface samples encountered on the rays from the light is naturally ensured by a
ray-tracing method. For general scenes based on triangles, a fragment-sorting step
is needed. �is sorting is usually costly. Furthermore, the original transmittance
approximation can lead to varying memory consumption. �ese reasons make it
difficult to apply the original deep-shadow-map solution efficiently to real-time
applications and triangle-based scenes. A more GPU-adapted solution has been
proposed [Salvi10] that we discuss in the following.

Representation. Here, the representation of vis is also based on a piecewise-linear
approximation, but this time only a fixed number of segments (defined by end-
points) is used. Consequently, the error of this approximation can no longer be
bounded, but construction and evaluation time, as well as memory consumption
are reduced drastically.

Construction. In a first pass, a single segment approximation of the entire func-
tion vis is computed. �e starting point is implicitly defined at zero with visibility
one, and the endpoint is defined explicitly by the depth of the farthest list element
and the sum of all opacity values. �ese two points will not move during the refine-
ment of the approximation. �e last endpoint is particularly important to ensure
that any projected shadows are always correct (e.g., smoke shadowing a ground).

For N inner-segment endpoints, the algorithm makes use of 2N 16-bit values
stored and written in textures per pixel. One value represents the depth, the other
the actual occlusion. �e inner-segment endpoints are first initialized with the
first N list elements. Unfortunately, this strategy can no longer be applied when
list element N +1 is processed because the approximation only allows for N inner-
segment endpoints. To decide how to modify the transmittance-function repre-
sentation, we first virtually include its value, so that the resulting approximation
has one node more than allowed. We then update the piecewise-linear function.
We test all combinations one by one to decide which endpoint to remove based on
how much each potential removal changes the piecewise-linear function’s shape.
Precisely, this change is captured by evaluating the area of the triangle formed by



246 8. Image-Based Transparency
tr

a
n

sm
it

ta
n

ce

distance

Adaptive Volumetric Shadow 

Maps use a piecewise-linear 

function with 5 control points

the first and last 

control point are at 

a fixed distance

tr
a

n
sm

it
ta

n
ce

distance

A new fragment adds a control 

point to the  representation

variation between 

control points is 

assumed linear

Six control points are reduced 

to five by testing triangle areas 

of successive points

tr
a

n
sm

it
ta

n
ce

distance

remove the point 

on triangle with 

minimal area

Figure 8.4. �e approximation of the transmittance function is updated for every incoming fragment. Once all frag-
ments are treated, a simple piecewise-linear approximation is obtained.

the removed point and its immediate neighbors (Figure 8.4). Finally, the endpoint
removal that induced the smallest impact is performed. �e other endpoints are
kept and the algorithm is ready to process the next list element.

While the construction is very fast, a limitation lies in the fact that the algo-
rithm is greedy. �is implies that the solution might not be optimal, and the lack of
sorting can introduce temporal inconsistencies. Nonetheless, the approach is very
fast and results in a good rendering quality.

8.2.2 Layer-Based Approaches

As an alternative, layer-based approaches approximate the transmittance function
implicitly. Instead of directly storing the resulting visibility, one records the en-
countered surfaces along each ray through the pixel and light’s camera center. Be-
cause this would amount to a depth-peeling-like approach (see Appendix A), in-
stead the depth along this ray is discretized into bins. �ese bins are filled with the
visible semitransparent surfaces of the scene. Because the bins are ordered, it is a
valid approximation to not sort the contained primitives, but simply accumulate
them. We will refer to this representation as the discretized absorption function.

In some cases, the discretized absorption function is not transformed into a
transmittance function, but instead, the visibility is derived on the fly. From the
given position in space, the contribution of all bins is accumulated towards the
source (Figure 8.5). While the evaluation of the transmittance function is, hence,
o�en slightly more costly, the construction of this representation is so much more
efficient than previous solutions that the cost usually balances out.

Opacity Shadow Maps

One of the first solutions in this direction is opacity shadowmaps (OSM) [Kim01].

Representation. �e idea is to divide the view frustum of the light according to
certain distances. �ese distances, d0 < . . . < dn+1, can be chosen uniformly,
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Figure 8.5. �e discretization of the semitransparent elements in the scene can be used to derive a layer-based repre-
sentation that can then be queried to derive the shadow effect in each point of the scene.

but adaptive solutions are also possible [Kim01]. To each depth interval I i ∶=[d i , d i+1), an opacity map is associated. �is texture captures the opacity of all
primitives whose distance to the light lies in the interval I i . �e set of these opacity
textures {O0 , ..., On} can be used as the discretized absorption function. To query
the resulting absorption value for a given point p, the point is simply projected
into light space pl. Its z-coordinate can be used to determine its depth interval I i
and, hence, the corresponding opacity texture O i . Its x , y-coordinates are used to
look up the absorption value in O i and the other opacity-texture layers towards
the light.

Construction. In the original approach, the rendering of these maps was done in
a two-step process. First, all elements were attributed to their corresponding inter-
val. �en, the opacity texture of each interval was computed by rendering only the
associated elements and blending their contributions together into a texture using
the hardware’s blending functionality glBlendFunc(GL ONE, GL ONE). On today’s
hardware, it is o�en also acceptable to perform multiple render passes over the
entire geometry to produce the opacity textures. In each pass, clipping planes are
placed at the depth bounds of the corresponding interval. A more modern solu-
tion is to directly redirect the triangles into a layered texture, using the geometry
shader [Lee09]. For the latter, care has to be taken when triangles cross depth in-
tervals. In this case, the primitive has to be cut in the geometry shader against the
planes that divide the frustum according to the depth bounds.

It is relatively simple to transform opacity maps into an approximation of the
transmittance function. �is transformation boils down to replacing the ith opac-
ity map O i by the sum over all opacity maps Ok , with k < i. �is step is an image-
based operation and, thus, very effective. LetVi be the resulting OSM. �en, during
the final rendering, the shadow values can be directly queried. Alternatively, the
absorption can be produced directly during construction, by drawing primitives
not in a single, but all intervals closer to the light. Nonetheless, this process im-
plies more geometry and fragment processing and can easily become more costly.
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OSM are usually 8-bit luminance textures. �is choice implies that all elements
can be rendered using quality-improving rendering solutions such as antialiasing,
which is crucial for hair rendering. Furthermore, lookups can be performed with
linear or even mipmap interpolation to avoid pixel artifacts. In particular, it is also
possible to linearly interpolate between different OSM textures depending on the
position of the query point with respect to the depth bounds. Hereby, a smooth
variation can be achieved inside of each depth interval, but occasional unwanted
self-shadowing can occur.

Opacity shadow maps presented a milestone in realistic rendering of hair,
smoke, and other complex objects. �e downside is that for an efficient imple-
mentation 2one needs to first derive all layers of the OSM, before being able to
compute the shadow response. Consequently, the memory consumption can be
relatively high, especially for a larger scene where their number can be elevated; 16
is usually a minimum requirement, and only for very localized effects (e.g., hair)
can fewer be sufficient. Furthermore, the global depth-interval bounds are not al-
ways appropriate because, for some pixels, many of these intervals stay empty.

Slice Maps

A more compact representation is slicemaps[Dong04,Eisemann06a,Eisemann08c].
�ese maps encode a three-dimensional voxel grid of the scene. While slice maps
are very versatile, one particular application is to use them as a discretized absorp-
tion function [Eisemann06a] in the form of transmittance shadow maps.

Representation. To voxelize a scene, it is placed in a grid of cells. Each cell can
hold information about the contained surfaces. In the simplest case, this informa-
tion might just be a single bit indicating the presence (one) or absence (zero) of
matter. Usually, it is quite costly to fill such a voxel grid with all primitives, but the
use of graphics hardware allows for an efficient construction and a compact rep-
resentation in the context of binary voxelization. In this process, two observations
are exploited: First, the pixels of an image implicitly define a two-dimensional grid.
Hence, when rendering from the light, primitives in the form of fragments are al-
ready sorted into this two-dimensional grid, which extends along the view frustum
of the camera. �e grid’s resolution along the x- and y-axes corresponds directly
to the resolution of the rendering. �e camera can be orthographic or perspective
and can be placed at any position.

To encode the third dimension of the voxel grid along the z-axis, a special en-
coding in the color channels of the pixels is used. �e colors of a pixel (x , y) repre-
sent a column in the grid. �e cells within this column are encoded via the RGBA
value of the pixel. Each color channel is represented as a number, which in turn is
represented via a bit sequence. �e idea is to interpret the RGBA value as a single
long bit vector2, whose bits are associated to voxel cells along the z-axis in space.
With modern hardware, 128-bit vectors can be obtained by using 32-bit data types
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per color component. Using several such textures, their number can be further
increased. �e name slice maps comes from the idea that when considering only
the ith bit in all pixels, the result is a single voxel-grid slice of the original scene.

In comparison to OSM, each slice is only binary and does not contain float
values. �is restriction also implies that each blocker has to share the same trans-
mittance properties because they can no longer be distinguished. Furthermore,
two blockers that fall into the same voxel are only captured once. Despite these
disadvantages, slice maps lead to a much higher resolution with respect to OSM
and deliver this result at a lower rendering cost.

Construction. One important feature of slice maps is that the representation is
not only well suited but also easy to construct. �e construction is performed in a
single rendering pass.

For each primitive, we have to find the intersected voxels and set the corre-
sponding bits to one. During the rasterization, the primitive is transformed into
fragments, each in its corresponding intersected column. Its linear depth d (dis-
tance from the light) is used to determine the slice it falls into. A fragment program
then transforms this depth into a 32-bit mask with zeroes everywhere except for a
one in the bit corresponding to the slice. �e result is then fused with the frame-
buffer using an OR operation to keep all active bits. �is OR blending is part of the
standard pipeline and activated via glLogicOp(GL OR) (a discussion of Direct3D
implementations can be found on page 251). While it is possible to compute the
bitmask for a fragment arithmetically [Eisemann08a], it is currently more efficient
to rely on a texture (128 RGBA 32-bit texels). �e texture directly converts a given
depth d with a single lookup into its corresponding bitmask.

In the case of such a boundary voxelization, a fragment only fills a single voxel,
while the represented surface part o�en covers more than one voxel. �is under-
sampling routinely leads to holes, which are especially pronounced for almost or-
thogonal faces. To understand this effect, imagine a single cube where the camera
view aligns perfectly with one of its sides. Consequently, this wall cannot appear
in the voxelization because it does not produce any fragments. To alleviate such
artifacts, Dong et al. [Dong04] proposed to associate each triangle to one of three
views (along each axis) according to its normal. �e view that most aligns with the
normal direction is chosen. Finally, these separate voxel grids are fused together
in a postprocess. Instead of choosing a view for each triangle, one can also use the
geometry shader [Forest10] to produce three copies of each triangle that are trans-
formed into the three views and redirected to different voxelization textures (e.g.,
using the layered-texture mechanism).

Note, however, that keeping multiple voxel grids and merging them comes with
some overhead. Moreover, even these more costly approaches still suffer from gaps.
�is originates in the fact that a fragment is only generated if the triangle it be-
longs to overlaps the pixel’s center. But to capture all surface parts, a fragment
would also have to be generated if any other part of the pixel is overlapped. Since
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such conservative rasterization is not supported by the graphics pipeline, it has to
be performed manually [Hasselgren05]. An according conservative voxelization
approach that yields a slice map has been proposed by Zhang et al. [Zhang07b].
Unfortunately, it is generally too slow to be of practical relevance for our context.

Another alternative is to resort to a compute language like CUDA to perform
the voxelization. As has been shown recently [Schwarz10], this enables generating
accurate conservative voxelizations, where all voxels overlapped by a surface are
set, at high speed.

Evaluating visibility. Even though the representation is efficient, using the repre-
sentation to compute a transmittance-function value can still be costly. Basically,
to query the result at a point p, one would need to project it into the light’s view
and look up the corresponding voxel column. Given the point’s distance to the
light and corresponding bit entry i in the voxel column, one would need to count
all activated bits between bit i and bit 0, which represent the voxels between p and
the light source. �en this number is an approximation of the number of surfaces
that are traversed on the way to the light. Unfortunately, such a loop would be very
costly.

A simple observation accelerates the evaluation. First, to only consider bits
below the ith bit, it is enough to perform a mod operation in the shader with the
number 2i that can be obtained by a simple bit shi�. Such an operation successfully
sets all bits above the ith position to zero. To count the remaining bits, one can
employ the solutions of Section 10.1.

�e number of bits can be transformed into a transmittance-function value
using a power function, exponentiating the user-defined absorption value for the
semitransparent scene elements. A final observation is that it is possible to produce
a voxelization per different type of material to even create a few differently colored
shadows. �is extension can still be achieved in a single construction pass [Eise-
mann06a].

Extensions. Solid voxelization that fills the interior of watertight objects is also
possible [Eisemann08c]. �ereby, appropriate shadows from solid transparent ob-
jects can be emulated.

To decide whether a voxel is inside of the object, one could shoot a ray towards
the light and count the number of intersections with the objects. If it is odd, the
voxel lies inside the object. �is is similar to the counting step of shadow volumes
(Section 2.4). Shooting a ray per voxel would be very costly on current GPUs. But
there is a minor modification to the previous algorithm that allows us to compute
this solution efficiently.

We precompute masks such that a fragment recovers a bitmask that does not
only have a single activated bit at its corresponding depth but also all other bits
further from the light are activated as well. �e intuition behind this mask relates to
the observation that was already applied in the context of stencil shadow volumes
(Section 2.4). Intuitively, if one imagines shooting a ray from all the voxels that
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Voxelization in Direct3D

One catch is that bitwise blending does not exist in recent versions of Direct3D. �is
makes the implementation of slice maps somewhat cumbersome.

An unsatisfying solution around this issue is to use additive blending instead and
sum up the bitmask. Unfortunately, using one bit per voxel implies that if two fragments
end up in the same voxel, the sum can no longer be stored and will affect adjacent voxels
in the voxel column. To remedy this effect, instead of using a single bit, several bits can
be associated to a voxel. In this case, summing up several fragments inside a voxel does
not directly pollute adjacent bits (e.g., allocating 2 (4) bits per voxel means that up to 3
(15) fragments can be summed before the highest bit will affect the next voxel entry in
the column). �is solution can be implemented with Direct3D but lowers robustness
and resolution.

Producing a solid voxelization is actually very tricky because using additive blend
would result in sums that easily exceed their limits. Instead, there is a better solution that
exploits the orientation of the triangles. If the face is back-facing, the mask is multiplied
by −1 before being blended additively. In practice, this corresponds to a substraction
that simulates the XOR operation. Other alternatives with potentially higher precision
exist [Eisemann06a] but are more complex to implement.

With Direct3D 11, two further implementation alternatives became possible, which
allow for accurate bitmask updates. �e simpler one is to harness the new ability to write
to textures from within the pixel shader and use atomic bitwise operations to perform
these writes. �e second more powerful and flexible, but also more laborious, alterna-
tive is to implement the voxelization with compute shaders.

are activated in this mask towards the light, each of these rays would intersect the
fragment and, hence, the surface. �erefore, if we would have a counter in each
voxel and we would add the incoming bits, the final sum would correspond exactly
to the number of surfaces that would be intersected by a ray to the light.

Counting is not possible in an efficient manner, but ultimately, we do not care
about the actual sum, only the number’s parity. Hence, it would be enough to
initially set all bits to zero and then toggle them whenever an activated bit comes
in. �is behavior is achieved when blending the masks with a XOR operation.
Consequently, a�er rendering the entire scene, a voxel’s bit is one if the number of
intersections of a ray towards the source is 2odd. An 2odd number of intersections
means that the corresponding voxel is inside the object’s volume.

To improve precision, it is further possible to increase the precision of each
voxel column [Eisemann06a]. �e idea is to first compute a near and far depth map
of the visible transparent objects. �ese two per-pixel depth bounds then define
the interval in which the uniform voxelization should take place. �e modification
to the above algorithm is tiny. Instead of using d directly for the bitmask lookup,
it is first transformed by (d − n)/( f − n), where n is the near value and f the far
value in the pixel to rescale it into the interval [0, 1] between n and f .
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Stochastic Approaches

Another way to represent visibility is through stochastic approaches [Kircher09,
McGuire10b, Enderton10, McGuire10c]. �e basic observation is that the opacity
of a semitransparent surface corresponds to the ratio of energy that is blocked (re-
flected) by the surface. �e idea of stochastic approaches is to cast opacity into a
probabilistic framework. By using a special rendering of the scene that discards
fragments based on a probability that is defined by the surfaces’ opacity, the result-
ing image contains a stochastic representation of the transparent scene.

Before explaining the details, we will first introduce the relationship between
probability and opacity, then we explain how to use this probabilistic interpretation
to spatially resolve transparency. Further, we explain how to exploit this represen-
tation to compute an approximation of the transmittance function.

Opacity and probability. Let’s first clarify the intuition behind the relationship of
opacity and probability. Imagine a ray through a single semitransparent surface
with opacity α and color c and a background color b. �e correct color response
for this ray would be αc + (1 − α)b.

Now let’s assume we do not shoot this ray only once but N times along the
same path, but this time, we modify the computation as follows. When we hit the
surface, we draw a random number r ∈ [0, 1]. If r is smaller than the surface’s
opacity α, the ray is stopped and we report c; otherwise, we continue along the
ray and hit the background and we report b. Because the probability that a ray is
stopped corresponds exactly to the surface’s opacity, the number of times that we
report c should be roughly αN , whereas the number of times we find b is (1−α)N .
Hence, if we average the result of all rays, we obtain again

((αN)c + ((1 − α)N)b)/N = αc + (1 − α)b.

�e above example for a single surface generalizes to several surfaces and results
in a valid compositing (according to Equation (8.1)).

�e transmittance function for the above example with one surface should re-
turn 1 then 1− α a�er crossing the surface. It is implicitly computed by evaluating
all the rays. Basically, counting the ratio of rays that arrive at a certain distance d
is an approximation of the result of the transmittance function for distance d.

Stochastic rasterization. We have just seen that the shooting of many rays can
allow us to derive an approximation of the transmittance function. While this so-
lution does not sound efficient because many rays are involved, we will see that it
is the key to a fast, yet relatively accurate algorithm.

�e main observation is that the above probabilistic formulation ensures that
each ray will at most hit a single surface. We never actually need to consider any
attenuation or scaling along the ray. We will see that this is the basis to defining
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a special stochastic rasterization technique of the surfaces to obtain an equivalent
result. We will derive this technique in the following paragraphs.

Let’s imagine that we applied the probabilistic approach from above with S rays;
we further arrange their impact points (depth) in a small

√
S ×√S window of an

image. We will refer to such a window as a transparency-pixel window.
In a first step, we will assume a single semitransparent occluder f0 with opac-

ity o0. Because rays were stopped with a probability of o0, the window will contain
roughly So0 pixels that contain the depth of f0. Consequently, S(1−o0) pixels con-
tain the background. Alternatively to shooting rays, we could have drawn f0 into
all S pixels while discarding fragments with a probability of o0 (e.g., for o0 = 0.25,
only every fourth pixel is drawn). We will call this kind of rasterization stochastic
rasterization. We will now show that this strategy of rasterization generalizes to
several semitransparent occluders { f0 , . . . , fn}.

Let f0 , . . . , fn be the sorted surfaces encountered along the ray, and o0 , . . . , on
be their corresponding opacities. Let’s assume all surfaces are stochastically ras-
terized based on their opacity. A depth value of the ith surface that is written to a
pixel inside a transparency-pixel window will prevail during the stochastic raster-
ization of all other surfaces if and only if it is not directly discarded by the depth
test (which happens if a pixel from f0 , . . . , f i−1 was already output at the same lo-
cation before), and if it is not overwritten by a pixel at a later point (which happens
if a pixel from f0 , . . . , f i−1 is a�erwards written to the same location). �e surfaces
f i+1 , . . . , fn behind f i cannot affect its pixels.

�e probability that a pixel never contains a depth value from f0 , . . . , f i−1 is∏i−1
k=0(1−ok) because all surfaces are independently stochastically rasterized based

on their own opacity. Consequently, roughly S∏i−1
k=0(1 − ok) pixels remain that

can actually receive depth values from f i , but because f i is rasterized itself with a
probability of o i , only roughly S∏i−1

k=0(1 − ok)o i will receive its values. Looking
closely at∏i−1

k=0(1 − ok)o i , we realize that it is the exact probability we aimed for,
namely, the probability of a ray passing through the first i−1 surfaces to be blocked
by the ith.

In other words, if we render a scene with stochastic rasterization, the transmit-
tance function inside a transparency-pixel window can be approximated by

vis(d) ≈ count(d ≤ z i)/S ,

where S is the number of pixels and z i the depth values inside the considered
transparency-pixel window.

In conclusion, we have seen that the transmittance function can be approx-
imated by ratios of rays arriving at a given distance without being stopped by a
surface, which happens with a probability based on the surface’s opacity. Here, we
have seen that a stochastic rasterization that discards fragments of a surface accord-
ing to its opacity can be used instead. To then evaluate the transmittance function
in a transparency-pixel window pT for distance d, one only needs to calculate the
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by discarding pixels 

dithering masks 
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Figure 8.6. By discarding fragments, one can produce dithered transparency. �e resulting
dithering masks can then be filtered (le�). �e resulting image gives the illusion of semi-
transparent materials (right).

ratio of pixels farther from the light inside pT . �is evaluation is very similar to
the computation applied in percentage-closer filtering (compare PCF, Chapter 5).

Implementation. Implementing stochastic rasterization on a GPU is not straight-
forward because of the lack of a random value function. Hence, we cannot simply
discard fragments with a certain probability. Instead, one can predetermine dither-
ing masks that are accessed in the shader to decide which fragments to delete, lead-
ing to a two-dimensional stippling pattern. A dithering mask is a binary mask that
is created in accordance to an opacity value. It indicates which pixels should be
kept and which should be thrown away to fulfill the probability criterion. Conse-
quently, each opacity value has a different dithering mask, or rather, each dithering
mask corresponds to a certain opacity (the ratio of pixels that are kept). Figure 8.6
shows a dithered scene and, next to it, the final result a�er filtering.

Care has to be taken to avoid that two surfaces share the same mask in the
same transparency-pixel window. Otherwise, the mask of the first will completely
occlude the mask of the second. Consequently, the method fails. �e reason is that
stochastic rasterization would actually no longer be really random.

To solve the issue of the same mask, several versions are produced for a given
opacity value. All these versions are stored in a two-dimensional lookup table,
one dimension for the various alpha values, the other for the different versions of
dithering masks. During rendering, each surface (e.g., via its primitive ID) uses a
random seed to decide on the mask version.

Extensions. In [Enderton10], several modifications are presented to improve the
above approximation, but they are out of the scope of this book. �ey point out
that a first pass can be used to compute an accurate full accumulation alpha via
additive blending. �ey suggest a solution for antialiasing and also analyze how to
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proceed for arbitrary opacity values for which one cannot construct a correspond-
ing dithering mask because its resolution is insufficient. Finally, they also show
how to exploit multisample buffers during the transparency pass to gain perfor-
mance.

While the algorithm is relatively fast compared to its good results, problems
can occur if many different opacity values are in the scene. For example, a 2 × 2
dithering mask basically enables only five different opacity levels. Also, if many
transparent surfaces overlap, the dithering-mask resolution is rarely sufficient. In-
creasing the resolution of the entire image and the dithering mask would be an
option, but the downside is that the high variance in the z-buffer can affect per-
formance because it leads to incoherent shader executions. �is problem can be
avoided if one relies on multisample buffers. A transparency-pixel window then
corresponds to a color pixel, and its contained pixels to the subpixel depth values.
Consequently, only a single shader execution is performed for all depth samples.
Unfortunately, the number of depth samples per pixel is currently limited to eight,
which makes it necessary to execute several rendering passes for a higher image
quality.

Overall, this technique is the only currently available for high-performance
colored shadows, which makes it the first choice in this area.

8.2.3 Function-Based Approaches

�e idea of function-based approaches is to represent the transmittance function
as a linear combination of simpler basis functions (such as sine/cosine representa-
tions in Fourier analysis). �e use of basis functions has an important implication.
Any general function can be projected into such a basis and be approximated as
a vector of coefficients. �e advantage is that if we want to combine several such
functions, we can simply sum up the coefficients to derive the representation of
their sum. In other words, each primitive will define a function representation of
its impact on the visibility, and we can, by summing the coefficients, derive a func-
tion representation of the impact on visibility of all primitives together. �is fusion
operation does not rely on any sorting, nor is it necessary to otherwise interpret
the respective functions.

�e major approach making use of such a solution is Fourier opacity shadow
maps by Jansen and Bavoil [Jansen10]. �e applied techniques are strongly related
to convolution shadow maps [Annen07], and the reader might find it helpful to
read up on Section 5.3.4.

�e basic idea is to use a Fourier decomposition to find an appropriate repre-
sentation of the transmittance function. It turns out that instead of decomposing
the transmittance function itself, it is more helpful to decompose the absorption
function. Absorption and transmittance are both related. In the context of semi-
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transparent occluders, the transmittance function can be rewritten as

vis(d) ∶= ∏
d<z i

(1 − α i)
= exp

⎛⎝∑d<z i log(1 − α i)⎞⎠
= exp(∫ d

0

n∑
i=0

log(1 − α i)δ(d − z i)) . (8.2)

We will see that this reformulation renders all occluders independent of each other.
For the moment, we will focus on a single term: log(1 − α i)δ(d − z i). We want
to represent this function in a Fourier basis. As in Section 5.3.4, the Fourier pa-
rameter is scaled such that d is assumed to be in the range [0, 1], which leads to a
representation of the form [Jansen10]

log(1 − α i)δ(d − z i) ≈ a i0
2
+ n∑

k=1

a ik cos(2πkd) + n∑
k=1

b ik sin(2πkd), (8.3)

where

a ik ∶= ∫ 1

0
log(1 − α i)δ(z − z i) cos(2πkz)dz = −2 log(1 − a i) cos(2πkz i),

b ik ∶= ∫ 1

0
log(1 − α i)δ(z − z i) sin(2πkz)dz = −2 log(1 − a i) sin(2πkz i).

If we plug this representation in Equation (8.2), we obtain:

vis(d) ∶= exp(∫ d

0

n∑
i=0

a i0
2
+ n∑

k=1

a ik cos(2πkd) + n∑
k=1

b ik sin(2πkd))

= exp( n∑
i=0

( a i0d
2
+ n∑

k=1

a ik
2πk

sin(2πkd) + n∑
k=1

b ik
2πk
(1 − cos(2πkd))))

= exp(( n∑
i=0

a i0d

2
) + n∑

k=1

( n∑
i=0

a ik
2πk
) sin(2πkd))

+ n∑
k=1

( n∑
i=0

b ik
2πk
)(1 − cos(2πkd))

= exp( aall
0 d

2
+ n∑

k=1

aall
k sin(2πkd) + n∑

k=1

ball
k (1 − cos(2πkd))) , (8.4)

where aall
k ∶= ∑n

i=0 a
i
k/(2πk) and ball

k ∶= ∑n
i=0 b

i
k/(2πk).
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opacity 0 opacity 0.25 opacity 0.5

Figure 8.7. A few examples for semitransparent objects. Especially for clouds and smoke-like structures, the appearance
is relatively smooth and convincing.

�e above reformulation shows two things. First, the integration can be ap-
plied to the basis functions only. �is is something that is computed once and
independent of the coefficients. Second, the rearranging of the terms shows that
all coefficients can be summed up to aall

k and ball
k to derive a valid approximation

of the transmittance function. �ese results are useful because, for all semitrans-
parent surfaces i, we can compute the coefficients a ij and b ij using Equation (8.3)
and then simply sum up all coefficients of these functions independent of any or-
dering. Finally, given the sum of all coefficients, Equation (8.4) delivers a valid
representation of the transmittance function.

On the GPU, the implementation is straightforward. Each incoming semi-
transparent fragment is transformed into its coefficients vector using Equa-
tion (8.3). �e coefficients are written to multiple textures. �e more coefficients
one uses, the better the approximation. To ensure that the coefficients of all in-
coming fragments are combined properly, the result is blended in the framebuffer
using glBlendFunc(GL ONE, GL ONE). A�er having processed all these fragments,
the approximated transmittance function is ready to use. To query the transmit-
tance function for a depth d, one fetches the summed-up coefficients aall

k and ball
k

that are used to evaluate Equation (8.4).

�e approach of Fourier opacity shadow maps is very elegant and relatively
efficient. �e problem is that Fourier analysis is best applied to smooth func-
tions. �erefore, if many elements with small opacities are in the scene (e.g., par-
ticles representing a cloud), the resulting visibility function is usually well approx-
imated. Even a few coefficients (such as 15) can result in visually convincing ren-
ditions. �e performance in such cases remains high, making this method a good
choice for such scenarios. Figure 8.7 shows some examples obtained with this
approach.
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8.3 Summary

�e use of transparent objects augments the image quality drastically; for example,
glass elements appear significantly more convincing. �e choice of the algorithm
depends heavily on the scene and quality that is considered. If only one or a few
different types of semitransparent materials are used, but these are applied to many
objects, layer-based solutions seem appropriate.

For a few different materials, stochastic approaches perform well and efficient
implementations are possible on modern hardware. One issue is that only a few dif-
ferent opacity levels are possible because one needs to associate a proper dithering
pattern or randomized process. Especially, superposing elements can cause trou-
ble. Finally, for volumetric objects, it can sometimes be helpful to rely on more
continuous function-based solutions.



CHAPTER 9

Volumetric Shadows

�e concept of volumetric shadows is part of the huge topic of light scattering in
participating media that gives rise to phenomena such as shadows in clouds, gas,
smoke, and hair and sha�s of light in air and water. Sha�s of light in air are also
known as God rays due to the analogy of how God o�en was visualized in older
movies. In this section, we will only focus on real-time methods for shadows in
homogeneous participating media, such as air. Shadows in nonhomogeneous me-
dia (clouds, gas, smoke, and hair) are also feasible today in real time, to some ex-
tent [Salvi10, Sintorn09, Biri06, Zinke08], while simulation of multiple light scat-
tering generally is too time consuming to be performed for other than offline ren-
dering. We refer the reader to Cerezo et al. [Cerezo05] for a detailed survey on
rendering techniques for participating media—both real-time and non-real-time,
and for both single and multiple scattering.

In this section, we will focus on what are probably currently the most practi-
cally usable approaches for volumetric shadows with single scattering in partici-
pating media for real-time purposes. First, shadow-mapping–based methods with
ray marching are described. �is is followed by approaches that replace the ray
marching by using shadow volumes.

9.1 Real-Time Single Scattering in Homogeneous

Participating Media

Participating media (e.g., clouds, fog, smoke, or dusty air) are media that partici-
pate in the light interaction. �e light does not pass through the medium without
being affected. �e media may absorb and scatter the light rays due to reflections
and refractions at microscopic particles (e.g., water drops). Computing the true
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Figure 9.1. �e Sibenik scene with volumetric shadows in homogeneous participating media. �e phenomenon also
goes by the name sha�s of light or airlight. �e scene here uses two light sources in real time [Billeter10].

scattering effects, with multiple reflections or refractions as the light passes within
the medium, is still too time consuming for real-time applications. However, lim-
iting the scattering to a single reflection simplifies computations, which allows for
real-time applications while achieving visually pleasing results (see Figure 9.1).

In single light scattering, the dominant visual effect is assumed to be when
light travels from the light source into the medium and then undergoes one in-
scattering along the view ray (see Figure 9.2). �is assumption is true when the
participating medium is optically thin (i.e., the transmittance is close to 100%);
the light transmits through the medium fairly undisturbed, which is true for highly
transparent materials such as air. �en, the primary visual factor comes from the
single in-scattering along the view ray, making it more reasonable to ignore the
subordinate and complex multiple scattering effects. Clouds and smoke have a
very high albedo,1 making single scattering a crude approximation. �e albedo
for cumulus and stratus clouds are 0.7 to 0.9 [Nishita96]. Nevertheless, for air
containing a relatively low amount of small particles such as dust or thin fog, single
scattering produces plausible and eye-pleasing results. In particular, the single-
scattering model convincingly captures the effects of halos around light sources.
Light that is scattered towards the viewer, making the participating medium visible,
is o�en referred to as airlight.

It is also common to consider the light attenuation due to absorption and out-
scattering during the light’s traversal through the medium, both along the ray path
from the light source to the point of in-scattering and along the remaining way to
the eye. �ese extra calculations are both simple and o�en have a dramatic impact
on the visual result.

1�e albedo is the fraction of the light that is reflected by the object.
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in-scattering

out-scattering

Figure 9.2. Illustration of single light scattering. Light is in-scattered from the surroundings
(here by a water drop) into the view ray. In single scattering, the dominant in-scattering is
assumed to be from the direction of the light source. �e fact that light can be in-scattered
from other directions as well is ignored. Light is also out-scattered (e.g., by other water
drops not visualized here) on its way from the light source to the event of in-scattering and
then on its way to the eye. �is out-scattering leads to attenuation of the light intensity.

Next to the single light scattering, we assume that the participating medium
is homogeneous. In other words, the medium fills the whole scene of interest.
For a scene with a homogeneous medium, the in-scattering along an eye ray is
determined by the parts of the ray that are directly visible from the light source.
In other words, the problem transforms into computing the shadowed parts of
the view rays. Nonhomogeneous media, such as a gas cloud, would require also
considering what parts of the light traversal happen inside the medium, that is,
which parts of the view rays that have in-scattering—due to being nonshadowed
and lying within the medium—and how much attenuation there is along those
separate parts of the ray paths.

9.2 Ray Marching a Shadow Map

Figure 9.3(a) illustrates a popular method for computing single scattering in ho-
mogeneous media. Using a shadow map from the light’s position, it is possible to
find out which parts of each view ray are visible from the light source and have
in-scattering. For each delta step along the view rays, the shadow map is checked
for visibility of the light, and in-scattering is added with proper absorption along
the path from the light and path to the eye.

Following the definitions of Figure 9.3(a), a brute force algorithm becomes

For every pixel in screen space (A)
Step along ray, from the eye to a surface point p, using ray marching

For each sample position x j

Check in shadow map (B) if light source is visible
If so: add in-scattered light contribution with attenuation to the pixel’s color.
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Figure 9.3. (a) �e image illustrates how to compute the airlight along a view ray through
one pixel (red). �e in-scattering, including attenuation, is integrated over the view ray
by sampling at regular intervals x j and checking for shadows against a shadow map (B).
(b) Baran et al. note that the result for a ray (here marked as ray 2) that lies below and in
the same plane as a ray 1 and the light source can be computed incrementally from ray 1,
resulting in significant speed improvement [Baran10, Chen11].

In addition to computing the airlight contribution, it should be noted that the
surface shading of the point p should also be attenuated depending on its distances
between p and the light and p and the eye. �is contribution is, however, easy to
add to the shading computations in the fragment shader when initially rendering
the scene geometry to the screen (i.e., before doing the ray-marching pass).

9.2.1 General Airlight Approximation

While the light is attenuated on its way to a surface point p, the surface point also
receives in-scattering from the surrounding participating media, enhancing the
light intensity. �is latter term is, however, as computationally expensive to com-
pute per pixel as the full in-scattering towards the eye for the whole image. �ere-
fore, a plausible approximation is to assume that the attenuation from the light to
the surface point is low compared to the attenuation from the point to the eye.
�us, the in-scattering that would affect the surface shading is usually ignored, in
order to gain real-time performance. �is is, however, an approximation.

9.2.2 Airlight Contribution

�e formula for the airlight contribution (in-scattering and attenuation) from a to
b along a view ray is computed as follows:

L = ∫ b

a
βφ(θ) I0e

−βd(x)

d(x)2
e−βxdx , (9.1)
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where d(x) is the distance from point x to the light source; β is the optical thickness
of the medium; the I0e

−βd(x) factor is the attenuation of the intensity from the
light to x due to out-scattering; the dividend d(x)2 is the decrease in intensity
with the square of the distance due to a radial light source; the e−βx factor is the
attenuation from x to the eye due to out-scattering; and the φ(θ) factor is the phase
function that tells what portion of the light intensity is in-scattered for various
angles θ (see Figure 9.3(a)). In practice, a constant phase function of 1/4π can be
used [Baran10, Blinn82].

�e in-scattered light contribution at each point x j only varies with the dis-
tance to the light and angle θ. �e rest of the factors are constant for a certain
medium. �erefore, this formula can be calculated efficiently using precomputed
lookup tables stored as textures [Sun05,Pegoraro09b,Pegoraro09a]. A purely ana-
lytical method also exists [Pegoraro10].

9.2.3 Ray-Marching Approaches

Ray marching along the view rays can be done on the GPU, either by drawing
alpha-blended planes [Dobashi02, Imagire07, Mitchell04a], by explicitly looping
in a fragment shader [Gautron09, Tóth09, Engelhardt10], or by implementing the
full ray marching in OpenCL or CUDA [Baran10, Chen11]. Since the ray march-
ing constitutes the expensive part of the algorithm, several optimizations have been
suggested. Wyman [Wyman08] adds bounding planes of the ray marching using
shadow volumes. Along each view ray, the front-most shadow-volume plane and
farthest shadow-volume plane clamps the region for which ray marching with vis-
ibility testing against the shadow map is necessary. �is may significantly reduce
the parts along the view rays that need to be ray marched. Tóth and Umenhof-
fer [Tóth09] suggest that only a few ray-marched samples x j are taken for each
pixel, and nearby pixels may borrow results from each other. �ey use interleaved
sampling, where a block of M ×M pixels on the screen evaluates only N samples
(i.e., to determine if the sample position along the eye-ray is in shadow or if in-
scattering occurs). �e algorithm is implemented in a fragment shader, executed
as a postprocess using the shadow map.

Engelhardt and Dachsbacher [Engelhardt10] sample sparsely along the epipo-
lar lines in screen space (see Figure 9.4). In addition, they linearly search along the
epipolar lines for discontinuities in the depth buffer (i.e., where the in-scattered
radiance changes abruptly) and place samples just before and a�er such positions
(see red points on box in Figure 9.4). In between sample points along an epipolar
line, linear filtering is used. Between other sample points (e.g., between epipolar
lines), bilateral filtering is used. �e rationale is to keep the number of samples for
the single scattering to a minimum since this is expensive. In-scattering at a sample
point is computed using ray marching. In addition, Engelhardt and Dachsbacher
handle textured light sources.
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e
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= view ray sample

Figure 9.4. Epipolar lines, here visualized in screen space. �e light position is an epipole,
elight , in screen space—not necessarily inside the screen as here (vice versa, the eye is also an
epipole in shadow map space). �e lines through the epipole are called epipolar lines. �e
red dots illustrate Engelhardt and Dachsbacher’s [Engelhardt10] sparse sampling of view
rays. Samples are taken along the image border and also at discontinuities in the depth
buffer (see samples at the box). �at is, ray marching is only performed for view rays at the
these positions. Interpolation and filtering are used for results in between sample positions.

Baran et al. [Baran10] notice that the in-scattering for a ray can be computed
incrementally from a ray along the same epipolar line but closer to the light source.
�e reason is that in-scattering can only monotonically decrease with the ray’s dis-
tance from the light source (see rays 1 and 2 in Figure 9.3(b)). �ey perform a
hierarchical update based on partial sum trees. In this way, the cost for integrat-
ing the in-scattering along a view ray on average becomes only logarithmical. �e
algorithm is clever but involved, and we have to refer to the original paper for the
details. In short, the steps include ray marching, epipolar sampling, incremen-
tal hierarchy integration, rectification and unrectification, and solving a singular
value decomposition (SVD) per frame for a 64 × 64 matrix. �e rectification here
means that the view rays and light rays are transformed into a coordinate system
where they are orthogonal to each other.

�e implementation was also optimized by noting that the traversed path of an
eye ray over the shadow map results in the traversal of a one-dimensional height
field [Chen11]. �e shadow map first undergoes epipolar rectification, meaning
that every ray traverses along one single row in the shadow map. Chen et al. ac-
celerate their method by replacing the partial sum tree with a one-dimensional
min-max mipmap computation of the shadow map. For every slice of eye rays over
the same shadow-map row, the same one-dimensional mipmap section is used for
finding lit parts of the ray’s traversal, when computing the in-scattering for that
ray. �is method is relatively fast for high-resolution shadow maps (e.g., 4k × 4k),
but at the same time, the discretization requires high resolution to avoid visible
artifacts.
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Wyman [Wyman10] replaces the ray marching with one texture operation per
view ray. He voxelizes the shadow casters in epipolar space. To understand how
this is done, we will first quickly explain epipolar space in more detail. Epipolar
space slices the scene into planes that all go through the light and the eye posi-
tion. One such slice is visualized in Figure 9.3(a). Each view ray lies in a specific
plane. Every point in the scene has a coordinate in epipolar space, such that the
x-coordinate defines the epipolar plane in which the point lies, the y-coordinate
is the distance from the light source, and the z-coordinate is the distance from the
eye.

Wyman voxelizes the shadow casters into a grid of one bit per voxel (Chap-
ter 8.2.2 describes how to do this rapidly). A bit equal to one represents light-
blocking geometry in that cell. �en, he performs a parallel scan on the grid
columns, such that each bit will be set if any of the bits that are closer to the light
source in the same column is set. To find the blocked samples x j along a view ray,
it is enough to do a texture lookup returning the bits along the view ray. Up to
128 bits along a view ray can be fetched per texture lookup. �e voxelization and
bit lookups are extremely fast and can be done at frame rates of over hundreds of
fps, even for scenes of over a million polygons. Nevertheless, the method is not
demonstrated for scenes that include single scattering—only shadows.

9.3 Shadow-Volume–Based Approaches

It should not come as a surprise to the reader by now that there are also shadow-
volume–based approaches for computing the volumetric shadows. �e shadow
volumes are used to solve the integration instead of using ray marching in the
shadow map.

If shadow volumes are guaranteed not to overlap, then the integration of the
in-scattering along each view ray can be computed as a sum of order-independent
terms by adding the in-scattering up to each front-facing shadow volume plane
and subtracting the in-scattering along each back-facing shadow volume plane (see
Figure 9.5). In order to achieve nonoverlapping shadow volumes, and thus avoid
casting volumetric shadows from edges that are already in shadow (shadows in
shadows), Biri et al. [Biri06] use sorting of shadow volume quads in back-to-front
order from the camera. James [James03] orders the shadow planes using depth
peeling instead.

Another alternative to guarantee that the shadow volumes do not overlap is to
construct them from a shadow map [Billeter10], in the same spirit as McCool [Mc-
Cool00] suggests for hard shadows (see Section 2.4.7). A polygonal mesh is created
from the shadow map, with one vertex per shadow map sample, where the vertex
position is the shadow map’s sample position in world space (see Figure 9.6). �e
mesh can also be adaptively coarsened, only keeping refined tessellation along the
edges in the shadow map, in order to limit the polygon count for the mesh.
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Figure 9.5. Computing the in-scattering (or airlight, which includes the attenuation) along a partially shadowed view
ray (dashed black). �e airlight for a view ray up to the visible surface (orange) can be computed by adding/subtract-
ing the contribution along an unshadowed view ray up to each front/back-facing shadow mesh polygon (dark blue).
Blue represents segments of positive airlight contribution, added for each front-facing shadow volume-mesh polygon,
while red represents the negative contribution from each back-facing mesh polygon. �is correctly sums up to the
nonshadowed airlight contribution (green) (le�). �is is, however, only true if shadow volumes are nonintersecting
(image illustrating failure case), which can be guaranteed by creating the shadow-volume mesh from a shadow map
(right).

�e shadow-volume–based algorithm by Billeter et al. consists of the following
steps [Billeter10]:

1. Create the shadow map by rendering the scene into a depth buffer.
2. Render scene from the camera with diffuse lighting, attenuating incoming and

outgoing light due to absorption and scattering in media. Hard shadows on
surfaces can be calculated in this step using standard shadow mapping.

3. Construct the mesh from the shadow map, with or without adaptive tesselation.

(a) (b) (c) (d)

Figure 9.6. Creation of the shadow-volume mesh from the shadow map. (a) First, the shadow map is rendered.
(b) �en, the mesh is constructed with one vertex per shadow-map pixel. �e mesh triangles should face the light
source. (c) �e mesh vertices are displaced by the depth values in the shadow map so that each vertex is the corre-
sponding shadow map pixel’s world-space coordinate. (d) Finally, the mesh is closed by the four light-frustum planes.
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4. Render the mesh with depth testing disabled and additive blending enabled. �e
fragment shader evaluates the in-scattering, including attenuation, for a
nonshadowed ray from the eye to the fragment’s position. If fragment belongs to
a back-facing mesh polygon, the contribution is negated.

�ere are several options for the implementation of the in-scattering and atten-
uation computations, and therefore, we will next explain the details of one efficient
way to perform the airlight computations in steps 2 and 4 of the pseudocode above.

9.3.1 Airlight Contribution for Shadow-Volume–Based

Approaches

Figure 9.7(a) shows the computation of the light-attenuation factor of the surface-
shading contribution from a view sample (point on a scene object) to the eye used
in step 2. Figure 9.7(b) illustrates the airlight contribution between this surface
point and the eye, including the attenuation, which is used in step 4.

Since airlighta and airlightb (see Figure 9.7(b)) only depend on a′ , b′, and c′,
they are precomputed into a two-dimensional texture and looked up in runtime
by step 4. �e contribution is split into two parts to simplify storage in the lookup
table. �e first part (red) is between the eye up to the point of projection of the light
onto the view ray, and the second part is the remaining distance up to the point
p. �e airlight for each part is the integration for each z-value of the attenuated
light reaching z, scaled by the square of the distance to the light source and then
attenuated by the distance z to the eye (see formulas for airlighta and airlightb).
Since a and b could be negative—if the projection of the light source is behind the
eye or beyond p—the fragment shader deals with these two special cases as well.
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Figure 9.7. (a) Illustration of the light-attenuation factor used a�er the lighting computations for standard surface
shading (see step 2). (b) Computation of airlight contribution (in-scattering and attenuation) along an unoccluded ray,
from the viewpoint to a certain position p (used in step 4).
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�e total airlight for the ray is the sum of the airlight contribution for a and b,
where the latter is also scaled by the attenuation for distance a′ to the eye. �e
total is also multiplied by the phase function 1/4π and the optical thickness β (see
the definition of Equation (9.1)) and finally multiplied by β × lightIntensity.

✎

✍

☞

✌

Brief History

�ere has been research on rendering volumetric shadows since the early 1980s.
Blinn [Blinn82] was the first to introduce a single-scattering model to computer graph-
ics by describing a light-reflection function for clouds and dusty surfaces made up of
many small particles. �e earliest approaches on shadows in and by participating me-
dia, such as clouds, were based on ray tracing [Kajiya84]. Max [Max86b, Max86a] was
the first to use shadow volumes for atmospheric shadows (e.g., sha�s of light) as early
as 1986. He used a scan-line algorithm and epipolar lines. Nishita et al. [Nishita87] also
used shadow volumes and a scan-line algorithm.

9.4 Summary

Wyman [Wyman10] has demonstrated a very fast method to create shadows in ho-
mogeneous participating media. Chen et al. [Chen11] consider single light scat-
tering, in addition to just the shadows—at a higher cost but still at real-time frame
rates for impressive scenes. �e shadow-volume–based approach for single scat-
tering by Billeter et al. [Billeter10] is the simpler one to implement and has similar
frame rates as the ray-marching approaches. However, for textured light sources,
the texture values must somehow be considered (e.g., sampled at regular intervals),
and for this, the ray-marching algorithms right now stand out as the natural option.

Nevertheless, at the time of writing this book, this area is undergoing a rapid
evolution, and it is still an open issue what technique will be the most fruitful dur-
ing the next years. For game scenes, it is not uncommon that the frame rates al-
ready are in the order of 100 fps with any of these three methods.



CHAPTER 10

Advanced Shadow Topics

�e previous chapters have given an overview of the most important shadow tech-
niques and explained many of these approaches in detail. While we covered many
subjects, visibility is used in a large variety of other contexts as well.

In this chapter, we will provide a glimpse on advanced visibility techniques.
We give explanations on how to deal with multicolored light sources (Section 10.1)
and how to perform shadow antialiasing (Section 10.2). Other advanced methods
include specialized algorithms for particular data structures, with a focus on voxel
representations (Section 10.3), and different rendering paradigms in the form of
ray casting (Section 10.4), and we discuss how to use shadow algorithms for general
environment lighting (Section 10.5). In this context, we further added a discussion
of precomputed radiance transfer (Section 10.6). It is a very useful real-time global
illumination method that also has found its way into movie productions.

In contrast to the other chapters, the presentation here will be less profound
than for previous parts of this book. �e reason is that each of the topics is very
general and each one could fill an entire book. Here, we only want to provide a
global overview that gives some indications and pointers to the interested reader.

10.1 Multicolored Light Sources

In this section, we will cover techniques when using textured light sources. �e
texture could, for instance, represent a fire, possibly animated, or an image of sev-
eral smaller light sources, perhaps with complex shapes (see Figure 10.1).

�ere are two classes of methods for managing textured light sources. �e first
class is based on an analytic visibility computation that provides a continuous, non-
sample-based, light-occlusion result. So� shadow volumes (see Section 7.3) and
so� shadow mapping by back projection [Guennebaud06] (see Section 6.7) belong

269
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Figure 10.1. Examples of real-time shadows from textured light sources. In le� to right
order, images are from [Assarsson03a] and [Schwarz07].

to this class. �e second class is based on having a bitmask with a set bit for each
occluded light sample. �is is the result of visibility sampling [Eisemann07, Sin-
torn08b] and bitmask so� shadows [Schwarz07], which were presented in Sec-
tions 7.4.2 and 6.7.2, respectively. A bitmask is also the result when integrating
the visibility from the silhouette edges using a set of binary light samples [For-
est08, Laine05c], which is covered in Section 7.3.4.

10.1.1 Textured Lights Using Continuous Visibility Evaluation

Soft Shadow Volumes

So� shadow volumes compute the visibility of the light source by integrating over
the silhouette edges. For each view sample, the silhouette edges of occluding ge-
ometry are projected onto the light and clipped against the light-source borders.
�e occluded area is integrated from the edges by using Green’s theorem (see Fig-
ure 7.9). Instead of using just the ratio of the occluded area to the total light-source
area as the amount of shadow, we can compute how much of the red, green, and
blue light is occluded. Assume that (x1 , y1) and (x2 , y2) are the endpoints of an
edge that has been projected onto the light and clipped against its borders. �en,
this edge’s contribution to the integration is totally determined by (x1 , y1) and(x2 , y2) (see Figure 10.2, le�). For each combination of x1 , y1 and x2 , y2, a lookup
table can be precomputed that returns the amount of occluded light for red, green,
and blue. �us, the amount of occluded light can be accumulated for each view
sample, for instance, into a separate buffer.

When doing shading for a view sample (see Appendix C), the light color to be
used is the total sum of all light texels minus the amount of occluded light for the
view sample. In practice, you will likely also want to scale the light intensity to a
suitable range, for instance, if a texture or framebuffer with 8-bit channels is used.
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Figure 10.2. Calculating occluded area per edge (le�) and per shadow-map pixel (right) for
so� shadow volumes and so� shadow maps for back projection respectively. Instead of just
an area value, for textured lights, the occlusion is a triplet of the amount of occluded red,
green, and blue light.

In case shading is done before the shadows are applied, an ad hoc but less ac-
curate method is to simply multiply the color value from the shading with (1 −
the sum of all occluded light). �is will most noticeably be wrong where there are
specular highlight contributions in regions that are supposed to be fully in shadow.

Soft Shadow Mapping by Back Projection

As described by Guennebaud et al. [Guennebaud06], for each view sample, the
shadow map samples within a search neighborhood are back-projected onto the
light source to accumulate occlusion (see also Section 6.7). �is gives a continu-
ous so� shadow value per view sample. Instead of just computing a scalar occlusion
value, colored shadows from a textured light can be achieved in the following way.
If a shadow sample covers a rectangular region of the light source corresponding
to {top, bottom, le�, right} (see Figure 10.2, right), a four-dimensional texture can
encode for all combinations of a discrete range of values (e.g., 32 per parameter)
how much of the red, green, and blue light is occluded. �us, when accumulat-
ing occlusion, the amount of occlusion for red, green, and blue light is computed
separately, and the shadow color can be set accordingly.

10.1.2 Textured Lights Using an Occlusion Bitmask

For the class of methods where an occlusion bitmask is available, the assumption
is that each bit corresponds to one light sample that in turn corresponds to one
texel of the light texture. �e brute-force way to compute lighting for a certain
view sample is to, for each clear bit in the bitmask, compute lighting contribution
from the corresponding light sample by essentially treating it as a colored point
light source. Shadows are thus implicit, since light is not accumulated for occluded
light samples. Such an accurate computation is done by solving the direct-lighting
equation (see Equation (1.4) on page 10) for the shadow-receiving point p, but as
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a sum over the contribution from each light sample, as follows:

Lo(p, ω) ≈ ∣L∣∑
i

w i fr(p, ω, p→ li) Le(li , li → p)G(p, li)V(p, li),
where li ∈ L is a light sample i with associated weight w i ,∑i w i = 1, and V(p, li)
is the visibility information from the bitmask for light sample i. It should be noted
that for a nonuniform distribution of the light samples, the weightsw i also become
nonuniform, inversely proportional to the density of samples in the neighborhood
of each sample. An example implementation is presented by Forest et al. [Forest08].

Evaluating shading for each nonoccluded light sample is the only way to com-
pute accurate shadow results, and not just visibility. A faster and very common
method, much more feasible for real-time performance, is to simply scale the shad-
ing from the center position of the light source by the visibility of the light (i.e., the
fraction of visible light samples versus occluded ones). �is, however, leads to an
approximation of the true shadows.

Computing this fraction could, for instance, be done by lookup tables. For
each group of, let’s say, eight light samples, a lookup table is generated, storing the
amount of occluded light for each possible bit combination of the corresponding
8 bits of the occlusion mask. Each entry stores the amount of occluded red, green,
and blue light in a triplet. Such a lookup table is typically quite cheap to compute
even in runtime for each frame, for instance, in the case of an animated light tex-
ture. When computing lighting for a view sample, lookups are done for each group
of 8 bits in the occlusion bitmask in order to accumulate the total amount of oc-
cluded light. However, this will only be reasonably fast for a smaller number of
light samples (e.g., up to 16× 16), since the number of lookups corresponds to the
number of light samples divided by the number of groups. Each lookup table for a
group size of eight consumes 256 × 4 bytes for an RGBA-texture.

If the light texture contains only a few number of different colors, a faster
method is to precompute a bitmask per unique texture color that identifies all light
samples corresponding to this color. When computing the shadow for a view sam-
ple, for each unique color, its precomputed bitmask is ANDed with the occlusion
bitmask for all light samples. �en, the resulting number of set bits is counted. �e
amount of occluded light for this color is then given by the count times the color.
�e contribution is summed for each unique texture color to get the total amount
of occluded light for the view sample.

10.1.3 Counting Set Bits

Counting the number of set bits in a bitmask is useful not only for textures of a few
unique colors. It is also the default method for converting an occlusion bitmask
into a visibility value used for computing shadows for a constant colored (nontex-
tured) light source. For these two reasons, we will here briefly mention how to
efficiently perform such bit counting.
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Bit Counting Using Lookup Tables

It is possible to count the number of set bits in, for instance, a byte by computing
a lookup table of 256 entries that for each possible bit combination encodes the
number of set bits. In this way, the bits are counted for each chunk of 8 bits of
the bitmask. Naturally, larger lookup tables could be used at an increased memory
cost in order to loop fewer times over the bitmask. Nevertheless, lookup tables for
32 bits are unfeasible since that requires storage of four billion entries.

Bit Counting in Parallel

�ere is, however, a method that allows us to compute the number of set bits in a
word in logarithmic time, as long as the word matches the size of a machine word.
On the GPU, this allows us to count the number of set bits for a 32-bit word in five
steps.

�e idea is to count bits in parallel inside the word. In the first step, each 2 bits
of the bitmask are used to sum those 2 bits and store the result in the same 2 bits.
Secondly, every group of 4 bits is summed into the group’s own 4 bits. In the third
step, every group of 8 bits is summed into the group’s 8 bits, and so on.

Even more efficient is to count in only three steps, up to each separate byte, and
then use one multiplication to sum all bytes together in the le� byte of the 32-bit
word.1 It turns out that this requires equally many instructions (i.e., 12) as using a
lookup table for 8 bits, but the advantage is that we do not need the lookup table,
which avoids expensive memory reads and potential cache misses.

�is results in the following snippet of code [Anderson], which is generally
the best way to sum the number of bits in a 32-bit word, if there is not a specific
hardware assembler instruction for it:

int popcount(uint32 v) {

// put count of each 2 bits into those 2 bits

v = v - ((v >> 1) & 0x55555555);

// put count of each 4 bits into those 4 bits

v = (v & 0x33333333) + ((v >> 2) & 0x33333333);

// put count of each 8 bits into those 8 bits

v = (v + (v >> 4) & 0x0f0f0f0f);

// returns left 8 bits of x + (x << 8) + (x << 16) + (x << 24)

return (v * 0x01010101) >> 24;

}

On many CPUs, and also on later GPUs, there is a native population count
instruction for counting the number of set bits in a 32- or 64-bit word. �is is
typically called popc. It is exposed through bitCount() in GLSL and countbits()

in HLSL.
In addition, the most optimal way to then sum the series of counts (one count

per 32-bit word) is to use a prefix sum on the stream.

1http://en.wikipedia.org/wiki/Hamming weight
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10.2 Multisample Antialiasing

All image-based representations are susceptible to aliasing artifacts, and it is not
just shadow maps (see Chapter 3) but also the final rendered image that falls into
this category. Diagonal edges leading to staircasing artifacts are a common exam-
ple encountered here. An effective means to combat such artifacts is multisample
antialiasing (MSAA), which is supported by all current graphics hardware and typ-
ically incurs only a minor overhead. It requires the use of an according multisample
texture or framebuffer, which maintains multiple so-called multisamples per pixel.
�ese directly correspond to sample points placed across the pixel (all pixels use
the same sampling pattern). When a triangle is rendered, for each covered pixel,
the multisamples overlapped by the triangle are determined. If any of them is over-
lapped, the fragment shader is executed once (typically at the center of the pixel),
and the shader result is assigned to all covered multisamples. �is means that pixel
coverage is determined at a higher resolution, reducing staircasing artifacts, while
the potentially expensive shader execution is only performed once per fragment,
like in single-sample rendering. To present a multisample framebuffer to the user,
it needs to be resolved, which involves deriving a color value for each pixel from
its multisamples.

Using MSAA together with shadow algorithms is trivial if the algorithm runs
in the fragment shader as part of a triangle’s shading computation, as for instance
in shadow mapping. In this case, no change to the shader has to be made. �e situ-
ation is more challenging when the algorithm works on view samples recorded in
a multisample G-buffer (see also Appendix E.1 on deferred shading) and produces
some kind of visibility map, where a visibility factor (or some related information)
is stored for each pixel. One straightforward solution is to record the result in a
multisample texture and run the algorithm for each multisample, which is pos-
sible since Direct3D 10.1, by running the fragment shader at sample frequency
(exposed in OpenGL via the GL ARB sample shading extension). However, this is
quite expensive as the shadow algorithm is run multiple times per pixel (e.g., four
times in case of 4 ×MSAA). While it can be a viable approach if the shader is ex-
tremely simple and cheap to execute, it is definitely not reasonable if the shadow
calculations are more costly, like when running PCSS or reconstructing and back-
projecting occluders.

A large improvement is obtained by restricting the multisample-level shader
execution to pixels overlapped by triangle edges [�ibieroz09]. �e other pixels,
where the multisamples don’t differ, are then processed by running the algorithm
only once per pixel. However, the runtime overhead compared to a single-sampled
setting can still be significant, especially when the number of pixels overlapped by
edges is high, like with finely tessellated assets. Determining pixels with screen-
space discontinuities in a separate pass (flagging them in the stencil buffer, for in-
stance) and then running the shader only on those pixels at sample frequency can
provide some relief in the latter case.
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Another problem of such an approach is that using a multisample texture for
capturing the result further increases the memory footprint compared to single-
sample rendering, as data (like visibility) are not only stored once per pixel but once
per multisample. To avoid the overhead of both this extra memory consumption
and the multisample-level shader execution, one may opt to derive a representative
multisample per pixel and only operate on this multisample. �e result can then
be output to a single-sample visibility map. To apply it to the multisample G-buffer
(as part of the resolve step, for instance), a multisample visibility signal has to be
reconstructed from the visibility map [Schwarz08b]. To this end, the best candi-
date from a small neighborhood in the single-sample visibility map can be chosen.
One criterion that o�en works very well in practice is the light-space depth dis-
tance between the candidate multisample from the visibility map and the target
multisample from the G-buffer. Furthermore, one might take additional informa-
tion like normals into account. Overall, compared to single-sample rendering, this
approach incurs only a minor overhead owing to deriving the representative and
to signal reconstruction; moreover, this overhead is basically independent of scene
complexity.

10.3 Voxels and Shadows

With the advances of graphics hardware, alternative representations become in-
creasingly common. Further, it is very uncommon that plain flat triangle scenes
are an optimal choice, and other data representations or scene structures can be
very useful considerations. Because many of the alternative primitives o�en in-
volve customized rendering schemes, it is out of the scope of this book to give an
exhaustive overview. �e particular type that we are going to focus on are vox-
els because this rendering primitive has recently received much attention in the
context of direct illumination.

We will present two types of voxel shadow algorithms. �e first will focus on
binary-voxel data, which can be constructed efficiently on the fly (Chapter 8.2.2).
�e second kind of algorithm will directly address scene content that is represented
in a voxel format. Future game engines seem to make use of this option [Lefohn08],
which is reason enough to address this topic briefly.

10.3.1 On-the-Fly Voxelization

It is possible to create a binary-voxel–based scene representation for each frame
at a high frame rate (Section 8.2.2). Even though just binary, this information is
sufficient for visibility computations in opaque scenes. In fact, a binary voxelization
can be seen as a grid of which each cell indicates the presence of matter with a single
bit. Based on such a representation, it is easy to compute shadows. For each view
sample, one can shoot rays towards the source. Along each ray, one tests the entries
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in the voxel grid and if one of them is nonzero, the ray is assumed to be blocked
by the geometry. Note that to not miss thin structures, like twigs of a tree, and to
not suffer from light bleeding through surfaces due to holes, ideally a conservative
scene voxelization should be employed.

�is ray-tracing approach gets close to reference shadow quality with increas-
ing voxel resolution. Unfortunately, this precision comes with a double price: the
memory cost grows with the number of voxels (a 20483 binary grid already rep-
resents 1 GB of memory) and the ray-tracing step needs to visit an increasing
amount of cells. In practice, for typical game scenes and larger light sources, 5123

(16 MB) can o�en be sufficient. Furthermore, recent solutions in sparse voxeliza-
tion [Schwarz10] can efficiently compress empty space by directly voxelizing into
a sparse spatial data structure. �is not only saves space but also accelerates ray
traversal as empty regions can be skipped efficiently, and, hence, it constitutes a
promising outlook for the here-presented solutions.

Hierarchical Voxel Grids

Forest et al. [Forest10] propose to voxelize the scene from the light source and to
build a hierarchical representation to accelerate ray tracing (Figure 10.3) . �e rays
are shot towards an area source to efficiently sample the light’s visibility. �eir idea
to accelerate this tracing step is to perform a mipmap-like resolution reduction
of the binary voxel data; on lower-resolution versions, a large neighborhood can
quickly be tested for the presence of a filled voxel. In each level, a 2 × 2-voxel-
column neighborhood is fused, where a column is actually represented by a pixel
because the z-axis is stored in the bits of the pixel’s color. While standard mipmap-
ping usually computes an average value, Forest et al. propose to use an OR op-
eration to derive a hierarchical representation. �e observation is that if one of
the voxel columns contained a scene triangle, let’s say in its ith bit, the resulting
value for the fused columns at bit i will be one as well. Only if the ith voxel of all
columns is empty is the resulting value zero. �erefore, a single bit in a higher level
of the hierachical representation allows us to draw conclusions about several vox-

Level 0 Level 1 Level 2 Level 3

Figure 10.3. Neighboring voxel columns are fused with a bitwise OR operation. �e reso-
lution along the z-axis is, thus, not reduced.
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Figure 10.4. Instead of traversing the potentially deformed voxel grid in world space, one
can project the segment in light space and consider a uniform grid instead.

els. We will refer to a node as the pixel of this hierarchical representation. During
ray tracing, these nodes, when empty, can be used to quickly skip large areas.

It should be underlined again that no fusion is performed along the z-direction.
�e z-axis maintains its full resolution. �e compression along the z-axis can be
used to gain some memory if needed because less bits would need to be stored.
In practice, this reduction is usually omitted because it leads to a higher precision
and, therefore, acceleration of the ray-tracing step, as we will see next.

Ray Tracing for Shadow Computations

To compute the shadows in the scene, the algorithm launches several rays per pixel
towards the light source from where the voxelization was done. Consequently, the
z-axis of the voxelization that is encoded in the form of bits aligns with the light’s
view frustum. �e rays are tested against the hierarchical voxel representation us-
ing an adaptation of the intersection test in [Revelles00], as described herea�er.

�e idea is to intersect the ray with the voxel frustum to compute a segment
that is then tested against the voxelized geometry. While the voxelization from
the light is typically done with a perspective projection (leading to a perspectively
deformed frustum), it is possible to project the segment into light space (Chapter 2)
where one can assume that the voxelization is uniform and the frustum itself is a
cube (Figure 10.4).

�e intersection test itself is performed recursively, starting with the highest
mipmap entry. In each step, the segment is tested against a voxel mipmap entry.
Each entry reflects, by construction, an entire voxel column vc . 2To test whether
a segment potentially intersects the scene, the entry and exit points of the seg-
ment into the column are computed, in other words, the endpoints of the subseg-
ment that lies entirely in the voxel column. �ese two points span a certain z-voxel
interval in the column; that is, between entry and exit points lies a certain set of
voxels i , . . . , j. (See Figure 10.5.) �is voxel interval corresponds to a voxel-segment
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Figure 10.5. �e hierarchy was illustrated in Figure 10.3. �e segment is first tested against the highest level. If there is a
bit overlap, the algorithm descends in the hierarchy. �e second descend enforces a cut on the segment. �e part closer
to the origin is treated first. Here, the bitmask for this second step is zero, implying that there are no intersections. �e
same holds for the second part of the segment.

bitmask vs that can be easily computed by (2 j+1 − 1) − (2i − 1). In vs , all bits are
zero except those between bit i to j. If one computes vs AND vc , where AND is
the logical bitwise AND operation, the special mask vs will extract exactly the bits
i through j from vc . In other words, if (vs AND vc) equals zero, one can con-
clude that no intersection between the segment and the voxelized scene occurred.
If (vs AND vc) ≠ 0, the algorithm recursively refines the computation.

To refine computations, the mipmap level is lowered, leading to four new nodes.
�e segment is then cut at each node boundary, and the new subsegments are tested
in a depth-first manner. �is means that the algorithm continues with the segment
closest to the view sample (from where the ray was shot), and only if this subseg-
ment does not intersect the scene are the remaining ones processed.

Discussion

�e 2method achieves high quality when a high voxel resolution is used, but then
the intersection test is prohibitively expensive. In practice, not more than 128 bits
should be allocated per voxel column to ensure a fast execution at real-time rates.
In this case, a column fits conveniently in an RGBA integer value. Unfortunately,
especially when approaching objects, the resolution can become insufficient.

Extensions

To increase the details for nearby objects, Nichols et al. [Nichols10] proposed to
perform the voxelization from the camera, but, consequently, geometry outside
the view frustum will not produce shadows. �is can lead to important inconsis-
tencies.

A better solution is to keep a high voxel resolution, but to accelerate compu-
tations by relying on upsampling strategies (Appendix E). �e shadow computa-
tion is only executed for some pixels, where illumination changes occur; thereby,
the computation is concentrated on the variations of the shadows that are faith-
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fully captured. In particular, one criteria for this refinement can be a comparison
of the visible source samples between two neighboring pixels. �is can be done
efficiently when storing them in bitmasks (Section 7.4) because, then, finding dif-
ferences amounts to comparing bits. �is operation can be swi�ly done using a
bitwise XOR followed by a bitcount (Section 10.1). In practice, for 128 light sam-
ples, if at least 64 differ, the computation should be refined [Nichols10] and the
resolution is locally 2augmented.

10.3.2 Voxel-Based Scene Representations

Voxel representations are o�en the standard format in medical applications. Data
captured with magnetic resonance imaging (MRI) and computed tomography
scans (CT) are usually transformed into large voxel grids. �ese scans lead to sig-
nificant memory requirements that o�en exceed the GPU’s capacities. In order to
address this issue, various out-of-core rendering methods have been proposed to
efficiently stream or compress such data.

As even an introduction to this topic delivers enough material to fill an entire
book (e.g., [Lichtenbelt98]), we only chose two examples for shadow-computation
algorithms presented in recent publications. �e first assumes that the entire data
fit into GPU memory and deliver high image quality [Itkis06]. �e second is based
on the principle of ray differentials [Igehy99] and is well suited for out-of-core so-
lutions. By no means do these particular choices provide a complete overview of
the topic. Our intention is to propose two practical solutions for the two classes
of volume-rendering approaches (in core and out of core). �is presentation also
serves as an entry point for further reading.

In-Core Methods

Voxel data are o�en difficult to render because all elements have potentially a cer-
tain transparency, which makes it difficult to find a suitable display method, just as
for semitransparent objects (Chapter 8). To obtain a valid visualization, we need
to accumulate several contributions in each pixel. �ere are two convenient solu-
tions to composite data correctly. �e first option is rasterization based and renders
slices of the volume in a back-to-front or front-to-back order. All slice values are
appropriately combined via blending operations. �is solution was well suited for
older graphics cards with less shader programmability. Today’s technological ad-
vances enable a second option to be executed on the GPU, which is ray tracing.
�e ray traversal makes it easy to ensure a correct ordering. In this first approach,
we will concentrate on the rasterization option.

Rendering. �e shadows we want to compute will follow the deep-shadow-map
principle (Chapter 8), which means that we assume that light always follows a
straight path but is attenuated along the way. For this scenario, an efficient slic-
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Figure 10.6. Slicing the volume according to the half-vector leads to a sorting of the slices
that is valid from the light and the view. So incrementally, one can maintain the attenuated
light from the source, apply it to the next slice, and correctly composite the contributions in
the view.

ing and compositing method exists that advances along the light and view path in
parallel [Itkis06].

�e idea is to choose the slices through the voxel data according to the half-
vector between the light and view direction (Figure 10.6). �e slices are then ren-
dered in a front-to-back order into the light and the view. �e main observation
is that the choice of the slice orientation ensures that the compositing order of the
slices is the same for the light and the view. In other words, rays from the eye or the
light towards slice i can only intersect the slices 0 to i−1. Hence, the idea is to ren-
der in parallel a view from the light (containing the light attenuation) and a view
from the observer, rendering the accumulated scene where all shaded slices are
composited. �e light’s view is used to compute the light attenuation (or shadow)
onto the next slice that will be added to the observer’s view. Precisely, in step i,
slice i is shaded with the current light attenuation and then composited in the ob-
server’s framebuffer. A�er this step, the slice i is rendered a second time, now in
the light’s view. Here, it is composited with the attenuation of slices 0 to i − 1 to
yield the attenuation of slices 0 through i.

Discussion. In a single pass, the illumination and transparency are correctly han-
dled. For translucency effects, one can even slightly blur the buffers to simulate
scattering. �e quality is high if enough slices are used, but the algorithm needs
to perform a ping-pong rendering to correctly blend the contributions, which is
costly. For in-core data, it is nevertheless a good tradeoff between performance
and quality.
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Figure 10.7. Brick hierarchy that allows a local refinement of the data according to the
current view.

Out-of-Core Methods

For out-of-core methods, different solutions are more appropriate because the data
are usually inhomogeneous, making slicing approaches difficult to use. Typically,
such approaches rely on a hierarchically represented data set that is traversed with
ray tracing.

Following [Gobbetti08, Crassin09], on each level, the data are represented by
blocks of constant resolution (typically 163), so-called bricks. �ese bricks are
structured in the form of an octree. Each parent node contains a brick that is a
downsampled version of the data of its children nodes; in other words, the chil-
dren’s bricks are put together into a larger volume whose resolution is then reduced
to yield the brick of the parent. Consequently, nodes in higher levels of the tree
correspond to larger extents of the scene. Because their resolution is constant, the
approximation is coarser if the extent is larger; for example, the root node contains
a brick that represents the entire scene (Figure 10.7).

Based on this representation, it is possible to refine the data representation in
certain regions by descending in the tree, while other regions are coarsely rep-
resented. Typically, data far away from the viewpoint can be represented at lower
resolution and, thus, with bricks that cover a larger scene extent. In practice, bricks
are selected such that their voxels roughly project to the size of a pixel. A nice side
effect of this choice is that it implicitly performs an antialiasing because subpixel
information is not displayed directly, but as a filtered value that is stored in a brick.
�e fact that this representation gives access to a filtered version of the data will be
key in the shadow computation.

Because all bricks share the same resolution and, hence, memory consumption,
it is easy to manage them in a data pool. In fact, not all bricks are always on the GPU
(they would not fit anyway), but only those needed for the current view. Unused
bricks (because their precision does not match the viewpoint) or invisible bricks are
replaced by those that are currently needed. �ereby, the memory consumption is
kept to a manageable level. To decide which elements are removed, a least-recently-
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Figure 10.8. Approximate cone tracing for volume data. By adapting the kernel size according to the pixel, one can
approximate a cone-tracing process (le�) that leads to good antialiasing behavior (right). �is solution is also useful
for shadow computation, where an approximate cone is traced towards the source.

used cache scheme is o�en applied. As the view does usually not change much
from one frame to the next, these updates are well behaved and only a few elements
actually need to be replaced.

Rendering. To render the data structure, ray tracing is used. �e ray traverses the
octree and, in each node, its corresponding brick; hence, the ray-tracing step can
also be seen as a ray marching. Because the projected brick voxels should roughly
match the screen pixel size, the ray does not always descend into the leaf nodes.
One can further interpolate between nodes of different tree levels if the size of
a projected voxel falls between two levels. �ereby, brick voxel sizes effectively
appear to be roughly of constant size.

Because elements are potentially transparent, shadow contributions need to be
added for each position along the ray from the eye towards the scene. �ese shadow
rays need to be shot towards the light source. For a point light, this corresponds
to a single ray, but the fact that the data resolution is reduced with distance means
that larger parts of the scene are grouped into a single voxel. Just shooting a ray to
derive a shadow value will suffer from significant aliasing. Instead, the goal is to
render an average shadow for all scene points that fall into a pixel.

In practice, this means that instead of a standard ray marching, a cone-tracing
process is applied (Figure 10.8, le�). Cone tracing does not consider a ray, but in-
stead an entire bundle of rays, organized in a cone. �is principle relates to ray
differentials [Igehy99] and leads to much smoother results than standard ray trac-
ing. In fact, the previous approach that kept the projected voxel size to one pixel can
already be considered an approximate cone tracing [Crassin09], but it is cheaper
than actual cone tracing. Hence, one should rely on the same principle for the
shadow computations.

In other words, each position along the ray is associated with the volume of
the corresponding voxel size. In order to achieve a better approximation for shad-
ows, when performing a marching towards the light, the lookup size is chosen to



10.4. Ray-Casting Shadows 283

roughly reflect the radius of the cone that has its apex on the point light and en-
compasses the data volume at the current view ray position.

In the same way, one can approximate area light sources by shooting an accord-
ing cone (Figure 10.8, right). Instead of placing the apex on the source, it is simply
shi�ed behind the source such that the cone contains both the data volume at the
current view ray position and the light source. Interestingly, because larger cones
imply lower data resolution, a large light source results in a faster computation.
�is contradicts the typical behavior that one encounters for standard so�-shadow
algorithms.

Unfortunately, the larger the cone, the more approximate the result becomes
because contributions along the ray are not integrated correctly. First, the filtering
is uniform in space (due to the mipmap hierarchy) and not according to the view-
point, as would be the case for a true cone tracing. Second, the evaluated visibility
is only heuristically combined [Crassin10] (following the principle of occlusion
textures; see Section 6.6.2) to avoid the high cost of shooting many rays. To il-
lustrate this shortcoming, imagine a wall that has one red and one yellow side; at
a certain distance, it is averaged into an orange result, although this is physically
never possible.

Discussion. Although very approximate, the so� shadows based on voxelization
are very smooth. �e property that large sources are less costly is a nice side effect
and allows us to quickly compute so� scene illumination without wasting much
computational resources.

10.3.3 Summary

Voxels are a versatile data structure that seem to increase in importance. �e fact
that the representation is very regular makes it easy to employ out-of-core render-
ing methods. �e other interesting observation is that level-of-detail mechanisms
seamlessly integrate into such structures and are also suitable for the production
of shadows. On the downside, the memory consumption is o�en very elevated,
the alignment of the data might not always be suitable for the represented geom-
etry, and the rendering speed is currently still lower than when using standard
primitives. Nonetheless, complex phenomena such as semitransparent surfaces
and volumes are gracefully handled, and even participating media can be easily
represented with voxels. As such, it seems that voxels are a promising primitive for
the future.

10.4 Ray-Casting Shadows

In real-time rendering, the primary approach for synthesizing images is rasteriza-
tion, and it is the corresponding graphics pipeline that is implemented by graphics
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hardware (see Appendix A for a primer). Consequently, we concentrated on ac-
cording techniques throughout the book. However, images and shadows may also
be created using the competing approach of ray tracing. �anks to recent advances,
both algorithmically and with respect to leveraging SIMD units of multicore CPU
systems as well as to employing increasingly powerful graphics hardware, real-time
performance has now become possible, at least for restricted settings. Actually,
ray-casting techniques are already successfully utilized in several hybrid systems
where one or several rays are cast within a fragment shader to compute secondary
effects, like in some of the voxel-based algorithms covered in the previous section.
Foremost, however, ray tracing is at the core of many high-quality offline rendering
solutions and is increasingly used in production rendering.

For a point light source, shadows are generally computed in ray tracing by cast-
ing a shadow ray from a scene point p towards the light point [Whitted80]. In case
any object is hit, occlusion occurs and p is in shadow; otherwise, it is lit. Note that
when testing for intersection with scene geometry, knowing that an intersection
occurs suffices; it is not necessary to determine the closest intersection point along
the ray, as for shading computations.

Area light sources are typically handled by distributed ray tracing [Cook84].
Pursuing a Monte Carlo integration approach , the light source is stochastically
sampled, and a shadow ray is cast towards each sample point. A visibility factor
can then be derived from the fraction of occluded sample points. Recall from Sec-
tion 6.2.4 that such a sampling-based approach is also employed in several so�-
shadow algorithms relying on rasterization. �ese, however, typically choose one
or a few fixed sampling patterns for all receiver points, whereas the distributed
ray-tracing method can easily adopt a different pattern for each receiver point and
flexibly adjust the number of samples according to the solid angle subtended by
the light.

Casting many rays towards a light source for each receiver point is expensive,
though, especially if a generic ray-casting procedure is employed. �erefore, a few
methods have been devised that explicitly target computing so� shadows from area
lights, showing that such specialization enables considerable speed-ups. �e most
prominent algorithm actually takes inspiration from real-time rendering. As dis-
cussed in Section 7.3.4, Laine et al. [Laine05c] extended penumbra wedges to so�
shadow volumes with depth-complexity sampling, such that all blockers are ac-
counted for and correct occluder fusion is performed. While this offers significant
performance increases, even further improvements are possible, as demonstrated
by Lehtinen et al. [Lehtinen06].

Another proposed approach is multifrusta tracing [Benthin09], which pays
special attention to enabling an efficient implementation on wide SIMD architec-
tures like GPUs, aiming for real-time performance in the long run. Assuming an
SIMD width of 16, a set of 16 receiver points are processed in parallel. For each,
a pyramidal frustum originating at the receiver point is traced towards the area
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light. If the frustum intersects a triangle, rays towards different light samples are
generated on the fly. �ese are tested for intersection with the triangle in groups
of 16, recording the result in a binary occlusion bitmask.

Apart from such algorithmic and implementation-related improvements, per-
formance can also be increased by resorting to an image-based scene representa-
tion, which sacrifices some accuracy, though. We have already encountered several
according methods (utilizing multilayered shadow maps) in the context of Sec-
tion 6.8.

10.5 Environmental Lighting

In this book, we have seen several methods that aim at the computation of shadows
for a given light source. With recent advances in computational power, an increas-
ing amount of light sources can and will be added to virtual scenes. Step by step,
this trend will lead to the simulation of an entire environment that is integrated
accurately in the illumination process. Ultimately, global illumination, where ba-
sically each element in the scene is considered a light source, might be simulated
with all-frequency information. Until then, we still have a long way to go, but it is
interesting to already take a peek at scenarios in which light sources are no longer
well-defined entities with limited spatial extent but are, rather, entire hemispheres
around a point. Such techniques have received much attention recently because
they give the impression of global-illumination-like effects, without introducing
the same costs. Several very efficient solutions exist that can enrich the appearance
of the final rendering significantly. Even though such solutions are o�en approxi-
mate, they are sufficiently convincing and appealing to also be used in movie pro-
ductions. Figure 10.9 shows an example for the influence of the different types of
illumination on the appearance.

diffuse lighting + hard shadow + soft shadows + environmental

Figure 10.9. Diffuse illumination is the standard way of lighting a scene (le�); hard shadows add spatial cues (middle
le�), but so� shadows make the scene look much more realistic (middle right). Adding environmental illumination
further enriches the appearance (right).
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Figure 10.10. Convolution so�-shadow maps are relatively efficient to evaluate. �is makes them well suited when an
environment map is to be approximated by several area lights.

10.5.1 Environment Map Shadows

In principle, environmental illumination can be approximated by assuming an en-
vironment map that is a texture surrounding the scene and that encodes the in-
coming illumination from all directions. �is environment map can then be de-
composed into a set of distant area light sources or point light sources. �is follows
the same principle that allowed us to decompose an area light into smaller sources
(as discussed in Section 1.3). Initially, we simply suggested decomposing the light
into a set of uniformly spaced source samples, but several more efficient strategies
have been developed (such as importance sampling [Hammersley64]). �e idea is
that it does not make sense to place sources at locations where there is not enough
energy to actually contribute to the image. A simple example is an environment
map with a single bright spot somewhere while the rest of it is black. Any source
placed on the dark part will not emit any light.

For importance sampling, the distribution of points is chosen according to the
energy that is emitted. When now attributing the same radiance to each source,
such that the sum of all these values corresponds to the integral over the environ-
ment map, the resulting image lit by the point lights will deliver a good approxi-
mation of the lighting via the environment map. �e multitude of the sources will
balance out the fact that the incoming radiance is now a constant.

More advanced sampling methods exist, but such approaches are outside the
scope of this book.

Instead of point approximations, it is also possible to rely on a decomposition
into area light sources [Annen08a] (see Figure 10.10). �is approximation is not
limited to any particular so�-shadow algorithm and could be used in conjunction
with any existing method. Nonetheless, it is not clear that such a decomposition is
always of advantage with respect to a point-based solution. �e outcome depends
heavily on the content of the environment map.

10.5.2 Ambient Occlusion

A simpler scenario is ambient occlusion (AO). A survey of related techniques can
be found in [Méndez-Feliu09]. It is an illumination method based on the as-
sumption that light is locally impinging uniformly from all directions of the hemi-
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sphere onto each point of the scene. AO can also be seen as an accessibility value
[Miller94]: the less a scene point is exposed to the environment, the darker it ap-
pears. In other words, AO can also be seen as a refinement of the o�en-employed
ambient term (Appendix C), which is a simple constant to coarsely approximate
reflected light in a scene.

In theory, the implementation of an AO algorithm is simple:

// Simple AO Algorithm

for each view sample (p)
ambientOcclusion = 0

for(i = 0; i < nbSamples; ++i)

dir = choseARandomDirectionInHemisphere(p)
if(intersectsScene(ray(p, dir)))

ambientOcclusion += 1/nbSamples

�e motivation behind this approach is that in many situations, light is not
restricted to a single point or area light source, but instead, it comes from the en-
vironment, such as the light from the sky. In other words, this illumination comes
from “everywhere” but is blocked by geometry. Basically, you can imagine an en-
vironmental illumination with an environment map of constant color. One differ-
ence is that distant geometry is usually assumed to have less blocking contribu-
tion, which o�en allows us to concentrate on occlusions near the impact point.2
�e latter observation is used to restrict the intersection test to a limited volume
around each point by employing a falloff function, which can be exploited to ob-
tain a significant performance improvement. Furthermore, indoor scenes would
otherwise appear entirely black because any ray would intersect the geometry at
some point. �e falloff function is usually a smooth-step function3 or an expo-
nential falloff to avoid artifacts due to abrupt occlusion changes. An exponen-
tial function is usually a good choice. �e pseudocode only needs to be changed
insignificantly:

if(dist = intersectsScene(ray(p, dir)))

ambientOcclusion += 1/nbSamples * falloff(dist)

�is technique might sound like a crude approximation, but it leads to con-
vincing and especially smooth shading that resembles indirect illumination. Fur-
thermore, AO can be precomputed and stored in textures, which is o�en done for
static elements in games as well as movie productions. When evaluated at runtime,
it can even provide shadow-like effects on nearby elements of the scene.

2�e definition of ambient occlusion can vary and sometimes include the cosine of the angle be-
tween the incoming light, changing the contribution in the pseudocode to 1/nbSamplesnp ⋅ dir. �is
change does not does not affect the discussion in this chapter.

3�e smooth-step function is available in GPU shaders. A possible definition that smoothly varies
between zero and one in the interval [edge0, edge1] can be computed by setting x := max(0,

min(((x - edge0)/(edge1 - edge0),1))) and evaluating x*x*(3-2*x).
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“Attached” Ambient Occlusion

One way to efficiently apply ambient occlusion in real-time applications is to “at-
tach” an ambient-occlusion volume to objects. �ese volumes are used to trigger
the occlusion effect of the object itself on the nearby surrounding.

One way to attach AO to an object is to precompute the ambient occlusion
and encode it in a cube map placed at the object’s center [Kontkanen05]. Each
texel entry stores occlusion information in the form of three coefficients a, b, c of
a quadratic rational function AO(d) ∶= 1/(ad2 + bd + c), where d is the distance.
�e coefficients of these functions are matched in a preprocess to best represent the
also precomputed and sampled AO function. To calculate the impact of the object
onto a point p in the scene, a lookup retrieves the pixel that corresponds to p’s
projection into the cube map. �e corresponding occlusion function is fetched and
evaluated using the distance of p. �ey further combine several occluders based on
a uniform repartition heuristic, similar to the solution described in Section 6.6.2.

A faster and simpler way to store and retrieve AO is to directly rely on a three-
dimensional texture surrounding the object [Malmer07]. Each view sample only
needs to fetch the AO value depending on its relative position to the object center
from the texture. Inherently, this method needs to assume a finite support, mean-
ing that AO values need to be clamped and outside of a fixed radius (the limit of
the three-dimensional texture); no shading is influenced anymore. As indicated
before, this is a common assumption for AO and one can directly store the AO re-
sult (including the falloff function) in the three-dimensional texture. Figure 10.11
shows results achieved with this approach. �e shadows are generally very blurry,
which gives the images a nice feel but can also hide high-frequency influences. �is
is particularly visible on the object itself where the computation of blocked light is
not always very successfully handled.

As these two first approaches are based on precomputation, it is not possible
to deform objects in realtime. Nonetheless, each object can be moved dynami-
cally, and it can cast shadows on other surrounding scene elements. Because the
evaluation is basically a simple texture fetch, several hundreds of objects can be
evaluated.

A more precise solution, called ambient occlusion volumes, for deforming dy-
namic scenes was presented recently by McGuire [McGuire10a]. �e idea is to
construct a volume on a per-triangle/polygon basis. �ese volumes are chosen
such that all points in space that are potentially affected by the current triangle are
included. Consequently, it is enough to test each view sample against the occlusion
volume and if it is contained, the AO contribution of the triangle is attributed to
the view sample.

In practice, the approach first starts off with deferred shading from the view-
point. In each pixel, one stores the corresponding view-sample position, depth,
and normal. �e second pass then renders the triangles’ occlusion volumes (con-
structed in the geometry shader). �ese volumes are rendered into the deferred



10.5. Environmental Lighting 289

Figure 10.11. Ambient occlusion o�en looks very convincing and is even used in the industry for feature-film produc-
tions. It delivers smooth and visually pleasing shadows.

image and tested against the depth buffer, but without actually modifying it. �en,
for each rasterized pixel, the fragment shader retrieves the covered view sample
and tests whether it is located in the occlusion volume. If so, the shader computes
the area obstructed by the occlusion volume’s triangle on the hemisphere around
the view sample. �is step also employs the AO falloff function to this value. �e
blocking contribution of all triangles are accumulated via blending operations.

�e use of blending implies that the final AO value corresponds to an additive
fusion of all blocker contributions. �is usually leads to a significant overestima-
tion. In order to remedy these artifacts, McGuire proposes a heuristic to remap
these values. �is remapping function was derived by comparing several of the
overestimated results against reference solutions. Roughly, it follows

remap(o) = ⎧⎪⎪⎨⎪⎪⎩
0.8o, if o ≤ 0.5,

0.4 + 0.5(o − 0.5) = 0.15 + 0.5o, if o > 0.5.
(10.1)

Although this solution is purely heuristic, it delivers surprisingly good results.
While the first two presented solutions are fast, the third is a bit slower but

of higher accuracy. All are temporally coherent and no high-frequency artifacts
appear in the images. Unfortunately, even when used in a larger neighborhood, AO
cannot replace shadows. Further, incoherences can show, and the shading might
appear unrealistic.

Screen-Space Ambient Occlusion

Cheaper, more local approaches can avoid any preprocessing or specialized geom-
etry treatment at all. One such example is screen-space ambient occlusion (SSAO),
which deserves special attention as it is substantially used in games. �e first ap-
pearance was in 2007 in Crysis by Crytek, described in more detail in [Akenine-
Möller08]. Recently, similar solutions have been added as a default option in mod-
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without AO

with AO

Figure 10.12. Screen-space ambient occlusion is a relatively cheap procedure that estimates the incoming light at each
pixel. From the point of view, the algorithm extracts a depth map, which is an approximation of the surfaces in the form
of a height field. �e ambient-occlusion value is derived by investigating a neighborhood in this depth map. (Images
were produced with [Bavoil08c] (le�)) and [Huang11](right).)

ern graphics drivers. Figure 10.12 shows two results obtained with SSAO. Due to
the many variants of this approach, we refer the interested reader to, for exam-
ple, [Bunnell06, Hoberock07] and only concentrate on a few practical examples.

An early version was presented in [Shanmugam07]. �e idea is to approxi-
mate ambient occlusion solely based on a depth map shot from the current point of
view. For each view sample p, the surrounding pixels are transformed into spheres
(meaning their center is defined by the view frustum, their radius via their pro-
jected size on the screen). �ese spheres are, one by one, projected on the hemi-
sphere around p. �e size of their projection defines their blocking contribution.
�ese contributions are added up to define the final occlusion value for p. As be-
fore, the influence of distant spheres is not taken into account and only a local
neighborhood is examined. Precisely, a local ambient-occlusion sphere (AOS) is
defined around the view sample, and only spheres whose radius indicates an in-
tersection with this sphere are taken into account. �e approach can be refined by
extracting a second layer from the viewpoint, but this choice is optional. Further,
an extension is presented to deal with more distant scene elements. �is computa-
tion is less interesting in our context, as more efficient solutions will be presented
in the following. We refer the interested reader to the paper.

Interestingly, even simpler solutions based on an AOS can lead to convincing
results (illustrations can be found in Figure 10.13). For every view sample, the oc-
clusion is again estimated by sampling a pixel neighborhood, but the evaluation
follows the principle of percentage-closer filtering (Chapter 5). �e depth of the
surrounding pixels inside the AOS is compared to the depth of the current view
sample. Unfortunately, such a simple solution also shares typical PCF problems,
such as biasing. A solution employed by Crytek’s SSAO [Akenine-Möller08] is to
sample uniform locations in the interior of the AOS and to compare these samples
against the surface. If they fall locally below, they are counted as blocking, other-
wise, as unblocked (as the depth map is created from the viewpoint, “below” refers
to a distance that is farther from the camera than the view-sample distance).
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Figure 10.13. (a) Standard ambient occlusion (AO) relies on ray shooting, (b) Screen-space AO samples random points
in an ambient-occlusion sphere (AOS) and compares these against the depth buffer, (c) to reduce noise, instead of a
testing isolated points, one can derive unoccluded segments of rays through the pixels that lie in the AOS , (d) the AOS
can also be modified to mimick a cosine falloff.

An even-better approximation can be achieved when considering volumetric
obscurance [Loos10]. �e idea is to estimate the empty space inside the AOS us-
ing line integrals. To employ this approximation, one recovers all the depth-map
pixels that potentially lie inside the AOS. For each such sample q, one computes
the line connecting it to the viewpoint. �en one computes the length of the line
segment lying inside the AOS. �e sum of all these lengths is an approximation
of the free space in the AOS. �is value can then be used to shade the sample. To
some extent, one can see the use of these segment lengths as weights that deter-
mine the impact of each depth sample in the neighborhood of q. If a normal is
incorporated, one can also use a hemisphere instead of the AOS. Because such an
evaluation is more continuous, the result appears smoother, while having similar
to less cost than SSAO.

In a similar approach, Szirmay-Kalos et al. [Szirmay-Kalos10] also proposed
a modification to SSAO. �e paper presents a very thorough analysis of AO com-
putations and, further, provides one very distinct extension. When assuming not
only that AO takes visibility into account but also that the contribution for each
direction is actually weighted by a cosine, as would be the case if we would con-
sider environmental illumination, the authors point out that this scaled influence
can be mimicked by an AOS of radius R that corresponds to half the radius of the
original AOS and centered at a distance R from the view sample in the direction
of the normal (Figure 10.13). All previous solutions can be modified in this way to
better represent the directional character of an environmental lighting.

In the same spirit, we should mention a last, slightly more costly, solution that
uses an alternative to an AOS by relying on an occlusion cone. �is cone is de-
fined as the largest cone that does not intersect nearby depth samples, with the
constraints that the apex lies on the view sample and its opening is in the direction
of the normal. �ese cones are computed by shooting rays in all two-dimensional
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directions of the depth map. Along each ray, the steepest angle is measured. Hence,
combining the result of all directions defines the cone opening. �e larger the cone,
the brighter the shading [Bavoil08c]. �is estimation was already successfully used
in the context of height-field illumination [Oat07]. It looks very convincing and
leads to a smoothly varying AO estimate.

Extensions. To some extent, AO is related to global illumination. Simply, one
assumes that light arrives from all directions. A small modification to the stan-
dard ambient occlusion allows us to approach this effect even further. In fact, in-
stead of just storing an obscurance, one can sample with each AO ray a texel from
an environment map. �is results in colored shadows that further increase real-
ism [Ritschel09,Landis02]. It is beneficial to choose the rays to shoot wisely, based
on the environment map (i.e., one can rely on the aforementioned importance sam-
pling to select appropriate ray directions). With respect to the above pseudocode,
such a change can be easily incorporated as

if(intersectsScene(ray(p, dir)))

ambientOcclusion += lookupRadiance(EnvMap, dir)

One drawback of screen-space ambient occlusion is that abrupt changes in the
depth map can result in artifacts during animation. Especially, missing occluder
information can lead to inconsistencies because, basically, only the first visible sur-
faces intervene. With this in mind, [Reinbothe09] applied a GPU voxelization
technique [Eisemann06a] (see Chapter 8) to obtain a more faithful hybrid ambient
occlusion that also considers hidden surfaces.

Improvements. For all AO applications, one general property holds: for high
quality, many evaluations (samples) are necessary. In practice, varying sets of rays
can be used per pixel and an edge-aware filtering can fuse the result of neighbor-
ing pixels in order to produce a smoother outcome (Appendix E). With such a
method, as little as six samples or less can be sufficient.

Furthermore, instead of directly evaluating the pixels in the depth buffer, one
can rely on hierarchical representations that group several depth samples depend-
ing on their distance from the considered view sample. In practice, this can be
realized by computing a mipmap or Gaussian pyramid from the depth buffer.

One interesting observation is that SSAO shares many similarities with PCF
evaluation (Chapter 5). Principles such as variance shadow maps [Lauritzen07]
can be directly applied to AO [Loos10]. Even a separable approximation can be
applied that filters first along a single axis and then blurs the result again in an
orthogonal direction [Huang11], whereby the number of samples to evaluate is
reduced drastically. Such choices can lead to an important acceleration.
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Bent Normals for Cheap Ambient Occlusion

At the other end of the spectrum, the cheapest solution to fake AO is to rely on
bent normals [Landis02]. �e rough idea is to precompute the direction in which
a point is most accessible (i.e., most rays that deviate only slightly from this main
direction will be unblocked). �e normal is then reoriented in precisely this di-
rection. �ereby, even when lit with a standard illumination pipeline, the model
with the so-transformed normals will appear as if some light blocking was actually
taken into account. �e algorithm to produce such normals is relatively straight-
forward and builds upon the standard AO code on page 287. Instead of summing
up ambient occlusion, one sums up directions and normalizes the result to unit
length to define the bent normal.

�e approach is most effective for static objects, but even for animated models
it can be convincing. Because the technique comes basically for free, it is always a
useful addition to the rendering.

10.5.3 Summary

Image-based techniques have been shown to be particularly efficient and lead to
a good overall quality compared to the cost. Furthermore, the implementation of
such methods is particularly simple. Nonetheless, such solutions can result in some
artifacts due to the ambiguous depth-map interpretations and view dependence.
Consequently, occlusions might be missed and some temporal incoherence can
occur.

While no far-field occlusions are considered, visually pleasing influences of
nearby objects on their surrounding are captured, thereby mimicking almost
shadow-like effects. Nevertheless, this effect should be seen as a quality-improving
supplement, not as a replacement for so�-shadow computations. �e missing di-
rectionality, globality, and its screen-space nature do not provide the same visual
cues that shadows do (see Figure 10.14). As an additional effect, though, it is ex-
tremely useful and should be integrated to enhance scene details.

Ambient 

Occlusion

AO + HS Hard 

Shadows

Figure 10.14. Ambient occlusion is a great way to complement direct illumination and shadows. For height fields the
computation time for ambient occlusion is much faster than for general geometry.
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10.6 Precomputed Radiance Transfer

While we have concentrated on shadows cast by point lights or area lights of rather
small extent in the majority of the book, the last section turned to scenarios where
light is impinging on a scene point from basically all directions and not just from
one small light source or a few of these. Although ambient-occlusion methods
are quite effective in providing visually satisfying results, they suffer from several
limitations, not least due to the simplifying assumptions made. �e fast screen-
space methods, for instance, merely account for nearby occluders and are also only
able to consider a quite small set of directions to remain real time, easily missing
some occluders.

A different approach is taken by precomputed radiance transfer (PRT) tech-
niques. Basically, they precompute a solution of the rendering equation (see Equa-
tion (1.2) in Section 1.1.2):

Lo(p, ω) = Le(p, ω) + ∫
Ω+

fr(p, ω, ω̂) Li(p, ω̂) cos(np , ω̂) dω̂,

or a simplified version of it. �is is done in such a way that one or more components
of it, like the material (i.e., the BRDF fr) or the lighting, can be exchanged quickly
and cheaply at runtime. To this end, (groups of) factors of the integrand, each con-
stituting a (hemi)spherical function, are projected into adequate functional bases.
�at is, each factor is expressed as a weighted sum of basis functions. Since the
number of basis functions can be extremely high, typically only the weights (also
called basis coefficients) for a small set of basis functions that contribute most are
retained, introducing some approximation error.4 If the bases have been chosen
carefully, then the integral can be computed efficiently from the retained coeffi-
cients for the factors. For instance, decomposing the integrand into two factors
and selecting the same orthonormal basis for both of them reduces the integral to
a simple dot product of the two factors’ coefficient vectors.

�ere exist a plethora of PRT algorithms, and hence, a wide variety of bases
and integrand decompositions have been investigated. Depending on the targeted
applications, they also differ in whether they support the complete light transport
according to the rendering equation, thus taking interreflections into account, or
only a subset of it, like direct lighting. Moreover, while some of the integrand com-
ponents, like an incident light from an environmental map, are shared by all con-
sidered scene points, others depend on the concrete scene point p and involve ex-
pensive precomputations. Not only may these easily take several hours, but the
dependence on p also results in enormous amounts of coefficients, necessitating
(lossy) compression schemes. As a consequence, usually several entities of the
setup are considered static, as changing them would require expensive and long

4We already encountered such a truncation in the context of convolution shadow maps (Sec-
tion 5.3.4) and Fourier opacity maps (Section 8.2.3).
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recomputations. For instance, for cinematic relighting, both the view and the ge-
ometry are fixed. However, considerable work has been done to relax such restric-
tions. Unfortunately, a detailed treatment is beyond the scope of this book, and
the reader is referred to Ramamoorthi’s survey [Ramamoorthi09] for a broader
overview.

In the following, we exemplarily focus on two dedicated approaches that pri-
marily target shadows and that don’t restrict the scene to be static. Both of them
consider only the direct transport (see Equation (6.1)):

Lo(p, ω) = ∫
Ω+

fr(p, ω, ω̂) Li(p, ω̂) cos(np , ω̂)V(p, ω̂)dω̂,

where the incoming radiance Li(p, ω̂) stems from a light environment whose visi-
bility is given byV(p, ω̂). For real-time performance, both algorithms resort to the
spherical harmonics (SH) basis to encode the integrand’s factors. Basically, consti-
tuting the analogue to the Fourier series on the sphere, spherical harmonics are well
suited to represent low-frequency signals, like a smoothly changing environment
map. For these, a small number of coefficients suffices, where rarely more than 25
(corresponding to fi�h-order SH) are employed in practice. However, that does
not hold for high-frequency signals, including environment maps with a strong,
spatially confined light or for visibility with its binary nature. �ese get signifi-
cantly smoothed, essentially removing their higher-frequency content, if they are
approximated by a low number of SH basis functions. Using considerably more
basis functions is not an economical solution, though, because the SH basis func-
tions have global support. Instead, other bases whose basis functions’ spatial influ-
ence is more localized, like wavelets, are a better option. Nevertheless, supporting
all-frequency signals incurs a noticeable overhead compared to considering only
low-frequency content.

10.6.1 Precomputed Shadow Fields

Targeting scenes consisting of an environmental light, local light sources, and ob-
jects, where these light sources and objects are predetermined but can be arranged
dynamically, Zhou et al. [Zhou05] precompute the influence of each light source
and each object in the surrounding empty space. To this end, sample points on
16 concentric spherical shells are considered, placing 1,536 points on each shell.
For a light source, a source radiance field (SRF) is computed, recording at each
sample point the SH representation of the light incident from the light source. Us-
ing 16 SH coefficients per sample point and storing RGB values, an SRF requires
16 × 1,536 × 16 × 3 = 1,152 KB of memory. Similarly, an object occlusion field
(OOF) is precomputed for each object, determining at each sample point the oc-
clusion caused by the object. At runtime, computing the radiance Lo then only in-
volves combining the SH representation of the environmental light, the SRFs, and
the OOFs according to the actual scene configuration, which still requires quite
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some computational effort, though. Note that if a receiver point is outside the out-
most spherical shell of an object whose radius is typically chosen as eight times
the radius of the object’s bounding sphere, the occlusion potentially caused by that
object is ignored.

For higher performance, several optimizations have been presented
[Tamura06], like adapting the sampling density. Furthermore, an extension exists
that also accounts for light interreflections [Pan07].

10.6.2 Spherical Blocker Approximation

A different approach that mainly focuses on supporting articulated characters is
pursued by Ren et al. [Ren06]. In a preprocess, a hierarchical sphere set approx-
imation is constructed for each scene object. During runtime, visibility is then
determined by accumulating the occlusion due to the spheres. Since each sphere
subtends a circular solid angle, a corresponding generic pretabulated SH projec-
tion can easily be utilized. By multiplying the resulting visibility functions for the
single spheres (or adding them in log space), correct occluder fusion is performed,
even though the low-frequency nature of the SH representation prevents accurate
results.5 �e method was later improved upon and extended to incorporate indi-
rect lighting [Sloan07].

While the sphere approximation and the choice of the SH basis enable real-
time performance, they also cause unrealistic and missing shadows in locations
where rather higher frequencies occur (e.g., where a box touches the ground). In
particular, contact shadows are o�en wrongly shaped and partially lose their con-
tact, which is suboptimal since they constitute visually important features [�omp-
son98]. Inaccuracies like this would become especially noticeable if the environ-
mental light featured a small region of high radiance, like the sun.

By contrast, such key lights are explicitly supported by Snyder and
Nowrouzezahrai [Snyder08], who consider the special case of dynamic height
fields. �ey approximate the horizon blocking the environmental light by visibility
wedges and utilize pretabulated SH projections for them to determine the overall
visibility. In a follow-up [Nowrouzezahrai09], this solution was accelerated and
extended to indirect illumination.

5For any given direction ω, the resulting function V yields the product of the input functions Vi

evaluated at ω. Consequently, if any Vi(ω) = 0, indicating that the light is blocked in this direction by
at least one occluder, the composite response V(ω) will be zero. Otherwise, meaning that no blocker
occludes the incident direction ω (i.e., all Vi(ω) = 1), V(ω) will return one. In practice, however, the
projection to the SH basis causes the input functions Vi to take values close to but other than zero and
one, resulting in a smoothed, nonbinary overall response.



CHAPTER 11

Conclusion

In practice, it is very frequent that people jump directly to conclusions. So if you
did, you might as well continue reading because in this case, your choice of start-
ing with the conclusion first indicates what you are a�er: solutions to a particular
problem, not necessarily an exhaustive overview.

�is book provides a sufficient amount of details to understand and imple-
ment the major techniques. We described many techniques in order to give a good
overview of the state-of-the-art solutions. But why did we present so many meth-
ods? Why not just the best solution? In fact, some readers might even feel a little
overwhelmed by the variety of possibilities. �e simple reason is that there is no
ultimate shadow algorithm at the current moment in time. We have many solu-
tions that all address certain situations and needs. Further, it can make perfect
sense to combine several methods to yield a system that provides an even better
behavior. We saw such a situation in Chapters 3 and 4 where reparametrization of
shadow maps and partitioning lead to a better overall behavior. We feel it is there-
fore of large benefit to have a good overview to find the most adequate solution for
a particular situation.

In the following, we will investigate several application scenarios and point out
which algorithms might be of high interest to you.

11.1 Hard Shadows

Algorithms for hard shadows are very interesting for real-time purposes and aim
at the simulation of point light sources. �e shadows look sharp, which might
result in an artificial appearance. But it is easier to avoid artifacts than in the other
shadow categories, making them still very interesting in the context of high-quality
imagery.
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11.1.1 Accurate

If accurate hard shadows are needed, geometry cannot be ignored and needs to
be considered. Usually, this implies that culling should be applied to only con-
sider casters that are necessary and, if used, shadow volumes should be clamped if
possible. �ere is some work in this direction [Lloyd04], but it does not eliminate
the problem of the actual shadow computation. Shadow volumes [Crow77] (Sec-
tion 2.3) are a standard option to compute high-quality shadows. �e overdraw
and geometry processing can be prohibitive, but it has found practical application
in the industry [Stich07].

Alternatively and more efficiently, accurate shadows can be computed with ir-
regular z-buffer [Johnson05] strategies. Related CPU [Aila04b] and GPU [Sin-
torn08b] implementations exists; the CPU solutions have more hierarchical adap-
tation, whereas the GPU solutions are currently clearly faster. �e downside is that
omnidirectional lights require renderings in several directions, and the algorithms
also become costly if the shadow map has to cover a large scene. Adaptations in
the direction of light-space perspective shadow maps can improve the result sig-
nificantly. Currently, it seems to be one of the more promising directions to go.

11.1.2 Approximately Accurate

When lowering the quality to only approximately accurate hard shadows, very
efficient solutions move within reach. Adaptive subdivision approaches (Sec-
tion 4.4.2) are most promising. �ese methods make a good guess for a parti-
tioning of the shadow map in order to achieve a close-to-accurate result. One
prominent example [Lefohn07] runs entirely on the GPU. But currently, it seems
that putting some workload on the CPU slightly accelerates the process [Giegl07a].
Depending on the workload of the application, one might favor one or the other.

11.1.3 Approximate

When entering the realm of approximate hard shadows, the most important aspect
is performance. �e cheapest solutions are based on shadow-map parametriza-
tions. Light perspective shadow maps [Wimmer04] (Section 4.2.1) are a very good
option. �ey basically come at almost no cost because the only GPU-side change
is to switch the original light matrix to a modified one. �is makes it particularly
appealing for games.

Only slightly more expensive, but significantly more general, are z-partitioning
approaches [Engel06,Zhang06a], where the view frustum is decomposed into sev-
eral distances, mimicking the optimal, logarithmic behavior. �ese techniques are
a good compromise between quality and cost and are probably the most practical
and most widely used hard-shadow algorithm today. �ey deliver even better qual-
ity when combined with the aforementioned parametrization techniques, and they
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can be greatly improved by analyzing the distribution of samples in the view frus-
tum [Lauritzen11], although this already requires carrying out most of the work
needed for the higher-quality adaptive subdivision methods.

If computation time remains to treat geometry, silhouette shadow maps [Sen03]
are a valuable addition to hide some more of the pixel artifacts.

11.2 Filtered Hard Shadows

An improved shadow appearance can be achieved when considering a depth map
as a discretized signal that one tries to reconstruct. In practice, a certain amount of
blur is added to the shadow boundary that removes the artificial hard-shadow look.
Currently, most real-time applications rely on shadows of this kind. In the case of
small, smooth shadow boundaries, the good tradeoff between cost and visual qual-
ity makes filtered shadows a good option for convincing yet cheap solutions. Many
methods aim at speeding up the computation of standard percentage-closer filter-
ing [Reeves87] (Section 5.1.3), and the main differences are related to the memory
budget.

If memory is an issue, the best approach is probably still a well-adapted imple-
mentation of variance shadow maps [Donnelly06] (Section 5.3.2). Light leaks may
appear, which can be combatted through exponential shadow maps [Salvi08, An-
nen08b] or exponential warping [Lauritzen08] (Section 5.3.5).

�e other advantage is that filtered shadows address aliasing due to foreshort-
ening. �is is a very good property that creates nice-looking shadows. In spite of
the so� look of filtered shadows, the result is not to be confused with a physically
correct so�-shadow solution, as the penumbra width does not change. But in some
scenarios (e.g., in a game context), a designer is o�en able to tweak the scene in
order to make these approaches look sufficient.

11.3 Soft Shadows

�e highest physical plausibility is achieved by so�-shadow methods. �ese can
be used to create convincing shadows, but are also of interest when actual physical
simulations are a must, such as for the previsualization applied in the context of
architectural design.

11.3.1 Accurate

Currently, the most efficient algorithm for animated scenes with reasonable light
sources are view-sample mapping [Sintorn08b] solutions (Section 7.4). Depth-
complexity sampling [Forest08], which belongs to the class of accurate so� shadow
volume approaches (Section 7.3.4), is generally slower and would only become
interesting for larger sources, for which view-sample mapping is costly. Unfor-
tunately, for such a scenario, it is very important to consider generalized silhou-
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ette edges, not only those from the light’s center. �is increased workload results
in a much higher computation cost and reduces the overall performance of so�-
shadow volumes drastically. �e principle does help though with more advanced
data structures to perform more efficient ray tracing [Laine05c]. But currently,
these optimizations head towards an offline scenario, and dynamic scene changes
are problematic. For highest accuracy, beam tracing [Overbeck07] can be em-
ployed, but it is sensitive to complicated primitives. �e topic of accurate so� shad-
ows will occupy us for some time to come.

11.3.2 Approximate

�is category of shadows is currently the most interesting for real-time applica-
tions. Relatively high quality can be achieved while keeping the computational
overhead at levels that allow for reasonably high frame rates.

Methods based on adaptively blurring hard-shadow test results (Section 6.5)
deliver satisfying so� shadows for smaller light sources and are rather easy to im-
plement. Approaches from the PCSS family are especially widely used in interac-
tive applications, such as games. For scenes of smaller extent, occlusion textures
(Section 6.6.2) constitute another practical option, especially if the light source is
relatively large. More accurate results can be obtained with so�-shadow-mapping
algorithms (Section 6.7); even correct occluder fusion and using multiple shadow
maps to capture more occluders are possible. However, each move towards higher
quality typically comes along with a drop in performance, and speed-increasing
adaptations (like subsampling or resorting to coarser occluder approximations)
require care to not compromise quality so much that it drops below that of simpler
methods.

As all these approaches are image based, they may suffer from aliasing artifacts.
�ese are avoided by geometry-based methods, which are more costly, though.
Moreover, all approximate algorithms like penumbra wedges (Section 7.3.2) suffer
from incorrect occluder fusion, which is typically more pronounced than in image-
based methods.

11.4 Advanced Methods

We have further analyzed advanced topics, including semitransparent shadow
casters in Chapter 8. Stochastic methods are most promising in this context, as
they are simple to implement and perform well in practice [Enderton10]. For vol-
umetric shadow effects that result in God rays, the current state of the art [Chen11]
combines high efficiency and quality.

11.4.1 Further Topics

Finally, we discussed various extensions beyond standard shadow computation in
triangle-based scenes in Chapter 10. We analyzed voxel-based solutions, potential
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future solutions based on ray tracing, as well as more general lighting in the form
of environmental light. In particular, PRT and very game-relevant screen-space
ambient-occlusion computations are useful tools in any modern rendering engine.

11.5 Welcome Tomorrow

As always, when giving advice, it is based on the current conditions. At the mo-
ment, we rely on programmable graphics hardware following the rasterization
pipeline. Hardware modifications can thus void our previous suggestions. For ex-
ample, Doom 3 was a game that relied on shadow volumes [Crow77], a technique
that was previously considered too expensive because it does not scale well with
geometry. But the new hardware made it possible to significantly reduce the poly-
gon count by relying on new shading capabilities to simulate geometric detail via
normal mapping. �e resulting geometric simplification made shadow volumes
again feasible. Today, shadow-map–based approaches are the first choice, and it is
likely that this will stay true in the near future.

Nevertheless, we have reached a point in computer graphics where tremen-
dous hardware changes might occur soon. More generalized computation units
(regrouping several processors) or combinations of processors and graphics cards,
similar to AMD’s Fusion, are about to hit the market. Hardware like this might
open up the road to ray tracing in the long run, and we discussed some first-
adapted methods (Section 10.4). More close-to-hardware solutions are likely to
appear soon. For the next years though, we believe that the above suggestions
(mostly based on today’s GPUs) will remain valid and of great help to guide you
on your quest to find the most appropriate shadow technique. Furthermore, even
if the hardware changes, many aspects of shadow algorithms are kept. Today, even
in production, the use of shadow maps is extremely common, despite the fact that
large clusters otherwise employ ray tracing or Reyes engines.

We hope you enjoyed this book, and we invite you to visit our webpage in the
future: http://www.realtimeshadows.com/. Here, we will continue to provide you
with more information on recent topics and future trends. �e development will
continue because as you know by now, no algorithm is perfect. Each one has ad-
vantages, as well as weaknesses. �is situation can be very confusing, and we hope
this book shed enough light on this topic to be of help.

"The true work of art is but a shadow of the divine perfection.“

Michelangelo (1475 -1564)





APPENDIX A

Down the Graphics Pipeline

�is chapter will give a short overview of the functioning of a graphics card and
the associated so-called graphics pipeline.

We will not present the details of the classical graphics pipeline, which can be
found in [Shreiner09]. Further, our presentation here is slightly simplified with
respect to the reality, but it will make it easier to understand the way GPUs work
and their properties, which are of interest throughout this book. Anyone familiar
with graphics hardware is invited to skip this chapter.

For a much more complete and thorough overview of the development of Di-
rectX and the corresponding hardware, we suggest taking a look at NVIDIA’s Pro-
gramming Guides that provide much information on different shader models.

A.1 Rendering

�ere are two fundamental algorithms for image synthesis: ray tracing and raster-
ization.

✎

✍

☞

✌

Shader Model/DX

Shader Models describe the minimum specifications of a graphics card. DirectX (DX)
is a Microso� library (or API) that gives access to hardware functionality, just like
OpenGL. O�en, Shader Model and DX are used interchangeably. Basically, DX11 gives
access to Shader Model 5.0 extensions. We will follow this trend and talk, for instance,
about DX10 when we mean the extensions that are described in Shader Model 4.0. Nev-
ertheless, extensions remain accessible through OpenGL as well.

303
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Figure A.1. Graphics pipeline. �e application sends vertices and their attributes such as colors, texture coordinates,
and other per-vertex parameters. �e vertex shader modifies each single vertex. �e modified vertices are combined
to yield a primitive that is then altered in the geometry shader. Finally, the primitive is rasterized and the fragment
shader works on each resulting fragment.

Ray tracing shoots one ray from the eye through each pixel and finds the first
intersection with the scene. �is impact point then defines the color of the pixel.
�is process is usually done using a local illumination model (Appendix C). For
more complex illumination models, it is also possible to recursively cast rays to
yield approximations of indirect illumination and effects such as refraction (i.e.,
view deformations through glass).

Rasterization is at the basis of the graphics hardware pipeline. �e algorithm
loops over all primitives (triangles, lines, points, . . . ). �e vertices of all triangles
are first projected onto the screen. Using projective geometry, this can be achieved
by a matrix multiplication (compare Chapter 2). �e second step builds the pro-
jected primitives from the projected vertices. A rasterization unit then finds all
those pixels whose center falls inside the projected primitive and invokes the so-
called fragment shader on each of those pixels to compute a corresponding color.
Nonetheless, not all pixel colors should be written to the screen (e.g., hidden ob-
jects should not appear in the final view). To this extent, graphics cards rely on a
depth buffer, an image of the size of the screen containing the depth of previously
written pixels. Now, whenever a new pixel is produced, its depth is compared to
the already-present depth at the corresponding screen location. If the new pixel is
nearer, the color value is written to the screen, and the depth value is updated.

Today, one can interact with this graphics pipeline through so-called shaders.
�ese are basically small programs that modify the standard behavior of the pipe-
line (see Figure A.1). From OpenGL 3 on, the standard pipeline was even declared
deprecated and all instances are implemented via shader programs.

✎

✍

☞

✌

Texel, Pixel, Fragment

Even though a texel refers to a texture, a pixel to the screen, and a fragment to the entity
that is a candidate for being blended in the framebuffer (e.g., color and depth), we will
not always make an exact distinction in order to simplify explanations.
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• Vertex shader. �e input of this step are vertices specified by the applica-
tion. �e latter usually needs to also define how these vertices define primi-
tives, but this assembly information will only be used in the next stage of the
pipeline. Here, isolated vertices are treated independently of the triangle it
belongs to. Usually, in this step, the vertex’s coordinates are multiplied with
a matrix to project it onto the screen, according to the current point of view.
Nevertheless, on newer graphics cards, it is possible to transform the vertex
based on a program that can make use of the vertex’s data or texture memory
on the GPU, as well as an array of values sent from the CPU (uniform vari-
ables). One application is displacement mapping, where a vertex is shi�ed to
a new location based on a texture. �e output of the vertex shader is a single
vertex.

• Geometry shader. �is rather new element, since Shader Model 4.0, of the
pipeline allows us to apply modifications to each primitive (e.g., triangles,
lines, and points). �e input data in this step are the primitives assembled
from the vertices of the previous stage. During the transformation, access
to uniform variables and texture memory is allowed. Interestingly, special
data arrangements can further give limited access to a a neighborhood of the
primitive. For example, given a triangle, its three neighboring triangles can
be made accessible. It is currently not possible to extend this neighborhood
further. �e output of this phase is from none to even several primitives that
are clipped to the camera frustum once this step is performed. �eoretically,
1,024 vertices can be produced, although, in practice, more than 6 to 18
results in a strong performance penalty.

• Fragment shader. �e assembled primitive is rasterized (meaning scan con-
verted to fragments) by a rasterization unit. �e fragment shader allows
modifying the fragment’s color value and its depth before it is blended into
the framebuffer. One can think of the framebuffer as an image/texture into
which one writes—it could even be the screen. Besides the information of
the current primitive that was rasterized, again uniform variables and tex-
ture memory can be involved. �e way data are passed from the primitive
to the fragment can be roughly specified via two categories: continuously
varying data (interpolated from the vertices) and flat data (one value per tri-
angle). Nonetheless, there are also some more advanced strategies that re-
late to supersampling. At the end of the fragment shader, the resulting depth
value is tested against the depth buffer. If this test fails, the color-value com-
putation can be skipped because the element will never show on the screen.1
If it passes the test, its color is produced and blended with the information

1Graphics hardware usually supports early z-culling that hierarchically performs depth/stencil tests
and delivers a strong speed-up. Unfortunately, this usually only works if the depth is not modified in
the fragment shader.



306 A. Down the Graphics Pipeline

already present in the framebuffer. Prior to Shader Model 5.0, it was not
possible to interact with the blending process in a programmable manner.
�e methods can only be chosen from a set of operations. �e operations
include logical (bitwise) operations and the more general alpha blending.
Alpha blending is used to combine the current color value with the current
framebuffer content in a weighted manner based on a fourth color channel:
the so-called alpha channel. �is allows, for example, to sum up values.

• Tessellation shader. Since Shader Model 5.0, tessellation has been exposed to
the programmers. �is element in the pipeline is situated before the vertex
shader and is itself organized into several pipeline steps. �is stage is cur-
rently less involved in shadow computations and, therefore, we will not an-
alyze it in detail here. �e principle of tessellation is to subdivide primitives
such as triangles into many small subtriangles. One advantage is that this
process reduces the bandwidth: a small set of primitives can be augmented
to a very smooth or detailed surface. When these subdivision strategies are
applied in a view-dependent manner, it is even possible to achieve complex-
looking scenes with a high efficiency.

A.2 Per-Fragment Processing—Culling and Blending

Correct rendering of transparent objects is not straightforward with alpha-
blending operations. Elements would need to be sorted appropriately from back to
front, which contradicts the parallelized design. Depth peeling [Everitt01]
enforces a correct ordering by performing several render passes.

In the nth depth-peeling pass, the nth depth layer can be extracted by smartly
discarding all fragments that are closer than the last extracted depth. In con-
sequence, one obtains a depth map of all the scene parts that are one layer far-
ther away. Newer, more efficient approaches use conservative read/write opera-
tions [Liu06] or order-independent transparency that make use of the append-
buffer extension [Yang10b]. �e latter is only available in Shader Model 5.0 but
delivers a high efficiency. Unfortunately, it can result in high memory usage (the-
oretically unbound, but up to 600 MB are not uncommon for a full-HD scene).

Here, we will focus on the more common depth peeling. In pseudocode, the
following OpenGL calls should be applied:

shader.activate();

for (int i=1; i<=passes;++i)

{

fbo[i].activate();

shader.attachTexture("LastLayer",

fbo[i-1].getDepthTexture());

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
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renderScene();

}

shader.deactivate();

�e class fbo represents an array of framebuffer objects with an attached depth
and color buffer into which the scene is rendered. For fbo[0] it is assumed that
its depth texture was cleared to zero. �e idea is to render into depth texture i and
discard the fragments closer than the depth value stored in texture i−1. �e result
of the previous step becomes the input of the next. Consequently, the shaders are
relatively simple:

uniform Texture2D LastLayer;

uniform vec4f projectedPos;

void main()

{

//...

projectedPos.xyz/=projectedPos.w;

float depth=texture2D(LastLayer, projectedPos.xy);

if ((projectedPos.z+1.0)/2.0<depth)

discard;

//...

}

If the depth of the current fragment is closer than the depth stored in the last
layer at this position, the fragment is discarded. We, hence, effectively peel off one
layer at a time. �e fragment shader can be further simplified by avoiding the depth
normalization (Chapter 2).

Before a fragment is output, a variety of tests are applied. We already men-
tioned depth, but scissor tests (against a user-specified rectangle, useful for light
sources with attenuation), depth extents, alpha tests (testing the alpha channel
against a user-defined value), and the stencil test, to name the important ones, are
all applied before accepting the fragment. �e stencil test is the most complex one
and is based on an 8-bit stencil buffer. For a given fragment, a depth test and a com-
parison between the pixel’s stencil-buffer value and a reference is performed. Based
on the outcome, one can specify how the stencil-buffer value is altered therea�er.
Prior to Shader Model 5.0, one had to choose from a set of predefined behaviors
and the stencil buffer outcome was not accessible nor specifiable in a shader. If all
the tests pass, then only the fragment arrives in the framebuffer.

A.3 The Framebuffer

�e framebuffer that will contain the final image can hold a variety of data types:
IEEE floats, integers, fixed point (8- or 16-bit), . . . .

Further, one can connect several attachments to which it is possible to write
simultaneously (this is referred to as multiple render targets (MRTs). Up to eight
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such buffers can currently be attached on cards such as NVIDIA’s GTX480. �e
introduction of MRTs can be considered a small revolution. With a single geometry
transformation, several color values can be produced per pixel. �is possibility
gave boost to deferred shading, which is a very powerful technique that is of interest
if the bottleneck of the algorithm is the fragment shader—which is actually o�en
the case for shadow computations. �e principle is to render the scene once and,
instead of producing the final color values, recover only scene data (normals, world
position, materials, etc.). A subsequent pass, only on these values and no longer on
the geometry, then produces the final image. A more detailed analysis is presented
in Appendix E.

A.4 Geometry Representation

OpenGL offers the so-called immediatemode, where primitives with the per-vertex
data can be sent directly to the GPU without being stored by the graphics API.
While being a convenient way for the programmer to draw simple objects, this
does not make sense from a performance perspective if the transferred data are
the same in each frame.2 In this case, it is much more useful to store the infor-
mation directly in the graphics card’s memory and thus only transfer it once. �e
mechanism for this is a vertex buffer object (VBO).�ese are zones in a card’s mem-
ory that contain the data to be rendered. �e only CPU interaction is thus a call
that tells the graphics card to process the data at a certain memory location.

�e idea to free the CPU’s workload is also reflected by the introduction of
instances. Here, one single CPU call triggers multiple processing of a VBO. To
enable the GPU to distinguish between the instances, a primitive ID is accessible
in the shaders. �is technique is particularly useful when crowds of similar objects
need to be rendered.

�ere is another advantage of keeping the geometry on the GPU. On DirectX 10
cards, feedback mechanisms exist that enable us to reconnect the geometry shader’s
output to the vertex shader and, thereby, iterate over the data several times.

✎

✍

☞

✌

Mesh Representation

Basically, there are two possibilities: flat (n successive vertices define a primitive) or in-
dexed (two buffers, one containing indices, the other the actual vertex data). �e second
solution is not only more memory efficient but also delivers increased performance. �e
reason is that the GPU can reuse computations of the vertex shader for several triangles.

2In fact, this is why this mode is deprecated since OpenGL 3.0. In DX this never existed.
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A.5 Hardware

In previous generations, there was a clear distinction between the type of proces-
sors on the card. Some were fragment-, others vertex-shader units. Currently (as
of NVIDIA’s G80 and even earlier on the ATI-side with the XBox 360), this no
longer applies. Today’s stream processors can be scheduled to work on all three
shader interactions depending on the workload of each. �is much more general
description also gave rise to APIs such as CUDA, OpenCL, and Compute Shaders
(the latter since DirectX 11), which are programming libraries that allow us to use
the graphics card as a parallelized multicore stream processor. It seems that future
development will follow this trend of generalization. NVIDIA’s TESLA cards are al-
ready directed towards general scientific computations and are similar to standard
GPUs but do not contain any graphics components. Nevertheless, it is unlikely
that the graphics pipeline will vanish soon because some of its performance relies
on very specialized solutions. For example, scan conversion is supported by spe-
cialized raster units. Other elements are responsible for texture fetches and caches,
and it will be hard to efficiently replace these by generalized mechanisms.





APPENDIX B

Brief Guide to Graphics APIs

In practice, the algorithms described in this book are typically implemented using
one of the standard graphics APIs: OpenGL or Direct3D.1 To facilitate such imple-
mentations for the reader, this appendix provides a structured overview of all the
API commands and conventions relevant to shadow computations that have been
covered in the book. As we have adopted OpenGL for the implementation hints
throughout the book, in an effort to keep the description focused, consistent, and
concise, this appendix also serves to help readers find the Direct3D equivalent of
the mentioned OpenGL functionality.

OpenGL has evolved steadily since its introduction in 1992, and even very old
code still runs under the newest versions. However, since the inception of OpenGL,
both CPUs and graphics hardware have changed tremendously, rendering several
design decisions suboptimal in today’s hardware landscape. �erefore, in an ef-
fort to better adapt to the current environment, certain functionality became dep-
recated with the introduction of OpenGL 3.0—but to not break legacy code and
allow a smooth transition, it is still fully supported in the compatibility profile (as
opposed to the core profile). Even though the reader is encouraged to not use dep-
recated functions if developing in OpenGL, we are well aware that many develop-
ers still have not made the move to the “new” API and are more familiar with the
“old” one. �erefore, we have adopted the older but more common OpenGL 2.1 in
the book (referring to it as classic OpenGL), and highlight any relevant changes in
OpenGL 3.0 and newer in the following sections.

Direct3D, by contrast, typically introduces a new API interface with every new
major release. While this approach typically breaks old code, it helps to keep the
API clean from legacy features and design decisions and the overhead incurred

1Direct3D is the graphics component of DirectX, and hence, o�en simply the more general term
DirectX is used.
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by supporting them. In particular, Direct3D 10 introduced a radical redesign
[Blythe06] tailored to fit the highly programmable, high-performance GPUs that
are in common use nowadays. Despite introducing many new features, the latest
incarnation, Direct3D 11, is very close to Direct3D 10 concerning the API, and
we will thus cover only Direct3D 11 in the following. Note that the Direct3D 10
equivalent is typically obtained by substituting D3D11 or D3DX11 in the name with
D3D10 or D3DX10. In contrast to OpenGL, where a number of procedures oper-
ate on a complex state machine, Direct3D has an object-oriented interface. At
the core is an ID3D11Device object, which encapsulates a rendering device and is
used for resource creation. �e actual rendering-related functionality has moved to
ID3D11DeviceContext objects with Direct3D 11, facilitating multithreaded
rendering.

B.1 Transformation Matrices

When implementing and using transformation matrices, two aspects have to be
considered: storage order and the layout of the vectors that are to be transformed by
the matrix. �e storage order determines how the elements of a two-dimensional
matrix are stored linearly in memory. In column-major order, the matrix elements
are serialized such that first all elements of the first column are stored, then those
of the second column, and so on. Analogously, in row-major order, linearization
proceeds row-wise. Note that interpreting a matrix in the wrong storage order
yields the transpose of the matrix. In all of its API calls, OpenGL assumes that
matrices are stored in column-major order, whereas Direct3D expects row-major
order. Within shaders, however, the order is essentially arbitrary and can be spec-
ified with modifiers, with the default for uniforms being column-major order in
both GLSL and HLSL.

In graphics nowadays, a vector v is typically considered a column vector that
is transformed by multiplying it with a matrix M from the right:

ṽ =Mv =
⎛⎜⎝
m00 m01 ⋯
m10 m11 ⋯⋮ ⋮ ⋱

⎞⎟⎠
⎛⎜⎝
v0

v1⋮
⎞⎟⎠ .

Consequently, if v is supposed to be transformed first by M1, then by M2, and
finally by M3, the multiplication order of these matrices is reversed, starting with
M3:

ṽ =M3 (M2(M1v)) = (M3M2M1)v.

However, it is totally permissible to alternatively assume that vectors are row vec-
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tors. In that case, they are multiplied from the le�:

ṽT = vTN = (v0 v1 ⋯)⎛⎜⎝
n00 n01 ⋯
n10 n11 ⋯⋮ ⋮ ⋱

⎞⎟⎠ .

Note that matrices M applied to column vectors and matrices N applied to row vec-
tors are related by transposition (i.e., N =MT). Consequently, when transforming
vectors by multiple transformations, the multiplication order corresponds to the
transformation order and is thus reversed with respect to the column vector set-
ting:

ṽT = vT(M3M2M1)T = vT(MT
1 MT

2 MT
3 ).

Classic OpenGL enforces the column-vector convention, which we also adopt-
ed for this book, and maintains matrix state for the model-view matrix (for the
mapping from model to eye space), the projection matrix, and a texture-coordinate
transformation matrix. �ese matrices can be modified by operations like
glLoadIdentity(), glMultMatrixf(), or gluLookAt(), which operate on the ma-
trix selected by the current matrix mode. It can be set via glMatrixMode(mode),
where mode is GL MODELVIEW for the model-view matrix and GL PROJECTION for the
projection matrix. Within shaders, the current matrices can be accessed via pre-
defined uniforms. In GLSL, for instance, these uniforms are called gl ModelView

Matrix and gl ProjectionMatrix. Moreover, several derived quantities are also
predefined, like

• transposes (e.g., gl ModelViewMatrixTranspose);

• inverses (e.g., gl ModelViewMatrixInverse);

• transposed inverses (e.g., gl ModelViewMatrixInverseTranspose);

• gl ModelViewProjectionMatrix (the matrix product of gl Projection

Matrix and gl ModelViewMatrix);

• gl NormalMatrix (the transposed inverse of the upper le� 3 × 3 submatrix
of gl ModelViewMatrix).

As this matrix state functionality is deprecated in core OpenGL 3.0 and later,
it is up to the developer to write functions (or use some external library) for build-
ing matrices, multiplying them, transposing them, and inverting them; to define
uniforms in the shaders; and to explicitly set these uniforms before the shader is
invoked. Note that such a procedure is of course also possible (but not required)
if using classic OpenGL. While this puts some burden on the developer, it also en-
ables adopting other conventions, like row vectors instead of column vectors, if
desired.
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Similarly, Direct3D also requires the developer to define uniforms in the shader
and update them before using the shader. However, with XNAMath,2 a high-
performance math library is provided as part of DirectX that encapsulates vectors
and matrices, among others, and provides functions for setting up special matri-
ces, for matrix multiplication, and for matrix inversion, for instance. �e resulting
matrices can then be directly used for setting the shader uniforms. Note, however,
that because Direct3D adopts the row-vector convention, all matrix setup func-
tions yield according matrices. �e user is free, though, to transpose the matrix
and work with the column-vector convention.

B.1.1 Handedness

Another aspect that o�en influences the matrix content is whether the used frame
is right-handed or le�-handed. OpenGL uses a right-handed coordinate system,
and we also employ this convention in this book. By contrast, Direct3D prefers a
le�-handed frame,3 but the developer is free to adopt a right-handed one. Actually,
XNAMath (and the older D3DXMath library) provides functions for both le�- and
right-handed frames, indicating the handedness by the postfix (LH or RH).

Note that changing the handedness affects whether a triangle is front or back
facing. �erefore, it is possible to define which vertex order (counterclockwise
or clockwise) corresponds to front facing. In OpenGL, this is accomplished with
the glFrontFace() command, whereas in Direct3D 11, it is controlled by the
FrontCounterClockwise element of the D3D11 RASTERIZER DESC structure
describing an ID3D11RasterizerState object. Further note that changes in the
handedness might also require changes in the assets, like flipping the normals’ di-
rection.

B.1.2 View Matrix

A view matrix is typically defined by the eye point e, a point p to look at, and an up
vector y′. In classic OpenGL, the function gluLookAt() takes these parameters as
input and sets the following matrix:

Mv =

⎛⎜⎜⎜⎝
ax ay az −(a ⋅ e)
bx by bz −(b ⋅ e)
cx cy cz −(c ⋅ e)
0 0 0 1

⎞⎟⎟⎟⎠
, where

c = (e − p)/∥e − p∥,
a = (y′ × c)/∥y′∥,
b = c × a.

Recall that in core OpenGL 3.0 and newer, you have to construct this matrix your-
self.

2In DirectX 9 and 10, the D3DXMath library has been included instead, and it also can be used with
DirectX 11. Typically, the names of corresponding XNAMath and D3DXMath functions only differ by
the prefix: XM versus D3DX.

3Interestingly, Microso�’s XNA framework uses a right-handed frame.
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In Direct3D, the XMMatrixLookAtRH() function produces the same matrix but
transposed (due to the row-vector convention), that is, MT

v . �e le�-handed ver-
sion is obtained via XMMatrixLookAtLH().

B.1.3 Projection Matrix

�e perspective projection matrix serves to transform the viewing frustum into a
unit cube, mapping the frustum’s le� face to x = −1, the right face to x = 1, and
the bottom and top faces to y = −1 and y = 1, respectively. Furthermore, the far
clipping plane is mapped to z = 1. Depending on the API, the near plane is mapped
to either z = −1 (OpenGL) or z = 0 (Direct3D).

�e frustum can be conveniently specified by its vertical field of view fovy, the
aspect ratio α, and the (unsigned) distances of the near and far planes, n and f . In
classic OpenGL, gluPerspective() yields the following matrix for these parame-
ters:

Mp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
α

cot fovy

2
0 0 0

0 cot fovy

2
0 0

0 0 n+ f
n− f

2n f
n− f

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.1)

Analogously, Direct3D’s XMMatrixPerspectiveFovRH() produces

MT
p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
α

cot fovy

2
0 0 0

0 cot fovy

2
0 0

0 0 f

n− f
−1

0 0 n f

n− f
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the matrix is transposed due to the row-vector convention and only dif-
fers from the OpenGL version in the modified z-related elements, causing z ∈[− f ,−n] to be mapped to [0, 1] instead of [−1, 1]. �e according le�-handed vari-
ant is

MT
p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
α

cot fovy

2
0 0 0

0 cot fovy

2
0 0

0 0 − f
n− f

1

0 0 n f

n− f
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and can be obtained with XMMatrixPerspectiveFovLH().

Alternatively, the frustum can be specified by providing the width and height
of the front face, along with near- and far-plane distances. XNAMath provides the
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functions XMMatrixPerspectiveRH() and XMMatrixPerspectiveLH() to this end.
�e most general way to define a frustum, however, is by giving the horizontal and
vertical ranges x ∈ [l , r] and y ∈ [b, t] of the front face and the near- and far-plane
distances. �e glFrustum() takes such a specification and sets the matrix

Mp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2n
r−l

0 r+l
r−l

0

0 2n
t−b

t+b
t−b

0

0 0 n+ f
n− f

2n f
n− f

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

�e Direct3D analogs, again returning the transposed versions, are XMMatrix

PerspectiveOffCenterRH() and XMMatrixPerspectiveOffCenterLH(), with the
latter, le�-handed one yielding

MT
p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2n
r−l

0 0 0

0 2n
t−b

0 0

− r+l
r−l

− t+b
t−b

− f

n− f
1

0 0 n f

n− f
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

B.2 State

�e graphics pipeline state controls the exact rendering behavior, covering aspects
ranging from which vertex order makes a triangle be considered as front facing (see
above, Section B.1.1), over how depth tests are to be performed, to which shader
is executed.

In OpenGL, binary state, like performing depth testing or not, is typically con-
trolled by the functions glEnable() and glDisable(). Furthermore, a plethora of
functions exists to modify the huge amount of state parameters. Since, typically,
a function call is required for each individual state parameter to be changed, state
changes involving many parameters can become quite costly.

To address this problem, from which Direct3D 9 also suffers, Direct3D 10 and
11 organize state parameters into a few groups and only allow setting all parameters
of a group at once. Typically, the individual parameters of a group are captured
in a descriptor structure and an according state object is created (with a member
function of the device object). Changing the state then merely requires a single API
call to set the corresponding state object. In Direct3D 11, these setter functions are
members of the ID3D11DeviceContext interface, while in Direct3D 10, where the
context concept is not present, they are members of the ID3D10Device interface.
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For the developer, the downside of this approach is that for each required com-
bination of parameter values for a state group, a separate state object has to be
created, which can make temporarily changing only one parameter value during
development tedious. Note that to really benefit from this grouping, state objects
should be created on initialization or on first use and then maintained for all fol-
lowing frames, and not created and destroyed every frame anew.

B.2.1 Depth-related State

Depth testing is enabled in OpenGL via glEnable(GL DEPTH TEST). �e actual
comparison performed can be specified with glDepthFunc(), and writing to the
depth buffer can be controlled with the glDepthMask() function.

In Direct3D 11, the state related to depth testing and processing is set via
the OMSetDepthStencilState() member function of a context object. It expects
an ID3D11DepthStencilState object, which is described by a D3D11 DEPTH

STENCIL DESC structure. Among this structure’s members, DepthEnable controls
whether depth testing is performed or not, with DepthFunc specifying the com-
parison function employed for depth testing. Writing to the depth buffer can be
turned off by setting DepthWriteMask to D3D11 DEPTH WRITE MASK ZERO.

Depth Bias

In OpenGL, biasing of depth values is activated by glEnable(GL POLYGON OFFSET

FILL), and glPolygonOffset() is used to specify the constant offset and slope-
dependent bias to be applied (see Section 2.2.3).

Since biasing is performed during rasterization, in Direct3D 11, it is controlled
by the ID3D11RasterizerState object set via RSSetState(). �e relevant mem-
bers of the describing D3D11 RASTERIZER DESC structure are called DepthBias and
SlopeScaledDepthBias. Unlike OpenGL, Direct3D 11 also allows capping the ap-
plied bias by specifying an according DepthBiasClamp value. �is is useful, since
a high triangle slope can result in large bias values, which o�en leads to problems.

Depth Clipping

Typically, fragments are clipped against the near and the far plane. �is behavior
can be disabled in OpenGL via glEnable(GL DEPTH CLAMP), causing fragments be-
yond the far plane and in front of the near plane4 to not get discarded but to move
on in the pipeline. Like with all fragments, their depth values are clamped to the
valid depth range. �e vendor-specific extension GL AMD depth clamp separate

further allows disabling only the clipping against the near or the far plane.

4Note that a fragment is only generated in the first place if its homogeneous coordinate value w > 0.
�erefore, in case of a perspective projection, no fragments are generated behind the eye point.
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OpenGL Direct3D 11 Description

GL INCR WRAP D3D11 STENCIL OP INCR Increment, wrap around to zero
GL DECR WRAP D3D11 STENCIL OP DECR Decrement, wrap around to maximum
GL INCR D3D11 STENCIL OP INCR SAT Increment, clamp to maximum
GL DECR D3D11 STENCIL OP DECR SAT Decrement, clamp to zero

Table B.1. Selection of stencil operations.

In Direct3D 11, fragment depth clipping is controlled via the DepthClip

Enable member of the D3D11 RASTERIZER DESC structure, used for describing an
ID3D11RasterizerState object.

B.2.2 Stencil Test

�e stencil test is enabled in OpenGL with glEnable(GL STENCIL TEST), with
glStencilFunc() specifying the employed test function, the test reference value,
and the mask indicating the bits that are employed in the test. �e stencil operation
(see Table B.1) that is performed according to the outcome of the test is selected
by glStencilOp(), where the three cases “stencil test fails,” “stencil test passes but
depth test fails,” and “both stencil and depth tests pass” are distinguished. It is also
possible to specify the test and the operations individually for front- and back-
facing triangles via glStencilFuncSeparate() and glStencilOpSeparate().

In Direct3D 11, stencil-related state is set with the context’s OMSetDepth

StencilState() member function, which expects an ID3D11DepthStencilState

object and the reference value for the test. �e state object is described by a D3D11
DEPTH STENCIL DESC structure (see above for depth-related members), whose
StencilEnable enables the stencil test. �e mask is specified by StencilRead

Mask and StencilWriteMask, and the FrontFace and BackFace members control
the face-orientation-specific actions, allowing the specification of the applied test
function and the result-dependent operations (see Table B.1).

B.2.3 Blending

In OpenGL, blending is turned on with glEnable(GL BLEND). �e source and des-
tination blending factors are specified with glBlendFunc() or, if separate factors
are required for the color and the alpha channels, with glBlendFuncSeparate().
�e employed blend operation (e.g., adding source and destination, scaled by their
respective factors) is selected via glBlendEquation().

In Direct3D 11, the blending state is encapsulated by an ID3D11BlendState

object and can be set with the context’s OMSetBlendState() method. �e state ob-
ject is described by a D3D11 BLEND DESC structure, which allows activating blending
(via the RenderTarget[].BlendEnable member), specifying source and destina-
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tion factors as well as choosing the blending operation (separately for color and
alpha channels). �ese blending settings can also be done independently for each
render target by setting IndependentBlendEnable to true.

Bitwise Blending

For several applications, like voxelization, bitwise blending (i.e., combining source
and destination via bitwise operations like OR, AND, or XOR) can be useful. How-
ever, such blending operations are currently not supported with ordinary blend-
ing functionality. In OpenGL, they are exposed as logical pixel operations, instead.
�ese are activated with glEnable(GL COLOR LOGIC OP), and the operation to ap-
ply is specified via glLogicOp().

Unfortunately, recent versions of Direct3D don’t provide that functionality,
forcing the developer to adopt an alternative algorithm formulation to reach the
intended goal. One possibility is to resort to compute shaders instead (as has been
done in the case of voxelization). Another option is to directly update some write-
able texture or buffer in the pixel shader by binding it via an unordered access view
and applying atomic operations like InterlockedXor().

B.3 Framebuffer and Render Targets

�e rendering result is output to the current framebuffer, which typically consists
of one color buffer and a combined depth and stencil buffer. However, it is also
possible to use no color buffer, like when generating a shadow map, or multiple
ones, like when recording attributes (like position, normal, and material proper-
ties) for deferred shading. Note that a color buffer does not necessarily store color,
and its pixels can essentially have any format (e.g., two channels of 32-bit unsigned
integers); it is hence o�en more appropriately referred to as render target. �e in-
dividual buffers that make up the framebuffer are o�en just textures.

In OpenGL, a framebuffer is represented by a framebuffer object (FBO),
to which individual buffers can be attached. It is generated with glGenFrame

buffers() and destroyed with glDeleteFramebuffers(). Two-dimensional tex-
tures can be attached via glFramebufferTexture2D(), for instance. Notice that
the attachment of color buffers alone does not imply that all of them are active
and written to during rendering; instead, the desired set of attachments has to be
specified via glDrawBuffers(). To make an FBO active, it has to be bound with
glBindFramebuffer(). It is deactivated by binding another FBO or the default
framebuffer (which corresponds to FBO name5 0). Note that updates to the FBO’s
state, like attaching render targets, require the FBO to be bound. Active buffers can
(and should) be cleared via glClear(), with the clear value being specified with
glClearColor(), glClearDepth(), and glClearStencil(), respectively.

5In OpenGL, objects are identified by so-called names, which are just unsigned integer IDs, though.
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In Direct3D 11, the render targets and the depth/stencil buffer to use are set
with the context’s OMSetRenderTargets(), thus fully specifying the framebuffer.
Render targets are represented by a render target view (ID3D11RenderTargetView)
of some subresource, like a mipmap slice of a two-dimensional texture. Similarly,
a depth/stencil view (ID3D11DepthStencilView) is utilized for the depth/stencil
buffer. Note that to be able to create such views, an according bind flag has to be set
when creating the resource (e.g., D3D11 BIND RENDER TARGET in D3D11 TEXTURE2D

DESC’s BindFlagsmember). Views can be cleared with ClearRenderTargetView()

and ClearDepthStencilView().

B.4 Texture Sampling

In OpenGL, textures are represented by texture objects, and sampling parameters
are associated with a texture object. Once a texture object is bound via glBind

Texture(), parameters related to sampling the texture within a shader can be spec-
ified with the family of glTexParameter*() functions. For instance, filtering is
specified when using the parameters GL TEXTURE MIN FILTER and GL TEXTURE MAX

FILTER. �e interpretation of texture coordinates outside the normal range[ε, 1 − ε], with ε denoting half a texel’s extent, is governed by the wrap mode,
which can be set with the parameters GL TEXTURE WRAP S, GL TEXTURE WRAP T and
GL TEXTURE WRAP R. If the wrap mode involves a border color, the one specified
via the parameter GL TEXTURE BORDER COLOR is used. For shadow map tests, the z-
component of the texture coordinates should be compared against the texture value
referenced by the x- and y-components and the comparison result be returned.
�is behavior can be turned on by setting the parameter GL TEXTURE COMPARE MODE

to GL COMPARE REF TO TEXTURE. �e actual comparison function used is specified
by the parameter GL TEXTURE COMPARE FUNC.

In Direct3D 11, textures are made accessible to shaders by creating according
shader resource views (ID3D11ShaderResourceView). �e sampling behavior is
encapsulated in a sampler state, which is orthogonal to the texture being sampled.
Such states are represented by an ID3D11SamplerState object, which can be set
in the individual shader stages via the context’s *SSetSamplers() functions (e.g.,
with PSSetSamplers() for the pixel shader stage). �e state object is described
by a D3D11 SAMPLER DESC structure. �e filtering is specified by the Filter mem-
ber, and the AddressU, AddressV, and AddressW members control the wrap mode
for the texture coordinates (see Table B.2), with the border color being set with
BorderColor. To enable comparing the sampling result with an arbitrary refer-
ence value and returning the comparison result, a corresponding comparison fil-
ter has to be specified in Filter. �e comparison function can be selected by
ComparisonFunc. Note that sampling is then performed in the HLSL shader with
the SampleCmp() function, which expects the reference value for the comparison in
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OpenGL Direct3D 11

GL REPEAT D3D11 TEXTURE ADDRESS WRAP

GL CLAMP TO EDGE D3D11 TEXTURE ADDRESS CLAMP

GL CLAMP TO BORDER D3D11 TEXTURE ADDRESS BORDER

GL MIRRORED REPEAT D3D11 TEXTURE ADDRESS MIRROR

GL MIRROR CLAMP TO EDGE EXT D3D11 TEXTURE ADDRESS MIRROR ONCE

Table B.2. Overview of texture wrap/address modes.

addition to the texture coordinates. For shadow-map testing, this reference value
is typically the light-space depth.

B.5 Shading Languages

In OpenGL, the prevalent shading language is GLSL, whereas HLSL is used in Di-
rect3D 11. Since even a brief overview would be too long for this book, and GLSL is
used throughout the book, we restrict ourselves to listing some nonobvious HLSL
equivalents to mentioned GLSL terms.

�e predefined GLSL variable gl FrontFacing, indicating whether the trian-
gle from which a fragment stems is front facing, corresponds to defining an input
variable with semantic SV IsFrontFace in HLSL. Similarly, GLSL’s gl FragCoord

is equivalent to an input variable with semantic SV Position in HLSL.
Concerning texture access, GLSL’s ordinary texture() sampling function cor-

responds to the Sample() member function of the texture object in HLSL, and
the equivalent of texelFetch() in GLSL, which allows accessing texels by their
indices, is the Load() member function in HLSL.





APPENDIX C

A Word on Shading

�is book focuses on shadow algorithms, whose main difficulty is to compute the
visibility between the light source and each receiver point. We are less interested
in the light interaction with the receiver surface itself. �is interaction is usually
caught in a BRDF (bidirectional reflectance distribution function) fr (see Intro-
duction). It is a four-dimensional function that associates to an incoming light di-
rection ω̂ the reflected amount of energy in direction ω at a given point p. Shading
is crucial for the production of a convincing image because it contributes signif-
icantly to the appearance of the surfaces. To evaluate the shading response with
respect to a given light source, one can sample the light source and evaluate the
shading response for each point. Especially, if it is known which source samples
are visible, one can restrict the shading evaluation to those visible samples, which
ensures a physically based illumination. Such an evaluation integrates well with
sample-based shadow algorithms (compare Chapter 10.1).

As shown in Equation (1.5) on page 10, the shading is o�en separated from
the light-source visibility, but the evaluation of the shading part can even then be
a costly task. Usually the idea is to restrict oneself to a point light source (o�en
placed at the center of the original source). Consequently, in the following we will
investigate the shading response for a point-light illumination scenario and give a
brief overview of the most common shading models in this chapter.

C.1 Analytical Shading Models

A shading model is an approximation for the surface–light interaction. In our case,
we will focus on BRDF representations. Depending on the material, this interac-
tion can be very complex.
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One efficient possibility to represent a BRDF is an analytical model. �ese
functions try to grasp the essence of the physical processes and capture them in
formulas. For real-time rendering, this solution is usually preferable because of
the lower memory cost. Depending on the surface properties, the formulas can
be more or less complex. In the following, we will present a few important ones.
For more details, one can refer to an excellent survey [Schlick94] that we strongly
suggest to any interested reader. Modern hardware o�en facilitates the implemen-
tation of the presented models in shaders, but other papers [Heidrich99b] even
present implementation details for older graphics cards.

C.1.1 Notations

Analytical shading models are expressed with respect to a surface normal n, a unit
view vector ω, and a unit light vector l. For a given surface point p, the view vector
ω is defined by the direction from p towards the observer. Similarly, l defines the
direction from p towards the light.

Again, we want to underline that we will only consider a single light direction
in the shading definition. �is should not be confused with a restriction to a single
light source. In fact, it is always possible to consider the incoming radiance over
the entire hemisphere by integrating the shading over all light directions, similar
to the rendering Equation (1.2) (see Chapter 1).

One important remark is that a light source can be colored. For the here-
presented models, this can be easily integrated by modulating the shading by the
colored light energy L̄c to derive the resulting shading value. In practice, L̄c is
usually an RGB-tuple that is simply multiplied by the result of the formulae given
below.

C.1.2 Diffuse Surfaces

One of the simplest BRDF models is for Lambertian shading. �e assumption is
that the surface is a totally diffuse reflector, meaning that the incoming light is
scattered uniformly in all directions. In particular, this property implies that the
appearance is independent of the observer’s viewpoint; for example, unfinished
wood gets relatively close to this model.

Mathematically, the shading is defined as follows:

Ld
o(p, ω) = κd max(0, n ⋅ l),

where κd is a scalar reflectance that encodes how much energy is absorbed by the
surface and max returns the maximum of the two parameters. In this case, it basi-
cally encodes that we assume that the light comes from above the surface (n ⋅ l > 0)
and that the lighting contribution cannot be negative.

One can notice that the outgoing radiance does not depend on the point of
view, which reflects the uniformity of the light scattering. �e second observation
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Figure C.1. Derivation of the reflection vector.

is that the dot product implicitly encodes that Lo will be lower when the light ar-
rives at a grazing angle. �is effect can be easily observed in reality when taking
a flashlight. Pointing it straight downwards will illuminate a small area more than
when lighting it from the side. Basically the light is relatively spread over a larger
area, which is exactly captured by the dot product.1

C.1.3 Specular Surfaces

�e Lambertian model falls short for many materials. General reflections are a
highly view-dependent effect and, so far, not covered by the model. An extreme
example is a mirror; every move of our head makes the reflected image move too.
Such materials are very common in nature, and it is rather rare that a material does
not exhibit a so-called specular component. Mostly, this property is perceived as
view-dependent highlights on surfaces that basically show a more or less accurate
reflection of the light source. �e fact that the source is reflected also implies that,
in most cases, highlights actually exhibit the color of the light, not the material. A
typical example is plastic that shows white highlights under white light but has a
colored diffuse appearance due to the light that is scattered by its pigments. �e
same holds for other so-called dielectric materials, such as glass, plastic, and water,
while metals typically have colored highlights. In order to be able to integrate such
effects properly, several models have been proposed.

Phong

�e Phong model is based on the informal observation that highlights typically
appear when the view vector aligns with the direction of the reflected-light vector
r ∶= l− 2(n ⋅ l)n (Figure C.1). As soon as the view vector deviates from r, the high-
light starts disappearing. Phong modeled the specular component of the material

1Please remember that both vectors n and l are of unit length and, hence, the dot product results in
the cosine of the angle between the two.
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with the following function:

Ls
o(p, ω) = κa + κdLd

o(p, ω) + κs max(0, ω ⋅ r)α ,

where κs is the specular-reflection constant that defines the ratio of reflection and
κd the ratio of the diffuse part Ld

o—usually κs + κd < 1. �e constant term κa
(ambient) can be used to emulate some indirect illumination. It is not physically
based and is mostly a hack but can be used to avoid in-shadow objects appearing
completely black. Finally, α defines the shininess of the material. �e larger its
value, the smaller and more focused the highlights on the surface will be.

Blinn-Phong

A modification of the Phong model has been suggested by Blinn. It is particu-
larly interesting for real-time applications as it is cheap to compute but delivers a
high visual quality. Instead of relying on a reflected-light vector, they define a unit
halfway vector between the view and the light h ∶= (ω+l)/∥ω+l∥, which is cheaper
to compute. Interestingly, this new model is not only more efficient but is o�en also
more accurate when reproducing measured BRDF surfaces [Ngan04], making it a
very good choice for real-time graphics.

�e mathematical formulation of the Blinn-Phong model reads as follows:

Ls
o(p, ω) = κa + κdLd

o(p, ω) + κs max(0, h ⋅ n)α .

Advanced Models

More advanced models, such as Cook-Torrance or the Ward model, simulate an
even larger variety of materials. �ey build upon the assumption that the surface
consists of small specular microfacets that reflect the light but that are not visible
at the macroscale at which we observe the surface. In fact, these small microfacets
can basically also be used to explain why highlights are o�en slightly blurred and
the light is not perfectly reflected. Imagine that all microfacets point in different di-
rections but are slightly oriented around the normal; the highlight will be brightest
along the direction of the reflected-light vector based on the normal, but for small
deviations, some of the microfacets will still perfectly reflect the light, leading to a
halo around the highlight.

�e Cook-Torrance model describes the microfacet orientation according to a
Gaussian distribution and takes occlusion into account (the microfacets can block
light from each other: incoming and reflected). Further extensions are possible
and Ward proposed considering anisotropic orientation distributions to simulate
materials with deformed highlights. Both models are out of the scope of this book.
Figure C.2 shows the result of different shading models visually.
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Figure C.2. Different materials produced with analytical BRDF models.

C.2 Approximating Incoming Radiance

We mentioned in the beginning of this chapter that all models concentrate on a
single light direction but that one could integrate all incoming directions on the
hemisphere above the receiver point and evaluate the shading model to derive the
shading under a general illumination. Nonetheless, such integration can quickly
become costly, for example, when evaluating shading for all points of an area light.
Instead, especially for real-time applications, it is common to approximate the in-
coming radiance of an area light.

One solution to address this problem is to sample the shading for a few direc-
tions. In particular, it can even be very effective to approximate a whole area light
with only a single point light. �e idea is to add a few additional constraints that
define how to alter its outgoing radiance with respect to the receiver point. �is
measure has also been integrated into OpenGL via the glLight*() command.

In theory, one realizes that a good approximation is to assume a radiance loss
that relates to the squared distance. �e insight behind this choice is that light
travels along straight lines and the energy is conserved. In consequence, the energy
on the surface of a sphere around a point light source (which grows quadratically
with distance) should be constant.

Interestingly, OpenGL offers the possibility to attenuate the light’s power ac-
cording to its distance not only with a simple quadratic function but with a general
quadratic polynomial. �is may sound surprising and makes many people smile
when they hear about this option for the first time, but it actually makes some sense
to include this supplementary degree of freedom.

�e situation is depicted in Figure C.3. Far away source samples will have
very little influence on the final result due to their orientation with respect to

Figure C.3. For a large source, the change in incoming radiance is very small for slight
perturbations of the source.



328 C. A Word on Shading

the receiving point. Following Equation (1.3) (on page 9), this is reflected in the
cos(p → q, np) cos(q → p, nq) term of G(p, q). In consequence—if the light is
large with respect to the current receiving point—moving this source a little will
have almost no impact on the received illumination. In other words, leaving the
source at the same position and looking equivalently at adjacent receiver points,
we will basically observe the same energy. From a certain distance, the orientation
will be mostly constant, and thus, attenuation behaves in a quadratic manner as
predicted. In between, the behavior passes through a linear stage. �e more gen-
eral polynomial that OpenGL offers provides the possibility to mimic some of this
behavior. �e definition of the actual coefficients of the light attenuation depends
on the scene and light size. A bit of experimentation is needed to get this right,
but the final evaluation is very efficient and can deliver a visually more pleasing
outcome than a standard point-light illumination.
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Fast GPU Filtering

Techniques

In many shadow applications, it is necessary to find an average value of a region in a
texture (e.g., Section 6.5.4 and Section 6.6). A brute-force computation that would
look up these values individually can become very costly. Furthermore, we will see
that this is usually unnecessary, in particular, when considering averaging values in
a rectangular region. In practice, the shape is o�en effectively rectangular because
of the assumptions that many algorithms rely on (e.g., a rectangular source).

In this chapter, we will analyze approximate, but also accurate, ways to acceler-
ate the task of computing an average value in a rectangular window. Precisely, we
will analyze common solutions such as mipmaps and also advanced techniques,
such as N-buffers and summed-area tables.

Mathematically, we seek to compute

ffilter(t) = 1

∣K(t)∣ ∑t i∈K(t)

I(ti), (D.1)

where K(t) is the rectangular neighborhood around the pixel t and ∣K(t)∣ the
number of its elements; I is the image containing the pixels. �is is illustrated in
Figure D.1.

D.1 Mipmap

A mipmapped texture is a texture that is structured as a pyramid. In each new
level of this pyramid, the resolution of the previous level is divided by two along
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t

= 5×5 = 25

average

Figure D.1. �e filtering process and notations.

each axis until only a single pixel remains. While the lowest level of the pyramid
contains the original texture, in each intermediate level, four neighboring texels of
the previous level are averaged together to produce a texture of half the resolution.
In other words, each pixel contains the average of the 2 × 2 pixels that lie under-
neath it in the previous higher-resolution level (see Figure D.2). As an example, a
mipmapped 512 × 512 texture exhibits ten levels, ranging from 512 × 512 to 1 × 1.
In general, mipmaps have 1 + log n levels, where n denotes the texture width (=
height) and the final level only contains a single pixel.

Figure D.2. �e mipmap representation is an image pyramid, where each level has its resolution reduced by a factor of
four (two along each axis). Four pixels of the previous level are averaged together.
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Figure D.3. Some power-of-two filter kernels are not representable in an accurate manner by mipmaps (red) while
others are (green). Precisely, if the window position falls between pixels of the according level, no lookup delivers an
accurate result.

D.1.1 Construction

Constructing mipmaps is very efficient. In fact, it is even hardware accelerated
and directly accessible through the graphics APIs (in OpenGL: glFramebuffer-
MipMapEXT or gluBuildMipMap). �e construction happens in the order of mil-
liseconds even for high-resolution textures. �e different levels are all stored within
the texture and not separately.

D.1.2 Filtering

Our goal is to find the average value in a rectangular neighborhood. To understand
how to compute an approximation of this value with mipmaps, some additional
analysis is needed. In each level, four texels are averaged. In other words, in level
1 we will find the 2 × 2-pixel averages of the original texture. Level 2 contains
the 2 × 2-pixel averages of level 1—consequently, the 4 × 4 neighborhoods of the
original texture. In general, level i contains the averages of 2i × 2i pixels of the
original texture. Unfortunately, because the resolution halves on each level, there
are power-of-two squares for which we cannot find the average in the mipmap
texture. Kernels of size 2n are only present for each 2nth texel (see Figure D.3).

Intertexel Interpolation

Following the above observation, mipmaps are useful to compute power-of-two
squares, but because of the resolution reduction, it is not possible to achieve an ac-
curate power-of-two box filter. Nonetheless, a cheap approximation exist. By acti-
vating linear texture filtering (GL LINEAR MIPMAP LINEAR), the values of the neigh-
boring texels will be interpolated at in-between texel positions. �ereby, the result
for arbitrary window positions is simulated, but still it remains a strong approxi-
mation and block artifacts can occur.

Interlevel Interpolation

A second limitation is that only 2n-texel squares are acceptably represented.
For in-between sizes, one needs to introduce another approximation. Usually,
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one linearly interpolates between the two neighboring mipmap levels. For ex-
ample, to approximate the average in a 32 square, one would interpolate (here,
it is simply the mean) between the values of level 1 (22 texels) and level 2 (42

texels). �is interpolation operation is supported directly when the aforemen-
tioned GL LINEAR MIPMAP LINEAR-texture interpolation is activated. In a shader,
the texture2DLod lookup function’s level parameter determines the mipmap level
from which the value is recovered and can be fractional.

Anisotropy

An interesting advantage of mipmaps is the support for anisotropic filtering. Here,
with a simple API call (via the texture parameter GL TEXTURE MAX ANISOTROPY EXT),
one can approximate rectangular regions. Internally, this is o�en implemented as
up to 16 standard mipmap lookups that are placed along the line of anisotropy
(the longest extent of the area) to well cover the quadrilateral region. �erefore,
the quality is not extremely high, but it is a simple way in terms of hardware logic
to improve the generality of the approach and makes it reasonably well suited for
nonsquare filters. In a shader, the anisotropy is controlled via the derivative pa-
rameters of the texture2DGrad lookup function.

D.2 N-Buffer and Multiscale Map

An N-buffer [Décoret05] is a structure similar to mipmaps, but instead of reducing
the resolution in each pyramid level, all levels of the N-buffer have the same reso-
lution as the initial texture. In its original definition, a pixel in an N-buffer of level
l holds the maximum of all pixels in a window of size 2l for which the current
pixel is the upper-le� corner (see Figure D.4). It is also straightforward to store
the average of this region instead. An N-buffer usually exhibits log(n)-levels, like
mipmaps, where n denotes the texture width (= height). In the highest level, the
window size corresponds to the texture size.

D.2.1 Construction

�e construction of N-buffers is relatively efficient because it can be done in an
iterative manner. When constructing level i, one can make use of the values stored
in level i − 1. In consequence, it is enough to apply a ping-pong rendering, where
the texture computed in the last pass serves as an input for the new pass.

�e algorithm is summarized in pseudocode as follows:

shader.attachTexture("SourceTexture", originalTexture);

for(int i = 0; i < levels; ++i) {

shader.activate();

shader.setUniform1f("PixelDistance", pow(2, i));

fbo[i].activate();



D.2. N-Buffer and Multiscale Map 333

Figure D.4. �e N-buffer representation keeps the same resolution on each level. In level i each pixel contains the
average of a 2i × 2i-window of the pixels in level 0.

renderQuad();

shader.deactivate();

shader.attachTexture("SourceTexture", fbo[i].getTexture());

}

//shader code

uniform Texture2D SourceTexture;

uniform float PixelDistance;

void main() {

vec4 nbuffer = 0;

for(int x = 0; x < 2; ++x) {

for(int y = 0; y < 2; ++y) {

nbuffer += texelFetch2D(SourceTexture, glFragCoords.xy + vec2u(

x*PixelDistance, y*PixelDistance));

}

}

//...

}

�e efficiency of the construction lies in the fact that each level only relies on
four lookups, which is relatively cheap in practice. �e downside of N-buffers is the
increased memory consumption. While mipmaps use only 1 1

3
times the amount

of texture memory with respect to the original texture, N-buffers are much more
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costly. Each level adds the same memory cost as the original texture, resulting in
log(n)-times the original cost, where n is the width (= height).

As of 2007, the different N-buffer levels are not stored in separate textures any-
more but rather inside slices of a texture array. �e advantage is that only a sin-
gle texture identifier needs to be passed to a shader in order to grant access to all
levels of the N-buffer. Alternatively, one can rely on a three-dimensional texture
that even supports automatic linear interpolation between the slices, but their im-
plementation is, until now, o�en less efficient. In particular, a three-dimensional
texture might impose much higher restrictions on the possible resolutions of each
slice, whereas array textures share the resolution constraints of standard two-
dimensional textures.

D.2.2 Multiscale Map

In the domain of image processing [Jähne05], multiscale representations, like dis-
crete scale spaces, are employed in many applications. One simple but powerful
representative is the Gaussian stack. For a given input image, it stores the filtered
result by (truncated) Gaussians of increasing size w i , with twice the size of level i
being used for level i + 1 (i.e., w i+1 = 2w i). �is means that for a pixel position t at
level i, the two-dimensional Gaussian-weighted average of the input image pixels
within the w i ×w i neighborhood centered on t is recorded.

We can also replace the two-dimensional Gaussian filtering by ordinary aver-
aging or by computing the minimum or maximum, and we may also choose the
initial neighborhood size to correspond to one pixel (i.e., w0 = 1). �ese changes
directly lead to a representation termed multiscale (shadow) map [Schwarz07] that
provides filtered results for all scales with a power-of-two-sized square support.
Put another way, the entry at position t = (x , y) and level i stores the filter response
for the neighborhood region of size 2i×2i centered on t, which is the square region

(x − ⌊2i−1⌋, . . . , x + ⌈2i−1 − 1⌉) × (y − ⌊2i−1⌋, . . . , y + ⌈2i−1 − 1⌉).
A closer look reveals that this is similar to what we encountered with N-buffers.

�e major difference is that the considered neighborhood is shi�ed to be centered
on the looked-up texel. �is, however, results in supporting a significantly higher
number of different rectangular regions if the neighborhood is clipped against the
image extent, which applies in most applications. Because a multiscale map in-
creases the neighborhood in all four directions when proceeding to the next level,
the new neighborhood will differ from the old one even if clipped. By contrast,
N-buffers expand the neighborhood only in the positive x- and y-directions, and
hence, clipping can cause the new neighborhood to coincide with the old one, mak-
ing the N-buffers store redundant information. �is is particularly pronounced on
the highest level, where a whole 25% of the texels in an N-buffer cover the same
region as on the second highest level, thus redundantly storing the same values.
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Consequently, it is advisable to use a multiscale map instead of N-buffers in prac-
tice.

D.2.3 Filtering

In contrast to the interpolated mipmap approximation, N-buffers deliver the cor-
rect result for power-of-two square windows. As for mipmaps, in-between filter
sizes can be approximated by interpolating the two nearest power-of-two filter re-
sponses. While this is is not correct, it performs well in practice. In this scenario,
N-buffers can provide the result with only one or two lookups, which leads to a
high performance, similar to mipmaps.

Y Map

An important observation is that mipmaps actually do perform well for smaller
windows, but for larger ones, the resolution reduction becomes very visible and
leads to the aforementioned block artifacts. One possibility to exploit this ob-
servation is to rely on a hybrid scheme. While the first levels of the texture are
handled like a mipmap, one can switch at later levels to a multiscale map. �is
Y map [Schwarz08b] combines the advantages of a high-quality N-buffer-like fil-
tering with a relatively low memory consumption. Using a mipmap only for the
first two levels already implies that 16 levels of succeeding N-buffers will fit in the
original texture’s amount of memory, making this extension a very valuable con-
tribution.

Min/Max Computation

Finally, we quickly want to mention that the particular case of looking for min-
imums and maximums inside a rectangular region can be handled by N-buffers
as well. In fact, N-buffers deliver the accurate result in an arbitrary square region
with only four lookups. Basically, one covers the query square with four lookups
from the one-level-below N-buffer texture (Figure D.5). Computing the maxi-
mum/minimum of these four values then results in the maximum/minimum of
the entire square region.

max/min

= min/max( )
max/min max/min max/min max/min

no power-of-two window overlapping power-of-two windows, values can be found in N-buffers

Figure D.5. Covering a square region with four square windows allows us to use N-buffers for an accurate min/max
computation in arbitrary square regions.
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Figure D.6. To construct the SAT, one sums all values to the upper le� of the considered pixel (le�). Four lookups at
the corners of a rectangle are enough to compute the sum of all its contained pixels.(right)

D.3 Summed-Area Table

A summed-area table (SAT) [Crow84] is a one-texture representation that allows
us to accurately determine the average in an arbitrary rectangular region by us-
ing only four lookups into this texture. In each texel t ∶= (x , y), we store the sum
SA(x , y) = ∑i≤x∧ j≤y I(i , j). Consequently, the average value A of a window de-
fined by texels (x , y), (i , y), (i , j), and (x , j) with x < i and y < j is given by
SA(x , y) − SA(i , y) + SA(i , j) − SA(x , j) (see Figure D.6). �e construction is
very efficient [Hensley05], but a high data precision is needed to avoid artifacts.
For a binary input texture, the summed-area table should be stored in a 32-bit in-
teger texture, which ensures robust results.

D.3.1 Construction

A brute-force construction would simply loop for a given pixel over all pixels in the
upper le� quadrant. Such a scheme is, however, very expensive (e.g., for the pixel
in the lower-right corner, one would need to loop over all pixels in the image).
Instead, one can compute an SAT with an efficient recursive scheme.

One-Dimensional Case

Efficient construction algorithms [Hensley05] are slightly involved, and we will
first concentrate only on a one-dimensional SAT that is a one-dimensional texture.
In other words, it means that we want to store in a pixel x the sum of all pixels to
its le�: SA(x) ∶= ∑x

i=0 I(i). Equivalently to the two-dimensional case, one could
retrieve the exact average in a pixel interval [x , y] by computing SA(y)−SA(x−1)
= ∑y

i=x I i .
�e recursive construction is accomplished in several passes. We will denote

Sk the resulting texture of pass k. For k = 0, this is just the original input image.
A�er the first pass, each pixel will contain the sum of itself and its le� neighbor:
S1(x) ∶= I(x) + I(x − 1). �e second pass will derive a texture S2 where each
pixel contains the sum of itself and its three neighbors to the le�: S2(x) ∶= I(x) +
I(x − 1) + I(x − 2) + I(x − 3). Generally, Sk(x) ∶= ∑2k

i=0 I(x − i). We will see
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later how this construction is achieved. Let’s first look at the resulting texture a�er
log(n) passes, where n is the width of the texture. For a given pixel x, we have
Slog(n)(x) ∶= ∑n

i=0 I(x − i). Looking closely at I log(n), one realizes that it is almost
the actual SAT representation:

n∑
i=0

I(x − i) = x∑
i=0

I(i) +∑
i>x

I(x − i) = SA(x) + n−x∑
i=1

I(−i).
If one assures that I(i) = 0 for all i < 0, the construction results directly in the
SAT. In fact, this property is easy to ensure by relying on the standard graphics
API and adding a black border to the input texture (GL TEXTURE BORDER COLOR,
see also Appendix B).

We have seen that log(n) passes are needed to compute the SAT representation
(e.g., a 1024-texel-wide texture requires ten passes). But so far, we have not yet
described how to produce Sk from Sk−1 efficiently. While the first can obviously
be performed with two lookups per pixel, the second pass seems to involve already
four lookups in order to compute S2(x) ∶= I(x) + I(x − 1) + I(x − 2) + I(x −
3). Fortunately, the second pass can actually be realized with only two lookups by
relying on the result from the previous pass:

S2(x) ∶= (I(x) + I(x − 1)) + (I(x − 2) + I(x − 3)) ∶= S1(x) + S1(x − 2).
�is observation generalizes, and it is always possible to compute Sk by relying on
Sk−1 with just two lookups per pixel:

Sk(x) = 2k∑
i=0

Ix−i

=
2k−1∑
i=0

I(x − i) + 2k∑
i=2k−1

I(x − i)
=

2k−1∑
i=0

I(x − i) + 2k−1∑
i=0

I(x − 2k−1 − i)
= Sk−1(x) + Sk−1(x − 2k−1).

In other words, all one needs to do during the construction of a new level is to
fetch two values from the previous level (for level one, these two texels are neigh-
boring). For each level, the lookup distance between these two texels should be
doubled.

Two-Dimensional Case

Finally, the extension of the previous algorithm to the two-dimensional case is
surprisingly simple. First, one computes in parallel a one-dimensional summed-
area table SAT1D for each pixel row in the input texture I. �en, one computes
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one-dimensional SATs for each column of this texture SAT1D to derive the two-
dimensional version SAT2D. To understand why this works, we can quickly look
at the math behind these operations and illustrate that SAT2D is nothing else but
a one-dimensional row SAT of the one-dimensional column summed-area table
SAT1D:

SAT2D(x , y) ∶= n∑
i=0, j=0

I(x − i , y − j) = n∑
i=0

n∑
j=0

I(x − i , y − j) = n∑
i=0

SAT1D(x − i , y).
Implementation

While the overall algorithm is relatively efficient, the process is still more involved
than for the N-buffer computation. In particular, it is due to the fact that one needs
to rely on high-precision textures. Summing all pixels can quickly lead to an over-
flow when working with 8-bit values. Instead 16, o�en even 32, bits might be nec-
essary.

It is important to notice though that, in contrast to N-buffers, the intermediate
textures do not need to be stored and can be discarded. �e effective memory cost
corresponds only to a single texture. Although in practice, two such textures are
o�en allocated to allow ping-pong rendering during the construction. �e below
pseudocode summarizes the construction steps.

shader.attachTexture("SourceTexture", originalTexture);

//INPUT -> 1D SAT

int lastI;

for(int i = 0; i <= passes; ++i) {

shader.activate();

//lookup in x direction

shader.setUniform2f("LookUpDir", pow(2,i), 0);

fbo[i%2].activate();

renderQuad();

shader.deactivate();

shader.attachTexture("SourceTexture", fbo[i%2].getTexture());

lastI = i;

}

//1D SAT -> 2D SAT

for(int i = lastI; i <= passes + lastI; ++i) {

shader.activate();

//lookup in y direction

shader.setUniform2f("LookUpDir", 0, pow(2,i));

fbo[i%2].activate();

renderQuad();

shader.deactivate();

shader.attachTexture("SourceTexture", fbo[i%2].getTexture());

}



D.3. Summed-Area Table 339

//shader code

uniform Texture2D SourceTexture;

uniform vec2 LookUpDir;

void main() {

vec4f sat

= texelFetch2D(SourceTexture, gl_FragCoord.xy)

+ texelFetch2D(SourceTexture, gl_FragCoord.xy+LookUpDir);

//...

}

Details

In order to reduce the needed bit depth, two strategies can be employed: centering
and origin-centering [Hensley05].

Centering. Centering tries to optimize bit usage by shi�ing all image values. By
substracting the average from all pixels, values become generally smaller and the
sum of all pixels will be zero. �is operations can be easily inversed: one computes
the size of the filtering rectangle in pixels and multiplies this area by the average
value. �e resulting correction value is added to the result.

Origin centering. Origin centering reduces numerical issues by cutting a texture
into four quadrants and by computing the SAT in such a way that a pixel stores
the sum of all pixels in the same quadrant towards the center of the image. One
can still compute the correct filter result, but at most one-fourth of all pixels in the
initial texture are summed, which o�en enables the use of a cheaper data format.

Practical example: binary images. For shadow computations, it is sometimes in-
teresting to query a binary image. If the image resolution is below 5122, 16-bit
precision is sufficient. �is also holds for 1,0242 textures when using the origin-
centering strategy. Although an overflow could theoretically occur if the entire im-
age is filled with ones, in practice, one can easily account for this particular case. On
newer cards, unsigned short or, for higher-resolution textures, integer textures are
the best choice. On older cards, integer textures are not available. Consequently,
16-bit fixed-point values (GL LUMINANCE16) can be used instead; for higher pre-
cision, one can also rely on 32-bit floating-point numbers. �e latter leads to an
effective precision of 24 bits—the size of the mantissa. Consequently, it is possible
to deal with textures up to a 4,0962 resolution.

D.3.2 Filtering

�e filtering with summed-area tables is of very high quality. As indicated ini-
tially, lookups at the four corners can be used to directly compute the sum of all
pixels in the corresponding rectangle. One interesting observation is that SATs are
compatible with linear filtering. Even windows that overlap pixels partially result
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Method Construction Quality Memory Min/max

Mipmap +© +© © +© +© yes
N-buffer © +© −© yes
Y map +© +© +© yes
SAT © +© +© © no

Table D.1. Filtering method overview: construction performance, filtering quality, memory
consumption, and compatibility with min/max computation.

in a correct response. Consequently, SATs are the optimal choice for high-quality
results.

D.4 Summary

Depending on the application, all three filtering methods presented in this chapter
can prove useful. For accurate computations, there is no way around summed-area
tables, but they o�en imply a relatively high cost. �is performance drop is mostly
related to two issues: the higher bit precision and the fact that four lookups are
needed, which is more than for mipmaps or N-buffers. N-buffers turn out to be
a very good tradeoff if some accuracy loss is acceptable. In particular, the exten-
sion to Y maps deals with the overwhelming memory consumption of the origi-
nal N-buffer definition. In practice, this representation provides very good results
and still enables high efficiency. Mipmaps, on the other hand, prove very useful
when memory usage is the main concern, but gives significantly coarser approx-
imations. For example, an average occluder might not have to be very precise, as
the result itself might be used in an approximate formula. Here, mipmaps can be
the representation of choice. Table D.1 shows an overview of the methodological
consequences.

Even though we only addressed the computation of the maximum or minimum
value in a rectangular area briefly, it should be mentioned that mipmaps, N-buffers,
and Y maps are all naturally compatible with this task, while summed-area tables
are not. Actually, N-buffers and Y maps are even able to deliver the accurate result
for an arbitrarily sized square region with only four lookups by superposing the
lookup windows.



APPENDIX E

More For Less: Deferred

Shading and Upsampling

�is chapter introduces the principle of deferred shading and upsampling. �ese
techniques are useful, not only in the context of shadow computations, but can
be advantageous whenever algorithms are pixel-shader bound. In other words, if
per-pixel computations have a high cost, these methods o�en increase the overall
performance.

Deferred shading only affects the way a result is computed, but not its appear-
ance.1 Contrarily, upsampling strategies might lead to some loss of accuracy. In the
following, we will analyze the principle of both techniques, which can lead to an
impressive speed-up when applied in practice. Especially, deferred shading has be-
come a useful addition to the toolbox of game developers (Stalker [Shishkovtsov06]
is an example that well illustrates this fact).

E.1 Deferred Shading

E.1.1 Definition

In the standard graphics pipeline, the color of a pixel is computed before it is sent
to the framebuffer. �is fragment (a color and a depth) is then tested against the
depth buffer. Only if it is closer than the previously stored depth value, the color
is actually stored. In other words, any pixel value that is computed for a hidden
part of the scene can incur a complex and unnecessary shader evaluation. �is

1Supersampling and multisampling techniques do not work any longer, though, so antialiasing and
also transparency are known to be problematic.
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Figure E.1. G-buffers capture surface information in the form of images. Normals, world position, depth, lighting, or
material properties are typical choices.

performance overhead might have been negligible when shading operations were
cheap, but with today’s hardware, complex material and illumination computations
have become the standard. �e goal of deferred shading is to avoid calculations on
hidden fragments and to evaluate illumination in screen space without involving
the actual geometry.

�e idea is relatively simple. If you have ever seen painting by numbers, you
should grasp the principle immediately. Imagine a fictional rendering problem: All
surfaces in the scene have a material number which, when executed with an expen-
sive pixel shader, can be converted into an actual pixel color. When using the stan-
dard graphics pipeline, many surfaces will execute this costly conversion operation,
although their pixels might ultimately be hidden behind another surface. Instead,
deferred shading avoids this issue by deferring (or delaying) the shading operation.
In practice, it means that we first render the scene, but output the material num-
ber instead of the color. �e resulting image will finally contain in each pixel the
material number of the underlying visible surface. Hence, it resembles a painting-
by-number picture. �e expensive conversion shader can then be executed on this
material-number image, which ensures that the shader is only executed on image
pixels that are actually present in the rendered image. Consequently, the costly
conversion is only applied to visible surfaces and never to hidden ones. Further-
more, this second rendering pass does not involve the scene geometry any longer;
the cost is directly related to the pixels.

In a “real-world” case, such a material ID might actually be attributes (e.g.,
shadow map coordinates, normals) that are extracted and stored in so-called G-
buffers, originally called geometric buffers [Saito90]. Basically, a G-buffer is a snap-
shot of the scene that recovers surface attributes. Figure E.1 shows some typical
examples. �e necessary condition is that the extracted values allow us to evaluate
the expensive pixel shader in the second pass.

E.1.2 Practical Considerations

In practice, deferred shading is useful from Shader Model 3.0 onwards, where the
so-called multiple render targets (MRTs) were introduced (compare Appendix A).
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MRTs allow the user to write not only a single color value in the framebuffer, but
several ones. �is property is crucial, as it allows to collect a set of values (e.g.,
normals, position, color) without having to perform several render passes.

Nonetheless, the more values are output in parallel, the more costly the cre-
ation and storage of the attribute collection, in the form of G-buffers, becomes.
Bandwidth is a big issue with this technique. Hence, it can make sense to store
results of cheap computations instead of attributes (e.g., one might directly com-
pute and collect diffuse illumination instead of a reflectance and a normal value) if
these values are not needed for any other purpose. Optimizing for such attributes
can be complex and the search for a good tradeoff between memory consumption
and shader performance cannot be avoided. It is not easy to give general advice
on how to optimize one’s code. In some situations, even complex strategies, such
as the packing of different information in bit patterns of a color can prove useful.
As a rule of thumb for today’s hardware, one can rely on four 16-bit buffers which
leads to reasonable performance on many systems.

E.1.3 Examples

�e practical impact of deferred shading can be impressive. As an example, the
algorithm in [Eisemann08b] benefits from a 50% speed-up when using deferred
shading over an on-surface evaluation.

�e reason for the performance increase is actually two-fold. We mentioned
before that hidden pixels are not evaluated, but there is another advantage that
is slightly more technical. When evaluating pixel shaders, the graphics hardware
needs to process groups of several pixels. �e reason is linked to the existence of a
derivative operator in shaders. �e derivative commands (ddx, ddy) can compute
the derivative of an arbitrary value in a shader program. In hardware, this op-
eration is computed by differentiating neighboring pixel values. In consequence,
groups of at least four pixels are always evaluated in parallel (potentially even
more).

Unfortunately, this choice has negative implications too. If one renders a very
small triangle—of the size of one pixel—still four shader computations are per-
formed and, basically, 75% of the computation is wasted. In deferred shading,
evaluating neighboring pixels do not incur this penalty because all pixels are actu-
ally processed. Hence, the work can benefit from coherent computations and data
exchange between neighboring pixels. Nonetheless, when using derivatives, the
result can be less accurate.

E.2 Upsampling

�e idea of upsampling is to take advantage of pixel coherence in the final image.
For example, so� shadows o�en exhibit low-frequency variations and, therefore,
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many neighboring pixels show similar shading results. Consequently, one should
aim at exploiting this coherence in screen space by only computing the correct
shadow response for a subset of pixels and then reconstructing the remaining in-
formation. In practice, such a reconstruction operation can be as simple as a filter,
but we will see that better solutions take the geometric information of the scene
into account. Finally, we will give a quick outlook on the possibility of integrating
computations over time by exploiting temporal coherence. Unfortunately, mak-
ing such attempts work in practice is a difficult issue and, especially for quickly
varying lighting conditions, many solutions fail. Nevertheless, it is a particularly
interesting venue of future work, which is the reason why we will discuss this topic
briefly.

E.2.1 Spatial Methods and Geometry-Aware Blur

Let’s motivate the idea behind upsampling with a simple example. Imagine one
wants to illuminate a scene with many light sources and even with deferred shad-
ing, we would need to evaluate every single of the, say, 1,000 light sources. �e cost
of such an evaluation would be very high and is particularly frustrating when one
realizes that the energy contribution of a single light source might be very similar
for a given group of neighboring pixels. Much of the computation seems redun-
dant.

To exploit this coherency, a solution is to evaluate only a subset of light sources
per pixel and produce an average incoming light contribution. �is contribution
could then be propagated to the neighboring pixels instead of accurately evaluating
all sources per pixel. One should notice that the propagated light is the incoming
radiance (i.e., the contribution coming from the light before it is modulated by the
surface reflectance). Only then is it possible to spread this information to neigh-
boring pixels. Otherwise, a red surface lit with a white light would bleed its red
color into the surrounding pixels.

Such a decomposition of the light set is useful. Imagine that we consider 2×2-
pixel groups and for each pixel in such a group we evaluate a distinct set of 250
light sources out of the overall 1,000. �us, the per-pixel cost is reduced by a factor
of four. Unfortunately, using a different set of light sources per pixel results in a
clearly visible noise (Figure E.2, le�). To get rid of this artifact, the noisy image
is filtered in order to improve its appearance. �is filtering can be as simple as
an averaging process and any of the techniques in Appendix D can be used, but
there is a catch. When averaging neighboring pixels, the light contributions might
leak across depth discontinuities and induce visible halos around objects. A better
solution is to rely on a particular filtering process that takes the underlying geom-
etry into account because shading discontinuities o�en coincide with geometric
discontinuities.

In the following, we will discuss geometry-aware filtering which is a technique
that has recently received much attention. An example of its effectiveness is the
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interleaved radiance geometry-aware blur + textures

Figure E.2. Instead of evaluating a large set of light sources in each pixel, it is more efficient to select a suitable subset
of light sources per block of pixels. Choosing different sets will increase performance but will also lead to noise in the
final image (le�). �is noise can o�en be removed by filtering the information (right).

high-quality image (Figure E.2, right) that was computed from a noisy input (Fig-
ure E.2, le�).

E.2.2 Advanced Filtering

We have analyzed in Appendix D how to average a set of pixel values I(t) in the
image I from a neighborhood K(t) around a pixel position t. Here, we will see
that it is sometimes beneficial to consider the underlying structure of the image
(e.g., in order to preserve discontinuities). �is filter modification is enabled by a
weighting function ω. Mathematically, the result of the filtering process for a pixel
location t is

ffilter(t) = ∑t i∈K(t) ω(t, ti)I(ti)∑t i∈K(t) ω(t, ti) , (E.1)

where ω is a function that compares the two pixel locations t and ti and decides
on a corresponding weight. Because the weighting function does not have to rely
on the original image I, but can be defined using other images, such a filtering is
usually referred to as joint [Petschnigg04] or cross [Eisemann04] bilateral filtering.
We will soon see possible definitions for ω, but first, let’s look at another interesting
element of Equation (E.1), which is the denominator ∑t i∈K(t) ω(t, ti). It assures
energy conservation (the image does not become darker or brighter when the filter
is applied several times). In other words, each pixel in the sum is weighted, such
that the sum of all weights equals one.
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�e definition of the weighting function ω can depend on the wanted filtering
effect. A simple choice is to use the distance between the two pixel locations. For
example, ω(t, ti) = G(σ , ∣∣t− ti ∣∣) ∶= exp(−∣∣t− ti ∣∣2/σ 2) results in a Gaussian blur.
O�en, the function ω will fall off quickly in image space and distant pixels tend to
receive very low weights. Hence, it is usually possible to clamp ω to zero as soon
as it falls below some small threshold. In the case of a Gaussian, one can clamp it
between 2σ or 3σ pixels. �e direct advantage is that the filtering at a pixel position
t only needs to involve a small neighborhood.

Geometry-Aware Filtering

In the following, we extend Equation (E.1) to take the geometry of the underlying
scene into account. We have previously seen in Section E.1 that it is possible to re-
trieve image buffers containing properties of the underlying surface, the G-buffers.
We will now make use of these buffers in order to control the filtering process. �is
extension will allow us, for example, to avoid blurring across depth discontinuities,
or across strong normal changes.

In the context of our initial problem of evaluating thousands of light sources,
this solution will allow us to evaluate different sets of lights in each pixel and
remove the resulting noise without introducing artifacts. Basically, only similar
pixels—that would have resulted in similar illumination anyway—will share their
values.

A good solution for a geometry-aware filtering is to rely on a weighting func-
tion that considers the projected position (screen position and depth), as well as
the normal orientation. By relying on the previously defined Gaussian kernel G, a
good choice is

ω(t, ti) = G(σn , normal(t) ⋅ normal(ti))G(σp , ∥position(t) − position(ti)∥),
where position(⋅) and normal(⋅) are the image buffers of the extracted position
and surface normals, respectively. �e two values σn , σp are chosen empirically
and depend on the scene. Two pixels with strongly differing normals result in a
very low weight, meaning that our confidence that these two pixels would receive
a similar full illumination is relatively low. On the contrary, if both pixels share
the same normal and are at a similar position, it is very likely that both receive a
similar illumination—accordingly the weight is high.

Instead of the world position, many approaches use only the depth of a pixel.
In this case, it is very common to also add an image-based distance (the projected
distance on the screen) and to apply it to a falloff function k. Consequently, the
examined neighborhood can be restricted to only contain pixels that receive a suf-
ficient spatial weight. �ese modifications result in the following definition:

ω(t, ti) = k(t − ti)G(σn , normal(t) ⋅ normal(ti))G(σp , ∥depth(t) − depth(ti)∥).
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One should notice that especially for distant scene elements such choices might
prove insufficiently accurate. Due to the camera perspective, two distant elements
might appear to be in close proximity on the screen while being very distant in the
scene, which in turn would imply that their shading is likely to be very different
too. O�en, this is not a big issue because users tend to pay more attention to nearby
elements. In general, only similar pixels can benefit from the process and some
isolated pixels can always persist.

�e only clean correction for the artifacts for distant objects would be to avoid
filtering in these regions altogether. Consequently, one would need to rely on a
full evaluation of the original shader, which is costly, but possible. A good solu-
tion to estimate the confidence in the result of the filtering process is given by the
expression ∑t i∈K(t) ω(t, ti) [Durand02, Herzog10]. Basically, this is the sum of
all weights attributed to surrounding pixels. If no pixels are similar, the weight is
low, and consequently, the pixel under consideration is rather unique and cannot
benefit from any coherence.

Geometry-Aware Upsampling

We have previously seen that pixels can share values via filtering. In the follow-
ing, we will push this idea even further. One can compute shading values only for
a subset of all pixels and then upsample this information. In other words, com-
puting shading of a small set of pixels can be enough to derive a high-quality full-
resolution image [Yang08]. In practice, one can imagine rendering a low resolu-
tion image with, say, 960×540 pixels for which the shading is evaluated accurately.
�is low-resolution image is then upsampled into a full-HD 1,920 × 1,080 high-
resolution version.

One way to define such an upsampling would be to simply mix neighboring
pixels. Unfortunately, doing so would result in a blurry image. Instead, we will ex-
ploit the same observation as before; shading discontinuities o�en coincide with
geometric discontinuities. Consequently, we will again make use of deferred shad-
ing to extract G-buffers. �e insight is that by using a high-resolution G-buffer,
accurate confidence values can be computed that allows for a far superior resolu-
tion increase than if one would rely only on low-resolution images. Furthermore,
the creation of the G-buffers is cheap because they do not involve complex compu-
tations. �is resolution heterogeneity between cheap-to-compute high-resolution
attributes and expensive low-resolution shading leads to an excellent tradeoff.

�e upsampling itself looks similar to the filtering process previously described:

Upsample(t) = ∑t l
i
∈K(t l ) ω(t, ti)I(tli)∑t l

i
∈K(t l ) ω(t, ti) , (E.2)

where K(t) is again a pixel neighborhood and tl , tli are the corresponding posi-
tions of t, ti in the low resolution image I. It is important to notice that the above
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t - t i

high resolution

I (low resolution)

standard interpolationlow-resolution input high-res. weights upsampled

+

Figure E.3. �e joint-bilateral upsampling derives a high-resolution image from a low-resolution input by relying on
additional high-resolution buffers that determine the reconstruction weights (top). �e quality improvement is striking
when compared to standard interpolation (bottom).

equation defines high-resolution pixels. While the G-buffers (used by the ω func-
tion) are of high resolution the shading image I itself is of low resolution. In other
words, the only modification with respect to the previously explained filtering is
that for each high-resolution pixel position t, several low-resolution shading pixels
ti are tested for similarity. Still they use weights that are derived from the corre-
sponding positions in the high-resolution G-buffers. �is process of joint-bilateral
upsampling [Kopf07] is illustrated in Figure E.3, based on the previously men-
tioned joint/cross-bilateral filter [Petschnigg04, Eisemann04].

Upsampling is an effective solution that can be realized very efficiently on cur-
rent GPUs without much implementation effort. It is not perfect though. Very
detailed information cannot be captured accurately. Recently, spatiotemporal ap-
proaches aim at addressing this shortcoming by relying on previously computed
values [Nehab07,Sitthi-amorn08,Herzog10]. Although very efficient and o�en su-
perior in quality, the exploitation of temporal coherence is not straightforward and
we refer the interested reader to [Scherzer11]. In the future, such upsampling algo-
rithms might become increasingly important as they seem a promising possibility
for efficient remote-rendering applications in client-server systems [Pajak11].
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E.3 Summary

We have seen various ways of accelerating computations completely independently
of the underlying algorithm. �e two main strategies were deferred shading and fil-
tering/upsampling. Deferred shading is extremely effective for expensive fragment
processing and avoids evaluating the costly shader for hidden geometry. Conse-
quently, if a process is shader bound, one should definitely test a deferred-shading
version.

Aside from issues concerning antialiasing, deferred shading delivers a virtu-
ally equivalent image. When it is possible to accept a slight degradation, one can
achieve further performance increases by relying on filtering and upsampling. �e
assumption behind these processes is that similar pixels will also receive similar
shading. Consequently, it becomes possible to share information between similar
pixels, thereby reducing the shader workload. For filtering, all pixels compute a
degraded version and similar pixels mix their results. For upsampling, only a sub-
set computes the full shader solution and the process then propagates this result
to neighboring pixels. While the latter is always possible, filtering assumes that a
shader can easily be broken down to yield simpler approximations. Depending on
the algorithm, this may or may not be possible.

In many cases the advice in this chapter helps achieve a much higher frame
rate with only little deviation from the full solution. Furthermore, it is relatively
easy to apply these suggestions and they are compatible with almost any shadow
algorithm. Hence, it is good advice to consider the here-presented approaches in
practical applications.





APPENDIX F

Symbols

Symbol Description

L Light
B Blocker, occluder, shadow caster

p Scene point, receiver point, view sample
l Light (sample) point
t Texel, texture coordinates

pl Light-space coordinates of point p

plc Light-clip–space coordinates of point p

ps Shadow-map texture coordinates for point p

Mv View matrix (world→ eye space)
Mp Projection matrix
Mc Camera matrix (world→ clip space)
Ml

v Light-view matrix (world→ light space)

V(p, q) Mutual (binary) visibility of points p and q

VL(p), V(p) Fraction of light (L) visible from p; visibility factor

z(t) Light-space depth value from shadow map
z̃ Light-space depth value of fragment
pl
z̃ Light-space depth of point p

s(z, z̃) Shadow-test function
f (t, z̃) = s(z(t), z̃) Shadow-mapping function

H(x) Heaviside/step function

351
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Symbol Description

R Region
K Filter kernel region
k(x) Filter kernel function

L Radiance
fr(p, ω, ω′) BRDF
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++ZP, 57

absorption, 246, 260, 261

function, 246

accumulation buffer, 174

adaptive partitioning, 123–131

adaptive shadow maps, 124

adaptive volumetric shadow maps, 245

airlight, 260, 262–263

albedo, 260

alias-free shadow maps, 131

aliasing, see also error

perspective, 85

projection, 85

shadow map, 40, 75

temporal, 80, 93

alpha blending, 306

ambient occlusion, 286–293

attached, 288

screen space, 289

screen-space directional occlusion,
292

sphere, 290

volumes, 288

volumetric obscurance, 291

anti-shadow, 23

AO, see ambient occlusion

attenuation, 260, 262

back projection, see occluder back
projection

banding, 143
bandlimit, 77, 145
bent normal, 293
bias, see also z-fighting

API, 317
cone, 183
shadow maps, 34–39

bidirectional reflectance distribution
function, 8, 323–326

analytical, 324
bilateral filtering, 157
bilinear filtering, 142
bitmask so� shadows, 194
bitmasks

counting set bits, 272–273
occlusion, 271

blocker, see occluder
BMSS, see bitmask so� shadows
boundary representation, 5
BRDF, see bidirectional reflectance

distribution function
brick, 281

camera, see matrix
cascaded shadow maps, 111
caster, see occluder
Chebyshev inequality, 150
coherent hierarchical culling, 92

377
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colored light sources, see textured lights
cone tracing, 282
convolution shadow maps, 153–156, 184
convolution so� shadows, 184–185
cross-bilateral filtering, 143, 348
culling, see shadow caster culling

deep shadow maps, 206, 240, 244
deferred shading, 308, 341–343
depth bias, see bias
depth clamping, 91
depth peeling, 195, 306
depth-complexity sampling, 223–224
direct lighting equation, 10
DirectX, 303
discretized absorption function, 248
displacement mapping, 305
distributed ray tracing, 284
dual depth layers, 38

environmental lighting, 286
epipolar lines, 263
error, see also aliasing

initial sampling, 81
reconstruction, 79, 87
resampling, 87, 139

exponential layered variance shadow maps,
158

exponential shadow maps, 156–158
eye beam, 83

filter kernel, 140
filtering

bilateral, 157
bilinear, 142
cross-bilateral, 143
geometry-aware, 345–347
percentage-closer, 87, 141–144
prefiltering, see prefiltering
shadow map, 139

fitted virtual shadow maps, 125
fitting, 42, 89–93

matrix, 90, 93, 94
flood filling, 177

jump flooding, 178
focus region, see fitting
focusing, see fitting

forward shadow mapping, 135
Fourier analysis, 255
Fourier opacity shadow maps, 255–257
fractional-disk so� shadows, 179
fragment, 341
fragment shader, see shader
framebuffer object, 307

multiple render targets, 307, 342
frustum face partitioning, 115
FSAT, see summed-area table

G-buffer, 173, 274, 342
Gaussian blur, 346
geometry shader, see shader
geometry-aware filtering, 345–347
geometry-aware upsampling, see

upsampling
global partitioning, 110–123

Heaviside step function, 87, 140
hierarchical shadow map, 186, 200–202
Hough transform, 230
HSM, see hierarchical shadow map

illumination
direct, 10

equation, 10
indirect, 15

image space gathering, 186
initial sampling, 76
initial sampling error, 81
instancing, 308
interleaved sampling, 143
irregular rasterization, 131, 243
irregular z-buffer, see alias-free shadow

maps

joint-bilateral filtering, 348
Jordan theorem, 49

Lambertian, 11
layered attenuation maps, 205
layered depth image, 205
layered variance shadow maps, 152
light

attenuation, 67
beam, 83
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bleeding, see light, leaks
culling, 44
leaks, 151, 155
samples, 5
sampling, 17–18
source, 5
textured, see textured lights

light space
matrix, see matrix
post-perspective, 90, 94

light-space perspective shadow maps, 94
lighting equation, 162, 174
LiSPSM, see light-space perspective shadow

map
lit, 6
logarithmic parametrization, 108
logarithmic perspective shadow maps, 108
logarithmic rasterization, 109

matrix
light projection, 28
light view, 27
projection, 315–316
view, 314–315

micropatches, 193, 196–197
microquads, 197–198
microrects, 203
microtris, 198
midpoint shadow maps, 38
mipmap, 183, 329–332

anisotropic filtering, 332
construction, 331
interpolation

level, 331
texel, 331

Monte Carlo integration, 171, 284
MRT, see framebuffer object
MSAA, see multisample antialiasing
MSSM, see multiscale shadow map
multifrusta tracing, 284
multilayered shadow fins, 216
multiple depth shadow maps, 158
multisample antialiasing, 274–275
multisampling, 160
multiscale map, 334–335
multiscale shadow map, 201–202

N-buffer, 184, 332–335
construction, 332
filtering, 335

noise, 143

occluder, 7
back projection, see occluder back

projection
contours, 198–199, 202
contribution, 15
fusion, 16, 169–171, 194
semitransparent, 239
set, 16

occluder back projection, 167–169
computational order

gathering, 168, 193
scattering, 168

so� shadow mapping, see so� shadow
mapping

occlusion bitmasks, 194–195
counting set bits, 272
textured lights, 271–272

occlusion textures, 190–191
octree, 281
omnidirectional shadow maps, 32
opacity shadow maps, 246–249
OpenGL immediate mode, 308
optical thickness, 263, 268
optimal parametrization, 107
orientation

shadow map, 96
OSM, see opacity shadow maps

page table, 125
parallel split shadow maps, 111
parametrization, 84, see also warping

logarithmic, 108
optimal, 107

participating media, 259
partitioning

adaptive, 123–131
frustum face, 115
global, 110–123
z-partitioning, 111

PCF, see percentage-closer filtering
PCSS, see percentage-closer so� shadows
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penumbra, 6, 163
inner, 164, 175
inner and outer, 215–217
outer, 164, 175, 209–215
width estimation, 166–167, 179, 180

penumbra deep shadow maps, 206
penumbra maps, 212–213
penumbra wedges, 217–219
per-view-sample transparency, 243
percentage-closer filtering, 87, 141–144,

178, 181
percentage-closer so� shadows, 180–181

screen-space, 186
perspective aliasing, 85
perspective shadow maps, 93
perspective warping, 94, 95

strength, 95
phase function, 263, 268
pinhole camera, 9
pixel shader, see shader, fragment
planar projected shadows, 23–25

anti-shadow, 23
blending, 25
matrix, 24
z-fighting, 23

plane optimal perspective warping, 109
plural sunlight buffers, 111
point light, 11
Poisson disk sampling, 143, 172
Poisson shadow blur, 178
polygon IDs, 176
post-perspective light space, 90, 94
potential shadow

casters, 90
receivers, 43, 89

precomputed radiance transfer, 294–296
precomputed shadow fields, 295
prefiltering, 147
projection aliasing, 85
projection shadows, 21–31

planar, see planar projected shadows
projective shadow mapping, see shadow

textures
PRT, see precomputed radiance transfer
pseudo far plane, 104

pseudo near plane
warping, 103
z-partitioning, 113

PSSM, see parallel split shadow maps

queried virtual shadow maps, 123

radiance, 7
emitted, 8
incoming, 8
outgoing, 8

radiant flux, 7
rasterization

irregular, 131
logarithmic, 109
stochastic, 253

ray differentials, 279, 282
ray marching, 261, 263–265
ray tracing, 283–285

multilayered shadow maps, 206
receiver, 7
reconstruction, 77, 145

error, 79, 87
reference depth, 140, 144, 152
reflectance, 324
relighting, 15
rendering equation, 8, 294
reparametrization, see parametrization
resampling, 77

error, 87, 139
resolution matched shadow maps, 125
ringing artifacts, 155

sample distribution shadow maps, 92, 114
sampling

artifacts, 171
initial, 76
interleaved, 143
patterns, 171, 195
Poisson disk, 143, 172

SAT, see summed-area table
scene, 5
scene points, 5
screen-space ambient occlusion, 289
screen-space directional occlusion, 292
second depth shadow maps, 37–38
segment, 6
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self shadowing, 7
PCF, 144
VSM, 151

semitransparency, 241
shader, 304

fragment, 305
geometry, 305
tesselation, 306
vertex, 305

shading, 4, 10, 11
Blinn-Phong model, 326
Cook-Torrance model, 326
Lambertian, 324
Phong model, 325
specular, 325

shading models, 5
shadow, 2–7, 10

algorithms, see shadow algorithms
art, 13
definition, 6
hard, 12
hardening, 164
inner penumbra, 164
outer penumbra, 164
penumbra, 163, see also penumbra
projection, 22
so�, 12
textures, 26
umbra, 163
unsolved problems, 22

shadow algorithms
classification, 164–165
geometry-based, 165
image-based, 165

shadow caster culling, 43, 44, 64–66
shadow comparison function, 140, 148, 154
shadow map filtering, 139
shadow map orientation, 96
shadow mapping, 21, 31–44

function, 87
shadow maps

adaptive, 124
adaptive volumetric, 245
alias-free, 131
aliasing, 40
bias, 34–39

cascaded, 111
convolution, 153–156
deep, 240, 244
exponential, 156–158
exponential layered variance, 158
fitted virtual, 125
Fourier opacity, 255
implementation, 41
layered variance, 152
light-space perspective, 94
logarithmic perspective, 108
midpoint, 38
multiple depth, 158
omnidirectional, 32
opacity, 246
parallel split, 111
perspective, 93
queried virtual, 123
resolution matched, 125
sample distribution, 92, 114
second depth, 37
sihouette, 135
so� irregular, 234
tiled, 129
transmittance, 248
trapezoidal, 94
variance, 149–152

shadow swimming, see temporal aliasing
shadow textures, 26–31, 178

camera, 27
directional light, 30
texture coordinates, 30

shadow volumes, 21, 44–72
caster culling, 64
clamping, 67–70
general models, 58–63
level of detail, 63–64
manifold models, 58–59
split, 70
stencil, 48
transparency, 72
z-fail, 52
z-pass, 50
ZP+, 54
++ZP, 57

shadow-map reconstruction, 134
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sha�s of light, 260
sihouette shadow maps, 135
single scattering, 259
single-sample so� shadows, 210–211
skirt buffers, 176, 215
slice maps, 248–251
smoothies, 213–215
so� irregular shadow mapping, 234
so� planar shadows using plateaus, 211
so� projected shadows, 179
so� shadow mapping, 191–204

occluder approximation, 196–199,
202–204

micropatches, 193, 196–197
microquads, 197–198
microrects, 203
microtris, 198
occluder contours, 198–199, 202

textured lights, 271
so� shadow occlusion camera, 216–217
so� shadow volumes, 209, 217–225, 284

depth-complexity sampling, 223
textured lights, 270
wedge construction, 219

so� textured shadow volumes, 224–225
so� shadow texture, 174
solid angle, 8
split shadow volumes, 70–71
SSAO, see screen-space ambient occlusion
SSDO, see screen-space directional

occlusion
stencil shadow volumes, 48
stochastic rasterization, 253–255
storage factor, 86, 105, 121
stream compaction, 125
summed-area table, 184, 336–340

centering, 339
construction, 336–339
details, 339
filtering, 339
shi�ing, 339

supersampling, 133

temporal aliasing, 80, 93
temporal reprojection, 136
tesselation shader, see shader

texture

mipmap, see mipmap

multiscale map, 334

N-buffer, see N-buffer

summed-area table, 336

Y map, 335

texture-based shadows, see shadow textures

textured lights, 269–273

continuous visibility evaluation, 270

occlusion bitmask, 271

so� shadow mapping, 271

so� shadow volumes, 270–271

tiled shadow maps, 129

transform, see matrix

transmittance, 241

function, 239, 242

function-based, 255–257

layer-based, 246–251

reconstruction-based, 243–246

shadow maps, 248

stochastic, 251–255

transparency, 72

shadow maps, 72

shadow volumes, 72

so� textured shadow volumes, 224

view sample mapping-based, 133

trapezoidal shadow maps, 94

umbra, 6, 163

undersampling, 79

geometric interpretation, 83

upsampling, 343–345

geometry-aware, 347–348

spatio-temporal, 348

variance shadow maps, 149–152, 185

variance so� shadow mapping, 185–186

VBO, see vertex buffer object

vertex buffer object, 308

vertex shader, see shader

view sample, 7

mapping, 80, 131–133, 209, 225–236

virtual texturing, 128
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visibility
factor, 162, 168

convolution-based, 188
function, 10
integral, 11
occluder fusion, see occluder, fusion
occlusion bitmasks, 194–195, see also

occlusion bitmasks
point sampling, 171, 172, 194–195,

284
progressive, 173
sample selection, 173

representation, 168–169, 295
volume rendering, 245
volumetric light source, 231
volumetric obscurance, see ambient

occlusion
volumetric shadows, 259–268

ray marching, 263
shadow volume-based, 265

voxel
scene representation, 279
shadows, 277

voxelization, 249–250
compositing, 280

hierarchical on-the-fly, 276
in-core methods, 279
out-of-core methods, 281
slicing, 280
solid, 250–251

VSSM, see variance so� shadow mapping

warping, see also parametrization, 93–110
matrix, 95, 96
optimal parameter, 98, 101, 103
perspective, 94, 95
plane optimal perspective, 109

Y map, 335
Y shadow map, 201–202
YSM, see Y shadow map

z-fail, 52–54
z-fighting, see also bias

planar projected shadows, 23
z-partitioning, 111–115
z-pass, 50–52
ZP+, 54
++ZP, 57


