[image: JavaScript: The Good Parts]
JavaScript: The Good Parts

Douglas Crockford

Published by Yahoo Press

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Dedication

For the Lads: Clement, Philbert,
 Seymore, Stern, and,
 lest we forget, C. Twildo.
Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.
A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596517748/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.
Preface

If we offend, it is with our good will That you should think, we come not to
 offend, But with good will. To show our simple skill, That is the true beginning of
 our end.
—William Shakespeare, A Midsummer Night’s
 Dream

This is a book about the JavaScript programming language. It is intended for
 programmers who, by happenstance or curiosity, are venturing into JavaScript for the
 first time. It is also intended for programmers who have been working with JavaScript at
 a novice level and are now ready for a more sophisticated relationship with the
 language. JavaScript is a surprisingly powerful language. Its unconventionality presents
 some challenges, but being a small language, it is easily mastered.
My goal here is to help you to learn to think in JavaScript. I will show you the
 components of the language and start you on the process of discovering the ways those
 components can be put together. This is not a reference book. It is not exhaustive about
 the language and its quirks. It doesn’t contain everything you’ll ever need to know.
 That stuff you can easily find online. Instead, this book just contains the things that
 are really important.
This is not a book for beginners. Someday I hope to write a JavaScript: The
 First Parts book, but this is not that book. This is not a book about
 Ajax or web programming. The focus is exclusively on JavaScript, which is just one of
 the languages the web developer must master.
This is not a book for dummies. This book is small, but it is dense. There is a lot of
 material packed into it. Don’t be discouraged if it takes multiple readings to get it.
 Your efforts will be rewarded.
Conventions Used in This Book

The following typographical conventions are used in this book:
	
 Italic

	Indicates new terms, URLs, filenames, and file extensions.

	
 Constant width

	Indicates computer coding in a broad sense. This includes commands,
 options, variables, attributes, keys, requests, functions, methods,
 types, classes, modules, properties, parameters, values, objects,
 events, event handlers, XML and XHTML tags, macros, and keywords.

	
 Constant width bold

	Indicates commands or other text that should be typed literally by the
 user.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code
 in this book in your programs and documentation. You do not need to contact us for
 permission. For example, writing a program that uses several chunks of code from
 this book does not require permission. Selling or distributing a CD-ROM of examples
 from O’Reilly books does require permission. Answering a question by citing this
 book and quoting example code does not require permission. Incorporating a
 significant amount of example code from this book into your product’s documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution usually includes
 the title, author, publisher, and ISBN. For example: "JavaScript: The Good
 Parts by Douglas Crockford. Copyright 2008 Yahoo! Inc.,
 978-0-596-51774-8.”
If you feel your use of code examples falls outside fair use or the permission
 given here, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite technology
 book, that means the book is available online through the O’Reilly Network Safari
 Bookshelf.
Safari offers a solution that’s better than e-books. It’s a virtual library that
 lets you easily search thousands of top tech books, cut and paste code samples,
 download chapters, and find quick answers when you need the most accurate, current
 information. Try it for free at http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
 additional information. You can access this page at:
	
 http://www.oreilly.com/catalog/9780596517748/

To comment or ask technical questions about this book, send email to:
	
 bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
 O’Reilly Network, see our web site at:
	
 http://www.oreilly.com/

Acknowledgments

I want to thank the reviewers who pointed out my many egregious errors. There are
 few things better in life than having really smart people point out your blunders.
 It is even better when they do it before you go public. Thank you, Steve Souders,
 Bill Scott, Julien Lecomte, Stoyan Stefanov, Eric Miraglia, and Elliotte Rusty
 Harold.
I want to thank the people I worked with at Electric Communities and State
 Software who helped me discover that deep down there was goodness in this language,
 especially Chip Morningstar, Randy Farmer, John La, Mark Miller, Scott Shattuck, and
 Bill Edney.
I want to thank Yahoo! Inc. for giving me time to work on this project and for
 being such a great place to work, and thanks to all members of the Ajax Strike
 Force, past and present. I also want to thank O’Reilly Media, Inc., particularly
 Mary Treseler, Simon St.Laurent, and Sumita Mukherji for making things go so
 smoothly.
Special thanks to Professor Lisa Drake for all those things she does. And I want
 to thank the guys in ECMA TC39 who are struggling to make ECMAScript a better
 language.
Finally, thanks to Brendan Eich, the world’s most misunderstood programming
 language designer, without whom this book would not have been necessary.

Chapter 1. Good Parts

...setting the attractions of my good parts aside I have no other charms.
—William Shakespeare, The Merry Wives of
 Windsor

When I was a young journeyman programmer, I would learn about every feature of the
 languages I was using, and I would attempt to use all of those features when I wrote. I
 suppose it was a way of showing off, and I suppose it worked because I was the guy you
 went to if you wanted to know how to use a particular feature.
Eventually I figured out that some of those features were more trouble than they were
 worth. Some of them were poorly specified, and so were more likely to cause portability
 problems. Some resulted in code that was difficult to read or modify. Some induced me to
 write in a manner that was too tricky and error-prone. And some of those features were
 design errors. Sometimes language designers make mistakes.
Most programming languages contain good parts and bad parts. I discovered that I could
 be a better programmer by using only the good parts and avoiding the bad parts. After
 all, how can you build something good out of bad parts?
It is rarely possible for standards committees to remove imperfections from a language
 because doing so would cause the breakage of all of the bad programs that depend on
 those bad parts. They are usually powerless to do anything except heap more features on
 top of the existing pile of imperfections. And the new features do not always interact
 harmoniously, thus producing more bad parts.
But you have the power to define your own subset. You can write
 better programs by relying exclusively on the good parts.
JavaScript is a language with more than its share of bad parts. It went from
 non-existence to global adoption in an alarmingly short period of time. It never had an
 interval in the lab when it could be tried out and polished. It went straight into
 Netscape Navigator 2 just as it was, and it was very rough. When Java™ applets failed,
 JavaScript became the “Language of the Web” by default. JavaScript’s popularity is
 almost completely independent of its qualities as a programming language.
Fortunately, JavaScript has some extraordinarily good parts. In JavaScript, there is a
 beautiful, elegant, highly expressive language that is buried under a steaming pile of
 good intentions and blunders. The best nature of JavaScript is so effectively hidden
 that for many years the prevailing opinion of JavaScript was that it was an unsightly,
 incompetent toy. My intention here is to expose the goodness in JavaScript, an
 outstanding, dynamic programming language. JavaScript is a block of marble, and I chip
 away the features that are not beautiful until the language’s true nature reveals
 itself. I believe that the elegant subset I carved out is vastly superior to the
 language as a whole, being more reliable, readable, and maintainable.
This book will not attempt to fully describe the language. Instead, it will focus on
 the good parts with occasional warnings to avoid the bad. The subset that will be
 described here can be used to construct reliable, readable programs small and large. By
 focusing on just the good parts, we can reduce learning time, increase robustness, and
 save some trees.
Perhaps the greatest benefit of studying the good parts is that you can avoid the need
 to unlearn the bad parts. Unlearning bad patterns is very difficult. It is a painful
 task that most of us face with extreme reluctance. Sometimes languages are subsetted to
 make them work better for students. But in this case, I am subsetting JavaScript to make
 it work better for professionals.
Why JavaScript?

JavaScript is an important language because it is the language of the web browser.
 Its association with the browser makes it one of the most popular programming
 languages in the world. At the same time, it is one of the most despised programming
 languages in the world. The API of the browser, the Document Object Model (DOM) is
 quite awful, and JavaScript is unfairly blamed. The DOM would be painful to work
 with in any language. The DOM is poorly specified and inconsistently implemented.
 This book touches only very lightly on the DOM. I think writing a Good
 Parts book about the DOM would be extremely challenging.
JavaScript is most despised because it isn’t SOME OTHER LANGUAGE. If you are good
 in SOME OTHER LANGUAGE and you have to program in an environment that only supports
 JavaScript, then you are forced to use JavaScript, and that is annoying. Most people
 in that situation don’t even bother to learn JavaScript first, and then they are
 surprised when JavaScript turns out to have significant differences from the SOME
 OTHER LANGUAGE they would rather be using, and that those differences matter.
The amazing thing about JavaScript is that it is possible to get work done with it
 without knowing much about the language, or even knowing much about programming. It
 is a language with enormous expressive power. It is even better when you know what
 you’re doing. Programming is difficult business. It should never be undertaken in
 ignorance.

Analyzing JavaScript

JavaScript is built on some very good ideas and a few very bad ones.
The very good ideas include functions, loose typing, dynamic objects, and an
 expressive object literal notation. The bad ideas include a programming model based
 on global variables.
JavaScript’s functions are first class objects with (mostly) lexical scoping.
 JavaScript is the first lambda language to go mainstream. Deep down, JavaScript has
 more in common with Lisp and Scheme than with Java. It is Lisp in C’s clothing. This
 makes JavaScript a remarkably powerful language.
The fashion in most programming languages today demands strong typing. The theory
 is that strong typing allows a compiler to detect a large class of errors at compile
 time. The sooner we can detect and repair errors, the less they cost us. JavaScript
 is a loosely typed language, so JavaScript compilers are unable to detect type
 errors. This can be alarming to people who are coming to JavaScript from strongly
 typed languages. But it turns out that strong typing does not eliminate the need for
 careful testing. And I have found in my work that the sorts of errors that strong
 type checking finds are not the errors I worry about. On the other hand, I find
 loose typing to be liberating. I don’t need to form complex class hierarchies. And I
 never have to cast or wrestle with the type system to get the behavior that I
 want.
JavaScript has a very powerful object literal notation. Objects can be created
 simply by listing their components. This notation was the inspiration for JSON, the
 popular data interchange format. (There will be more about JSON in Appendix E.)
A controversial feature in JavaScript is prototypal inheritance. JavaScript has a
 class-free object system in which objects inherit properties directly from other
 objects. This is really powerful, but it is unfamiliar to classically trained
 programmers. If you attempt to apply classical design patterns directly to
 JavaScript, you will be frustrated. But if you learn to work with JavaScript’s
 prototypal nature, your efforts will be rewarded.
JavaScript is much maligned for its choice of key ideas. For the most part,
 though, those choices were good, if unusual. But there was one choice that was
 particularly bad: JavaScript depends on global variables for linkage. All of the
 top-level variables of all compilation units are tossed together in a common
 namespace called the global object. This is a bad thing because
 global variables are evil, and in JavaScript they are fundamental. Fortunately, as
 we will see, JavaScript also gives us the tools to mitigate this problem.
In a few cases, we can’t ignore the bad parts. There are some unavoidable awful
 parts, which will be called out as they occur. They will also be summarized in Appendix A. But we will succeed in avoiding most of the bad parts
 in this book, summarizing much of what was left out in Appendix B.
 If you want to learn more about the bad parts and how to use them badly, consult any
 other JavaScript book.
The standard that defines JavaScript (aka JScript) is the third edition of
 The ECMAScript Programming Language, which is available
 from http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf. The language described in this book is a proper subset of ECMAScript. This book
 does not describe the whole language because it leaves out the bad parts. The
 treatment here is not exhaustive. It avoids the edge cases. You should, too. There
 is danger and misery at the edges.
Appendix C describes a programming tool called JSLint, a JavaScript
 parser that can analyze a JavaScript program and report on the bad parts that it
 contains. JSLint provides a degree of rigor that is generally lacking in JavaScript
 development. It can give you confidence that your programs contain only the good
 parts.
JavaScript is a language of many contrasts. It contains many errors and sharp
 edges, so you might wonder, “Why should I use JavaScript?” There are two answers.
 The first is that you don’t have a choice. The Web has become an important platform
 for application development, and JavaScript is the only language that is found in
 all browsers. It is unfortunate that Java failed in that environment; if it hadn’t,
 there could be a choice for people desiring a strongly typed classical language. But
 Java did fail and JavaScript is flourishing, so there is evidence that JavaScript
 did something right.
The other answer is that, despite its deficiencies, JavaScript is really
 good. It is lightweight and expressive. And once you get the hang of
 it, functional programming is a lot of fun.
But in order to use the language well, you must be well informed about its
 limitations. I will pound on those with some brutality. Don’t let that discourage
 you. The good parts are good enough to compensate for the bad parts.

A Simple Testing Ground

If you have a web browser and any text editor, you have everything you need to run
 JavaScript programs. First, make an HTML file with a name like program.html:
<html><body><pre><script src="program.js">
</script></pre></body></html>
Then, make a file in the same directory with a name like program.js:
document.writeln('Hello, world!');
Next, open your HTML file in your browser to see the result. Throughout the book,
 a method method is used to define new methods.
 This is its definition:
Function.prototype.method = function (name, func) {
 this.prototype[name] = func;
 return this;
};
It will be explained in Chapter 4.

Chapter 2. Grammar

I know it well: I read it in the grammar long ago.
—William Shakespeare, The Tragedy of Titus
 Andronicus

This chapter introduces the grammar of the good parts of JavaScript, presenting a
 quick overview of how the language is structured. We will represent the grammar with
 railroad diagrams.
The rules for interpreting these diagrams are simple:
	You start on the left edge and follow the tracks to the right edge.

	As you go, you will encounter literals in ovals, and rules or descriptions in
 rectangles.

	Any sequence that can be made by following the tracks is legal.

	Any sequence that cannot be made by following the tracks is not legal.

	Railroad diagrams with one bar at each end allow whitespace to be inserted
 between any pair of tokens. Railroad diagrams with two bars at each end do
 not.

The grammar of the good parts presented in this chapter is significantly simpler than
 the grammar of the whole language.
Whitespace

[image: image with no caption]

Whitespace can take the form of formatting characters or comments. Whitespace is
 usually insignificant, but it is occasionally necessary to use whitespace to
 separate sequences of characters that would otherwise be combined into a single
 token. For example, in:
var that = this;
the space between var and that cannot be removed, but the other spaces can be
 removed.
JavaScript offers two forms of comments, block comments formed with /* */ and line-ending comments starting with //. Comments should be used liberally to improve the
 readability of your programs. Take care that the comments always accurately describe
 the code. Obsolete comments are worse than no comments.
The /* */ form of block comments came from a
 language called PL/I. PL/I chose those strange pairs as the symbols for comments
 because they were unlikely to occur in that language’s programs, except perhaps in
 string literals. In JavaScript, those pairs can also occur in regular expression
 literals, so block comments are not safe for commenting out blocks of code. For
 example:
/*
 var rm_a = /a*/.match(s);
*/
causes a syntax error. So, it is recommended that /*
 */ comments be avoided and //
 comments be used instead. In this book, // will
 be used exclusively.

Names

A name is a letter optionally followed by one or more letters, digits, or
 underbars. A name cannot be one of these reserved words:
abstract
boolean break byte
case catch char class const continue
debugger default delete do double
else enum export extends
false final finally float for function
goto
if implements import in instanceof int interface
long
native new null
package private protected public
return
short static super switch synchronized
this throw throws transient true try typeof
var volatile void
while with
[image: image with no caption]

Most of the reserved words in this list are not used in the language. The list
 does not include some words that should have been reserved but were not, such as
 undefined, NaN, and Infinity. It is not
 permitted to name a variable or parameter with a reserved word. Worse, it is not
 permitted to use a reserved word as the name of an object property in an object
 literal or following a dot in a refinement.
Names are used for statements, variables, parameters, property names, operators,
 and labels.

Numbers

[image: image with no caption]

JavaScript has a single number type. Internally, it is represented as 64-bit
 floating point, the same as Java’s double. Unlike
 most other programming languages, there is no separate integer type, so 1 and 1.0 are the
 same value. This is a significant convenience because problems of overflow in short
 integers are completely avoided, and all you need to know about a number is that it
 is a number. A large class of numeric type errors is avoided.
[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

If a number literal has an exponent part, then the value of the literal is
 computed by multiplying the part before the e by
 10 raised to the power of the part after the
 e. So 100
 and 1e2 are the same number.
Negative numbers can be formed by using the -
 prefix operator.
The value NaN is a number value that is the
 result of an operation that cannot produce a normal result. NaN is not equal to any value, including itself. You can detect
 NaN with the isNaN(
 number
) function.
The value Infinity represents all values
 greater than 1.79769313486231570e+308.
Numbers have methods (see Chapter 8). JavaScript has a Math object that contains a set of methods that act on
 numbers. For example, the Math.floor(
 number
) method can be used to convert a number into an
 integer.

Strings

[image: image with no caption]

A string literal can be wrapped in single quotes or double quotes. It can contain
 zero or more characters. The \ (backslash) is the
 escape character. JavaScript was built at a time when Unicode was a 16-bit character
 set, so all characters in JavaScript are 16 bits wide.
[image: image with no caption]

JavaScript does not have a character type. To represent a character, make a string
 with just one character in it.
The escape sequences allow for inserting characters into strings that are not
 normally permitted, such as backslashes, quotes, and control characters. The
 \u convention allows for specifying character
 code points numerically.
"A" === "\u0041"
Strings have a length property. For example,
 "seven".length is 5.
Strings are immutable. Once it is made, a string can never be changed. But it is
 easy to make a new string by concatenating other strings together with the + operator. Two strings containing exactly the same
 characters in the same order are considered to be the same string. So:
'c' + 'a' + 't' === 'cat'
is true.
Strings have methods (see Chapter 8):
'cat'.toUpperCase() === 'CAT'

Statements

[image: image with no caption]

A compilation unit contains a set of executable statements. In web browsers, each
 <script> tag delivers a compilation
 unit that is compiled and immediately executed. Lacking a linker, JavaScript throws
 them all together in a common global namespace. There is more on global variables in
 Appendix A.
When used inside of a function, the var
 statement defines the function’s private variables.
[image: image with no caption]

The switch, while, for, and do statements are allowed to have an optional
 label prefix that interacts with the break statement.
[image: image with no caption]

Statements tend to be executed in order from top to bottom. The sequence of
 execution can be altered by the conditional statements (if and switch), by the looping
 statements (while, for, and do), by the disruptive
 statements (break, return, and throw), and by
 function invocation.
[image: image with no caption]

A block is a set of statements wrapped in curly braces. Unlike many other
 languages, blocks in JavaScript do not create a new scope, so variables should be
 defined at the top of the function, not in blocks.
[image: image with no caption]

The if statement changes the flow of the
 program based on the value of the expression. The then block is
 executed if the expression is truthy;
 otherwise, the optional else branch is
 taken.
Here are the falsy values:
	
 false

	
 null

	
 undefined

	The empty string ''

	The number 0

	The number NaN

All other values are truthy, including true,
 the string 'false', and all objects.
[image: image with no caption]

The switch statement performs a multiway
 branch. It compares the expression for equality with all of the specified cases. The
 expression can produce a number or a string. When an exact match is found, the
 statements of the matching case clause are executed. If there is no match, the
 optional default statements are executed.
[image: image with no caption]

A case clause contains one or more case
 expressions. The case expressions need not be constants. The statement following a
 clause should be a disruptive statement to prevent fall through into the next
 case. The break statement can be used to exit from a switch.
[image: image with no caption]

The while statement performs a simple loop. If
 the expression is falsy, then the loop will break. While the expression is truthy,
 the block will be executed.
The for statement is a more complicated looping
 statement. It comes in two forms.
[image: image with no caption]

The conventional form is controlled by three optional clauses: the
 initialization, the condition, and the
 increment. First, the initialization is done, which
 typically initializes the loop variable. Then, the condition is
 evaluated. Typically, this tests the loop variable against a completion criterion.
 If the condition is omitted, then a
 condition of true is
 assumed. If the condition is falsy, the loop breaks. Otherwise,
 the block is executed, then the increment executes, and then
 the loop repeats with the condition.
The other form (called for in) enumerates the
 property names (or keys) of an object. On each iteration, another property name
 string from the object is assigned to the
 variable.
It is usually necessary to test object.hasOwnProperty(variable) to determine whether the property name is truly a
 member of the object or was found instead on the prototype chain.
for (myvar in obj) {
 if (obj.hasOwnProperty(myvar)) {
 ...
 }
}
[image: image with no caption]

The do statement is like the while statement except that the expression is tested
 after the block is executed instead of before. That means that the block will always
 be executed at least once.
[image: image with no caption]

The try statement executes a block and catches
 any exceptions that were thrown by the block. The catch clause defines a new variable that will
 receive the exception object.
[image: image with no caption]

The throw statement raises an exception. If the
 throw statement is in a try block, then control goes to the catch clause. Otherwise, the function invocation is
 abandoned, and control goes to the catch clause
 of the try in the calling function.
The expression is usually an object literal containing a name property and a message
 property. The catcher of the exception can use that information to determine what to
 do.
[image: image with no caption]

The return statement causes the early return
 from a function. It can also specify the value to be returned. If a return
 expression is not specified, then the return value will be undefined.
JavaScript does not allow a line end between the return and the expression.
[image: image with no caption]

The break statement causes the exit from a loop
 statement or a switch statement. It can
 optionally have a label that will cause an exit from the
 labeled statement.
JavaScript does not allow a line end between the break and the label.
[image: image with no caption]

An expression statement can either assign
 values to one or more variables or members, invoke a method, delete a property from
 an object. The = operator is used for assignment.
 Do not confuse it with the === equality operator.
 The += operator can add or concatenate.

Expressions

[image: image with no caption]

The simplest expressions are a literal value (such as a string or number), a
 variable, a built-in value (true, false, null,
 undefined, NaN, or Infinity), an invocation
 expression preceded by new, a refinement
 expression preceded by delete, an expression
 wrapped in parentheses, an expression preceded by a prefix operator, or an
 expression followed by:
	An infix operator and another expression

	The ? ternary operator followed by
 another expression, then by :, and then
 by yet another expression

	An invocation

	A refinement

The ? ternary operator takes three operands. If
 the first operand is truthy, it produces the value of the second operand. But if the
 first operand is falsy, it produces the value of the third operand.
The operators at the top of the operator precedence list in Table 2-1 have higher precedence. They bind the tightest.
 The operators at the bottom have the lowest precedence. Parentheses can be used to
 alter the normal precedence, so:
2 + 3 * 5 === 17
(2 + 3) * 5 === 25
Table 2-1. Operator precedence
	

 . [] ()

 	
 Refinement and invocation

	

 delete new typeof + - !

 	
 Unary operators

	

 * / %

 	
 Multiplication, division, remainder

	

 + -

 	
 Addition/concatenation, subtraction

	

 >= <= > <

 	
 Inequality

	

 === !==

 	
 Equality

	

 &&

 	
 Logical and

	

 ||

 	
 Logical or

	

 ?:

 	
 Ternary

[image: image with no caption]

The values produced by typeof are 'number', 'string',
 'boolean', 'undefined', 'function', and
 'object'. If the operand is an array or
 null, then the result is 'object', which is wrong. There will be more about
 typeof in Chapter 6 and Appendix A.
If the operand of ! is truthy, it produces
 false. Otherwise, it produces true.
[image: image with no caption]

The + operator adds or concatenates. If you
 want it to add, make sure both operands are numbers.
The / operator can produce a noninteger result
 even if both operands are integers.
The && operator produces the value of
 its first operand if the first operand is falsy. Otherwise, it produces the value of
 the second operand.
The || operator produces the value of its first
 operand if the first operand is truthy. Otherwise, it produces the value of the
 second operand.
[image: image with no caption]

Invocation causes the execution of a function value. The invocation operator is a
 pair of parentheses that follow the function value. The parentheses can contain
 arguments that will be delivered to the function. There will be much more about
 functions in Chapter 4.
[image: image with no caption]

A refinement is used to specify a property or element of an object or array. This
 will be described in detail in the next chapter.

Literals

[image: image with no caption]

[image: image with no caption]

Object literals are a convenient notation for specifying new objects. The names of
 the properties can be specified as names or as strings. The names are treated as
 literal names, not as variable names, so the names of the properties of the object
 must be known at compile time. The values of the properties are expressions. There
 will be more about object literals in the next chapter.
[image: image with no caption]

Array literals are a convenient notation for specifying new arrays. There will be
 more about array literals in Chapter 6.
[image: image with no caption]

There will be more about regular expressions in Chapter 7.

Functions

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

A function literal defines a function value. It can have an optional name that it
 can use to call itself recursively. It can specify a list of parameters that will
 act as variables initialized by the invocation arguments. The body of the function
 includes variable definitions and statements. There will be more about functions in
 Chapter 4.

Chapter 3. Objects

Upon a homely object Love can wink.
—William Shakespeare, The Two Gentlemen of
 Verona

The simple types of JavaScript are numbers, strings, booleans (true and false),
 null, and undefined. All other values are objects. Numbers,
 strings, and booleans are object-like in that they have methods, but they are immutable.
 Objects in JavaScript are mutable keyed collections. In JavaScript, arrays are objects,
 functions are objects, regular expressions are objects, and, of course, objects are
 objects.
An object is a container of properties, where a property has a name and a value. A
 property name can be any string, including the empty string. A property value can be any
 JavaScript value except for undefined.
Objects in JavaScript are class-free. There is no constraint on the names of new
 properties or on the values of properties. Objects are useful for collecting and
 organizing data. Objects can contain other objects, so they can easily represent tree or
 graph structures.
JavaScript includes a prototype linkage feature that allows one object to inherit the
 properties of another. When used well, this can reduce object initialization time and
 memory consumption.
Object Literals

Object literals provide a very convenient notation for creating new object values.
 An object literal is a pair of curly braces surrounding zero or more name/value
 pairs. An object literal can appear anywhere an expression can appear:
var empty_object = {};

var stooge = {
 "first-name": "Jerome",
 "last-name": "Howard"
};
A property’s name can be any string, including the empty string. The quotes around
 a property’s name in an object literal are optional if the name would be a legal
 JavaScript name and not a reserved word. So quotes are required around "first-name", but are optional around first_name. Commas are used to separate the
 pairs.
A property’s value can be obtained from any expression, including another object
 literal. Objects can nest:
var flight = {
 airline: "Oceanic",
 number: 815,
 departure: {
 IATA: "SYD",
 time: "2004-09-22 14:55",
 city: "Sydney"
 },
 arrival: {
 IATA: "LAX",
 time: "2004-09-23 10:42",
 city: "Los Angeles"
 }
};

Retrieval

Values can be retrieved from an object by wrapping a string expression in a
 [] suffix. If the string expression is a
 string literal, and if it is a legal JavaScript name and not a reserved word, then
 the . notation can be used instead. The . notation is preferred because it is more compact and
 it reads better:
stooge["first-name"] // "Jerome"
flight.departure.IATA // "SYD"
The undefined value is produced if an attempt
 is made to retrieve a nonexistent member:
stooge["middle-name"] // undefined
flight.status // undefined
stooge["FIRST-NAME"] // undefined
The || operator can be used to fill in default
 values:
var middle = stooge["middle-name"] || "(none)";
var status = flight.status || "unknown";
Attempting to retrieve values from undefined
 will throw a TypeError exception. This can be
 guarded against with the &&
 operator:
flight.equipment // undefined
flight.equipment.model // throw "TypeError"
flight.equipment && flight.equipment.model // undefined

Update

A value in an object can be updated by assignment. If the property name already
 exists in the object, the property value is replaced:
stooge['first-name'] = 'Jerome';
If the object does not already have that property name, the object is
 augmented:
stooge['middle-name'] = 'Lester';
stooge.nickname = 'Curly';
flight.equipment = {
 model: 'Boeing 777'
};
flight.status = 'overdue';

Reference

Objects are passed around by reference. They are never copied:
var x = stooge;
x.nickname = 'Curly';
var nick = stooge.nickname;
 // nick is 'Curly' because x and stooge
 // are references to the same object

var a = {}, b = {}, c = {};
 // a, b, and c each refer to a
 // different empty object
a = b = c = {};
 // a, b, and c all refer to
 // the same empty object

Prototype

Every object is linked to a prototype object from which it can inherit properties.
 All objects created from object literals are linked to Object.prototype, an object that comes standard with
 JavaScript.
When you make a new object, you can select the object that should be its
 prototype. The mechanism that JavaScript provides to do this is messy and complex,
 but it can be significantly simplified. We will add a create method to the Object
 function. The beget method creates a new object
 that uses an old object as its prototype. There will be much more about functions in
 the next chapter.
if (typeof Object.create !== 'function') {
 Object.create = function (o) {
 var F = function () {};
 F.prototype = o;
 return new F();
 };
}
var another_stooge = Object.create(stooge);
The prototype link has no effect on updating. When we make changes to an object,
 the object’s prototype is not touched:
another_stooge['first-name'] = 'Harry';
another_stooge['middle-name'] = 'Moses';
another_stooge.nickname = 'Moe';
The prototype link is used only in retrieval. If we try to retrieve a property
 value from an object, and if the object lacks the property name, then JavaScript
 attempts to retrieve the property value from the prototype object. And if that
 object is lacking the property, then it goes to its prototype,
 and so on until the process finally bottoms out with Object.prototype. If the desired property exists nowhere in the
 prototype chain, then the result is the undefined
 value. This is called delegation.
The prototype relationship is a dynamic relationship. If we add a new property to
 a prototype, that property will immediately be visible in all of the objects that
 are based on that prototype:
stooge.profession = 'actor';
another_stooge.profession // 'actor'
We will see more about the prototype chain in Chapter 6.

Reflection

It is easy to inspect an object to determine what properties it has by attempting
 to retrieve the properties and examining the values obtained. The typeof operator can be very helpful in determining the
 type of a property:
typeof flight.number // 'number'
typeof flight.status // 'string'
typeof flight.arrival // 'object'
typeof flight.manifest // 'undefined'
Some care must be taken because any property on the prototype chain can produce a
 value:
typeof flight.toString // 'function'
typeof flight.constructor // 'function'
There are two approaches to dealing with these undesired properties. The first is
 to have your program look for and reject function values. Generally, when you are
 reflecting, you are interested in data, and so you should be aware that some values
 could be functions.
The other approach is to use the hasOwnProperty
 method, which returns true if the object has a
 particular property. The hasOwnProperty method
 does not look at the prototype chain:
flight.hasOwnProperty('number') // true
flight.hasOwnProperty('constructor') // false

Enumeration

The for in statement can loop over all of the
 property names in an object. The enumeration will include all of the
 properties—including functions and prototype properties that you might not be
 interested in—so it is necessary to filter out the values you don’t want. The most
 common filters are the hasOwnProperty method and
 using typeof to exclude functions:
var name;
for (name in another_stooge) {
 if (typeof another_stooge[name] !== 'function') {
 document.writeln(name + ': ' + another_stooge[name]);
 }
}
There is no guarantee on the order of the names, so be prepared for the names to
 appear in any order. If you want to assure that the properties appear in a
 particular order, it is best to avoid the for in
 statement entirely and instead make an array containing the names of the properties
 in the correct order:
var i;
var properties = [
 'first-name',
 'middle-name',
 'last-name',
 'profession'
];
for (i = 0; i < properties.length; i += 1) {
 document.writeln(properties[i] + ': ' +
 another_stooge[properties[i]]);
 }

By using for instead of for in, we were able to get the properties we wanted
 without worrying about what might be dredged up from the prototype chain, and we got
 them in the correct order.

Delete

The delete operator can be used to remove a
 property from an object. It will remove a property from the object if it has one. It
 will not touch any of the objects in the prototype linkage.
Removing a property from an object may allow a property from the prototype linkage
 to shine through:
another_stooge.nickname // 'Moe'

// Remove nickname from another_stooge, revealing
// the nickname of the prototype.

delete another_stooge.nickname;

another_stooge.nickname // 'Curly'

Global Abatement

JavaScript makes it easy to define global variables that can hold all of the
 assets of your application. Unfortunately, global variables weaken the resiliency of
 programs and should be avoided.
One way to minimize the use of global variables is to create a single global
 variable for your application:
var MYAPP = {};
That variable then becomes the container for your application:
MYAPP.stooge = {
 "first-name": "Joe",
 "last-name": "Howard"
};

MYAPP.flight = {
 airline: "Oceanic",
 number: 815,
 departure: {
 IATA: "SYD",
 time: "2004-09-22 14:55",
 city: "Sydney"
 },
 arrival: {
 IATA: "LAX",
 time: "2004-09-23 10:42",
 city: "Los Angeles"
 }
};
By reducing your global footprint to a single name, you significantly reduce the
 chance of bad interactions with other applications, widgets, or libraries. Your
 program also becomes easier to read because it is obvious that MYAPP.stooge refers to a top-level structure. In the
 next chapter, we will see ways to use closure for information hiding, which is
 another effective global abatement technique.

Chapter 4. Functions

Why, every fault’s condemn’d ere it be done: Mine were the very cipher of a
 function. . .
—William Shakespeare, Measure for Measure

The best thing about JavaScript is its implementation of functions. It got almost
 everything right. But, as you should expect with JavaScript, it didn’t get everything
 right.
A function encloses a set of statements. Functions are the fundamental modular unit of
 JavaScript. They are used for code reuse, information hiding, and composition. Functions
 are used to specify the behavior of objects. Generally, the craft of programming is the
 factoring of a set of requirements into a set of functions and data
 structures.
Function Objects

Functions in JavaScript are objects. Objects are collections of name/value pairs
 having a hidden link to a prototype object. Objects produced from object literals
 are linked to Object.prototype. Function objects
 are linked to Function.prototype (which is itself
 linked to Object.prototype). Every function is
 also created with two additional hidden properties: the function’s context and the
 code that implements the function’s behavior.
Every function object is also created with a prototype property. Its value is an object with a constructor property whose value is the function. This
 is distinct from the hidden link to Function.prototype. The meaning of this convoluted construction will
 be revealed in the next chapter.
Since functions are objects, they can be used like any other value. Functions can
 be stored in variables, objects, and arrays. Functions can be passed as arguments to
 functions, and functions can be returned from functions. Also, since functions are
 objects, functions can have methods.
The thing that is special about functions is that they can be invoked.

Function Literal

Function objects are created with function literals:
// Create a variable called add and store a function
// in it that adds two numbers.

var add = function (a, b) {
 return a + b;
};
A function literal has four parts. The first part is the reserved word function.
The optional second part is the function’s name. The function can use its name to
 call itself recursively. The name can also be used by debuggers and development
 tools to identify the function. If a function is not given a name, as shown in the
 previous example, it is said to be anonymous.
The third part is the set of parameters of the function, wrapped in parentheses.
 Within the parentheses is a set of zero or more parameter names, separated by
 commas. These names will be defined as variables in the function. Unlike ordinary
 variables, instead of being initialized to undefined, they will be initialized to the arguments supplied when
 the function is invoked.
The fourth part is a set of statements wrapped in curly braces. These statements
 are the body of the function. They are executed when the function is invoked.
A function literal can appear anywhere that an expression can appear. Functions
 can be defined inside of other functions. An inner function of course has access to
 its parameters and variables. An inner function also enjoys access to the parameters
 and variables of the functions it is nested within. The function object created by a
 function literal contains a link to that outer context. This is called
 closure. This is the source of enormous expressive
 power.

Invocation

Invoking a function suspends the execution of the current function, passing
 control and parameters to the new function. In addition to the declared parameters,
 every function receives two additional parameters: this and arguments. The this parameter is very important in object oriented
 programming, and its value is determined by the invocation
 pattern. There are four patterns of invocation in JavaScript: the
 method invocation pattern, the function invocation pattern, the constructor
 invocation pattern, and the apply invocation pattern. The patterns differ in how the
 bonus parameter this is initialized.
The invocation operator is a pair of parentheses that follow any expression that
 produces a function value. The parentheses can contain zero or more expressions,
 separated by commas. Each expression produces one argument value. Each of the
 argument values will be assigned to the function’s parameter names. There is no
 runtime error when the number of arguments and the number of parameters do not
 match. If there are too many argument values, the extra argument values will be
 ignored. If there are too few argument values, the undefined value will be substituted for the missing values. There is
 no type checking on the argument values: any type of value can be passed to any
 parameter.
The Method Invocation Pattern

When a function is stored as a property of an object, we call it a
 method. When a method is invoked, this is bound to that object. If an invocation
 expression contains a refinement (that is, a . dot expression or [subscript] expression), it is invoked as a method:
// Create myObject. It has a value and an increment
// method. The increment method takes an optional
// parameter. If the argument is not a number, then 1
// is used as the default.

var myObject = {
 value: 0,
 increment: function (inc) {
 this.value += typeof inc === 'number' ? inc : 1;
 }
};

myObject.increment();
document.writeln(myObject.value); // 1

myObject.increment(2);
document.writeln(myObject.value); // 3
A method can use this to access the object
 so that it can retrieve values from the object or modify the object. The binding
 of this to the object happens at invocation
 time. This very late binding makes functions that use this highly reusable. Methods that get their object context from
 this are called public
 methods.

The Function Invocation Pattern

When a function is not the property of an object, then it is invoked as a
 function:
var sum = add(3, 4); // sum is 7
When a function is invoked with this pattern, this is bound to the global object. This was a mistake in the
 design of the language. Had the language been designed correctly, when the inner
 function is invoked, this would still be
 bound to the this variable of the outer
 function. A consequence of this error is that a method cannot employ an inner
 function to help it do its work because the inner function does not share the
 method’s access to the object as its this is
 bound to the wrong value. Fortunately, there is an easy workaround. If the
 method defines a variable and assigns it the value of this, the inner function will have access to this through that variable. By convention, the
 name of that variable is that:
// Augment myObject with a double method.

myObject.double = function () {
 var that = this; // Workaround.

 var helper = function () {
 that.value = add(that.value, that.value);
 };

 helper(); // Invoke helper as a function.
};

// Invoke double as a method.

myObject.double();
document.writeln(myObject.value); // 6

The Constructor Invocation Pattern

JavaScript is a prototypal inheritance language. That
 means that objects can inherit properties directly from other objects. The
 language is class-free.
This is a radical departure from the current fashion. Most languages today are
 classical. Prototypal inheritance is powerfully
 expressive, but is not widely understood. JavaScript itself is not confident in
 its prototypal nature, so it offers an object-making syntax that is reminiscent
 of the classical languages. Few classical programmers found prototypal
 inheritance to be acceptable, and classically inspired syntax obscures the
 language’s true prototypal nature. It is the worst of both worlds.
If a function is invoked with the new
 prefix, then a new object will be created with a hidden link to the value of the
 function’s prototype member, and this will be bound to that new object.
The new prefix also changes the behavior of
 the return statement. We will see more about
 that next.
// Create a constructor function called Quo.
// It makes an object with a status property.

var Quo = function (string) {
 this.status = string;
};

// Give all instances of Quo a public method
// called get_status.

Quo.prototype.get_status = function () {
 return this.status;
};

// Make an instance of Quo.

var myQuo = new Quo("confused");

document.writeln(myQuo.get_status()); // confused
Functions that are intended to be used with the new prefix are called constructors. By
 convention, they are kept in variables with a capitalized name. If a constructor
 is called without the new prefix, very bad
 things can happen without a compile-time or runtime warning, so the
 capitalization convention is really important.
Use of this style of constructor functions is not recommended. We will see
 better alternatives in the next chapter.

The Apply Invocation Pattern

Because JavaScript is a functional object-oriented language, functions can
 have methods.
The apply method lets us construct an array
 of arguments to use to invoke a function. It also lets us choose the value of
 this. The apply method takes two parameters. The first is the value that
 should be bound to this. The second is an
 array of parameters.
// Make an array of 2 numbers and add them.

var array = [3, 4];
var sum = add.apply(null, array); // sum is 7

// Make an object with a status member.

var statusObject = {
 status: 'A-OK'
};

// statusObject does not inherit from Quo.prototype,
// but we can invoke the get_status method on
// statusObject even though statusObject does not have
// a get_status method.

var status = Quo.prototype.get_status.apply(statusObject);
 // status is 'A-OK'

Arguments

A bonus parameter that is available to functions when they are invoked is the
 arguments array. It gives the function access
 to all of the arguments that were supplied with the invocation, including excess
 arguments that were not assigned to parameters. This makes it possible to write
 functions that take an unspecified number of parameters:
// Make a function that adds a lot of stuff.

// Note that defining the variable sum inside of
// the function does not interfere with the sum
// defined outside of the function. The function
// only sees the inner one.

var sum = function () {
 var i, sum = 0;
 for (i = 0; i < arguments.length; i += 1) {
 sum += arguments[i];
 }
 return sum;
};

document.writeln(sum(4, 8, 15, 16, 23, 42)); // 108
This is not a particularly useful pattern. In Chapter 6, we will
 see how we can add a similar method to an array.
Because of a design error, arguments is not
 really an array. It is an array-like object. arguments has a length property,
 but it lacks all of the array methods. We will see a consequence of that design
 error at the end of this chapter.

Return

When a function is invoked, it begins execution with the first statement, and ends
 when it hits the } that closes the function body.
 That causes the function to return control to the part of the program that invoked
 the function.
The return statement can be used to cause the
 function to return early. When return is
 executed, the function returns immediately without executing the remaining
 statements.
A function always returns a value. If the return value is not specified, then undefined is returned.
If the function was invoked with the new prefix
 and the return value is not an object, then
 this (the new object) is returned
 instead.

Exceptions

JavaScript provides an exception handling mechanism. Exceptions are unusual (but
 not completely unexpected) mishaps that interfere with the normal flow of a program.
 When such a mishap is detected, your program should throw an exception:
var add = function (a, b) {
 if (typeof a !== 'number' || typeof b !== 'number') {
 throw {
 name: 'TypeError',
 message: 'add needs numbers'
 };
 }
 return a + b;
}
The throw statement interrupts execution of the
 function. It should be given an exception object
 containing a name property that identifies the
 type of the exception, and a descriptive message
 property. You can also add other properties.
The exception object will be delivered to the
 catch clause of a try statement:
// Make a try_it function that calls the new add
// function incorrectly.

var try_it = function () {
 try {
 add("seven");
 } catch (e) {
 document.writeln(e.name + ': ' + e.message);
 }
}

try_it();
If an exception is thrown within a try block,
 control will go to its catch clause.
A try statement has a single catch block that will catch all exceptions. If your
 handling depends on the type of the exception, then the exception handler will have
 to inspect the name to determine the type of the
 exception.

Augmenting Types

JavaScript allows the basic types of the language to be
 augmented. In Chapter 3, we saw that adding
 a method to Object.prototype makes that method
 available to all objects. This also works for functions, arrays, strings, numbers,
 regular expressions, and booleans.
For example, by augmenting Function.prototype,
 we can make a method available to all functions:
Function.prototype.method = function (name, func) {
 this.prototype[name] = func;
 return this;
};
By augmenting Function.prototype with a
 method method, we no longer have to type the
 name of the prototype property. That bit of
 ugliness can now be hidden.
JavaScript does not have a separate integer type, so it is sometimes necessary to
 extract just the integer part of a number. The method JavaScript provides to do that
 is ugly. We can fix it by adding an integer
 method to Number.prototype. It uses either
 Math.ceil or Math.floor, depending on the sign of the number:
Number.method('integer', function () {
 return Math[this < 0 ? 'ceil' : 'floor'](this);
});

document.writeln((-10 / 3).integer()); // −3
JavaScript lacks a method that removes spaces from the ends of a string. That is
 an easy oversight to fix:
String.method('trim', function () {
 return this.replace(/^\s+|\s+$/g, '');
});

document.writeln('"' + " neat ".trim() + '"');
Our trim method uses a regular expression. We
 will see much more about regular expressions in Chapter 7.
By augmenting the basic types, we can make significant improvements to the
 expressiveness of the language. Because of the dynamic nature of JavaScript’s
 prototypal inheritance, all values are immediately endowed with the new methods,
 even values that were created before the methods were created.
The prototypes of the basic types are public structures, so care must be taken
 when mixing libraries. One defensive technique is to add a method only if the method
 is known to be missing:
// Add a method conditionally.

Function.prototype.method = function (name, func) {
 if (!this.prototype[name]) {
 this.prototype[name] = func;
 return this;
 }
};
Another concern is that the for in statement
 interacts badly with prototypes. We saw a couple of ways to mitigate that in Chapter 3: we can use the hasOwnProperty method to screen out inherited properties, and we can
 look for specific types.

Recursion

A recursive function is a function that calls itself, either
 directly or indirectly. Recursion is a powerful programming technique in which a
 problem is divided into a set of similar subproblems, each solved with a trivial
 solution. Generally, a recursive function calls itself to solve its
 subproblems.
The Towers of Hanoi is a famous puzzle. The equipment includes three posts and a
 set of discs of various diameters with holes in their centers. The setup stacks all
 of the discs on the source post with smaller discs on top of larger discs. The goal
 is to move the stack to the destination post by moving one disc at a time to another
 post, never placing a larger disc on a smaller disc. This puzzle has a trivial
 recursive solution:
var hanoi = function hanoi(disc, src, aux, dst) {
 if (disc > 0) {
 hanoi(disc − 1, src, dst, aux);
 document.writeln('Move disc ' + disc +
 ' from ' + src + ' to ' + dst);
 hanoi(disc − 1, aux, src, dst);
 }
};

hanoi(3, 'Src', 'Aux', 'Dst');
It produces this solution for three discs:
Move disc 1 from Src to Dst
Move disc 2 from Src to Aux
Move disc 1 from Dst to Aux
Move disc 3 from Src to Dst
Move disc 1 from Aux to Src
Move disc 2 from Aux to Dst
Move disc 1 from Src to Dst
The hanoi function moves a stack of discs from
 one post to another, using the auxiliary post if necessary. It breaks the problem
 into three subproblems. First, it uncovers the bottom disc by moving the substack
 above it to the auxiliary post. It can then move the bottom disc to the destination
 post. Finally, it can move the substack from the auxiliary post to the destination
 post. The movement of the substack is handled by calling itself recursively to work
 out those subproblems.
The hanoi function is passed the number of the
 disc it is to move and the three posts it is to use. When it calls itself, it is to
 deal with the disc that is above the disc it is currently working on. Eventually, it
 will be called with a nonexistent disc number. In that case, it does nothing. That
 act of nothingness gives us confidence that the function does not recurse
 forever.
Recursive functions can be very effective in manipulating tree structures such as
 the browser’s Document Object Model (DOM). Each recursive call is given a smaller
 piece of the tree to work on:
// Define a walk_the_DOM function that visits every
// node of the tree in HTML source order, starting
// from some given node. It invokes a function,
// passing it each node in turn. walk_the_DOM calls
// itself to process each of the child nodes.

var walk_the_DOM = function walk(node, func) {
 func(node);
 node = node.firstChild;
 while (node) {
 walk(node, func);
 node = node.nextSibling;
 }
};

// Define a getElementsByAttribute function. It
// takes an attribute name string and an optional
// matching value. It calls walk_the_DOM, passing it a
// function that looks for an attribute name in the
// node. The matching nodes are accumulated in a
// results array.

var getElementsByAttribute = function (att, value) {
 var results = [];

 walk_the_DOM(document.body, function (node) {
 var actual = node.nodeType === 1 && node.getAttribute(att);
 if (typeof actual === 'string' &&
 (actual === value || typeof value !== 'string')) {
 results.push(node);
 }
 });

 return results;
};
Some languages offer the tail recursion optimization. This
 means that if a function returns the result of invoking itself recursively, then the
 invocation is replaced with a loop, which can significantly speed things up.
 Unfortunately, JavaScript does not currently provide tail recursion optimization.
 Functions that recurse very deeply can fail by exhausting the return
 stack:
// Make a factorial function with tail
// recursion. It is tail recursive because
// it returns the result of calling itself.

// JavaScript does not currently optimize this form.

var factorial = function factorial(i, a) {
 a = a || 1;
 if (i < 2) {
 return a;
 }
 return factorial(i − 1, a * i);
};

document.writeln(factorial(4)); // 24

Scope

Scope in a programming language controls the visibility and
 lifetimes of variables and parameters. This is an important service to the
 programmer because it reduces naming collisions and provides automatic memory
 management:
var foo = function () {
 var a = 3, b = 5;

 var bar = function () {
 var b = 7, c = 11;

// At this point, a is 3, b is 7, and c is 11

 a += b + c;

// At this point, a is 21, b is 7, and c is 11

 };

// At this point, a is 3, b is 5, and c is not defined

 bar();

// At this point, a is 21, b is 5

};
Most languages with C syntax have block scope. All variables defined in a block (a
 list of statements wrapped with curly braces) are not visible from outside of the
 block. The variables defined in a block can be released when execution of the block
 is finished. This is a good thing.
Unfortunately, JavaScript does not have block scope even though its block syntax
 suggests that it does. This confusion can be a source of errors.
JavaScript does have function scope. That means that the parameters and variables
 defined in a function are not visible outside of the function, and that a variable
 defined anywhere within a function is visible everywhere within the function.
In many modern languages, it is recommended that variables be declared as late as
 possible, at the first point of use. That turns out to be bad advice for JavaScript
 because it lacks block scope. So instead, it is best to declare all of the variables
 used in a function at the top of the function body.

Closure

The good news about scope is that inner functions get access to the parameters and
 variables of the functions they are defined within (with the exception of this and arguments). This is a very good thing.
Our getElementsByAttribute function worked
 because it declared a results variable, and the
 inner function that it passed to walk_the_DOM
 also had access to the results variable.
A more interesting case is when the inner function has a longer lifetime than its
 outer function.
Earlier, we made a myObject that had a value and an increment method. Suppose we wanted to protect the value from
 unauthorized changes.
Instead of initializing myObject with an object
 literal, we will initialize myObject by calling a
 function that returns an object literal. That function defines a value variable. That variable is always available to
 the increment and getValue methods, but the function’s scope keeps it hidden from the
 rest of the program:
var myObject = (function () {
 var value = 0;

 return {
 increment: function (inc) {
 value += typeof inc === 'number' ? inc : 1;
 },
 getValue: function () {
 return value;
 }
 };
}());
We are not assigning a function to myObject. We
 are assigning the result of invoking that function. Notice the () on the last line. The function returns an object
 containing two methods, and those methods continue to enjoy the privilege of access
 to the value variable.
The Quo constructor from earlier in this
 chapter produced an object with a status property
 and a get_status method. But that doesn’t seem
 very interesting. Why would you call a getter method on a property you could access
 directly? It would be more useful if the status
 property were private. So, let’s define a different kind of quo function to do that:
// Create a maker function called quo. It makes an
// object with a get_status method and a private
// status property.

var quo = function (status) {
 return {
 get_status: function () {
 return status;
 }
 };
};

// Make an instance of quo.

var myQuo = quo("amazed");

document.writeln(myQuo.get_status());
This quo function is designed to be used
 without the new prefix, so the name is not
 capitalized. When we call quo, it returns a new
 object containing a get_status method. A
 reference to that object is stored in myQuo. The
 get_status method still has privileged access
 to quo’s status property even though quo
 has already returned. get_status does not have
 access to a copy of the parameter; it has access to the parameter itself. This is
 possible because the function has access to the context in which it was created.
 This is called closure.
Let’s look at a more useful example:
// Define a function that sets a DOM node's color
// to yellow and then fades it to white.

var fade = function (node) {
 var level = 1;
 var step = function () {
 var hex = level.toString(16);
 node.style.backgroundColor = '#FFFF' + hex + hex;
 if (level < 15) {
 level += 1;
 setTimeout(step, 100);
 }
 };
 setTimeout(step, 100);
};

fade(document.body);
We call fade, passing it document.body (the node created by the HTML <body> tag). fade sets level to 1. It defines a
 step function. It calls setTimeout, passing it the step function and a time (100 milliseconds). It then returns—fade has finished.
Suddenly, about a 10th of a second later, the step function gets invoked. It makes a base 16 character from
 fade’s level. It then modifies the background color of fade’s node. It then looks at fade’s level. If it hasn’t gotten
 to white yet, it then increments fade’s level and uses setTimeout to schedule itself to run again.
Suddenly, the step function gets invoked again.
 But this time, fade ’s level is 2. fade returned a while
 ago, but its variables continue to live as long as they are needed by one or more of
 fade’s inner functions.
It is important to understand that the inner function has access to the actual
 variables of the outer functions and not copies in order to avoid the following
 problem.
// BAD EXAMPLE

// Make a function that assigns event handler functions to an array
 of nodes the wrong way.
// When you click on a node, an alert box is supposed to display the ordinal
of the node.
// But it always displays the number of nodes instead.

var add_the_handlers = function (nodes) {
 var i;
 for (i = 0; i < nodes.length; i += 1) {
 nodes[i].onclick = function (e) {
 alert(i);
 };
 }
};

// END BAD EXAMPLE
The add_the_handlers function was intended to
 give each handler a unique number i. It fails
 because the handler functions are bound to the variable i, not the value of the variable i
 at the time the function was made.
// BETTER EXAMPLE

// Make a function that assigns event handler functions to an array of nodes.
// When you click on a node, an alert box will display the ordinal of the node.

var add_the_handlers = function (nodes) {
 var helper = function (i) {
 return function (e) {
 alert(i);
 };
 };
 var i;
 for (i = 0; i < nodes.length; i += 1) {
 modes[i].onclick = helper(i);
 }
};
Avoid creating functions within a loop. It can be wasteful computationally,and it
 can cause confusion, as we saw with the bad example. We avoid the confusion by
 creating a helper function outside of the loop that will deliver a function that
 binds to the current value of i.

Callbacks

Functions can make it easier to deal with discontinuous events. For example,
 suppose there is a sequence that begins with a user interaction, making a request of
 the server, and finally displaying the server’s response. The naïve way to write
 that would be:
request = prepare_the_request();
response = send_request_synchronously(request);
display(response);
The problem with this approach is that a synchronous request over the network will
 leave the client in a frozen state. If either the network or the server is slow, the
 degradation in responsiveness will be unacceptable.
A better approach is to make an asynchronous request, providing a callback
 function that will be invoked when the server’s response is received. An
 asynchronous function returns immediately, so the client isn’t blocked:
request = prepare_the_request();
send_request_asynchronously(request, function (response) {
 display(response);
 });
We pass a function parameter to the send_request_asynchronously function that will be called when the
 response is available.

Module

We can use functions and closure to make modules. A module is a function or object
 that presents an interface but that hides its state and implementation. By using
 functions to produce modules, we can almost completely eliminate our use of global
 variables, thereby mitigating one of JavaScript’s worst features.
For example, suppose we want to augment String
 with a deentityify method. Its job is to look for
 HTML entities in a string and replace them with their equivalents. It makes sense to
 keep the names of the entities and their equivalents in an object. But where should
 we keep the object? We could put it in a global variable, but global variables are
 evil. We could define it in the function itself, but that has a runtime cost because
 the literal must be evaluated every time the function is invoked. The ideal approach
 is to put it in a closure, and perhaps provide an extra method that can add
 additional entities:
String.method('deentityify', function () {

// The entity table. It maps entity names to
// characters.

 var entity = {
 quot: '"',
 lt: '<',
 gt: '>'
 };

// Return the deentityify method.

 return function () {

// This is the deentityify method. It calls the string
// replace method, looking for substrings that start
// with '&' and end with ';'. If the characters in
// between are in the entity table, then replace the
// entity with the character from the table. It uses
// a regular expression (Chapter 7).

 return this.replace(/&([^&;]+);/g,
 function (a, b) {
 var r = entity[b];
 return typeof r === 'string' ? r : a;
 }
);
 };
}());
Notice the last line. We immediately invoke the function we just made with the
 () operator. That invocation creates and
 returns the function that becomes the deentityify
 method.
document.writeln(
 '<">'.deentityify()); // <">
The module pattern takes advantage of function scope and closure to create
 relationships that are binding and private. In this example, only the deentityify method has access to the entity data
 structure.
The general pattern of a module is a function that defines private variables and
 functions; creates privileged functions which, through closure, will have access to
 the private variables and functions; and that returns the privileged functions or
 stores them in an accessible place.
Use of the module pattern can eliminate the use of global variables. It promotes
 information hiding and other good design practices. It is very effective in
 encapsulating applications and other singletons.
It can also be used to produce objects that are secure. Let’s suppose we want to
 make an object that produces a serial number:
var serial_maker = function () {

// Produce an object that produces unique strings. A
// unique string is made up of two parts: a prefix
// and a sequence number. The object comes with
// methods for setting the prefix and sequence
// number, and a gensym method that produces unique
// strings.

 var prefix = '';
 var seq = 0;
 return {
 set_prefix: function (p) {
 prefix = String(p);
 },
 set_seq: function (s) {
 seq = s;
 },
 gensym: function () {
 var result = prefix + seq;
 seq += 1;
 return result;
 }
 };
};
var seqer = serial_maker();
seqer.set_prefix('Q');
seqer.set_seq(1000);
var unique = seqer.gensym(); // unique is "Q1000"
The methods do not make use of this or that. As a result, there is no way to compromise the
 seqer. It isn’t possible to get or change the
 prefix or seq except as permitted by the methods. The seqer object is mutable, so the methods could be replaced, but that
 still does not give access to its secrets. seqer
 is simply a collection of functions, and those functions are capabilities that grant
 specific powers to use or modify the secret state.
If we passed seqer.gensym to a third party’s
 function, that function would be able to generate unique strings, but would be
 unable to change the prefix or seq.

Cascade

Some methods do not have a return value. For example, it is typical for methods
 that set or change the state of an object to return nothing. If we have those
 methods return this instead of undefined, we can enable
 cascades. In a cascade, we can call many methods on the same
 object in sequence in a single statement. An Ajax library that enables cascades
 would allow us to write in a style like this:
getElement('myBoxDiv')
 .move(350, 150)
 .width(100)
 .height(100)
 .color('red')
 .border('10px outset')
 .padding('4px')
 .appendText("Please stand by")
 .on('mousedown', function (m) {
 this.startDrag(m, this.getNinth(m));
 }).
 .on('mousemove', 'drag')
 .on('mouseup', 'stopDrag')
 .later(2000, function () {
 this
 .color('yellow')
 .setHTML("What hath God wraught?")
 .slide(400, 40, 200, 200);
 })
 .tip("This box is resizeable");
In this example, the getElement function
 produces an object that gives functionality to the DOM element with id="myBoxDiv". The methods allow us to move the
 element, change its dimensions and styling, and add behavior. Each of those methods
 returns the object, so the result of the invocation can be used for the next
 invocation.
Cascading can produce interfaces that are very expressive. It can help control the
 tendency to make interfaces that try to do too much at once.

Curry

Functions are values, and we can manipulate function values in interesting ways.
 Currying allows us to produce a new function by combining a
 function and an argument:
var add1 = add.curry(1);
document.writeln(add1(6)); // 7
add1 is a function that was created by passing
 1 to add ’s curry method. The add1 function
 adds 1 to its argument. JavaScript does not have a curry method, but we can fix that by augmenting Function.prototype:
Function.method('curry', function () {
 var args = arguments, that = this;
 return function () {
 return that.apply(null, args.concat(arguments));
 };
}); // Something isn't right...
The curry method works by creating a closure
 that holds that original function and the arguments to curry. It returns a function
 that, when invoked, returns the result of calling that original function, passing it
 all of the arguments from the invocation of curry
 and the current invocation. It uses the Array
 concat method to concatenate the two arrays of arguments
 together.
Unfortunately, as we saw earlier, the arguments
 array is not an array, so it does not have the concat method. To work around that, we will apply the array slice method on both of the arguments arrays. This produces arrays that behave correctly with the
 concat method:
Function.method('curry', function () {
 var slice = Array.prototype.slice,
 args = slice.apply(arguments),
 that = this;
 return function () {
 return that.apply(null, args.concat(slice.apply(arguments)));
 };
});

Memoization

Functions can use objects to remember the results of previous operations, making
 it possible to avoid unnecessary work. This optimization is called
 memoization. JavaScript’s objects and arrays are very
 convenient for this.
Let’s say we want a recursive function to compute Fibonacci numbers. A Fibonacci
 number is the sum of the two previous Fibonacci numbers. The first two are 0 and
 1:
var fibonacci = function (n) {
 return n < 2 ? n : fibonacci(n − 1) + fibonacci(n − 2);
};

for (var i = 0; i <= 10; i += 1) {
 document.writeln('// ' + i + ': ' + fibonacci(i));
}

// 0: 0
// 1: 1
// 2: 1
// 3: 2
// 4: 3
// 5: 5
// 6: 8
// 7: 13
// 8: 21
// 9: 34
// 10: 55
This works, but it is doing a lot of unnecessary work. The fibonacci function is called 453 times. We call it 11
 times, and it calls itself 442 times in computing values that were probably already
 recently computed. If we memoize the function, we can
 significantly reduce its workload.
We will keep our memoized results in a memo
 array that we can hide in a closure. When our function is called, it first looks to
 see if it already knows the result. If it does, it can immediately return it:
var fibonacci = (function () {
 var memo = [0, 1];
 var fib = function (n) {
 var result = memo[n];
 if (typeof result !== 'number') {
 result = fib(n − 1) + fib(n − 2);
 memo[n] = result;
 }
 return result;
 };
 return fib;
}());
This function returns the same results, but it is called only 29 times. We called
 it 11 times. It called itself 18 times to obtain the previously memoized
 results.
We can generalize this by making a function that helps us make memoized functions.
 The memoizer function will take an initial
 memo array and the formula function. It returns a recur function that manages the memo
 store and that calls the formula function as
 needed. We pass the recur function and the
 function’s parameters to the formula
 function:
var memoizer = function (memo, formula) {
 var recur = function (n) {
 var result = memo[n];
 if (typeof result !== 'number') {
 result = formula(recur, n);
 memo[n] = result;
 }
 return result;
 };
 return recur;
};
We can now define fibonacci with the memoizer,
 providing the initial memo array and formula function:
var fibonacci = memoizer([0, 1], function (recur, n) {
 return recur(n − 1) + recur(n − 2);
});
By devising functions that produce other functions, we can significantly reduce
 the amount of work we have to do. For example, to produce a memoizing factorial
 function, we only need to supply the basic factorial formula:
var factorial = memoizer([1, 1], function (recur, n) {
 return n * recur(n − 1);
});

Chapter 5. Inheritance

Divides one thing entire to many objects; Like perspectives, which rightly gazed
 upon Show nothing but confusion. . .
—William Shakespeare, The Tragedy of King Richard the
 Second

Inheritance is an important topic in most programming languages.
In the classical languages (such as Java), inheritance (or extends) provides two useful services. First, it is a form of code reuse.
 If a new class is mostly similar to an existing class, you only have to specify the
 differences. Patterns of code reuse are extremely important because they have the
 potential to significantly reduce the cost of software development. The other benefit of
 classical inheritance is that it includes the specification of a system of types. This
 mostly frees the programmer from having to write explicit casting operations, which is a
 very good thing because when casting, the safety benefits of a type system are
 lost.
JavaScript, being a loosely typed language, never casts. The lineage of an object is
 irrelevant. What matters about an object is what it can do, not what it is descended
 from.
JavaScript provides a much richer set of code reuse patterns. It can ape the classical
 pattern, but it also supports other patterns that are more expressive. The set of
 possible inheritance patterns in JavaScript is vast. In this chapter, we’ll look at a
 few of the most straightforward patterns. Much more complicated constructions are
 possible, but it is usually best to keep it simple.
In classical languages, objects are instances of classes, and a class can inherit from
 another class. JavaScript is a prototypal language, which means that objects inherit
 directly from other objects.
Pseudoclassical

JavaScript is conflicted about its prototypal nature. Its prototype mechanism is
 obscured by some complicated syntactic business that looks vaguely classical.
 Instead of having objects inherit directly from other objects, an unnecessary level
 of indirection is inserted such that objects are produced by constructor
 functions.
When a function object is created, the Function
 constructor that produces the function object runs some code like this:
this.prototype = {constructor: this};
The new function object is given a prototype
 property whose value is an object containing a constructor property whose value is the new function object. The
 prototype object is the place where inherited
 traits are to be deposited. Every function gets a prototype object because the language does not provide a way of
 determining which functions are intended to be used as constructors. The constructor property is not useful. It is the prototype object that is important.
When a function is invoked with the constructor invocation pattern using the new
 prefix, this modifies the way in which the function is executed. If the new operator were a method instead of an operator, it
 could have been implemented like this:
Function.method('new', function () {

// Create a new object that inherits from the
// constructor's prototype.

 var that = Object.create(this.prototype);

// Invoke the constructor, binding -this- to
// the new object.

 var other = this.apply(that, arguments);

// If its return value isn't an object,
// substitute the new object.

 return (typeof other === 'object' && other) || that;
});
We can define a constructor and augment its prototype:
var Mammal = function (name) {
 this.name = name;
};

Mammal.prototype.get_name = function () {
 return this.name;
};

Mammal.prototype.says = function () {
 return this.saying || '';
};
Now, we can make an instance:
var myMammal = new Mammal('Herb the Mammal');
var name = myMammal.get_name(); // 'Herb the Mammal'
We can make another pseudoclass that inherits from Mammal by defining its constructor
 function and replacing its prototype with an
 instance of Mammal:
var Cat = function (name) {
 this.name = name;
 this.saying = 'meow';
};

// Replace Cat.prototype with a new instance of Mammal

Cat.prototype = new Mammal();

// Augment the new prototype with
// purr and get_name methods.

Cat.prototype.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
};
Cat.prototype.get_name = function () {
 return this.says() + ' ' + this.name + ' ' + this.says();
};

var myCat = new Cat('Henrietta');
var says = myCat.says(); // 'meow'
var purr = myCat.purr(5); // 'r-r-r-r-r'
var name = myCat.get_name();
// 'meow Henrietta meow'
The pseudoclassical pattern was intended to look sort of object-oriented, but it
 is looking quite alien. We can hide some of the ugliness by using the method method and defining an inherits method:
Function.method('inherits', function (Parent) {
 this.prototype = new Parent();
 return this;
});
Our inherits and method methods return this,
 allowing us to program in a cascade style. We can now make our Cat with one statement.
var Cat = function (name) {
 this.name = name;
 this.saying = 'meow';
}.
 inherits(Mammal).
 method('purr', function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
 }).
 method('get_name', function () {
 return this.says() + ' ' + this.name + ' ' + this.says();
 });
By hiding the prototype jazz, it now looks a
 bit less alien. But have we really improved anything? We now have constructor
 functions that act like classes, but at the edges, there may be surprising behavior.
 There is no privacy; all properties are public. There is no access to super methods.
Even worse, there is a serious hazard with the use of constructor functions. If
 you forget to include the new prefix when calling
 a constructor function, then this will not be
 bound to a new object. Sadly, this will be bound
 to the global object, so instead of augmenting your new object, you will be
 clobbering global variables. That is really bad. There is no compile warning, and
 there is no runtime warning.
This is a serious design error in the language. To mitigate this problem, there is
 a convention that all constructor functions are named with an initial capital, and
 that nothing else is spelled with an initial capital. This gives us a prayer that
 visual inspection can find a missing new. A much
 better alternative is to not use new at
 all.
The pseudoclassical form can provide comfort to programmers who are unfamiliar
 with JavaScript, but it also hides the true nature of the language. The classically
 inspired notation can induce programmers to compose hierarchies that are
 unnecessarily deep and complicated. Much of the complexity of class hierarchies is
 motivated by the constraints of static type checking. JavaScript is completely free
 of those constraints. In classical languages, class inheritance is the only form of
 code reuse. JavaScript has more and better options.

Object Specifiers

It sometimes happens that a constructor is given a very large number of
 parameters. This can be troublesome because it can be very difficult to remember the
 order of the arguments. In such cases, it can be much friendlier if we write the
 constructor to accept a single object specifier instead. That object contains the
 specification of the object to be constructed. So, instead of:
var myObject = maker(f, l, m, c, s);
we can write:
var myObject = maker({
 first: f,
 last: l,
 middle: m
 state: s,
 city: c
});
The arguments can now be listed in any order, arguments can be left out if the
 constructor is smart about defaults, and the code is much easier to read.
This can have a secondary benefit when working with JSON (see Appendix E). JSON text can only describe data, but sometimes the data represents an object,
 and it would be useful to associate the data with its methods. This can be done
 trivially if the constructor takes an object specifier because we can simply pass
 the JSON object to the constructor and it will return a fully constituted
 object.

Prototypal

In a purely prototypal pattern, we dispense with classes. We focus instead on the
 objects. Prototypal inheritance is conceptually simpler than classical inheritance:
 a new object can inherit the properties of an old object. This is perhaps
 unfamiliar, but it is really easy to understand. You start by making a useful
 object. You can then make many more objects that are like that one. The
 classification process of breaking an application down into a set of nested abstract
 classes can be completely avoided.
Let’s start by using an object literal to make a useful object:
var myMammal = {
 name : 'Herb the Mammal',
 get_name : function () {
 return this.name;
 },
 says : function () {
 return this.saying || '';
 }
};
Once we have an object that we like, we can make more instances with the Object.create method from Chapter 3.
 We can then customize the new instances:
var myCat = Object.create(myMammal);
myCat.name = 'Henrietta';
myCat.saying = 'meow';
myCat.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
};
myCat.get_name = function () {
 return this.says() + ' ' + this.name + ' ' + this.says();
};
This is differential inheritance. By customizing a new
 object, we specify the differences from the object on which it is based.
Sometimes is it useful for data structures to inherit from other data structures.
 Here is an example: Suppose we are parsing a language such as JavaScript or
 TEX in which a pair of curly braces indicates a scope.
 Items defined in a scope are not visible outside of the scope. In a sense, an inner
 scope inherits from its outer scope. JavaScript objects are very good at
 representing this relationship. The block
 function is called when a left curly brace is encountered. The parse function will look up symbols from scope, and augment scope when it defines new symbols:
var block = function () {

// Remember the current scope. Make a new scope that
// includes everything from the current one.

 var oldScope = scope;
 scope = Object.create(scope);

// Advance past the left curly brace.

 advance('{');

// Parse using the new scope.

 parse(scope);

// Advance past the right curly brace and discard the
// new scope, restoring the old one.

 advance('}');
 scope = oldScope;
};

Functional

One weakness of the inheritance patterns we have seen so far is that we get no
 privacy. All properties of an object are visible. We get no private variables and no
 private methods. Sometimes that doesn’t matter, but sometimes it matters a lot. In
 frustration, some uninformed programmers have adopted a pattern of pretend
 privacy. If they have a property that they wish to make private, they
 give it an odd-looking name, with the hope that other users of the code will pretend
 that they cannot see the odd looking members. Fortunately, we have a much better
 alternative in an application of the module pattern.
We start by making a function that will produce objects. We will give it a name
 that starts with a lowercase letter because it will not require the use of the
 new prefix. The function contains four
 steps:
	It creates a new object. There are lots of ways to make an object. It can
 make an object literal, or it can call a constructor function with the
 new prefix, or it can use the
 Object.create method to make a new
 instance from an existing object, or it can call any function that returns
 an object.

	It optionally defines private instance variables and methods. These are
 just ordinary vars of the
 function.

	It augments that new object with methods. Those methods will have
 privileged access to the parameters and the vars defined in the second step.

	It returns that new object.

Here is a pseudocode template for a functional constructor (boldface text added
 for emphasis):
var constructor = function (spec, my) {
 var that, other private instance variables;
 my = my || {};

 Add shared variables and functions to my

 that = a new object;

 Add privileged methods to that

 return that;
};
The spec object contains all of the information
 that the constructor needs to make an instance. The contents of the spec could be copied into private variables or
 transformed by other functions. Or the methods can access information from spec as they need it. (A simplification is to replace
 spec with a single value. This is useful when
 the object being constructed does not need a whole spec object.)
The my object is a container of secrets that
 are shared by the constructors in the inheritance chain. The use of the my object is optional. If a my object is not passed in, then a my object is made.
Next, declare the private instance variables and private methods for the object.
 This is done by simply declaring variables. The variables and inner functions of the
 constructor become the private members of the instance. The inner functions have
 access to spec and my and that and the private
 variables.
Next, add the shared secrets to the my object.
 This is done by assignment:
my.member = value;
Now, we make a new object and assign it to that. There are lots of ways to make a new object. We can use an object
 literal. We can call a pseudoclassical constructor with the new operator. We can use the Object.create method on a prototype
 object. Or, we can call another functional constructor, passing it a spec object (possibly the same spec object that was passed to this constructor) and
 the my object. The my object allows the other constructor to share the material that we
 put into my. The other constructor may also put
 its own shared secrets into my so that our
 constructor can take advantage of it.
Next, we augment that, adding the privileged
 methods that make up the object’s interface. We can assign new functions to members
 of that. Or, more securely, we can define the
 functions first as private methods, and then assign them to that:
var methodical = function () {
 ...
};
that.methodical = methodical;
The advantage to defining methodical in two
 steps is that if other methods want to call methodical, they can call methodical(
) instead of that.methodical(). If
 the instance is damaged or tampered with so that that.methodical is replaced, the methods that call methodical will continue to work the same because
 their private methodical is not affected by
 modification of the instance.
Finally, we return that.
Let’s apply this pattern to our mammal example. We don’t need my here, so we’ll just leave it out, but we will use a
 spec object.
The name and saying properties are now completely private. They are accessible
 only via the privileged get_name and says methods:
var mammal = function (spec) {
 var that = {};

 that.get_name = function () {
 return spec.name;
 };

 that.says = function () {
 return spec.saying || '';
 };

 return that;
};

var myMammal = mammal({name: 'Herb'});
In the pseudoclassical pattern, the Cat
 constructor function had to duplicate work that was done by the Mammal constructor. That isn’t necessary in the
 functional pattern because the Cat constructor
 will call the Mammal constructor, letting
 Mammal do most of the work of object
 creation, so Cat only has to concern itself with
 the differences:
var cat = function (spec) {
 spec.saying = spec.saying || 'meow';
 var that = mammal(spec);
 that.purr = function (n) {
 var i, s = '';
 for (i = 0; i < n; i += 1) {
 if (s) {
 s += '-';
 }
 s += 'r';
 }
 return s;
 };
 that.get_name = function () {
 return that.says() + ' ' + spec.name + ' ' + that.says();
 };
 return that;
};

var myCat = cat({name: 'Henrietta'});
The functional pattern also gives us a way to deal with super methods. We will
 make a superior method that takes a method name
 and returns a function that invokes that method. The function will invoke the
 original method even if the property is changed:
Object.method('superior', function (name) {
 var that = this,
 method = that[name];
 return function () {
 return method.apply(that, arguments);
 };
});
Let’s try it out on a coolcat that is just like
 cat except it has a cooler get_name method that calls the super method. It
 requires just a little bit of preparation. We will declare a super_get_name variable and assign it the result of
 invoking the superior method:
var coolcat = function (spec) {
 var that = cat(spec),
 super_get_name = that.superior('get_name');
 that.get_name = function (n) {
 return 'like ' + super_get_name() + ' baby';
 };
 return that;
};

var myCoolCat = coolcat({name: 'Bix'});
var name = myCoolCat.get_name();
// 'like meow Bix meow baby'
The functional pattern has a great deal of flexibility. It requires less effort
 than the pseudoclassical pattern, and gives us better encapsulation and information
 hiding and access to super methods.
If all of the state of an object is private, then the object is tamper-proof.
 Properties of the object can be replaced or deleted, but the integrity of the object
 is not compromised. If we create an object in the functional style, and if all of
 the methods of the object make no use of this or
 that, then the object is
 durable. A durable object is simply a collection of
 functions that act as capabilities.
A durable object cannot be compromised. Access to a durable object does not give
 an attacker the ability to access the internal state of the object except as
 permitted by the methods.

Parts

We can compose objects out of sets of parts. For example, we can make a function
 that can add simple event processing features to any object. It adds an on method, a fire
 method, and a private event registry:
var eventuality = function (that) {
 var registry = {};

 that.fire = function (event) {

// Fire an event on an object. The event can be either
// a string containing the name of the event or an
// object containing a type property containing the
// name of the event. Handlers registered by the 'on'
// method that match the event name will be invoked.

 var array,
 func,
 handler,
 i,
 type = typeof event === 'string' ? event : event.type;

// If an array of handlers exist for this event, then
// loop through it and execute the handlers in order.

 if (registry.hasOwnProperty(type)) {
 array = registry[type];
 for (i = 0; i < array.length; i += 1) {
 handler = array[i];

// A handler record contains a method and an optional
// array of parameters. If the method is a name, look
// up the function.

 func = handler.method;
 if (typeof func === 'string') {
 func = this[func];
 }

// Invoke a handler. If the record contained
// parameters, then pass them. Otherwise, pass the
// event object.

 func.apply(this,
 handler.parameters || [event]);
 }
 }
 return this;
 };

 that.on = function (type, method, parameters) {

// Register an event. Make a handler record. Put it
// in a handler array, making one if it doesn't yet
// exist for this type.

 var handler = {
 method: method,
 parameters: parameters
 };
 if (registry.hasOwnProperty(type)) {
 registry[type].push(handler);
 } else {
 registry[type] = [handler];
 }
 return this;
 };
 return that;
};
We could call eventuality on any individual
 object, bestowing it with event handling methods. We could also call it in a
 constructor function before that is
 returned:
eventuality(that);
In this way, a constructor could assemble objects from a set of parts.
 JavaScript’s loose typing is a big benefit here because we are not burdened with a
 type system that is concerned about the lineage of classes. Instead, we can focus on
 the character of their contents.
If we wanted eventuality to have access to the
 object’s private state, we could pass it the my
 bundle.

Chapter 6. Arrays

Thee I’ll chase hence, thou wolf in sheep’s array.
—William Shakespeare, The First Part of Henry the
 Sixth

An array is a linear allocation of memory in which elements are
 accessed by integers that are used to compute offsets. Arrays can be very fast data
 structures. Unfortunately, JavaScript does not have anything like this kind of
 array.
Instead, JavaScript provides an object that has some array-like characteristics. It
 converts array subscripts into strings that are used to make properties. It is
 significantly slower than a real array, but it can be more convenient to use. Retrieval
 and updating of properties work the same as with objects, except that there is a special
 trick with integer property names. Arrays have their own literal format. Arrays also
 have a much more useful set of built-in methods, described in Chapter 8.
Array Literals

Array literals provide a very convenient notation for creating new array values.
 An array literal is a pair of square brackets surrounding zero or more values
 separated by commas. An array literal can appear anywhere an expression can appear.
 The first value will get the property name '0',
 the second value will get the property name '1',
 and so on:
var empty = [];
var numbers = [
 'zero', 'one', 'two', 'three', 'four',
 'five', 'six', 'seven', 'eight', 'nine'
];

empty[1] // undefined
numbers[1] // 'one'

empty.length // 0
numbers.length // 10
The object literal:
var numbers_object = {
 '0': 'zero', '1': 'one', '2': 'two',
 '3': 'three', '4': 'four', '5': 'five',
 '6': 'six', '7': 'seven', '8': 'eight',
 '9': 'nine'
};
produces a similar result. Both numbers and
 numbers_object are objects containing 10
 properties, and those properties have exactly the same names and values. But there
 are also significant differences. numbers
 inherits from Array.prototype, whereas numbers_object inherits from Object.prototype, so numbers
 inherits a larger set of useful methods. Also, numbers gets the mysterious length
 property, while numbers_object does not.
In most languages, the elements of an array are all required to be of the same
 type. JavaScript allows an array to contain any mixture of values:
var misc = [
 'string', 98.6, true, false, null, undefined,
 ['nested', 'array'], {object: true}, NaN,
 Infinity
];
misc.length // 10

Length

Every array has a length property. Unlike most
 other languages, JavaScript’s array length is not
 an upper bound. If you store an element with a subscript that is greater than or
 equal to the current length, the length will increase to contain the new element. There
 is no array bounds error.
The length property is the largest integer
 property name in the array plus one. This is not necessarily the number of
 properties in the array:
var myArray = [];
myArray.length // 0

myArray[1000000] = true;
myArray.length // 1000001
// myArray contains one property.
The [] postfix subscript operator converts its
 expression to a string using the expression’s toString method if it has one. That string will be used as the
 property name. If the string looks like a positive integer that is greater than or
 equal to the array’s current length and is less
 than 4,294,967,295, then the length of the array
 is set to the new subscript plus one.
The length can be set explicitly. Making the
 length larger does not allocate more space
 for the array. Making the length smaller will
 cause all properties with a subscript that is greater than or equal to the new
 length to be deleted:
numbers.length = 3;
// numbers is ['zero', 'one', 'two']
A new element can be appended to the end of an array by assigning to the array’s
 current length:
numbers[numbers.length] = 'shi';
// numbers is ['zero', 'one', 'two', 'shi']
It is sometimes more convenient to use the push
 method to accomplish the same thing:
numbers.push('go');
// numbers is ['zero', 'one', 'two', 'shi', 'go']

Delete

Since JavaScript’s arrays are really objects, the delete operator can be used to remove elements from an
 array:
delete numbers[2];
// numbers is ['zero', 'one', undefined, 'shi', 'go']
Unfortunately, that leaves a hole in the array. This is because the elements to
 the right of the deleted element retain their original names. What you usually want
 is to decrement the names of each of the elements to the right.
Fortunately, JavaScript arrays have a splice
 method. It can do surgery on an array, deleting some number of elements and
 replacing them with other elements. The first argument is an ordinal in the array.
 The second argument is the number of elements to delete. Any additional arguments
 get inserted into the array at that point:
numbers.splice(2, 1);
// numbers is ['zero', 'one', 'shi', 'go']
The property whose value is 'shi' has its key
 changed from '3' to '2'. Because every property after the deleted property must be
 removed and reinserted with a new key, this might not go quickly for large
 arrays.

Enumeration

Since JavaScript’s arrays are really objects, the for
 in statement can be used to iterate over all of the properties of an
 array. Unfortunately, for in makes no guarantee
 about the order of the properties, and most array applications expect the elements
 to be produced in numerical order. Also, there is still the problem with unexpected
 properties being dredged up from the prototype chain.
Fortunately, the conventional for statement
 avoids these problems. JavaScript’s for statement
 is similar to that in most C-like languages. It is controlled by three clauses—the
 first initializes the loop, the second is the while condition, and the third does
 the increment:
var i;
for (i = 0; i < myArray.length; i += 1) {
 document.writeln(myArray[i]);
}

Confusion

A common error in JavaScript programs is to use an object when an array is
 required or an array when an object is required. The rule is simple: when the
 property names are small sequential integers, you should use an array. Otherwise,
 use an object.
JavaScript itself is confused about the difference between arrays and objects. The
 typeof operator reports that the type of an
 array is 'object', which isn’t very
 helpful.
JavaScript does not have a good mechanism for distinguishing between arrays and
 objects. We can work around that deficiency by defining our own is_array function:
var is_array = function (value) {
 return value && typeof value === 'object' && value.constructor === Array;
};
Unfortunately, it fails to identify arrays that were constructed in a different
 window or frame. If we want to accurately detect those foreign arrays, we have to
 work a little harder:
var is_array = function (value) {
 return Object.prototype.toString.apply(value) === '[object
Array]';
};

Methods

JavaScript provides a set of methods for acting on arrays. The methods are
 functions stored in Array.prototype. In Chapter 3, we saw that Object.prototype can be augmented. Array.prototype can be augmented as well.
For example, suppose we want to add an array
 method that will allow us to do computation on an array:
Array.method('reduce', function (f, value) {
 var i;
 for (i = 0; i < this.length; i += 1) {
 value = f(this[i], value);
 }
 return value;
});
By adding a function to Array.prototype, every
 array inherits the method. In this case, we defined a reduce method that takes a function and a starting value. For each
 element of the array, it calls the function with an element and the value, and
 computes a new value. When it is finished, it returns the value. If we pass in a
 function that adds two numbers, it computes the sum. If we pass in a function that
 multiplies two numbers, it computes the product:
// Create an array of numbers.

var data = [4, 8, 15, 16, 23, 42];

// Define two simple functions. One will add two
// numbers. The other will multiply two numbers.

var add = function (a, b) {
 return a + b;
};

var mult = function (a, b) {
 return a * b;
};

// Invoke the data's reduce method, passing in the
// add function.

var sum = data.reduce(add, 0); // sum is 108

// Invoke the reduce method again, this time passing
// in the multiply function.

var product = data.reduce(mult, 1);
 // product is 7418880
Because an array is really an object, we can add methods directly to an individual
 array:
// Give the data array a total function.

data.total = function () {
 return this.reduce(add, 0);
};

total = data.total(); // total is 108
Since the string 'total' is not an integer,
 adding a total property to an array does not
 change its length. Arrays are most useful when
 the property names are integers, but they are still objects, and objects can accept
 any string as a property name.
It is not useful to use the Object.create method from Chapter 3 on
 arrays because it produces an object, not an array. The object produced will inherit
 the array’s values and methods, but it will not have the special length property.

Dimensions

JavaScript arrays usually are not initialized. If you ask for a new array with
 [], it will be empty. If you access a missing
 element, you will get the undefined value. If you
 are aware of that, or if you will naturally set every element before you attempt to
 retrieve it, then all is well. But if you are implementing algorithms that assume
 that every element starts with a known value (such as 0), then you must prep the
 array yourself. JavaScript should have provided some form of an Array.dim method to do this, but we can easily correct
 this oversight:
Array.dim = function (dimension, initial) {
 var a = [], i;
 for (i = 0; i < dimension; i += 1) {
 a[i] = initial;
 }
 return a;
};

// Make an array containing 10 zeros.

var myArray = Array.dim(10, 0);
JavaScript does not have arrays of more than one dimension, but like most C
 languages, it can have arrays of arrays:
var matrix = [
 [0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]
];
matrix[2][1] // 7
To make a two-dimensional array or an array of arrays, you must build the arrays
 yourself:
for (i = 0; i < n; i += 1) {
 my_array[i] = [];
}

// Note: Array.dim(n, []) will not work here.
// Each element would get a reference to the same
// array, which would be very bad.
The cells of an empty matrix will initially have the value undefined. If you want them to have a different
 initial value, you must explicitly set them. Again, JavaScript should have provided
 better support for matrixes. We can correct that, too:
Array.matrix = function (m, n, initial) {
 var a, i, j, mat = [];
 for (i = 0; i < m; i += 1) {
 a = [];
 for (j = 0; j < n; j += 1) {
 a[j] = initial;
 }
 mat[i] = a;
 }
 return mat;
};

// Make a 4 * 4 matrix filled with zeros.

var myMatrix = Array.matrix(4, 4, 0);

document.writeln(myMatrix[3][3]); // 0

// Method to make an identity matrix.

Array.identity = function (n) {
 var i, mat = Array.matrix(n, n, 0);
 for (i = 0; i < n; i += 1) {
 mat[i][i] = 1;
 }
 return mat;
};

myMatrix = Array.identity(4);

document.writeln(myMatrix[3][3]); // 1

Chapter 7. Regular Expressions

Whereas the contrary bringeth bliss, And is a pattern of celestial peace. Whom
 should we match with Henry, being a king. . .
—William Shakespeare, The First Part of Henry the
 Sixth

Many of JavaScript’s features were borrowed from other languages. The syntax came from
 Java, functions came from Scheme, and prototypal inheritance came from Self.
 JavaScript’s Regular Expression feature was borrowed from Perl.
A regular expression is the specification of the syntax of a
 simple language. Regular expressions are used with methods to search, replace, and
 extract information from strings. The methods that work with regular expressions are
 regexp.exec, regexp.test, string.match, string.replace, string.search, and string.split. These
 will all be described in Chapter 8. Regular expressions usually have a
 significant performance advantage over equivalent string operations in
 JavaScript.
Regular expressions came from the mathematical study of formal languages. Ken Thompson
 adapted Stephen Kleene’s theoretical work on type-3 languages into a practical pattern
 matcher that could be embedded in tools such as text editors and programming
 languages.
The syntax of regular expressions in JavaScript conforms closely to the original
 formulations from Bell Labs, with some reinterpretation and extension adopted from Perl.
 The rules for writing regular expressions can be surprisingly complex because they
 interpret characters in some positions as operators, and in slightly different positions
 as literals. Worse than being hard to write, this makes regular expressions hard to read
 and dangerous to modify. It is necessary to have a fairly complete understanding of the
 full complexity of regular expressions to correctly read them. To mitigate this, I have
 simplified the rules a little. As presented here, regular expressions will be slightly
 less terse, but they will also be slightly easier to use correctly. And that is a good
 thing because regular expressions can be very difficult to maintain and debug.
Today’s regular expressions are not strictly regular, but they can be very useful.
 Regular expressions tend to be extremely terse, even cryptic. They are easy to use in
 their simplest form, but they can quickly become bewildering. JavaScript’s regular
 expressions are difficult to read in part because they do not allow comments or
 whitespace. All of the parts of a regular expression are pushed tightly together, making
 them almost indecipherable. This is a particular concern when they are used in security
 applications for scanning and validation. If you cannot read and understand a regular
 expression, how can you have confidence that it will work correctly for all inputs? Yet,
 despite their obvious drawbacks, regular expressions are widely used.
An Example

Here is an example. It is a regular expression that matches URLs. The pages of
 this book are not infinitely wide, so I broke it into two lines. In a JavaScript
 program, the regular expression must be on a single line. Whitespace is
 significant:
var parse_url = /^(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-A-Za-z]+)
(?::(\d+))?(?:\/([^?#]*))?(?:\?([^#]*))?(?:#(.*))?$/;

var url = "http://www.ora.com:80/goodparts?q#fragment";
Let’s call parse_url’s exec method. If it successfully matches the string that we pass it,
 it will return an array containing pieces extracted from the url:
var url = "http://www.ora.com:80/goodparts?q#fragment";

var result = parse_url.exec(url);

var names = ['url', 'scheme', 'slash', 'host', 'port',
 'path', 'query', 'hash'];

var blanks = ' ';
var i;

for (i = 0; i < names.length; i += 1) {
 document.writeln(names[i] + ':' +
 blanks.substring(names[i].length), result[i]);
}
This produces:
url: http://www.ora.com:80/goodparts?q#fragment
scheme: http
slash: //
host: www.ora.com
port: 80
path: goodparts
query: q
hash: fragment
In Chapter 2, we used railroad diagrams to describe the JavaScript
 language. We can also use them to describe the languages defined by regular
 expressions. That may make it easier to see what a regular expression does. This is
 a railroad diagram for parse_url.
[image: image with no caption]

Regular expressions cannot be broken into smaller pieces the way that functions
 can, so the track representing parse_url is a
 long one.
Let’s factor parse_url into its parts to see
 how it works.
^
The ^ character indicates the beginning of the
 string. It is an anchor that prevents exec from
 skipping over a non-URL-like prefix.
(?:([A-Za-z]+):)?
This factor matches a scheme name, but only if it is followed by a : (colon). The (?:
 . . .) indicates a noncapturing group. The
 suffix ? indicates that the group is
 optional.
It means repeat zero or one time. The (. . .) indicates a
 capturing group. A capturing group copies the text it matches and places it in the
 result array. Each capturing group is given a
 number. This first capturing group is 1, so a copy of the text matched by this
 capturing group will appear in result[1]. The [.
 . .] indicates a character class. This character class, A-Za-z, contains 26 uppercase letters and 26 lowercase letters. The
 hyphens indicate ranges, from A to Z. The suffix + indicates that the character class will be matched one or more
 times. The group is followed by the : character,
 which will be matched literally.
(\/{0,3})
The next factor is capturing group 2. \/
 indicates that a / (slash) character should be
 matched. It is escaped with \ (backslash) so that
 it is not misinterpreted as the end of the regular expression literal. The suffix
 {0,3} indicates that the / will be matched 0 or 1 or 2 or 3 times.
([0-9.\-A-Za-z]+)
The next factor is capturing group 3. It will match a host name, which is made up
 of one or more digits, letters, or . or -. The - was
 escaped as \- to prevent it from being confused
 with a range hyphen.
(?::(\d+))?
The next factor optionally matches a port number, which is a sequence of one or
 more digits preceded by a :. \d represents a digit character. The series of one or
 more digits will be capturing group 4.
(?:\/([^?#]*))?
We have another optional group. This one begins with a /. The character class [^?#]
 begins with a ^, which indicates that the class
 includes all characters except ? and #. The * indicates that the character class is matched zero
 or more times.
Note that I am being sloppy here. The class of all characters except ?
 and # includes line-ending characters, control characters, and lots
 of other characters that really shouldn’t be matched here. Most of the time this
 will do what we want, but there is a risk that some bad text could slip through.
 Sloppy regular expressions are a popular source of security exploits. It is a lot
 easier to write sloppy regular expressions than rigorous regular
 expressions.
(?:\?([^#]*))?
Next, we have an optional group that begins with a ?. It contains capturing group 6, which contains zero or more
 characters that are not #.
(?:#(.*))?
We have a final optional group that begins with #. The . will match any character
 except a line-ending character.
$
The $ represents the end of the string. It
 assures us that there was no extra material after the end of the URL.
Those are the factors of the regular expression parse_url.[1]
It is possible to make regular expressions that are more complex than parse_url, but I wouldn’t recommend it. Regular
 expressions are best when they are short and simple. Only then can we have
 confidence that they are working correctly and that they could be successfully
 modified if necessary.
There is a very high degree of compatibility between JavaScript language
 processors. The part of the language that is least portable is
 the implementation of regular expressions. Regular expressions that are very
 complicated or convoluted are more likely to have portability problems. Nested
 regular expressions can also suffer horrible performance problems in some
 implementations. Simplicity is the best strategy.
Let’s look at another example: a regular expression that matches numbers. Numbers
 can have an integer part with an optional minus sign, an optional fractional part,
 and an optional exponent part.
var parse_number = /^-?\d+(?:\.\d*)?(?:e[+\-]?\d+)?$/i;

var test = function (num) {
 document.writeln(parse_number.test(num));
};

test('1'); // true
test('number'); // false
test('98.6'); // true
test('132.21.86.100'); // false
test('123.45E-67'); // true
test('123.45D-67'); // false
parse_number successfully identified the
 strings that conformed to our specification and those that did not, but for those
 that did not, it gives us no information on why or where they failed the number
 test.
[image: image with no caption]

Let’s break down parse_number.
/^ $/i
We again use ^ and $ to anchor the regular expression. This causes all of the characters
 in the text to be matched against the regular expression. If we had omitted the
 anchors, the regular expression would tell us if a string contains a number. With
 the anchors, it tells us if the string contains only a number. If we included just
 the ^, it would match strings starting with a
 number. If we included just the $, it would match
 strings ending with a number.
The i flag causes case to be ignored when
 matching letters. The only letter in our pattern is e. We want that e to also match
 E. We could have written the e factor as [Ee] or
 (?:E|e), but we didn’t have to because we
 used the i flag:
-?
The ? suffix on the minus sign indicates that
 the minus sign is optional:
\d+
\d means the same as [0-9]. It matches a digit. The +
 suffix causes it to match one or more digits:
(?:\.\d*)?
The (?: . . .)? indicates an optional
 noncapturing group. It is usually better to use noncapturing groups instead of the
 less ugly capturing groups because capturing has a performance penalty. The group
 will match a decimal point followed by zero or more digits:
(?:e[+\-]?\d+)?
This is another optional noncapturing group. It matches e (or E), an optional sign, and
 one or more digits.

Construction

There are two ways to make a RegExp object. The
 preferred way, as we saw in the examples, is to use a regular expression
 literal.
[image: image with no caption]

Regular expression literals are enclosed in slashes. This can be a little tricky
 because slash is also used as the division operator and in comments.
There are three flags that can be set on a RegExp. They are indicated by the letters g, i, and m, as listed in Table 7-1. The
 flags are appended directly to the end of the RegExp literal:
// Make a regular expression object that matches
// a JavaScript string.

var my_regexp = /"(?:\\.|[^\\\"])*"/g;
Table 7-1. Flags for regular expressions
	
 Flag

 	
 Meaning

	

 g

 	
 Global (match multiple times; the precise meaning of this
 varies with the method)

	

 i

 	
 Insensitive (ignore character case)

	

 m

 	
 Multiline (^ and $ can match line-ending characters)

The other way to make a regular expression is to use the RegExp constructor. The constructor takes a string and compiles it
 into a RegExp object. Some care must be taken in
 building the string because backslashes have a somewhat different meaning in regular
 expressions than in string literals. It is usually necessary to double the
 backslashes and escape the quotes:
// Make a regular expression object that matches
// a JavaScript string.

var my_regexp = new RegExp("\"(?:\\\\.|[^\\\\\\\"])*\"", 'g');
The second parameter is a string specifying the flags. The RegExp constructor is useful when a regular expression
 must be generated at runtime using material that is not available to the
 programmer.
RegExp objects contain the properties listed in
 Table 7-2.
Table 7-2. Properties of RegExp objects
	
 Property

 	
 Use

	

 global

 	
 true if the g flag was used.

	

 ignoreCase

 	
 true if the i flag was used.

	

 lastIndex

 	
 The index at which to start the next exec match. Initially it is zero.

	

 multiline

 	
 true if the m flag was used.

	

 source

 	
 The source text of the regular expression.

RegExp objects made by regular expression
 literals share a single instance:
function make_a_matcher() {
 return /a/gi;
}

var x = make_a_matcher();
var y = make_a_matcher();

// Beware: x and y are the same object!

x.lastIndex = 10;

document.writeln(y.lastIndex); // 10

Elements

Let’s look more closely at the elements that make up regular
 expressions.
Regexp Choice

[image: image with no caption]

A regexp choice contains one or more regexp
 sequences. The sequences are separated by the | (vertical bar) character. The choice matches if
 any of the sequences match. It attempts to match each of the sequences in order.
 So:
"into".match(/in|int/)
matches the in in into. It wouldn’t match int
 because the match of in was
 successful.

Regexp Sequence

[image: image with no caption]

A regexp sequence contains one or more regexp
 factors. Each factor can optionally be followed by a quantifier
 that determines how many times the factor is allowed to appear. If there is no
 quantifier, then the factor will be matched one time.

Regexp Factor

[image: image with no caption]

A regexp factor can be a character, a parenthesized
 group, a character class, or an escape sequence. All characters are treated
 literally except for the control characters and the special
 characters:
\ / [] () { } ? + * | . ^ $
which must be escaped with a \ prefix if
 they are to be matched literally. When in doubt, any special character can be
 given a \ prefix to make it literal. The
 \ prefix does not
 make letters or digits literal.
An unescaped . matches any character except
 a line-ending character.
An unescaped ^ matches the beginning of the
 text when the lastIndex property is zero. It
 can also match line-ending characters when the m flag is specified.
An unescaped $ matches the end of the text.
 It can also match line-ending characters when the m flag is specified.

Regexp Escape

[image: image with no caption]

The backslash character indicates escapement in regexp factors as well as in
 strings, but in regexp factors, it works a little differently.
As in strings, \f is the formfeed
 character, \n is the newline character,
 \r is the carriage return character,
 \t is the tab character, and \u allows for specifying a Unicode character as a
 16-bit hex constant. In regexp factors, \b
 is not the backspace character.
\d is the same as [0-9]. It matches a digit. \D
 is the opposite: [^0-9].
\s is the same as [\f\n\r\t\u000B\u0020\u00A0\u2028\u2029]. This is a partial set
 of Unicode whitespace characters. \S is the
 opposite: [^\f\n\r\t\u000B\u0020\u00A0\u2028\u2029].
\w is the same as [0-9A-Z_a-z]. \W is the
 opposite: [^0-9A-Z_a-z]. This is supposed to
 represent the characters that appear in words. Unfortunately, the class it
 defines is useless for working with virtually any real language. If you need to
 match a class of letters, you must specify your own class.
A simple letter class is [A-Za-z\u00C0-\u1FFF\u2800-\uFFFD]. It includes all of Unicode’s
 letters, but it also includes thousands of characters that are not letters.
 Unicode is large and complex. An exact letter class of the Basic Multilingual
 Plane is possible, but would be huge and inefficient. JavaScript’s regular
 expressions provide extremely poor support for internationalization.
\b was intended to be a word-boundary
 anchor that would make it easier to match text on word boundaries.
 Unfortunately, it uses \w to find word
 boundaries, so it is completely useless for multilingual applications. This is
 not a good part.
\1 is a reference to the text that was
 captured by group 1 so that it can be matched again. For example, you could
 search text for duplicated words with:
var doubled_words = /([A-Za-z\u00C0-\u1FFF\u2800-\uFFFD]+)\s+\1/gi;
doubled_words looks for occurrences of
 words (strings containing 1 or more letters) followed by whitespace followed by
 the same word.
\2 is a reference to group 2, \3 is a reference to group 3, and so on.

Regexp Group

[image: image with no caption]

There are four kinds of groups:
	
 Capturing

	A capturing group is a regexp choice wrapped in parentheses. The
 characters that match the group will be captured. Every capture
 group is given a number. The first capturing (in the regular expression is group
 1. The second capturing (in the
 regular expression is group 2.

	
 Noncapturing

	A noncapturing group has a (?:
 prefix. A noncapturing group simply matches; it does not capture the
 matched text. This has the advantage of slight faster performance.
 Noncapturing groups do not interfere with the numbering of capturing
 groups.

	
 Positive lookahead

	A positive lookahead group has a (?= prefix. It is like a noncapturing group except
 that after the group matches, the text is rewound to where the group
 started, effectively matching nothing. This is not a good
 part.

	
 Negative lookahead

	A negative lookahead group has a (?! prefix. It is like a positive lookahead group,
 except that it matches only if it fails to match. This is not a good
 part.

Regexp Class

[image: image with no caption]

A regexp class is a convenient way of specifying one of a
 set of characters. For example, if we wanted to match a vowel, we could write
 (?:a|e|i|o|u), but it is more
 conveniently written as the class [aeiou].
Classes provide two other conveniences. The first is that ranges of characters
 can be specified. So, the set of 32 ASCII special characters:
! " # $ % & ' () * +, - . / :
; < = > ? @ [\] ^ _ ` { | } ˜
could be written as:
(?:!|"|#|\$|%|&|'|\(|\)|*|\+|,|-|\.|\/|:|;|<|=|>|@|\[|\\|]|\^|_|` |\{|\||\}|˜)
but is slightly more nicely written as:
[!-\/:-@\[-`{-˜]
which includes the characters from !
 through / and : through @ and [through ` and
 { through ˜. It is still pretty nasty looking.
The other convenience is the complementing of a class. If the first character
 after the [is ^, then the class excludes the specified characters.
So [^!-\/:-@\[-`{-˜] matches any character
 that is not one of the ASCII special characters.

Regexp Class Escape

[image: image with no caption]

The rules of escapement within a character class are slightly different than
 those for a regexp factor. [\b] is the
 backspace character. Here are the special characters that should be escaped in a
 character class:
- / [\] ^

Regexp Quantifier

[image: image with no caption]

A regexp factor may have a regexp
 quantifier suffix that determines how many times the factor
 should match. A number wrapped in curly braces means that the factor should
 match that many times. So, /www/ matches the
 same as /w{3}/. {3,6} will match 3, 4, 5, or 6 times. {3,} will match 3 or more times.
? is the same as {0,1}. * is the same as
 {0,}. + is the same as {1,}.
Matching tends to be greedy, matching as many repetitions as possible up to
 the limit, if there is one. If the quantifier has an extra ? suffix, then matching tends to be lazy,
 attempting to match as few repetitions as possible. It is usually best to stick
 with the greedy matching.

[1] When you press them all together again, it is visually quite confusing:
 /^(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-A-Za-z]+)(?::(\d+))?(?:\/([^?#]*))?(?:\?([^#]*))?(?:#(.*))?$/

Chapter 8. Methods

Though this be madness, yet there is method in ‘t.
—William Shakespeare, The Tragedy of Hamlet, Prince of
 Denmark

JavaScript includes a small set of standard methods that are available on the standard
 types.
	
 Array

	
	array.concat(item...)
	The concat method produces
 a new array containing a shallow copy of this
 array with the
 items appended to it. If an
 item is an array, then each of
 its elements is appended individually. Also see
 array.push(item...) later in this chapter.
var a = ['a', 'b', 'c'];
var b = ['x', 'y', 'z'];
var c = a.concat(b, true);
// c is ['a', 'b', 'c', 'x', 'y', 'z', true]

	array.join(separator)
	The join method makes a
 string from an array . It does this
 by making a string of each of the
 array ’s elements, and then
 concatenating them all together with a
 separator between them. The
 default separator is ','. To join without separation,
 use an empty string as the
 separator.
If you are assembling a string from a large number of pieces,
 it is usually faster to put the pieces into an array and
 join them than it is to
 concatenate the pieces with the + operator:
var a = ['a', 'b', 'c'];
a.push('d');
var c = a.join(''); // c is 'abcd';

	array.pop()
	The pop and push methods make an
 array work like a stack. The
 pop method removes and
 returns the last element in this
 array . If the
 array is empty, it returns undefined.
var a = ['a', 'b', 'c'];
var c = a.pop(); // a is ['a', 'b'] & c is 'c'
pop can be implemented like
 this:
Array.method('pop', function () {
 return this.splice(this.length - 1, 1)[0];
});

	array.push(item...)
	The push method appends
 items to the end of an array.
 Unlike the concat method, it
 modifies the array and appends array
 items whole. It returns the new length of the
 array:
var a = ['a', 'b', 'c'];
var b = ['x', 'y', 'z'];
var c = a.push(b, true);
// a is ['a', 'b', 'c', ['x', 'y', 'z'], true]
// c is 5;
push can be implemented
 like this:
Array.method('push', function () {
 this.splice.apply(
 this,
 [this.length, 0].concat(Array.prototype.slice.apply(arguments)));
 return this.length;
});

	array.reverse()
	The reverse method modifies
 the array by reversing the order of
 the elements. It returns the
 array:
var a = ['a', 'b', 'c'];
var b = a.reverse();
// both a and b are ['c', 'b', 'a']

	array.shift()
	The shift method removes
 the first element from an array and
 returns it. If the array is empty, it
 returns undefined. shift is usually much slower than
 pop:
var a = ['a', 'b', 'c'];
var c = a.shift(); // a is ['b', 'c'] & c is 'a'
shift can be implemented
 like this:
Array.method('shift', function () {
 return this.splice(0, 1)[0];
});

	array.slice(start,
 end)
	The slice method makes a
 shallow copy of a portion of an array
 . The first element copied will be
 array
 [
 start
]. It will stop before
 copying array
 [
 end
]. The
 end parameter is optional, and
 the default is array
 .length. If either parameter
 is negative, array
 .length will be added to them
 in an attempt to make them nonnegative. If
 start is greater than or equal to
 array
 .length, the result will be a
 new empty array. Do not confuse slice with splice. Also see
 string
 .slice later in this
 chapter.
var a = ['a', 'b', 'c'];
var b = a.slice(0, 1); // b is ['a']
var c = a.slice(1); // c is ['b', 'c']
var d = a.slice(1, 2); // d is ['b']

	array.sort(comparefn
)
	The sort method sorts the
 contents of an array in place. It
 sorts arrays of numbers incorrectly:
var n = [4, 8, 15, 16, 23, 42];
n.sort();
// n is [15, 16, 23, 4, 42, 8]
JavaScript’s default comparison function assumes that the
 elements to be sorted are strings. It isn’t clever enough to
 test the type of the elements before comparing them, so it
 converts the numbers to strings as it compares them, ensuring a
 shockingly incorrect result.
Fortunately, you may replace the comparison function with your
 own. Your comparison function should take two parameters and
 return 0 if the two
 parameters are equal, a negative number if the first parameter
 should come first, and a positive number if the second parameter
 should come first. (Old-timers might be reminded of the FORTRAN
 II arithmetic IF
 statement.)
n.sort(function (a, b) {
 return a − b;
});
// n is [4, 8, 15, 16, 23, 42];
That function will sort numbers, but it doesn’t sort strings.
 If we want to be able to sort any array of simple values, we
 must work harder:
var m = ['aa', 'bb', 'a', 4, 8, 15, 16, 23, 42];
m.sort(function (a, b) {
 if (a === b) {
 return 0;
 }
 if (typeof a === typeof b) {
 return a < b ? −1 : 1;
 }
 return typeof a < typeof b ? −1 : 1;
});
// m is [4, 8, 15, 16, 23, 42, 'a', 'aa', 'bb']
If case is not significant, your comparison function should
 convert the operands to lowercase before comparing them. Also
 see string
 .localeCompare later in this
 chapter.
With a smarter comparison function, we can sort an array of
 objects. To make things easier for the general case, we will
 write a function that will make comparison functions:
// Function by takes a member name string and returns
// a comparison function that can be used to sort an
// array of objects that contain that member.

var by = function (name) {
 return function (o, p) {
 var a, b;
 if (typeof o === 'object' && typeof p === 'object' && o && p) {
 a = o[name];
 b = p[name];
 if (a === b) {
 return 0;
 }
 if (typeof a === typeof b) {
 return a < b ? −1 : 1;
 }
 return typeof a < typeof b ? −1 : 1;
 } else {
 throw {
 name: 'Error',
 message: 'Expected an object when sorting by ' + name;
 };
 }
 };
};

var s = [
 {first: 'Joe', last: 'Besser'},
 {first: 'Moe', last: 'Howard'},
 {first: 'Joe', last: 'DeRita'},
 {first: 'Shemp', last: 'Howard'},
 {first: 'Larry', last: 'Fine'},
 {first: 'Curly', last: 'Howard'}
];
s.sort(by('first')); // s is [
// {first: 'Curly', last: 'Howard'},
// {first: 'Joe', last: 'DeRita'},
// {first: 'Joe', last: 'Besser'},
// {first: 'Larry', last: 'Fine'},
// {first: 'Moe', last: 'Howard'},
// {first: 'Shemp', last: 'Howard'}
//]
The sort method is not
 stable, so:
s.sort(by('first')).sort(by('last'));
is not guaranteed to produce the correct sequence. If you want
 to sort on multiple keys, you again need to do more work. We can
 modify by to take a second
 parameter, another compare
 method that will be called to break ties when the major key
 produces a match:
// Function by takes a member name string and an
// optional minor comparison function and returns
// a comparison function that can be used to sort an
// array of objects that contain that member. The
// minor comparison function is used to break ties
// when the o[name] and p[name] are equal.

var by = function (name, minor) {
 return function (o, p) {
 var a, b;
 if (o && p && typeof o === 'object' && typeof p === 'object') {
 a = o[name];
 b = p[name];
 if (a === b) {
 return typeof minor === 'function' ? minor(o, p) : 0;
 }
 if (typeof a === typeof b) {
 return a < b ? −1 : 1;
 }
 return typeof a < typeof b ? −1 : 1;
 } else {
 throw {
 name: 'Error',
 message: 'Expected an object when sorting by ' + name;
 };
 }
 };
};

s.sort(by('last', by('first'))); // s is [
// {first: 'Joe', last: 'Besser'},
// {first: 'Joe', last: 'DeRita'},
// {first: 'Larry', last: 'Fine'},
// {first: 'Curly', last: 'Howard'},
// {first: 'Moe', last: 'Howard'},
// {first: 'Shemp', last: 'Howard'}
//]

	array.splice(start,
 deleteCount,
 item...)
	The splice method removes
 elements from an array, replacing
 them with new item s. The
 start parameter is the number of
 a position within the array . The
 deleteCount parameter is the
 number of elements to delete starting from that position. If
 there are additional parameters, those
 item s will be inserted at the
 position. It returns an array containing the deleted
 elements.
The most popular use of splice is to delete elements from an array. Do
 not confuse splice with
 slice:
var a = ['a', 'b', 'c'];
var r = a.splice(1, 1, 'ache', 'bug');
// a is ['a', 'ache', 'bug', 'c']
// r is ['b']
splice can be implemented
 like this:
Array.method('splice', function (start, deleteCount) {
 var max = Math.max,
 min = Math.min,
 delta,
 element,
 insertCount = max(arguments.length - 2, 0),
 k = 0,
 len = this.length,
 new_len,
 result = [],
 shift_count;

 start = start || 0;
 if (start < 0) {
 start += len;
 }
 start = max(min(start, len), 0);
 deleteCount = max(min(typeof deleteCount === 'number' ?
 deleteCount : len, len − start), 0);
 delta = insertCount − deleteCount;
 new_len = len + delta;
 while (k < deleteCount) {
 element = this[start + k];
 if (element !== undefined) {
 result[k] = element;
 }
 k += 1;
 }
 shift_count = len - start - deleteCount;
 if (delta < 0) {
 k = start + insertCount;
 while (shift_count) {
 this[k] = this[k − delta];
 k += 1;
 shift_count −= 1;
 }
 this.length = new_len;
 } else if (delta > 0) {
 k = 1;
 while (shift_count) {
 this[new_len − k] = this[len − k];
 k += 1;
 shift_count −= 1;
 }
 this.length = new_len;
 }
 for (k = 0; k < insertCount; k += 1) {
 this[start + k] = arguments[k + 2];
 }
 return result;
});

	array.unshift(item...)
	The unshift method is like
 the push method except that
 it shoves the item s onto the front
 of this array instead of at the end.
 It returns the array ’s new length:
var a = ['a', 'b', 'c'];
var r = a.unshift('?', '@');
// a is ['?', '@', 'a', 'b', 'c']
// r is 5
unshift can be implemented
 like this:
Array.method('unshift', function () {
 this.splice.apply(this,
 [0, 0].concat(Array.prototype.slice.apply(arguments)));
 return this.length;
});

	
 Function

	
	function.apply(thisArg,
 argArray)
	The apply method invokes a
 function, passing in the object
 that will be bound to this
 and an optional array of arguments. The apply method is used in the apply invocation
 pattern (Chapter 4):
Function.method('bind', function (that) {

// Return a function that will call this function as
// though it is a method of that object.

 var method = this,
 slice = Array.prototype.slice,
 args = slice.apply(arguments, [1]);
 return function () {
 return method.apply(that,
 args.concat(slice.apply(arguments, [0])));
 };
});

var x = function () {
 return this.value;
}.bind({value: 666});
alert(x()); // 666

	
 Number

	
	number.toExponential(fractionDigits
)
	The toExponential method
 converts this number to a string in
 the exponential form. The optional
 fractionDigits parameter controls
 the number of decimal places. It should be between 0 and
 20:
document.writeln(Math.PI.toExponential(0));
document.writeln(Math.PI.toExponential(2));
document.writeln(Math.PI.toExponential(7));
document.writeln(Math.PI.toExponential(16));
document.writeln(Math.PI.toExponential());

// Produces

3e+0
3.14e+0
3.1415927e+0
3.1415926535897930e+0
3.141592653589793e+0

	number.toFixed(fractionDigits
)
	The toFixed method converts
 this number to a string in the
 decimal form. The optional
 fractionDigits parameter controls
 the number of decimal places. It should be between 0 and 20. The
 default is 0:
document.writeln(Math.PI.toFixed(0));
document.writeln(Math.PI.toFixed(2));
document.writeln(Math.PI.toFixed(7));
document.writeln(Math.PI.toFixed(16));
document.writeln(Math.PI.toFixed());

// Produces

3
3.14
3.1415927
3.1415926535897930
3

	number.toPrecision(precision
)
	The toPrecision method
 converts this number to a string in
 the decimal form. The optional
 precision parameter controls the
 number of digits of precision. It should be between 1 and
 21:
document.writeln(Math.PI.toPrecision(2));
document.writeln(Math.PI.toPrecision(7));
document.writeln(Math.PI.toPrecision(16));
document.writeln(Math.PI.toPrecision());

// Produces

3.1
3.141593
3.141592653589793
3.141592653589793

	number.toString(radix
)
	The toString method
 converts this number to a string. The
 optional radix parameter controls
 radix, or base. It should be between 2 and 36. The default
 radix is base 10. The
 radix parameter is most commonly
 used with integers, but it can be used on any number.
The most common case, number
 .toString(), can be written
 more simply as String(
 number
):
document.writeln(Math.PI.toString(2));
document.writeln(Math.PI.toString(8));
document.writeln(Math.PI.toString(16));
document.writeln(Math.PI.toString());

// Produces

11.001001000011111101101010100010001000010110100011
3.1103755242102643
3.243f6a8885a3
3.141592653589793

	
 Object

	
	object.hasOwnProperty(name
)
	The hasOwnProperty method
 returns true if the
 object contains a property having
 the name . The prototype chain is not
 examined. This method is useless if the
 name is hasOwnProperty:
var a = {member: true};
var b = Object.create(a); // from Chapter 3
var t = a.hasOwnProperty('member'); // t is true
var u = b.hasOwnProperty('member'); // u is false
var v = b.member; // v is true

	
 RegExp

	
	regexp.exec(string
)
	The exec method is the most
 powerful (and slowest) of the methods that use regular
 expressions. If it successfully matches the
 regexp and the
 string, it returns an array. The
 0 element of the array will contain the substring that matched
 the regexp . The 1 element is the
 text captured by group 1, the 2 element is the text captured by
 group 2, and so on. If the match fails, it returns null.
If the regexp has a g flag, things are a little more
 complicated. The searching begins not at position 0 of the
 string, but at position regexp
 .lastIndex (which is
 initially zero). If the match is successful, then
 regexp
 .lastIndex will be set to the
 position of the first character after the match. An unsuccessful
 match resets regexp
 .lastIndex to 0.
This allows you to search for several occurrences of a pattern
 in a string by calling exec
 in a loop. There are a couple things to watch out for. If you
 exit the loop early, you must reset
 regexp
 .lastIndex to 0 yourself
 before entering the loop again. Also, the ^ factor matches only when
 regexp
 .lastIndex is 0:
// Break a simple html text into tags and texts.
// (See string.replace for the entityify method.)

// For each tag or text, produce an array containing
// [0] The full matched tag or text
// [1] The /, if there is one
// [2] The tag name
// [3] The attributes, if any

var text = '<html><body bgcolor=linen><p>' +
 'This is bold<\/b>!<\/p><\/body><\/html>';
var tags = /[^<>]+|<(\/?)([A-Za-z]+)([^<>]*)>/g;
var a, i;

while ((a = tags.exec(text))) {
 for (i = 0; i < a.length; i += 1) {
 document.writeln(('// [' + i + '] ' + a[i]).entityify());
 }
 document.writeln();
}

// Result:

// [0] <html>
// [1]
// [2] html
// [3]

// [0] <body bgcolor=linen>
// [1]
// [2] body
// [3] bgcolor=linen

// [0] <p>
// [1]
// [2] p
// [3]

// [0] This is
// [1] undefined
// [2] undefined
// [3] undefined

// [0]
// [1]
// [2] b
// [3]

// [0] bold
// [1] undefined
// [2] undefined
// [3] undefined

// [0]
// [1] /
// [2] b
// [3]

// [0] !
// [1] undefined
// [2] undefined
// [3] undefined

// [0] </p>
// [1] /
// [2] p
// [3]

// [0] </body>
// [1] /
// [2] body
// [3]

// [0] </html>
// [1] /
// [2] html
// [3]

	regexp.test(string
)
	The test method is the
 simplest (and fastest) of the methods that use regular
 expressions. If the regexp matches
 the string, it returns true ; otherwise, it returns
 false. Do not use the
 g flag with this
 method:
var b = /&.+;/.test('frank & beans');
// b is true
test could be implemented
 as:
RegExp.method('test', function (string) {
 return this.exec(string) !== null;
});

	
 String

	
	string.charAt(pos
)
	The charAt method returns
 the character at position pos in this
 string . If
 pos is less than zero or greater
 than or equal to string
 .length, it returns the empty
 string. JavaScript does not have a character type. The result of
 this method is a string:
var name = 'Curly';
var initial = name.charAt(0); // initial is 'C'
charAt could be implemented
 as:
String.method('charAt', function (pos) {
return this.slice(pos, pos + 1);
});

	string.charCodeAt(pos
)
	The charCodeAt method is
 the same as charAt except
 that instead of returning a string, it returns an integer
 representation of the code point value of the character at
 position pos in that
 string . If
 pos is less than zero or greater
 than or equal to string
 .length, it returns NaN:
var name = 'Curly';
var initial = name.charCodeAt(0); // initial is 67

	string.concat(string...)
	The concat method makes a
 new string by concatenating other strings together. It is rarely
 used because the + operator
 is more convenient:
var s = 'C'.concat('a', 't'); // s is 'Cat'

	string.indexOf(searchString,
 position)
	The indexOf method searches
 for a searchString within a
 string. If it is found, it
 returns the position of the first matched character; otherwise,
 it returns −1. The optional position
 parameter causes the search to begin at some specified position
 in the string:
var text = 'Mississippi';
var p = text.indexOf('ss'); // p is 2
p = text.indexOf('ss', 3); // p is 5
p = text.indexOf('ss', 6); // p is −1

	string.lastIndexOf(searchString,
 position)
	The lastIndexOf method is
 like the indexOf method,
 except that it searches from the end of the string instead of
 the front:
var text = 'Mississippi';
var p = text.lastIndexOf('ss'); // p is 5
p = text.lastIndexOf('ss', 3); // p is 2
p = text.lastIndexOf('ss', 6); // p is 5

	string.localeCompare(that
)
	The localeCompare method
 compares two strings. The rules for how the strings are compared
 are not specified. If this string is
 less than that string, the result is
 negative. If they are equal, the result is zero. This is similar
 to the convention for the array
 .sort comparison
 function:
var m = ['AAA', 'A', 'aa', 'a', 'Aa', 'aaa'];
m.sort(function (a, b) {
 return a.localeCompare(b);
});
// m (in some locale) is
// ['a', 'A', 'aa', 'Aa', 'aaa', 'AAA']

	string.match(regexp
)
	The match method matches a
 string and a regular expression. How it does this depends on the
 g flag. If there is no
 g flag, then the result
 of calling string
 .match(
 regexp
) is the same as calling
 regexp
 .exec(
 string
). However, if the
 regexp has the g flag, then it produces an array
 of all the matches but excludes the capturing groups:
var text = '<html><body bgcolor=linen><p>' +
 'This is bold<\/b>!<\/p><\/body><\/html>';
var tags = /[^<>]+|<(\/?)([A-Za-z]+)([^<>]*)>/g;
var a, i;

a = text.match(tags);
for (i = 0; i < a.length; i += 1) {
 document.writeln(('// [' + i + '] ' + a[i]).entityify());
}

// The result is

// [0] <html>
// [1] <body bgcolor=linen>
// [2] <p>
// [3] This is
// [4]
// [5] bold
// [6]
// [7] !
// [8] </p>
// [9] </body>
// [10] </html>

	string.replace(searchValue,
 replaceValue)
	The replace method does a
 search and replace operation on this
 string, producing a new string.
 The searchValue argument can be a
 string or a regular expression object. If it is a string,
 only the first occurrence of the
 searchValue is replaced,
 so:
var result = "mother_in_law".replace('_', '-');
will produce "mother-in_law", which might be a
 disappointment.
If searchValue is a regular
 expression and if it has the g flag, then it will replace all occurrences. If
 it does not have the g flag,
 then it will replace only the first occurrence.
The replaceValue can be a string or
 a function. If replaceValue is a
 string, the character $ has
 special meaning:
// Capture 3 digits within parens

var oldareacode = /\((\d{3})\)/g;
var p = '(555)666-1212'.replace(oldareacode, '$1-');
// p is '555-666-1212'
	
 Dollar sequence

 	
 Replacement

	

 $$

 	

 $

	

 $&

 	
 The matched text

	

 $
 number

 	
 Capture group text

	

 $`

 	
 The text preceding the match

	

 $'

 	
 The text following the match

If the replaceValue is a function,
 it will be called for each match, and the string returned by the
 function will be used as the replacement text. The first
 parameter passed to the function is the matched text. The second
 parameter is the text of capture group 1, the next parameter is
 the text of capture group 2, and so on:
String.method('entityify', function () {

 var character = {
 '<' : '<',
 '>' : '>',
 '&' : '&',
 '"' : '"'
 };

// Return the string.entityify method, which
// returns the result of calling the replace method.
// Its replaceValue function returns the result of
// looking a character up in an object. This use of
// an object usually outperforms switch statements.

 return function () {
 return this.replace(/[<>&"]/g, function (c) {
 return character[c];
 });
 };
}());
alert("<&>".entityify()); // <&>

	string.search(regexp
)
	The search method is like
 the indexOf method, except
 that it takes a regular expression object instead of a string.
 It returns the position of the first character of the first
 match, if there is one, or −1 if the search fails. The g flag is ignored. There is no
 position parameter:
var text = 'and in it he says "Any damn fool could';
var pos = text.search(/["']/); // pos is 18

	string.slice(start,
 end)
	The slice method makes a
 new string by copying a portion of another
 string. If the
 start parameter is negative, it
 adds string
 .length to it. The
 end parameter is optional, and
 its default value is string
 .length. If the
 end parameter is negative, then
 string
 .length is added to it. The
 end parameter is one greater than
 the position of the last character. To get n characters starting at position
 p, use
 string
 .slice(p, p + n). Also see
 string
 .substring and
 array
 .slice, later and earlier in
 this chapter, respectively.
var text = 'and in it he says "Any damn fool could';
var a = text.slice(18);
// a is '"Any damn fool could'
var b = text.slice(0, 3);
// b is 'and'
var c = text.slice(−5);
// c is 'could'
var d = text.slice(19, 32);
// d is 'Any damn fool'

	string.split(separator,
 limit)
	The split method creates an
 array of strings by splitting this
 string into pieces. The optional
 limit parameter can limit the
 number of pieces that will be split. The
 separator parameter can be a
 string or a regular expression.
If the separator is the empty
 string, an array of single characters is produced:
var digits = '0123456789';
var a = digits.split('', 5);
// a is ['0', '1', '2', '3', '4']
Otherwise, the string is searched
 for all occurrences of the separator.
 Each unit of text between the separators is copied into the
 array. The g flag is
 ignored:
var ip = '192.168.1.0';
var b = ip.split('.');
// b is ['192', '168', '1', '0']

var c = '|a|b|c|'.split('|');
// c is ['', 'a', 'b', 'c', '']

var text = 'last, first ,middle';
var d = text.split(/\s*,\s*/);
// d is [
// 'last',
// 'first',
// 'middle'
//]
There are some special cases to watch out for. Text from
 capturing groups will be included in the split:
var e = text.split(/\s*(,)\s*/);
// e is [
// 'last',
// ',',
// 'first',
// ',',
// 'middle'
//]
Some implementations suppress empty strings in the output
 array when the separator is a regular
 expression:
var f = '|a|b|c|'.split(/\|/);
// f is ['a', 'b', 'c'] on some systems, and
// f is ['', 'a', 'b', 'c', ''] on others

	string.substring(start,
 end)
	The substring method is the
 same as the slice method
 except that it doesn’t handle the adjustment for negative
 parameters. There is no reason to use the substring method. Use slice instead.

	string.toLocaleLowerCase()
	The toLocaleLowerCase
 method produces a new string that is made by converting this
 string to lowercase using the
 rules for the locale. This is primarily for the benefit of
 Turkish because in that language `I’ converts to 1, not `i’.

	string.toLocaleUpperCase()
	The toLocaleUpperCase
 method produces a new string that is made by converting this
 string to uppercase using the
 rules for the locale. This is primarily for the benefit of
 Turkish, because in that language `i’ converts to
 `[image:]', not `I’.

	string.toLowerCase()
	The toLowerCase method
 produces a new string that is made by converting this
 string to lowercase.

	string.toUpperCase()
	The toUpperCase method
 produces a new string that is made by converting this
 string to uppercase.

	String.fromCharCode(char...)
	The String.fromCharCode
 function produces a string from a series of numbers.
var a = String.fromCharCode(67, 97, 116);
// a is 'Cat'

Chapter 9. Style

Here is a silly stately style indeed!
—William Shakespeare, The First Part of Henry the
 Sixth

Computer programs are the most complex things that humans make. Programs are made up
 of a huge number of parts, expressed as functions, statements, and expressions that are
 arranged in sequences that must be virtually free of error. The runtime behavior has
 little resemblance to the program that implements it. Software is usually expected to be
 modified over the course of its productive life. The process of converting one correct
 program into a different correct program is extremely challenging.
Good programs have a structure that anticipates—but is not overly burdened by—the
 possible modifications that will be required in the future. Good programs also have a
 clear presentation. If a program is expressed well, then we have the best chance of
 being able to understand it so that it can be successfully modified or repaired.
These concerns are true for all programming languages, and are especially true for
 JavaScript. JavaScript’s loose typing and excessive error tolerance provide little
 compile-time assurance of our programs’ quality, so to compensate, we should code with
 strict discipline.
JavaScript contains a large set of weak or problematic features that can undermine our
 attempts to write good programs. We should obviously avoid JavaScript’s worst features.
 Surprisingly, perhaps, we should also avoid the features that are often useful but
 occasionally hazardous. Such features are attractive nuisances, and by avoiding them, a
 large class of potential errors is avoided.
The long-term value of software to an organization is in direct proportion to the
 quality of the codebase. Over its lifetime, a program will be handled by many pairs of
 hands and eyes. If a program is able to clearly communicate its structure and
 characteristics, it is less likely to break when it is modified in the never-too-distant
 future.
JavaScript code is often sent directly to the public. It should always be of
 publication quality. Neatness counts. By writing in a clear and consistent style, your
 programs become easier to read.
Programmers can debate endlessly on what constitutes good style. Most programmers are
 firmly rooted in what they’re used to, such as the prevailing style where they went to
 school, or at their first job. Some have had profitable careers with no sense of style
 at all. Isn’t that proof that style doesn’t matter? And even if style doesn’t matter,
 isn’t one style as good as any other?
It turns out that style matters in programming for the same reason that it matters in
 writing. It makes for better reading.
Computer programs are sometimes thought of as a write-only medium, so it matters
 little how it is written as long as it works. But it turns out that the likelihood a
 program will work is significantly enhanced by our ability to read it, which also
 increases the likelihood that it actually works as intended. It is also the nature of
 software to be extensively modified over its productive life. If we can read and
 understand it, then we can hope to modify and improve it.
Throughout this book I have used a consistent style. My intention was to make the code
 examples as easy to read as possible. I used whitespace consistently to give you more
 cues about the meaning of my programs.
I indented the contents of blocks and object literals four spaces. I placed a space
 between if and (
 so that the if didn’t look like a function
 invocation. Only in invocations do I make (adjacent
 with the preceding symbol. I put spaces around all infix operators except for . and [, which do not
 get spaces because they have higher precedence. I use a space after every comma and
 colon.
I put at most one statement on a line. Multiple statements on a line can be misread.
 If a statement doesn’t fit on a line, I will break it after a comma or a binary
 operator. That gives more protection against copy/paste errors that are masked by
 semicolon insertion. (The tragedy of semicolon insertion will be revealed in Appendix A.) I indent the remainder of the statement an extra four
 spaces, or eight spaces if four would be ambiguous (such as a line break in the
 condition part of an if statement).
I always use blocks with structured statements such as if and while because it
 is less error prone. I have seen:
if (a)
 b();
become:
if (a)
 b();
 c();
which is an error that is very difficult to spot. It looks like:
if (a) {
 b();
 c();
}
but it means:
if (a) {
 b();
}
c();
Code that appears to mean one thing but actually means another is likely to cause
 bugs. A pair of braces is really cheap protection against bugs that can be expensive to
 find.
I always use the K&R style, putting the { at
 the end of a line instead of the front, because it avoids a horrible design blunder in
 JavaScript’s return statement.
I included some comments. I like to put comments in my programs to leave information
 that will be read at a later time by people (possibly myself) who will need to
 understand what I was thinking. Sometimes I think about comments as a time machine that
 I use to send important messages to future me.
I struggle to keep comments up-to-date. Erroneous comments can make programs even
 harder to read and understand. I can’t afford that.
I tried to not waste your time with useless comments like this:
i = 0; // Set i to zero.
In JavaScript, I prefer to use line comments. I reserve block comments for formal
 documentation and for commenting out.
I prefer to make the structure of my programs self-illuminating, eliminating the need
 for comments. I am not always successful, so while my programs are awaiting perfection,
 I am writing comments.
JavaScript has C syntax, but its blocks don’t have scope. So, the convention that
 variables should be declared at their first use is really bad advice in JavaScript.
 JavaScript has function scope, but not block scope, so I declare all of my variables at
 the beginning of each function. JavaScript allows variables to be declared after they
 are used. That feels like a mistake to me, and I don’t want to write programs that look
 like mistakes. I want my mistakes to stand out. Similarly, I never use an assignment
 expression in the condition part of an if
 because:
if (a = b) { ... }
is probably intended to be:
if (a === b) { ... }
I want to avoid idioms that look like mistakes.
I never allow switch cases to fall through to the next case. I once found a bug in my
 code caused by an unintended fall through immediately after having made a vigorous
 speech about why fall through was sometimes useful. I was fortunate in that I was able
 to learn from the experience. When reviewing the features of a language, I now pay
 special attention to features that are sometimes useful but occasionally dangerous.
 Those are the worst parts because it is difficult to tell whether
 they are being used correctly. That is a place where bugs hide.
Quality was not a motivating concern in the design, implementation, or standardization
 of JavaScript. That puts a greater burden on the users of the language to resist the
 language’s weaknesses.
JavaScript provides support for large programs, but it also provides forms and idioms
 that work against large programs. For example, JavaScript provides conveniences for the
 use of global variables, but global variables become increasingly problematic as
 programs scale in complexity.
I use a single global variable to contain an application or library. Every object has
 its own namespace, so it is easy to use objects to organize my code. Use of closure
 provides further information hiding, increasing the strength of my modules.
Chapter 10. Beautiful Features

Thus, expecting thy reply, I profane my lips on thy foot, my eyes on thy picture,
 and my heart on thy every part. Thine, in the dearest design of industry. . .
—William Shakespeare, Love’s Labor’s Lost

I was invited last year to contribute a chapter to Andy Oram’s and Greg Wilson’s
 Beautiful Code (O’Reilly), an anthology on the theme of beauty
 as expressed in computer programs. I wanted to write my chapter in JavaScript. I wanted
 to use it to present something abstract, powerful, and useful to show that the language
 was up to it. And I wanted to avoid the browser and other venues in which JavaScript is
 typecast. I wanted to show something respectable with some heft to it.
I immediately thought of Vaughn Pratt’s Top Down Operator Precedence parser, which I
 use in JSLint (see Appendix C). Parsing is an important topic in
 computing. The ability to write a compiler for a language in itself is still a test for
 the completeness of a language.
I wanted to include all of the code for a parser in JavaScript that parses JavaScript.
 But my chapter was just one of 30 or 40, so I felt constrained in the number of pages I
 could consume. A further complication was that most of my readers would have no
 experience with JavaScript, so I also would have to introduce the language and its
 peculiarities.
So, I decided to subset the language. That way, I wouldn’t have to parse the whole
 language, and I wouldn’t have to describe the whole language. I called the subset
 Simplified JavaScript. Selecting the subset was easy: it included just the features that
 I needed to write a parser. This is how I described it in Beautiful
 Code:
Simplified JavaScript is just the good stuff, including:

	
 Functions as first class objects

	Functions in Simplified JavaScript are lambdas with lexical
 scoping.

	
 Dynamic objects with prototypal inheritance

	Objects are class-free. We can add a new member to any object by ordinary
 assignment. An object can inherit members from another object.

	
 Object literals and array literals

	This is a very convenient notation for creating new objects and arrays.
 JavaScript literals were the inspiration for the JSON data interchange
 format.

The subset contained the best of the Good Parts. Even though it was a small language,
 it was very expressive and powerful. JavaScript has lots of additional features that
 really don’t add very much, and as you’ll find in the appendixes that follow, it has a
 lot of features with negative value. There was nothing ugly or bad in the subset. All of
 that fell away.
Simplified JavaScript isn’t strictly a subset. I added a few new features. The
 simplest was adding pi as a simple constant. I did
 that to demonstrate a feature of the parser. I also demonstrated a better reserved word
 policy and showed that reserved words are unnecessary. In a function, a word cannot be
 used as both a variable or parameter name and a language feature. You can use a word for
 one or the other, and the programmer gets to choose. That makes a language easier to
 learn because you don’t need to be aware of features you don’t use. And it makes the
 language easier to extend because it isn’t necessary to reserve more words to add new
 features.
I also added block scope. Block scope is not a necessary feature, but not having it
 confuses experienced programmers. I included block scope because I anticipated that my
 parser would be used to parse languages that are not JavaScript, and those languages
 would do scoping correctly. The code I wrote for the parser is written in a style that
 doesn’t care if block scope is available or not. I recommend that you write that way,
 too.
When I started thinking about this book, I wanted to take the subset idea further, to
 show how to take an existing programming language and make significant improvements to
 it by making no changes except to exclude the low-value features.
We see a lot of feature-driven product design in which the cost of features is not
 properly accounted. Features can have a negative value to consumers because they make
 the products more difficult to understand and use. We are finding that people like
 products that just work. It turns out that designs that just work are much harder to
 produce than designs that assemble long lists of features.
Features have a specification cost, a design cost, and a development cost. There is a
 testing cost and a reliability cost. The more features there are, the more likely one
 will develop problems or will interact badly with another. In software systems, there is
 a storage cost, which was becoming negligible, but in mobile applications is becoming
 significant again. There are ascending performance costs because Moore’s Law doesn’t
 apply to batteries.
Features have a documentation cost. Every feature adds pages to the manual, increasing
 training costs. Features that offer value to a minority of users impose a cost on all
 users. So, in designing products and programming languages, we want to get the core
 features—the good parts—right because that is where we create most of the value.
We all find the good parts in the products that we use. We value simplicity, and when
 simplicity isn’t offered to us, we make it ourselves. My microwave oven has tons of
 features, but the only ones I use are cook and the clock. And setting the clock is a
 struggle. We cope with the complexity of feature-driven design by finding and sticking
 with the good parts.
It would be nice if products and programming languages were designed to have only good
 parts.
Appendix A. Awful Parts

That will prove awful both in deed and word.
—William Shakespeare, Pericles, Prince of
 Tyre

In this appendix, I present the problematic features of JavaScript that are not easily
 avoided. You must be aware of these things and be prepared to cope.
Global Variables

The worst of all of JavaScript’s bad features is its dependence on global
 variables. A global variable is a variable that is visible in
 every scope. Global variables can be a convenience in very small programs, but they
 quickly become unwieldy as programs get larger. Because a global variable can be
 changed by any part of the program at any time, they can significantly complicate
 the behavior of the program. Use of global variables degrades the reliability of the
 programs that use them.
Global variables make it harder to run independent subprograms in the same
 program. If the subprograms happen to have global variables that share the same
 names, then they will interfere with each other and likely fail, usually in
 difficult to diagnose ways.
Lots of languages have global variables. For example, Java’s public static members are global variables. The
 problem with JavaScript isn’t just that it allows them, it requires them. JavaScript
 does not have a linker. All compilation units are loaded into a common global
 object.
There are three ways to define global variables. The first is to place a var statement outside of any function:
var foo = value;
The second is to add a property directly to the global object. The global object
 is the container of all global variables. In web browsers, the global object goes by
 the name window:
window.foo = value;
The third is to use a variable without declaring it. This is called
 implied global:
foo = value;
This was intended as a convenience to beginners by making it unnecessary to
 declare variables before using them. Unfortunately, forgetting to declare a variable
 is a very common mistake. JavaScript’s policy of making forgotten variables global
 creates bugs that can be very difficult to find.

Scope

JavaScript’s syntax comes from C. In all other C-like languages, a block (a set of
 statements wrapped in curly braces) creates a scope. Variables declared in a block
 are not visible outside of the block. JavaScript uses the block syntax, but does not
 provide block scope: a variable declared in a block is visible everywhere in the
 function containing the block. This can be surprising to programmers with experience
 in other languages.
In most languages, it is generally best to declare variables at the site of first
 use. That turns out to be a bad practice in JavaScript because it does not have
 block scope. It is better to declare all variables at the top of each
 function.

Semicolon Insertion

JavaScript has a mechanism that tries to correct faulty programs by automatically
 inserting semicolons. Do not depend on this. It can mask more serious
 errors.
It sometimes inserts semicolons in places where they are not welcome. Consider the
 consequences of semicolon insertion on the return
 statement. If a return statement returns a value,
 that value expression must begin on the same line as the return:
return
{
 status: true
};
This appears to return an object containing a status member. Unfortunately, semicolon insertion turns it into a
 statement that returns undefined. There is no
 warning that semicolon insertion caused the misinterpretation of the program. The
 problem can be avoided if the { is placed at the
 end of the previous line and not at the beginning of the next line:
return {
 status: true
};

Reserved Words

The following words are reserved in JavaScript:
abstract boolean break byte case catch char class const continue
 debugger default delete do double else enum export extends false final
 finally float for
 function goto if implements import in instanceof int interface long native new null
 package private protected public return short static super switch synchronized this
 throw throws transient true try typeof var volatile void while with
Most of these words are not used in the language.
They cannot be used to name variables or parameters. When reserved words are used
 as keys in object literals, they must be quoted. They cannot be used with the dot
 notation, so it is sometimes necessary to use the bracket notation
 instead:
var method; // ok
var class; // illegal
object = {box: value}; // ok
object = {case: value}; // illegal
object = {'case': value}; // ok
object.box = value; // ok
object.case = value; // illegal
object['case'] = value; // ok

Unicode

JavaScript was designed at a time when Unicode was expected to have at most 65,536
 characters. It has since grown to have a capacity of more than 1 million
 characters.
JavaScript’s characters are 16 bits. That is enough to cover the original 65,536
 (which is now known as the Basic Multilingual Plane). Each of the remaining million
 characters can be represented as a pair of characters. Unicode considers the pair to
 be a single character. JavaScript thinks the pair is two distinct characters.

typeof

The typeof operator returns a string that
 identifies the type of its operand. So:
typeof 98.6
produces 'number'. Unfortunately:
typeof null
returns 'object' instead of 'null'. Oops. A better test for null is simply:
my_value === null
A bigger problem is testing a value for objectness. typeof cannot distinguish between null and objects, but you can because null is falsy and all objects are truthy:
if (my_value && typeof my_value === 'object') {
 // my_value is an object or an array!
}
Also see the later sections "NaN" and "Phony Arrays.”
Implementations disagree on the type of regular expression objects. Some
 implementations report that:
typeof /a/
is 'object', and others say that it is 'function'. It might have been more useful to report
 'regexp', but the standard does not allow
 that.

parseInt

parseInt is a function that converts a string
 into an integer. It stops when it sees a nondigit, so parseInt("16") and parseInt("16
 tons") produce the same result. It would be nice if the function
 somehow informed us about the extra text, but it doesn’t.
If the first character of the string is 0, then the string is evaluated in base 8
 instead of base 10. In base 8, 8 and 9 are not digits, so parseInt("08") and parseInt("09")
 produce 0 as their result. This error causes problems in programs that parse dates
 and times. Fortunately, parseInt can take a radix
 parameter, so that parseInt("08", 10) produces 8.
 I recommend that you always provide the radix parameter.

+

The + operator can add or concatenate. Which
 one it does depends on the types of the parameters. If either operand is an empty
 string, it produces the other operand converted to a string. If both operands are
 numbers, it produces the sum. Otherwise, it converts both operands to strings and
 concatenates them. This complicated behavior is a common source of bugs. If you
 intend + to add, make sure that both operands are
 numbers.

Floating Point

Binary floating-point numbers are inept at handling decimal fractions, so 0.1 +
 0.2 is not equal to 0.3. This is the most frequently reported bug in JavaScript, and
 it is an intentional consequence of having adopted the IEEE Standard for Binary
 Floating-Point Arithmetic (IEEE 754). This standard is well-suited for many
 applications, but it violates most of the things you learned about numbers in middle
 school. Fortunately, integer arithmetic in floating point is exact, so decimal
 representation errors can be avoided by scaling.
For example, dollar values can be converted to whole cents values by multiplying
 them by 100. The cents then can be accurately added. The sum can be divided by 100
 to convert back into dollars. People have a reasonable expectation when they count
 money that the results will be exact.

NaN

The value NaN is a special quantity defined by
 IEEE 754. It stands for not a number, even though:
typeof NaN === 'number' // true
The value can be produced by attempting to convert a string to a number when the
 string is not in the form of a number. For example:
+ '0' // 0
+ 'oops' // NaN
If NaN is an operand in an arithmetic
 operation, then NaN will be the result. So, if
 you have a chain of formulas that produce NaN as
 a result, at least one of the inputs was NaN, or
 NaN was generated somewhere.
You can test for NaN. As we have seen, typeof does not distinguish between numbers and
 NaN, and it turns out that NaN is not equal to itself. So, surprisingly:
NaN === NaN // false
NaN !== NaN // true
JavaScript provides an isNaN function that can
 distinguish between numbers and NaN:
isNaN(NaN) // true
isNaN(0) // false
isNaN('oops') // true
isNaN('0') // false
The isFinite function is the best way of
 determining whether a value can be used as a number because it rejects NaN and Infinity.
 Unfortunately, isFinite will attempt to convert
 its operand to a number, so it is not a good test if a value is not actually a
 number. You may want to define your own isNumber
 function:
var isNumber = function isNumber(value) {
 return typeof value === 'number' && isFinite(value);
};

Phony Arrays

JavaScript does not have real arrays. That isn’t all bad. JavaScript’s arrays are
 really easy to use. There is no need to give them a dimension, and they never
 generate out-of-bounds errors. But their performance can be considerably worse than
 real arrays.
The typeof operator does not distinguish
 between arrays and objects. To determine that a value is an array, you also need to
 consult its constructor property:
if (Object.prototype.toString.apply(my_value) === '[object Array]'){
 // my_value is truly an array!
}
That test will give a false negative if an array was created in a different frame
 or window. This test is more reliable when the value might have been created in
 another frame:
if (my_value && typeof my_value === 'object' &&
 typeof my_value.length === 'number' &&
 !(my_value.propertyIsEnumerable('length')) {
 // my_value is truly an array!
}
The arguments array is not an array; it is an
 object with a length member. These tests will not
 identify the arguments array as an array.

Falsy Values

JavaScript has a surprisingly large set of falsy values, shown in See Table A-1.
Table A-1. The many falsy values of JavaScript
	
 Value

 	
 Type

	

 0

 	
 Number

	
 NaN (not a number)

 	
 Number

	
 '' (empty string)

 	
 String

	

 false

 	
 Boolean

	

 null

 	
 Object

	

 undefined

 	
 Undefined

These values are all falsy, but they are not interchangeable. For example, this is
 the wrong way to determine if an object is missing a member:
value = myObject[name];
if (value == null) {
 alert(name + ' not found.');
}
undefined is the value of missing members, but
 the snippet is testing for null. It is using the
 == operator (see Appendix B), which does type coercion, instead of the more reliable === operator. Sometimes those two errors cancel each other out.
 Sometimes they don’t.
undefined and NaN are not constants. They are global variables, and you can change
 their values. That should not be possible, and yet it is. Don’t do it.

hasOwnProperty

In Chapter 3, the hasOwnProperty method was offered as a filter to work around a
 problem with the for in statement. Unfortunately,
 hasOwnProperty is a method, not an operator,
 so in any object it could be replaced with a different function or even a value that
 is not a function:
var name;
another_stooge.hasOwnProperty = null; // trouble
for (name in another_stooge) {
 if (another_stooge.hasOwnProperty(name)) { // boom
 document.writeln(name + ': ' + another_stooge[name]);
 }
}

Object

JavaScript’s objects are never truly empty because they can pick up members from
 the prototype chain. Sometimes that matters. For example, suppose you are writing a
 program that counts the number of occurrences of each word in a text. We can use the
 toLowerCase method to normalize the text to
 lowercase, and then use the split method with a
 regular expression to produce an array of words. We can then loop through the words
 and count the number of times we see each one:
var i;
var word;
var text =
 "This oracle of comfort has so pleased me, " +
 "That when I am in heaven I shall desire " +
 "To see what this child does, " +
 "and praise my Constructor.";

var words = text.toLowerCase().split(/[\s,.]+/);
var count = {};
for (i = 0; i < words.length; i += 1) {
 word = words[i];
 if (count[word]) {
 count[word] += 1;
 } else {
 count[word] = 1;
 }
}
If we look at the results, count['this'] is 2
 and count.heaven is 1, but count.constructor contains a crazy looking string. The
 reason is that the count object inherits from
 Object.prototype, and Object.prototype contains a member named constructor whose value is Object. The += operator, like the
 + operator, does concatenation rather than
 addition when its operands are not numbers. Object is a function, so +=
 converts it to a string somehow and concatenates a 1 to its butt.
We can avoid problems like this the same way we avoid problems with for in: by testing for membership with the hasOwnProperty method or by looking for specific
 types. In this case, our test for the truthiness of count[word] was not specific enough. We could have written
 instead:
if (typeof count[word] === 'number') {

Appendix B. Bad Parts

And, I pray thee now, tell me for which of my bad parts didst thou first fall in
 love with me?
—William Shakespeare, Much Ado About
 Nothing

In this appendix, I present some of the problematic features of JavaScript that are
 easily avoided. By simply avoiding these features, you make JavaScript a better
 language, and yourself a better programmer.
==

JavaScript has two sets of equality operators: === and !==, and their evil twins
 == and !=.
 The good ones work the way you would expect. If the two operands are of the same
 type and have the same value, then === produces
 true and !== produces false. The evil twins
 do the right thing when the operands are of the same type, but if they are of
 different types, they attempt to coerce the values. The rules by which they do that
 are complicated and unmemorable. These are some of the interesting cases:
'' == '0' // false
0 == '' // true
0 == '0' // true

false == 'false' // false
false == '0' // true

false == undefined // false
false == null // false
null == undefined // true

' \t\r\n ' == 0 // true
The lack of transitivity is alarming. My advice is to never use the evil twins.
 Instead, always use === and !==. All of the comparisons just shown produce
 false with the === operator.

with Statement

JavaScript has a with statement that was
 intended to provide a shorthand when accessing the properties of an object.
 Unfortunately, its results can sometimes be unpredictable, so it should be
 avoided.
The statement:
with (obj) {
 a = b;
}
does the same thing as:
if (obj.a === undefined) {
 a = obj.b === undefined ? b : obj.b;
} else {
 obj.a = obj.b === undefined ? b : obj.b;
}
So, it is the same as one of these statements:
a = b;
a = obj.b;
obj.a = b;
obj.a = obj.b;
It is not possible to tell from reading the program which of those statements you
 will get. It can vary from one running of the program to the next. It can even vary
 while the program is running. If you can’t read a program and understand what it is
 going to do, it is impossible to have confidence that it will correctly do what you
 want.
Simply by being in the language, the with
 statement significantly slows down JavaScript processors because it frustrates the
 lexical binding of variable names. It was well intentioned, but the language would
 be better if it didn’t have it.

eval

The eval function passes a string to the
 JavaScript compiler and executes the result. It is the single most misused feature
 of JavaScript. It is most commonly used by people who have an incomplete
 understanding of the language. For example, if you know about the dot notation, but
 are ignorant of the subscript notation, you might write:
eval("myValue = myObject." + myKey + ";");
instead of:
myvalue = myObject[myKey];
The eval form is much harder to read. This form
 will be significantly slower because it needs to run the compiler just to execute a
 trivial assignment statement. It also frustrates JSLint (see Appendix C), so the tool’s ability to detect problems is significantly reduced.
The eval function also compromises the security
 of your application because it grants too much authority to the eval‘d text. And it compromises the performance of the
 language as a whole in the same way that the with
 statement does.
The Function constructor is another form of
 eval, and should similarly be avoided.
The browser provides setTimeout and setInterval functions that can take string arguments
 or function arguments. When given string arguments, setTimeout and setInterval act as
 eval. The string argument form also should be
 avoided.

continue Statement

The continue statement jumps to the top of the
 loop. I have never seen a piece of code that was not improved by refactoring it to
 remove the continue statement.

switch Fall Through

The switch statement was modeled after the
 FORTRAN IV computed go to statement. Each case
 falls through into the next case unless you explicitly disrupt the flow.
Someone wrote to me once suggesting that JSLint should give a warning when a case
 falls through into another case. He pointed out that this is a very common source of
 errors, and it is a difficult error to see in the code. I answered that that was all
 true, but that the benefit of compactness obtained by falling through more than
 compensated for the chance of error.
The next day, he reported that there was an error in JSLint. It was misidentifying
 an error. I investigated, and it turned out that I had a case that was falling
 through. In that moment, I achieved enlightenment. I no longer use intentional fall
 throughs. That discipline makes it much easier to find the unintentional fall
 throughs.
The worst features of a language aren’t the features that are obviously dangerous
 or useless. Those are easily avoided. The worst features are the attractive
 nuisances, the features that are both useful and dangerous.

Block-less Statements

An if or while or do or for statement can take a block or a single statement.
 The single statement form is another attractive nuisance. It offers the advantage of
 saving two characters, a dubious advantage. It obscures the program’s structure so
 that subsequent manipulators of the code can easily insert bugs. For
 example:
if (ok)
 t = true;
can become:
if (ok)
 t = true;
 advance();
which looks like:
if (ok) {
 t = true;
 advance();
}
but which actually means:
if (ok) {
 t = true;
}
advance();
Programs that appear to do one thing but actually do another are much harder to
 get right. A disciplined and consistent use of blocks makes it easier to get it
 right.

++ −−

The increment and decrement operators make it possible to write in an extremely
 terse style. In languages such as C, they made it possible to write one-liners that
 could do string copies:
for (p = src, q = dest; !*p; p++, q++) *q = *p;
They also encourage a programming style that, as it turns out, is reckless. Most
 of the buffer overrun bugs that created terrible security vulnerabilities were due
 to code like this.
In my own practice, I observed that when I used ++ and --, my code tended to be
 too tight, too tricky, too cryptic. So, as a matter of discipline, I don’t use them
 any more. I think that as a result, my coding style has become cleaner.

Bitwise Operators

JavaScript has the same set of bitwise operators as Java:
& and
| or
^ xor
˜ not
>> signed right shift
>>> unsigned right shift
<< left shift
In Java, the bitwise operators work with integers. JavaScript doesn’t have
 integers. It only has double precision floating-point numbers. So, the bitwise
 operators convert their number operands into integers, do their business, and then
 convert them back. In most languages, these operators are very close to the hardware
 and very fast. In JavaScript, they are very far from the hardware and very slow.
 JavaScript is rarely used for doing bit manipulation.
As a result, in JavaScript programs, it is more likely that & is a mistyped && operator. The presence of the bitwise operators reduces
 some of the language’s redundancy, making it easier for bugs to hide.

The function Statement Versus the function Expression

JavaScript has a function statement as well as
 a function expression. This is confusing because
 they can look exactly the same. A function
 statement is shorthand for a var statement with a
 function value.
The statement:
function foo() {}
means about the same thing as:
var foo = function foo() {};
Throughout this book, I have been using the second form because it makes it clear
 that foo is a variable containing a function
 value. To use the language well, it is important to understand that functions are
 values.
function statements are subject to
 hoisting. This means that regardless of where a function is placed, it is moved to the top of the
 scope in which it is defined. This relaxes the requirement that functions should be
 declared before used, which I think leads to sloppiness. It also prohibits the use
 of function statements in if statements. It turns out that most browsers allow
 function statements in if statements, but they vary in how that should be
 interpreted. That creates portability problems.
The first thing in a statement cannot be a function expression because the official grammar assumes that a
 statement that starts with the word function is a
 function statement. The workaround is to wrap
 the whole invocation in parentheses:
(function () {
 var hidden_variable;

 // This function can have some impact on
 // the environment, but introduces no new
 // global variables.
}());

Typed Wrappers

JavaScript has a set of typed wrappers. For example:
new Boolean(false)
produces an object that has a valueOf method
 that returns the wrapped value. This turns out to be completely unnecessary and
 occasionally confusing. Don’t use new Boolean or
 new Number or new
 String.
Also avoid new Object and new Array. Use {}
 and [] instead.

new

JavaScript’s new operator creates a new object
 that inherits from the operand’s prototype member, and then calls the operand,
 binding the new object to this. This gives the
 operand (which had better be a constructor function) a chance to customize the new
 object before it is returned to the requestor.
If you forget to use the new operator, you
 instead get an ordinary function call, and this
 is bound to the global object instead of to a new object. That means that your
 function will be clobbering global variables when it attempts to initialize the new
 members. That is a very bad thing. There is no compile-time warning. There is no
 runtime warning.
By convention, functions that are intended to be used with new should be given names with initial capital
 letters, and names with initial capital letters should be used only with constructor
 functions that take the new prefix. This
 convention gives us a visual cue that can help spot expensive mistakes that the
 language itself is keen to overlook.
An even better coping strategy is to not use new at all.

void

In many languages, void is a type that has no
 values. In JavaScript, void is an operator that
 takes an operand and returns undefined. This is
 not useful, and it is very confusing. Avoid void.

Appendix C. JSLint

What error drives our eyes and ears amiss?
—William Shakespeare, The Comedy of
 Errors

When C was a young programming language, there were several common programming errors
 that were not caught by the primitive compilers, so an accessory program called lint was developed that would scan a source file, looking
 for problems.
As C matured, the definition of the language was strengthened to eliminate some
 insecurities, and compilers got better at issuing warnings. lint is no longer needed.
JavaScript is a young-for-its-age language. It was originally intended to do small
 tasks in web pages, tasks for which Java was too heavy and clumsy. But JavaScript is a
 very capable language, and it is now being used in larger projects. Many of the features
 that were intended to make the language easy to use are troublesome for larger projects.
 A lint for JavaScript is needed: JSLint, a JavaScript
 syntax checker and verifier.
JSLint is a code quality tool for JavaScript. It takes a source text and scans it. If
 it finds a problem, it returns a message describing the problem and an approximate
 location within the source. The problem is not necessarily a syntax error, although it
 often is. JSLint looks at some style conventions as well as structural problems. It does
 not prove that your program is correct. It just provides another set of eyes to help
 spot problems.
JSLint defines a professional subset of JavaScript, a stricter language than that
 defined by the third edition of the ECMAScript Language
 Specification. The subset is closely related to the style recommendations
 from Chapter 9.
JavaScript is a sloppy language, but inside it there is an elegant, better language.
 JSLint helps you to program in that better language and to avoid most of the
 slop.
JSLint can be found at http://www.JSLint.com/.
Undefined Variables and Functions

JavaScript’s biggest problem is its dependence on global variables, particularly
 implied global variables. If a variable is not explicitly declared (usually with the
 var statement), then JavaScript assumes that
 the variable was global. This can mask misspelled names and other
 problems.
JSLint expects that all variables and functions will be declared before they are
 used or invoked. This allows it to detect implied global variables. It is also good
 practice because it makes programs easier to read.
Sometimes a file is dependent on global variables and functions that are defined
 elsewhere. You can identify these to JSLint by including a comment in your file that
 lists the global functions and objects that your program depends on, but that are
 not defined in your program or script file.
A global declaration comment can be used to list all of the names that you are
 intentionally using as global variables. JSLint can use this information to identify
 misspellings and forgotten var declarations. A
 global declaration can look like this:
/*global getElementByAttribute, breakCycles, hanoi */
A global declaration starts with /*global.
 Notice that there is no space before the g. You
 can have as many /*global comments as you like.
 They must appear before the use of the variables they specify.
Some globals can be predefined for you (see the later section "Options“). Select the “Assume a browser” (browser) option to predefine the standard global properties that are
 supplied by web browsers, such as window and
 document and alert. Select the “Assume Rhino” (rhino) option to predefine the global properties provided by the
 Rhino environment. Select the “Assume a Yahoo Widget” (widget) option to predefine the global properties provided by the
 Yahoo! Widgets environment.

Members

Since JavaScript is a loosely typed dynamic-object language, it is not possible to
 determine at compile time if property names are spelled correctly. JSLint provides
 some assistance with this.
At the bottom of its report, JSLint displays a /*members*/ comment. It contains all of the names and string literals
 that were used with dot notation, subscript notation, and object literals to name
 the members of objects. You can look through the list for misspellings. Member names
 that were used only once are shown in italics. This is to make misspellings easier
 to spot.
You can copy the /*members*/ comment into your
 script file. JSLint will check the spelling of all property names against the list.
 That way, you can have JSLint look for misspellings for you:
/*members doTell, iDoDeclare, mercySakes,
 myGoodness, ohGoOn, wellShutMyMouth */

Options

The implementation of JSLint accepts an option object that allows you to determine
 the subset of JavaScript that is acceptable to you. It is also possible to set those
 options within the source of a script.
An option specification can look like this:
/*jslint nomen: true, evil: false */
An option specification starts with /*jslint.
 Notice that there is no space before the j. The
 specification contains a sequence of name/value pairs, where the names are JSLint
 options and the values are true or false. An option specification takes precedence over
 the option object. All of the options default to false. Table C-1 lists the options available
 in using JSLint.
Table C-1. JSLint options
	
 Option

 	
 Meaning

	

 adsafe

 	
 true if ADsafe.org rules
 should be enforced

	

 bitwise

 	
 true if bitwise operators
 should not be allowed

	

 browser

 	
 true if the standard
 browser globals should be predefined

	

 cap

 	
 true if uppercase HTML
 should be allowed

	

 debug

 	
 true if debugger statements should be
 allowed

	

 eqeqeq

 	
 true if === should be required

	

 evil

 	
 true if eval should be allowed

	

 for in

 	
 true if unfiltered for in statements should be
 allowed

	

 fragment

 	
 true if HTML fragments
 should be allowed

	

 laxbreak

 	
 true if statement breaks
 should not be checked

	

 nomen

 	
 true if names should be
 checked

	

 on

 	
 true if HTML event handlers
 should be allowed

	

 passfail

 	
 true if the scan should
 stop on first error

	

 plusplus

 	
 true if ++ and -- should not be allowed

	

 rhino

 	
 true if the Rhino
 environment globals should be predefined

	

 undef

 	
 true if undefined global
 variables are errors

	

 white

 	
 true if strict whitespace
 rules apply

	

 widget

 	
 true if the Yahoo! Widgets
 globals should be predefined

[image: image with no caption]

[image: image with no caption]

Semicolon

JavaScript uses a C-like syntax, which requires the use of semicolons to delimit
 statements. JavaScript attempts to make semicolons optional with a semicolon
 insertion mechanism. This is dangerous.
Like C, JavaScript has ++ and -- and (operators,
 which can be prefixes or suffixes. The disambiguation is done by the
 semicolon.
In JavaScript, a linefeed can be whitespace, or it can act as a semicolon. This
 replaces one ambiguity with another.
JSLint expects that every statement be followed by ; except for for, function, if,
 switch, try, and while. JSLint does not
 expect to see unnecessary semicolons or the empty statement.

Line Breaking

As a further defense against the masking of errors by the semicolon insertion
 mechanism, JSLint expects long statements to be broken only after one of these
 punctuation characters or operators:
, ; : { } ([= < > ? ! + - * / % ˜ ^ | &
== != <= >= += -= *= /= %= ^= |= &= << >> || &&
=== !== <<= >>= >>> >>>=
JSLint does not expect to see a long statement broken after an identifier, a
 string, a number, a closer, or a suffix operator:
)] . ++ −−
JSLint allows you to turn on the “Tolerate sloppy line breaking” (laxbreak) option.
Semicolon insertion can mask copy/paste errors. If you always break lines after
 operators, then JSLint can do a better job of finding those errors.

Comma

The comma operator can lead to excessively tricky expressions. It can also mask
 some programming errors.
JSLint expects to see the comma used as a separator, but not as an operator
 (except in the initialization and incrementation parts of the for statement). It does not expect to see elided
 elements in array literals. Extra commas should not be used. A comma should not
 appear after the last element of an array literal or object literal because it can
 be misinterpreted by some browsers.

Required Blocks

JSLint expects that if and for statements will be made with blocks—that is, with
 statements enclosed in braces ({}).
JavaScript allows an if to be written like
 this:
if (condition)
 statement;
That form is known to contribute to mistakes in projects where many programmers
 are working on the same code. That is why JSLint expects the use of a block:
if (condition) {
 statements;
}
Experience shows that this form is more resilient.

Forbidden Blocks

In many languages, a block introduces a scope. Variables introduced in a block are
 not visible outside of the block.
In JavaScript, blocks do not introduce a scope. There is only function-scope. A
 variable introduced anywhere in a function is visible everywhere in the function.
 JavaScript’s blocks confuse experienced programmers and lead to errors because the
 familiar syntax makes a false promise.
JSLint expects blocks with function, if, switch,
 while, for, do, and try statements and nowhere else. An exception is made for an
 unblocked if statement on an else or for
 in.

Expression Statements

An expression statement is expected to be an assignment, a function/method call,
 or delete. All other expression statements are
 considered errors.

for in Statement

The for in statement allows for looping through
 the names of all of the properties of an object. Unfortunately, it also loops
 through all of the members that were inherited through the prototype chain. This has
 the bad side effect of serving up method functions when the interest is in the data
 members.
The body of every for in statement should be
 wrapped in an if statement that does filtering.
 if can select for a particular type or range
 of values, it can exclude functions, or it can exclude properties from the
 prototype. For example:
for (name in object) {
 if (object.hasOwnProperty(name)) {

 }
}

switch Statement

A common error in switch statements is to
 forget to place a break statement after each
 case, resulting in unintended fall-through. JSLint expects that the statement before
 the next case or default is one of these: break,
 return, or throw.

var Statement

JavaScript allows var definitions to occur
 anywhere within a function. JSLint is stricter.
JSLint expects that:
	A var will be declared only once, and
 that it will be declared before it is used.

	A function will be declared before it is used.

	Parameters will not also be declared as vars.

JSLint does not expect:
	The arguments array to be declared as a
 var.

	That a variable will be declared in a block. This is because JavaScript
 blocks do not have block scope. This can have unexpected consequences, so
 define all variables at the top of the function body.

with Statement

The with statement was intended to provide a
 shorthand in accessing members in deeply nested objects. Unfortunately, it behaves
 very badly when setting new members. Never use the with statement. Use a var
 instead.
JSLint does not expect to see a with
 statement.

=

JSLint does not expect to see an assignment statement in the condition part of an
 if or while statement. This is because it is more likely that:
if (a = b) {
 ...
}
was intended to be:
if (a == b) {
 ...
}

== and !=

The == and != operators do type coercion before comparing. This is bad because
 it causes ' \f\r \n\t ' == 0 to be true. This can mask type errors.
When comparing to any of the following values, always use the === or !==
 operators, which do not do type coercion:
0 '' undefined null false true
If you want the type coercion, then use the short form. Instead of:
(foo != 0)
just say:
(foo)
And instead of:
(foo == 0)
say:
(!foo)
Use of the === and !== operators is always preferred. There is a “Disallow == and != "
 (eqeqeq) option, which requires the use of
 === and !== in all cases.

Labels

JavaScript allows any statement to have a label, and labels have a separate
 namespace. JSLint is stricter.
JSLint expects labels only on statements that interact with break: switch,
 while, do,
 and for. JSLint expects that labels will be
 distinct from variables and parameters.

Unreachable Code

JSLint expects that a return, break, continue, or
 throw statement will be followed by a
 } or case
 or default.

Confusing Pluses and Minuses

JSLint expects that + will not be followed by
 + or ++,
 and that - will not be followed by - or --. A
 misplaced space can turn + + into ++, an error that is difficult to see. Use parentheses
 to avoid confusion.

++ and −−

The ++ (increment) and -- (decrement) operators have been known to contribute to bad code by
 encouraging excessive trickiness. They are second only to faulty architecture in
 enabling viruses and other security menaces. The JSLint option plusplus allows the use of these operators.

Bitwise Operators

JavaScript does not have an integer type, but it does have bitwise operators. The
 bitwise operators convert their operands from floating-point to integers and back,
 so they are not nearly as efficient as they are in C or other languages. They are
 rarely useful in browser applications. The similarity to the logical operators can
 mask some programming errors. The bitwise option
 prohibits the use of these operators.

eval Is Evil

The eval function and its relatives (Function, setTimeout, and setInterval)
 provide access to the JavaScript compiler. This is sometimes useful, but in most
 cases it indicates the presence of extremely bad coding. The eval function is the most misused feature of
 JavaScript.

void

In most C-like languages, void is a type. In
 JavaScript, void is a prefix operator that always
 returns undefined. JSLint does not expect to see
 void because it is confusing and not very
 useful.

Regular Expressions

Regular expressions are written in a terse and cryptic notation. JSLint looks for
 problems that may cause portability problems. It also attempts to resolve visual
 ambiguities by recommending explicit escapement.
JavaScript’s syntax for regular expression literals overloads the / character. To avoid ambiguity, JSLint expects that
 the character preceding a regular expression literal is a (or = or : or , character.

Constructors and new

Constructors are functions that are designed to be used with the new prefix. The new
 prefix creates a new object based on the function’s prototype, and binds that object
 to the function’s implied this parameter. If you
 neglect to use the new prefix, no new object will
 be made, and this will be bound to the global
 object. This is a serious mistake.
JSLint enforces the convention that constructor functions be given names with
 initial uppercase letters. JSLint does not expect to see a function invocation with
 an initial uppercase name unless it has the new
 prefix. JSLint does not expect to see the new
 prefix used with functions whose names do not start with initial
 uppercase.
JSLint does not expect to see the wrapper forms new
 Number, new String, or new Boolean.
JSLint does not expect to see new Object (use
 {} instead).
JSLint does not expect to see new Array (use
 [] instead).

Not Looked For

JSLint does not do flow analysis to determine that variables are assigned values
 before they are used. This is because variables are given a value (undefined) that is a reasonable default for many
 applications.
JSLint does not do any kind of global analysis. It does not attempt to determine
 that functions used with new are really
 constructors (except by enforcing capitalization conventions).

HTML

JSLint is able to handle HTML text. It can inspect the JavaScript content
 contained within <script>...</script>
 tags and event handlers. It also inspects the HTML content, looking for problems
 that are known to interfere with JavaScript:
	All tag names must be in lowercase.

	All tags that can take a close tag (such as </p>) must have a close tag.

	All tags are correctly nested.

	The entity < must be used for
 literal <.

JSLint is less anal than the sycophantic conformity demanded by XHTML, but more
 strict than the popular browsers.
JSLint also checks for the occurrence of </
 in string literals. You should always write <\/ instead. The extra backslash is ignored by the JavaScript
 compiler, but not by the HTML parser. Tricks like this should not be necessary, and
 yet they are.
There is an option that allows use of uppercase tag names. There is also an option
 that allows the use of inline HTML event handlers.

JSON

JSLint can also check that JSON data structures are well formed. If the first
 character JSLint sees is { or [, then it strictly enforces the JSON rules. See Appendix E.

Report

If JSLint is able to complete its scan, it generates a function report. It lists
 the following for each function:
	The line number on which it starts.

	Its name. In the case of anonymous functions, JSLint will “guess” the
 name.

	The parameters.

	Closure: the variables and parameters that are declared in the function
 that are used by its inner functions.

	Variables: the variables declared in the function that are used only by
 the function.

	Unused: the variables that are declared in the function that are not used.
 This may be an indication of an error.

	Outer: variables used by this function that are declared in another
 function.

	Global: global variables that are used by this function.

	Label: statement labels that are used by this function.

The report will also include a list of all of the member names that were
 used.

Appendix D. Syntax Diagrams

Thou map of woe, that thus dost talk in signs!
—William Shakespeare, The Tragedy of Titus
 Andronicus

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

Appendix E. JSON

Farewell: the leisure and the fearful time Cuts off the ceremonious vows of love
 And ample interchange of sweet discourse, Which so long sunder’d friends should
 dwell upon: God give us leisure for these rites of love! Once more, adieu: be
 valiant, and speed well!
—William Shakespeare, The Tragedy of Richard the
 Third

JavaScript Object Notation (JSON) is a lightweight data interchange format. It is
 based on JavaScript’s object literal notation, one of JavaScript’s best parts. Even
 though it is a subset of JavaScript, it is language independent. It can be used to
 exchange data between programs written in all modern programming languages. It is a text
 format, so it is readable by humans and machines. It is easy to implement and easy to
 use. There is a lot of material about JSON at http://www.JSON.org/.
JSON Syntax

JSON has six kinds of values: objects, arrays, strings, numbers, booleans
 (true and false), and the special value null. Whitespace (spaces, tabs, carriage returns, and newline characters)
 may be inserted before or after any value. This can make JSON texts easier for
 humans to read. Whitespace may be omitted to reduce transmission or storage
 costs.
[image: image with no caption]

A JSON object is an unordered container of name/value pairs. A name can be any
 string. A value can be any JSON value, including arrays and objects. JSON objects
 can be nested to any depth, but generally it is most effective to keep them
 relatively flat. Most languages have a feature that maps easily to JSON objects,
 such as an object, struct, record, dictionary, hash table, property list, or
 associative array.
[image: image with no caption]

The JSON array is an ordered sequence of values. A value can be any JSON value,
 including arrays and objects. Most languages have a feature that maps easily onto
 JSON arrays, such as an array, vector, list, or sequence.
[image: image with no caption]

A JSON string is wrapped in double quotes. The \ character is used for escapement. JSON allows the / character to be escaped so that JSON can be embedded
 in HTML <script> tags. HTML does not allow
 the sequence </ except to start the </script> tag. JSON allows <\/, which produces the same result but does not
 confuse HTML.
[image: image with no caption]

JSON numbers are like JavaScript numbers. A leading zero is not allowed on
 integers because some languages use that to indicate the octal. That kind of radix
 confusion is not desirable in a data interchange format. A number can be an integer,
 real, or scientific.
[image: image with no caption]

That’s it. That is all of JSON. JSON’s design goals were to be minimal, portable,
 textual, and a subset of JavaScript. The less we need to agree on in order to
 interoperate, the more easily we can interoperate.
[
 {
 "first": "Jerome",
 "middle": "Lester",
 "last": "Howard",
 "nick-name": "Curly",
 "born": 1903,
 "died": 1952,
 "quote": "nyuk-nyuk-nyuk!"
 },
 {
 "first": "Harry",
 "middle": "Moses",
 "last": "Howard",
 "nick-name": "Moe",
 "born": 1897,
 "died": 1975,
 "quote": "Why, you!"
 },
 {
 "first": "Louis",
 "last": "Feinberg",
 "nick-name": "Larry",
 "born": 1902,
 "died": 1975,
 "quote": "I'm sorry. Moe, it was an accident!"
 }
]

Using JSON Securely

JSON is particularly easy to use in web applications because JSON is JavaScript. A
 JSON text can be turned into a useful data structure with the eval function:
var myData = eval('(' + myJSONText + ')');
(The concatenation of the parentheses around the JSON text is a workaround for an
 ambiguity in JavaScript’s grammar.)
The eval function has horrendous security
 problems, however. Is it safe to use eval to
 parse a JSON text? Currently, the best technique for obtaining data from a server in
 a web browser is through XMLHttpRequest. XMLHttpRequest can obtain data only from the same
 server that produced the HTML. evaling text from
 that server is no less secure than the original HTML. But, that assumes the server
 is malicious. What if the server is simply incompetent?
An incompetent server might not do the JSON encoding correctly. If it builds JSON
 texts by slapping together some strings rather than using a proper JSON encoder,
 then it could unintentionally send dangerous material. If it acts as a proxy and
 simply passes JSON text through without determining whether it is well formed, then
 it could send dangerous material again.
The danger can be avoided by using the JSON.parse method instead of eval
 (see http://www.JSON.org/json2.js). JSON.parse will throw an exception if the text contains anything
 dangerous. It is recommended that you always use JSON.parse instead of eval to
 defend against server incompetence. It is also good practice for the day when the
 browser provides safe data access to other servers.
There is another danger in the interaction between external data and innerHTML. A common Ajax pattern is for the server to
 send an HTML text fragment that gets assigned to the innerHTML property of an HTML element. This is a very bad practice.
 If the HTML text contains a <script> tag or
 its equivalent, then an evil script will run. This again could be due to server
 incompetence.
What specifically is the danger? If an evil script gets to run on your page, it
 gets access to all of the state and capabilities of the page. It can interact with
 your server, and your server will not be able to distinguish the evil requests from
 legitimate requests. The evil script has access to the global object, which gives it
 access to all of the data in the application except for variables hidden in
 closures. It has access to the document object, which gives it access to everything
 that the user sees. It also gives the evil script the capability to dialog with the
 user. The browser’s location bar and all of the anti-phishing chrome will tell the
 user that the dialog should be trusted. The document object also gives the evil
 script access to the network, allowing it to load more evil scripts, or to probe for
 sites within your firewall, or to send the secrets it has learned to any server in
 the world.
This danger is a direct consequence of JavaScript’s global object, which is far
 and away the worst part of JavaScript’s many bad parts. These dangers are not caused
 by Ajax or JSON or XMLHttpRequest or Web 2.0
 (whatever that is). These dangers have been in the browser since the introduction of
 JavaScript, and will remain until JavaScript is replaced or repaired. Be
 careful.

A JSON Parser

This is an implementation of a JSON parser in JavaScript:
var json_parse = function () {

// This is a function that can parse a JSON text, producing a JavaScript
// data structure. It is a simple, recursive descent parser.

// We are defining the function inside of another function to avoid creating
// global variables.

 var at, // The index of the current character
 ch, // The current character
 escapee = {
 '"': '"',
 '\\': '\\',
 '/': '/',
 b: 'b',
 f: '\f',
 n: '\n',
 r: '\r',
 t: '\t'
 },
 text,

 error = function (m) {

// Call error when something is wrong.

 throw {
 name: 'SyntaxError',
 message: m,
 at: at,
 text: text
 };
 },

 next = function (c) {

// If a c parameter is provided, verify that it matches the current character.

 if (c && c !== ch) {
 error("Expected '" + c + "' instead of '" + ch + "'");
 }

// Get the next character. When there are no more characters,
// return the empty string.

 ch = text.charAt(at);
 at += 1;
 return ch;
 },

 number = function () {

// Parse a number value.

 var number,
 string = '';

 if (ch === '-') {
 string = '-';
 next('-');
 }
 while (ch >= '0' && ch <= '9') {
 string += ch;
 next();
 }
 if (ch === '.') {
 string += '.';
 while (next() && ch >= '0' && ch <= '9') {
 string += ch;
 }
 }
 if (ch === 'e' || ch === 'E') {
 string += ch;
 next();
 if (ch === '-' || ch === '+') {
 string += ch;
 next();
 }
 while (ch >= '0' && ch <= '9') {
 string += ch;
 next();
 }
 }
 number = +string;
 if (isNaN(number)) {
 error("Bad number");
 } else {
 return number;
 }
 },

 string = function () {

// Parse a string value.

 var hex,
 i,
 string = '',
 uffff;

// When parsing for string values, we must look for " and \ characters.

 if (ch === '"') {
 while (next()) {
 if (ch === '"') {
 next();
 return string;
 } else if (ch === '\\') {
 next();
 if (ch === 'u') {
 uffff = 0;
 for (i = 0; i < 4; i += 1) {
 hex = parseInt(next(), 16);
 if (!isFinite(hex)) {
 break;
 }
 uffff = uffff * 16 + hex;
 }
 string += String.fromCharCode(uffff);
 } else if (typeof escapee[ch] === 'string') {
 string += escapee[ch];
 } else {
 break;
 }
 } else {
 string += ch;
 }
 }
 }
 error("Bad string");
 },

 white = function () {

// Skip whitespace.

 while (ch && ch <= ' ') {
 next();
 }
 },

 word = function () {

// true, false, or null.

 switch (ch) {
 case 't':
 next('t');
 next('r');
 next('u');
 next('e');
 return true;
 case 'f':
 next('f');
 next('a');
 next('l');
 next('s');
 next('e');
 return false;
 case 'n':
 next('n');
 next('u');
 next('l');
 next('l');
 return null;
 }
 error("Unexpected '" + ch + "'");
 },

 value, // Place holder for the value function.

 array = function () {

// Parse an array value.

 var array = [];

 if (ch === '[') {
 next('[');
 white();
 if (ch === ']') {
 next(']');
 return array; // empty array
 }
 while (ch) {
 array.push(value());
 white();
 if (ch === ']') {
 next(']');
 return array;
 }
 next(',');
 white();
 }
 }
 error("Bad array");
 },

 object = function () {

// Parse an object value.

 var key,
 object = {};

 if (ch === '{') {
 next('{');
 white();
 if (ch === '}') {
 next('}');
 return object; // empty object
 }
 while (ch) {
 key = string();
 white();
 next(':');
 object[key] = value();
 white();
 if (ch === '}') {
 next('}');
 return object;
 }
 next(',');
 white();
 }
 }
 error("Bad object");
 };

 value = function () {

// Parse a JSON value. It could be an object, an array, a string, a number,
// or a word.

 white();
 switch (ch) {
 case '{':
 return object();
 case '[':
 return array();
 case '"':
 return string();
 case '-':
 return number();
 default:
 return ch >= '0' && ch <= '9' ? number() : word();
 }
 };

// Return the json_parse function. It will have access to all of the above
// functions and variables.

 return function (source, reviver) {
 var result;

 text = source;
 at = 0;
 ch = ' ';
 result = value();
 white();
 if (ch) {
 error("Syntax error");
 }

// If there is a reviver function, we recursively walk the new structure,
// passing each name/value pair to the reviver function for possible
// transformation, starting with a temporary boot object that holds the result
// in an empty key. If there is not a reviver function, we simply return the
// result.

 return typeof reviver === 'function' ?
 function walk(holder, key) {
 var k, v, value = holder[key];
 if (value && typeof value === 'object') {
 for (k in value) {
 if (Object.hasOwnProperty.call(value, k)) {
 v = walk(value, k);
 if (v !== undefined) {
 value[k] = v;
 } else {
 delete value[k];
 }
 }
 }
 }
 return reviver.call(holder, key, value);
 }({'': result}, '') : result;

 };
}();

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	!= operator, ==, with Statement
	
	!== operator, ==
	
	& and, ++ −−
	
	&& operator, Expressions
	
	+ operator, Expressions, parseInt
		confusing pluses and minuses, Labels
	

	++ increment operator, ++ −−, Semicolon, Labels
		confusing pluses and minuses, Labels
	

	+= operator, Expressions
	
	- negation operator, Labels
	
	- subtraction operator, Labels
	
	-- decrement operator, ++ −−, Semicolon, Labels
	
	-- operator, confusing pluses and minuses, Labels
	
	/ operator, Expressions
	
	/* */ form of block comments, Names
	
	// comments, Names
	
	<< left shift, ++ −−
	
	= operator, Expressions, with Statement
	
	== operator, Falsy Values, ==, with Statement
	
	=== operator, Expressions, Falsy Values, ==
	
	>> signed right shift, ++ −−
	
	>>> unsigned right shift, ++ −−
	
	? ternary operator, Expressions
	
	[] postfix subscript operator, Length
	
	\ escape character, Strings
	
	^ xor, ++ −−
	
	| or, ++ −−
	
	|| operator, Literals, Retrieval
	
	˜ not, ++ −−
	

A
	adsafe option (JSLint), Options
	
	Apply Invocation Pattern, The Apply Invocation Pattern
	
	arguments, Arguments
	
	arguments array, Falsy Values
	
	array literals, Literals
	
	array.concat() method, Regexp Quantifier
	
	array.join() method, Regexp Quantifier
	
	array.pop() method, Regexp Quantifier
	
	Array.prototype, Methods
	
	array.push() method, Regexp Quantifier
	
	array.reverse() method, Regexp Quantifier
	
	array.shift() method, Regexp Quantifier
	
	array.slice() method, Regexp Quantifier
	
	array.sort() method, Regexp Quantifier
	
	array.splice() method, Regexp Quantifier
	
	array.unshift() method, Regexp Quantifier
	
	arrays, Arrays, Phony Arrays
		appending new elements, Delete
	
	arrays of arrays, Dimensions
	
	cells of an empty matrix, Dimensions
	
	confusion, Confusion
	
	delete operator, Delete
	
	dimensions, Dimensions
	
	elements of, Array Literals
	
	enumeration, Enumeration
	
	length property, Length
	
	literals, Array Literals
	
	methods, Methods
	
	Object.beget method, Dimensions
	
	splice method, Delete
	
	typeof operator, Confusion
	
	undefined value, Dimensions
	

	assignment, =
	
	assignment statement, with Statement
	
	augmenting types, Exceptions
	

B
	beautiful features, Regexp Quantifier
	
	bitwise operators, Bitwise Operators, Bitwise Operators
	
	bitwise option (JSLint), Options
	
	block comments, Whitespace, Style
	
	block scope, Scope, Beautiful Features
	
	blockless statements, continue Statement
	
	blocks, Statements, Required Blocks
	
	booleans, Objects
	
	braces, Style
	
	break statement, Statements, Statements, Labels
	
	browser option (JSLint), Options
	
	built-in value, Expressions
	

C
	callbacks, Callbacks
	
	cap option (JSLint), Options
	
	cascades, Cascade
	
	case clause, Statements
	
	casting, Inheritance
	
	catch clause, Statements
	
	character type, Strings
	
	closure, Closure
	
	comma operator, Comma
	
	comments, Whitespace, Style
	
	concatenation, parseInt
	
	constructor functions, Constructors and new
		hazards, Pseudoclassical
	
	new prefix, forgetting to include, Pseudoclassical
	

	Constructor Invocation Pattern, The Constructor Invocation Pattern
	
	constructor property, Pseudoclassical
	
	constructors, The Constructor Invocation Pattern
		defining, Pseudoclassical
	

	continue statement, continue Statement, Labels
	
	curly braces, Statements
	
	curry method, Curry
	

D
	debug option (JSLint), Options
	
	deentityify method, Callbacks
	
	delegation, Prototype
	
	delete operator, Enumeration, Delete
	
	differential inheritance, Prototypal
	
	do statement, Statements, Statements
	
	Document Object Model (DOM), Recursion
	
	durable object, Functional
	

E
	ECMAScript Language Specification, JSLint
	
	empty string, Statements
	
	enumeration, Enumeration
	
	eqeqeq option (JSLint), Options
	
	equality operators, ==
	
	escape character, Strings
	
	escape sequences, Strings
	
	eval function, with Statement, Labels
		security problems, Using JSON Securely
	

	evil option (JSLint), Options
	
	exceptions, Exceptions
	
	executable statements, Statements
	
	expression statements, Expression Statements
	
	expressions, Expressions
		? ternary operator, Expressions
	
	built-in value, Expressions
	
	infix operator, Expressions
	
	invocation, Expressions
	
	literal value, Expressions
	
	operator precedence, Expressions
	
	preceded by prefix operator, Expressions
	
	refinement, Expressions
	
	refinement expression preceded by delete, Expressions
	
	variables, Statements
	
	wrapped in parentheses, Expressions
	

F
	factorial, Scope, Memoization
	
	Fibonacci numbers, Memoization
	
	floating-point numbers, Floating Point
	
	for in statement, Statements, Expression Statements
		objects, Delete
	

	for statements, Statements, Statements, Comma
	
	forin option (JSLint), Options
	
	fragment option (JSLint), Options
	
	Function constructor, Pseudoclassical, continue Statement
	
	function invocation, Style
	
	Function Invocation Pattern, The Function Invocation Pattern
	
	function object, when object is created, Pseudoclassical
	
	function statement versus function expression, The function Statement Versus the function Expression
	
	function.apply() method, Regexp Quantifier
	
	functional pattern (inheritance), Functional
	
	functions, Functions, Functions, Undefined Variables and Functions
		arguments, Arguments
	
	augmenting types, Exceptions
	
	callbacks, Callbacks
	
	cascades, Cascade
	
	closure, Closure
	
	curry method, Curry
	
	exceptions, Exceptions
	
	general pattern of a module, Module
	
	invocation, Invocation
		Apply Invocation Pattern, The Apply Invocation Pattern
	
	Constructor Invocation Pattern, The Constructor Invocation Pattern
	
	Function Invocation Pattern, The Function Invocation Pattern
	
	Method Invocation Pattern, The Method Invocation Pattern
	
	new prefix, The Constructor Invocation Pattern
	

	invocation operator, Invocation
	
	invoked with constructor invocation, Pseudoclassical
	
	literals, Function Literal
	
	memoization, Memoization
	
	modules, Module
	
	objects, Functions
	
	recursive, Recursion
		Document Object Model (DOM), Recursion
	
	Fibonacci numbers, Memoization
	
	tail recursion optimization, Recursion
	
	Towers of Hanoi puzzle, Recursion
	

	return statement, Arguments
	
	scope, Scope
	
	that produce objects, Functional
	
	var statements, Statements
	

G
	global declarations, Undefined Variables and Functions
	
	global object, Using JSON Securely
	
	global variables, Global Abatement, Style, Global Variables, Undefined Variables and Functions
	
	glovar option (JSLint), Options
	
	good style, Style
	
	grammar, Grammar
		functions, Functions
	
	literals, Literals
	
	names, Names
	
	numbers, Numbers
		methods, Numbers
	
	negative, Strings
	

	object literals, Literals
	
	rules for interpreting diagrams, Whitespace
	
	strings, Strings
		immutability, Strings
	
	length property, Strings
	

	whitespace, Grammar
	

H
	hasOwnProperty method, Reflection, hasOwnProperty, Object
	
	HTML
		<script> tags (JSON), JSON Syntax
	
	innerHTML property, A JSON Parser
	
	JSLint, HTML
	

I
	if statements, Statements, Comma
	
	implied global, Global Variables
	
	Infinity, Names, Numbers, Expressions
	
	inheritance, Analyzing JavaScript, Inheritance
		differential, Prototypal
	
	functional pattern, Functional
	
	object specifiers, Object Specifiers
	
	parts, Parts
	
	prototypal pattern (inheritance), Object Specifiers
	
	pseudoclassical pattern, Pseudoclassical, Functional
	

	inherits method, Pseudoclassical
	
	innerHTML property, A JSON Parser
	
	instances, creating, Pseudoclassical
	
	invocation operator, Expressions, Invocation
	
	invocations, Style
	

J
	JavaScript
		analyzing, Analyzing JavaScript
	
	standard, Analyzing JavaScript
	
	why use, Why JavaScript?
	

	JSLint, Analyzing JavaScript, JSLint
		!= operator, with Statement
	
	+ operator, confusing pluses and minuses, Labels
	
	++ increment operator, Labels
		confusing pluses and minuses, Labels
	

	- operator, confusing pluses and minuses, Labels
	
	-- decrement operator, Labels
		confusing pluses and minuses, Labels
	

	= operator, with Statement
	
	== operator, with Statement
	
	assignment statement, with Statement
	
	bitwise operators, Bitwise Operators
	
	blocks, Required Blocks
	
	break statement, Labels
	
	comma operator, Comma
	
	constructor functions, Constructors and new
	
	continue statement, Labels
	
	eval function, Labels
	
	expression statements, Expression Statements
	
	for in statement, Expression Statements
	
	for statements, Comma
	
	function report, Report
	
	functions, Undefined Variables and Functions
	
	global declarations, Undefined Variables and Functions
	
	global variables, Undefined Variables and Functions
	
	HTML, HTML
	
	if statements, Comma
	
	JSON, JSON
	
	labels, Labels
	
	line breaking, Semicolon
	
	members, Members
	
	new prefix, void
	
	options, Options
	
	regular expressions, void
	
	return statement, Labels
	
	semicolons, Semicolon
	
	switch statements, Expression Statements
	
	throw statement, Labels
	
	var statements, Expression Statements
	
	variables, Undefined Variables and Functions
	
	void, void
	
	where to find, void
	
	with statement, with Statement
	

	JSON, JSON
	
	JSON (JavaScript Object Notation), Analyzing JavaScript, JSON Syntax
		/ character, JSON Syntax
	
	array, JSON Syntax
	
	eval function, Using JSON Securely
	
	HTML <script> tags, JSON Syntax
	
	innerHTML property, A JSON Parser
	
	JSLint, HTML
	
	numbers, JSON Syntax
	
	object, JSON
	
	string, JSON Syntax
	
	syntax, JSON Syntax
	
	text example, JSON Syntax
	
	using securely, Using JSON Securely
	

	JSON.parse method, Using JSON Securely
	

K
	K&R style, Style
	
	Kleene, Stephen, Dimensions
	

L
	labeled statement, Statements
	
	labels, Labels
	
	laxbreak option (JSLint), Options
	
	length property (arrays), Length
	
	line breaking, Semicolon
	
	line comments, Style
	
	line-ending comments, Whitespace
	
	looping statement, Statements, Statements
	
	loosely typed language, Inheritance
	

M
	Math object, Strings
	
	memoization, Memoization
	
	message property, Statements
	
	Method Invocation Pattern, The Method Invocation Pattern
	
	method method, Pseudoclassical
	
	methods, Methods
		array.concat(), Regexp Quantifier
	
	array.join(), Regexp Quantifier
	
	array.pop(), Regexp Quantifier
	
	array.push(), Regexp Quantifier
	
	array.reverse(), Regexp Quantifier
	
	array.shift(), Regexp Quantifier
	
	array.slice(), Regexp Quantifier
	
	array.sort(), Regexp Quantifier
	
	array.splice(), Regexp Quantifier
	
	array.unshift (), Regexp Quantifier
	
	arrays, Methods
	
	function.apply(), Regexp Quantifier
	
	number.toExponential(), Regexp Quantifier
	
	number.toFixed(), Regexp Quantifier
	
	number.toPrecision(), Regexp Quantifier
	
	number.toString(), Regexp Quantifier
	
	object.hasOwnProperty(), Regexp Quantifier
	
	regexp.exec(), Dimensions, Regexp Quantifier
	
	regexp.test(), Dimensions, Regexp Quantifier
	
	string.charAt(), Regexp Quantifier
	
	string.charCodeAt(), Regexp Quantifier
	
	string.concat(), Regexp Quantifier
	
	String.fromCharCode(), Regexp Quantifier
	
	string.indexOf(), Regexp Quantifier
	
	string.lastIndexOf(), Regexp Quantifier
	
	string.localeCompare(), Regexp Quantifier
	
	string.match(), Dimensions, Regexp Quantifier
	
	string.replace(), Dimensions, Regexp Quantifier
	
	string.search(), Dimensions, Regexp Quantifier
	
	string.slice(), Regexp Quantifier
	
	string.split(), Dimensions, Regexp Quantifier
	
	string.substring(), Regexp Quantifier
	
	string.toLocaleLowerCase(), Regexp Quantifier
	
	string.toLocaleUpperCase(), Regexp Quantifier
	
	string.toLowerCase(), Regexp Quantifier
	
	string.toUpperCase(), Regexp Quantifier
	
	that work with regular expressions, Regular Expressions
	

	modules, Module
		general pattern, Module
	

	multiple statements, Regexp Quantifier
	
	my object, Functional
	

N
	name property, Statements
	
	names, Names
	
	NaN (not a number), Numbers, Strings, Statements, Expressions, NaN
	
	negative numbers, Strings
	
	new operator, Expressions, Pseudoclassical, Typed Wrappers, void
		forgetting to include, Pseudoclassical
	
	functions, The Constructor Invocation Pattern
	

	newline, Regexp Escape
	
	nomen option (JSLint), Options
	
	null, Statements, Expressions, Objects, Falsy Values
	
	number literal, Numbers
	
	number.toExponential() method, Regexp Quantifier
	
	number.toFixed() method, Regexp Quantifier
	
	number.toPrecision() method, Regexp Quantifier
	
	number.toString() method, Regexp Quantifier
	
	numbers, Numbers, Objects
		methods, Numbers
	
	negative, Strings
	

	numbers object, Length
	

O
	object literals, Literals, Length
	
	object specifiers, Object Specifiers
	
	Object.beget method, Functional, Dimensions
	
	object.hasOwnProperty() method, Regexp Quantifier
	
	Object.prototype, Methods
	
	objects, Objects, hasOwnProperty
		creating new, Update
	
	defined, Object Literals
	
	delegation, Prototype
	
	delete operator, Enumeration
	
	durable, Functional
	
	enumeration, Enumeration
	
	for in statement, Enumeration
	
	functions, Functions
	
	global variables, Global Abatement
	
	hasOwnProperty method, Reflection
	
	literals, Object Literals
	
	properties, Retrieval
	
	property on prototype chain, Reflection
	
	prototype, Prototype
		link, Prototype
	

	reference, Reference
	
	reflection, Reflection
	
	retrieving values, Retrieval
	
	undefined, Retrieval, Prototype
	
	updating values, Update
	
	|| operator, Retrieval
	

	on option (JSLint), Options
	
	operator precedence, Expressions
	

P
	parseInt function, parseInt
	
	passfail option (JSLint), Options
	
	pi as simple constant, Regexp Quantifier
	
	plusplus option (JSLint), Options
	
	Pratt, Vaughn, Regexp Quantifier
	
	private methods, Functional
	
	privileged methods, Functional
	
	problematic features of JavaScript, Awful Parts
		+ operator, parseInt
	
	arrays, Phony Arrays
	
	bitwise operators, Bitwise Operators
	
	blockless statements, continue Statement
	
	continue statement, continue Statement
	
	equality operators, ==
	
	eval function, with Statement
	
	falsy values, Falsy Values
	
	floating-point numbers, Floating Point
	
	function statement versus function expression, The function Statement Versus the function Expression
	
	global variables, Global Variables
	
	hasOwnProperty method, hasOwnProperty
	
	increment and decrement operators, ++ −−
	
	NaN (not a number), NaN
	
	new operator, Typed Wrappers
	
	objects, hasOwnProperty
	
	parseInt function, parseInt
	
	reserved words, Reserved Words
	
	scope, Scope
	
	semicolons, Semicolon Insertion
	
	single statement form, Block-less Statements
	
	string argument form, eval
	
	switch statement, continue Statement
	
	typed wrappers, Typed Wrappers
	
	typeof operator, Reserved Words
	
	Unicode, Unicode
	
	void, void
	
	with statement, with Statement
	

	prototypal inheritance, Analyzing JavaScript
	
	prototypal inheritance language, The Constructor Invocation Pattern
	
	prototypal pattern, Prototypal
	
	prototype property, Pseudoclassical
	
	prototypes of basic types, Augmenting Types
	
	pseudoclass, creating, Pseudoclassical
	
	pseudoclassical pattern (inheritance), Pseudoclassical, Functional
	
	punctuation characters or operators, Line Breaking
	

R
	railroad diagrams, An Example
	
	recursion, Recursion
		Document Object Model (DOM), Recursion
	
	Fibonacci numbers, Memoization
	
	tail recursion optimization, Recursion
	
	Towers of Hanoi puzzle, Recursion
	

	reflection, Reflection
	
	RegExp objects, properties, Elements
	
	regexp.exec() method, Dimensions, Regexp Quantifier
	
	regexp.test() method, Dimensions, Regexp Quantifier
	
	regular expressions, Regular Expressions, void
		$ character, An Example
	
	(...), An Example
	
	(?! prefix, Regexp Class
	
	(?: prefix, Regexp Class
	
	(?:...)?, Construction
	
	(?= prefix, Regexp Class
	
	/ character, An Example
	
	? character, An Example
	
	backslash character, Regexp Escape
	
	capturing group, An Example, Regexp Group
	
	carriage return character, Regexp Escape
	
	construction, Construction
	
	elements, Elements
		regexp choice, Regexp Choice
	
	regexp class, Regexp Class
	
	regexp class escape, Regexp Class Escape
	
	regexp escape, Regexp Factor
	
	regexp factor, Regexp Factor, Regexp Class Escape
	
	regexp group, Regexp Group
	
	regexp quantifier, Regexp Quantifier
	
	regexp sequence, Regexp Sequence
	

	flags, Construction
	
	formfeed character, Regexp Escape
	
	matching digits, Construction
	
	matching URLs, An Example
	
	methods that work with, Regular Expressions
	
	negative lookahead group, Regexp Group
	
	newline character, Regexp Factor
	
	noncapturing group, An Example, Regexp Group
	
	optional group, An Example
	
	optional noncapturing group, An Example
	
	positive lookahead group, Regexp Group
	
	railroad diagrams, An Example
	
	repeat zero or one time, An Example
	
	simple letter class, Regexp Escape
	
	sloppy, An Example
	
	tab character, Regexp Escape
	
	Unicode characters, Regexp Factor
	
	\1 character, Regexp Group
	
	\b character, Regexp Factor, Regexp Group
	
	\d, An Example
	
	\d character, Regexp Factor
	
	\D character, Regexp Factor
	
	\f character, Regexp Factor
	
	\n character, Regexp Factor
	
	\r character, Regexp Factor
	
	\s character, Regexp Factor
	
	\S character, Regexp Factor
	
	\t character, Regexp Factor
	
	\u character, Regexp Factor
	
	\w character, Regexp Factor
	
	\W character, Regexp Factor
	
	^ character, An Example, An Example
	

	reserved words, Names, Reserved Words
	
	return statement, Statements, Arguments, Labels
	
	rhino option (JSLint), Options
	

S
	says method, Functional
	
	scope, Statements, Scope, Scope
	
	semicolons, Semicolon Insertion, Semicolon
	
	seqer object, Cascade
	
	setInterval function, continue Statement
	
	setTimeout function, continue Statement
	
	Simplified JavaScript, Beautiful Features
	
	single statement form, Block-less Statements
	
	spec object, Functional, Functional
	
	splice method (arrays), Delete
	
	statements, Statements
		blocks, Statements
	
	break, Statements, Statements
	
	case clause, Statements
	
	catch clause, Statements
	
	do, Statements, Statements
	
	executable, Statements
	
	execution order, Statements
	
	for, Statements, Statements
	
	for in, Statements
	
	if, Statements
	
	labeled, Statements
	
	loop, Statements
	
	looping, Statements
	
	return, Statements
	
	switch, Statements, Statements, Statements
	
	then block, Statements
	
	throw, Statements
	
	try, Statements
	
	var, functions, Statements
	
	while, Statements, Statements
	

	string argument form, eval
	
	string literal, Strings
	
	String, augmenting with deentityify method, Callbacks
	
	string.charAt() method, Regexp Quantifier
	
	string.charCodeAt() method, Regexp Quantifier
	
	string.concat() method, Regexp Quantifier
	
	String.fromCharCode() method, Regexp Quantifier
	
	string.indexOf() method, Regexp Quantifier
	
	string.lastIndexOf() method, Regexp Quantifier
	
	string.localeCompare() method, Regexp Quantifier
	
	string.match() method, Dimensions, Regexp Quantifier
	
	string.replace() method, Dimensions, Regexp Quantifier
	
	string.search() method, Dimensions, Regexp Quantifier
	
	string.slice() method, Regexp Quantifier
	
	string.split() method, Dimensions, Regexp Quantifier
	
	string.substring() method, Regexp Quantifier
	
	string.toLocaleLowerCase() method, Regexp Quantifier
	
	string.toLocaleUpperCase() method, Regexp Quantifier
	
	string.toLowerCase() method, Regexp Quantifier
	
	string.toUpperCase() method, Regexp Quantifier
	
	strings, Strings, Objects
		empty, Statements
	
	immutability, Strings
	
	length property, Strings
	

	structured statements, Style
	
	style, Style
		block comments, Style
	
	braces, Style
	
	comments, Style
	
	global variables, Style
	
	good, Style
	
	invocations, Style
	
	K&R, Style
	
	line comments, Style
	
	multiple statements, Regexp Quantifier
	
	structured statements, Style
	
	switch cases, Style
	

	super methods, Pseudoclassical
	
	superior method, Functional
	
	switch statement, Statements, Statements, Statements, Regexp Quantifier, continue Statement, Expression Statements
	
	syntax diagrams, Report
	

T
	tail recursion optimization, Recursion
	
	testing environment, A Simple Testing Ground
	
	then block, Statements
	
	this keyword, Pseudoclassical
	
	Thompson, Ken, Dimensions
	
	throw statement, Statements, Labels
	
	Top Down Operator Precedence parser, Beautiful Features
	
	Towers of Hanoi puzzle, Recursion
	
	trim method, Augmenting Types
	
	try statement, Statements
	
	typed wrappers, Typed Wrappers
	
	TypeError exception, Retrieval
	
	typeof operator, Expressions, Confusion, Reserved Words, Falsy Values
	
	types, Objects
		prototypes of, Augmenting Types
	

U
	undef option (JSLint), Options
	
	undefined, Names, Statements, Expressions, Objects, Retrieval, Prototype, Invocation, Return, Dimensions, Falsy Values
	
	Unicode, Unicode
	

V
	var statements, Expression Statements
		functions, Statements
	

	variables, Statements, Undefined Variables and Functions
	
	void operator, Typed Wrappers, void
	

W
	while statement, Statements, Statements
	
	white option (JSLint), Options
	
	whitespace, Grammar
	
	widget option (JSLint), Options
	
	Wilson, Greg, Regexp Quantifier
	
	with statement, with Statement, with Statement
	
	wrappers, typed, Typed Wrappers
	

About the Author
Douglas Crockford is a Senior JavaScript Architect at Yahoo!, well known for introducing and maintaining the JSON (JavaScript Object Notation) format. He's a regular speaker at conferences on advanced JavaScript topics, and serves on the ECMAScript committee.

Colophon
The animal on the cover of JavaScript: The Good Parts is a Plain
 Tiger butterfly (Danaus chrysippus). Outside of Asia, the insect is
 also known as the African Monarch. It is a medium-size butterfly characterized by bright
 orange wings with six black spots and alternating black-and-white stripes.
Its striking looks have been noted for millennia by scientists and artists. The writer
 Vladimir Nabokov—who was also a noted lepidopterist—had admiring words for the butterfly
 in an otherwise scathing New York Times book review of Alice Ford’s
 Audubon’s Butterflies, Moths, and Other Studies (The Studio
 Publications). In the book, Ford labels drawings made previous to and during Audubon’s
 time in the 19th century as “scientifi-cally [sic]
 unsophisticated.”
In response to Ford, Nabokov writes, “The unsophistication is all her own. She might
 have looked up John Abbot’s prodigious representations of North American lepidoptera,
 1797, or the splendid plates of 18th- and early-19th-century German lepidopterists. She
 might have traveled back some 33 centuries to the times of Tuthmosis IV or Amenophis III
 and, instead of the obvious scarab, found there frescoes with a marvelous Egyptian
 butterfly (subtly combining the pattern of our Painted Lady and the body of an African
 ally of the Monarch).”
While the Plain Tiger’s beauty is part of its charm, its looks can also be deadly.
 During its larval stages, the butterfly ingests alkaloids that are poisonous to
 birds—its main predator—which are often attracted to the insect’s markings. After
 ingesting the Plain Tiger, a bird will vomit repeatedly—occasionally fatally. If the
 bird lives, it will let other birds know to avoid the insect, which can also be
 recognized by its leisurely, meandering pattern of flying low to the earth.
The cover image is from Dover’s Animals. The cover font is Adobe
 ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
 Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

JavaScript: The Good Parts

Douglas Crockford

Editor
Simon St. Laurent

Copyright © 2008 Yahoo! Inc.

Yahoo Press

2013-12-04T12:18:45-08:00

OEBPS/httpatomoreillycomsourceoreillyimages1893401.png
case clause
. ——
expression statements

OEBPS/httpatomoreillycomsourceoreillyimages1893471.png
array literal

OEBPS/httpatomoreillycomsourceoreillyimages1893469.png
{__/*global

.'
(_/*members)

/*members

OEBPS/httpatomoreillycomsourceoreillyimages1893545.png
switch statement

disruptive
statement

OEBPS/httpatomoreillycomsourceoreillyimages1893561.png
JSON array

JSON value

OEBPS/httpatomoreillycomsourceoreillyimages1893391.png
statements

label

expression statement G
disruptive statement
try statement

if statement

while statement

do statement

OEBPS/httpatomoreillycomsourceoreillyimages1893429.png
literal

|——| number literal

OEBPS/httpatomoreillycomsourceoreillyimages1893375.png
name

letter

OEBPS/httpatomoreillycomsourceoreillyimages1893387.png
escaped character

I i) (™ double quote {
(™_single quote
(%) backslash
(7)—Slash
®) backspace
o) formfeed
o) new line
I6) carriage return
(T)_tab
O

OEBPS/httpatomoreillycomsourceoreillyimages1893539.png
return statement J |
|—(return expression

OEBPS/bk01-toc.html
JavaScript: The Good Parts

Table of Contents
		Dedication

		Special Upgrade Offer

		A Note Regarding Supplemental Files

		Preface		Conventions Used in This Book

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		Acknowledgments

		1. Good Parts		Why JavaScript?

		Analyzing JavaScript

		A Simple Testing Ground

		2. Grammar		Whitespace

		Names

		Numbers

		Strings

		Statements

		Expressions

		Literals

		Functions

		3. Objects		Object Literals

		Retrieval

		Update

		Reference

		Prototype

		Reflection

		Enumeration

		Delete

		Global Abatement

		4. Functions		Function Objects

		Function Literal

		Invocation		The Method Invocation Pattern

		The Function Invocation Pattern

		The Constructor Invocation Pattern

		The Apply Invocation Pattern

		Arguments

		Return

		Exceptions

		Augmenting Types

		Recursion

		Scope

		Closure

		Callbacks

		Module

		Cascade

		Curry

		Memoization

		5. Inheritance		Pseudoclassical

		Object Specifiers

		Prototypal

		Functional

		Parts

		6. Arrays		Array Literals

		Length

		Delete

		Enumeration

		Confusion

		Methods

		Dimensions

		7. Regular Expressions		An Example

		Construction

		Elements		Regexp Choice

		Regexp Sequence

		Regexp Factor

		Regexp Escape

		Regexp Group

		Regexp Class

		Regexp Class Escape

		Regexp Quantifier

		8. Methods

		9. Style

		10. Beautiful Features

		A. Awful Parts		Global Variables

		Scope

		Semicolon Insertion

		Reserved Words

		Unicode

		typeof

		parseInt

		+

		Floating Point

		NaN

		Phony Arrays

		Falsy Values

		hasOwnProperty

		Object

		B. Bad Parts		==

		with Statement

		eval

		continue Statement

		switch Fall Through

		Block-less Statements

		++ −−

		Bitwise Operators

		The function Statement Versus the function Expression

		Typed Wrappers

		new

		void

		C. JSLint		Undefined Variables and Functions

		Members

		Options

		Semicolon

		Line Breaking

		Comma

		Required Blocks

		Forbidden Blocks

		Expression Statements

		for in Statement

		switch Statement

		var Statement

		with Statement

		=

		== and !=

		Labels

		Unreachable Code

		Confusing Pluses and Minuses

		++ and −−

		Bitwise Operators

		eval Is Evil

		void

		Regular Expressions

		Constructors and new

		Not Looked For

		HTML

		JSON

		Report

		D. Syntax Diagrams

		E. JSON		JSON Syntax

		Using JSON Securely

		A JSON Parser

		Index

		About the Author

		Colophon

		Special Upgrade Offer

		Copyright

OEBPS/httpatomoreillycomsourceoreillyimages1893381.png
fraction

OEBPS/httpatomoreillycomsourceoreillyimages1893467.png
ISLint comment

|_

ISLint
option

{ name_} B (true GO

OEBPS/httpatomoreillycomsourceoreillyimages1893407.png
dostatement

St (i) O e - G

OEBPS/httpatomoreillycomsourceoreillyimages1893495.png
function body

O varstatements __}{_statemens -(D——

OEBPS/httpatomoreillycomsourceoreillyimages1893503.png

OEBPS/httpatomoreillycomsourceoreillyimages1893497.png
function literal
—(function ‘name parameters | functionbody _|——

OEBPS/httpatomoreillycomsourceoreillyimages1893531.png
regexp group

H—O g e -0

non-capturing

positive lookahead
O,

negative lookahead

OEBPS/httpatomoreillycomsourceoreillyimages1893549.png
try statement variable

() —{ ook _}—catch)»—O—{ _name }—Q)—{ block }———|

OEBPS/httpatomoreillycomsourceoreillyimages1893505.png
invocation
O “expression 0!

OEBPS/httpatomoreillycomsourceoreillyimages1893547.png
throw statement

—Cthron))————————{ epression _}————————————— ()

OEBPS/httpatomoreillycomsourceoreillyimages1893533.png
regexp literal

/

o

[

(&)

L

OEBPS/httpatomoreillycomsourceoreillyimages1893553.png
while statement

—Ghile)—O— ewression Q) blok }— |

OEBPS/orm_front_cover.jpg
R R RRRRESSSEESEESSSESSZZmm.™
Unearthing the excellence in JavaScript

JavaScript:
The Good Parts

O’REILLY® | 'YAHOO! PRESS Douglas Crockford

OEBPS/httpatomoreillycomsourceoreillyimages1893537.png
regexp sequence

H_F regexp factor ‘regexp quantifier

OEBPS/httpatomoreillycomsourceoreillyimages1893395.png
block
(G statements D)

OEBPS/httpatomoreillycomsourceoreillyimages1893449.png
regexp choice

regexp sequence

OEBPS/httpatomoreillycomsourceoreillyimages1893411.png
throw statement

—Cthron))————————{ epression _}————————————— ()

OEBPS/httpatomoreillycomsourceoreillyimages1893423.png
infix operator

| logical or
! multiply add greater or equal Ia%v{m
divide subtract less or equal not equal
remainder

OEBPS/httpatomoreillycomsourceoreillyimages1893519.png
refinement

O name

OEBPS/httpatomoreillycomsourceoreillyimages1893389.png
var statements

OEBPS/httpatomoreillycomsourceoreillyimages1893393.png
disruptive statement
I

|
|

‘break statement

return statement

throw statement

OEBPS/oreilly_large.png.jpg
OREILLY®

OEBPS/httpatomoreillycomsourceoreillyimages1893527.png
regexp escape

HO

carriage

: formfeed
: newline
() tetum
: tab

—o-]

4
hexadecimal
digits

—

word boundary

word character

any special character

back reference

integer

OEBPS/httpatomoreillycomsourceoreillyimages1893551.png
var statements

OEBPS/httpatomoreillycomsourceoreillyimages1893437.png
function literal
—(function ‘name parameters | functionbody _|——

OEBPS/httpatomoreillycomsourceoreillyimages1893459.png
regexp dass

any Unicode character except / and \
and [and] and " and - and
control character

‘regexp class escape

OEBPS/httpatomoreillycomsourceoreillyimages1893445.png
parse_number

H—{"beginstring digit W__| endsting_|—H

B & digit

OEBPS/httpatomoreillycomsourceoreillyimages1893479.png
disruptive statement
I

|
|

‘break statement

return statement

throw statement

OEBPS/httpatomoreillycomsourceoreillyimages1893517.png
prefix operator

L typeof
I typeof’
tonumber
N\
~ negate

logical not

OEBPS/httpatomoreillycomsourceoreillyimages1893461.png
regexp class escape
backspace
HOT®

not

: formfeed
: newline
carriage

@—tetum
: tab

1 literal
o Y
hexadecimal any special character

digits

word character

133

OEBPS/httpatomoreillycomsourceoreillyimages1893525.png
regexp class escape
backspace
HOT®

not

: formfeed
: newline
carriage

@—tetum
: tab

1 literal
o Y
hexadecimal any special character

digits

word character

133

OEBPS/httpatomoreillycomsourceoreillyimages1893515.png
parameters

OEBPS/httpatomoreillycomsourceoreillyimages1893483.png
escaped character

I i) (™ double quote {
(™_single quote
(%) backslash
(7)—Slash
®) backspace
o) formfeed
o) new line
I6) carriage return
(T)_tab
O

OEBPS/httpatomoreillycomsourceoreillyimages1893455.png
regexp escape

HO

carriage

: formfeed
: newline
() tetum
: tab

—o-]

4
hexadecimal
digits

—

word boundary

word character

any special character

back reference

integer

OEBPS/httpatomoreillycomsourceoreillyimages1893543.png
string literal

o

any Unicode character except

" and \ and control character

any Unicode character except

" and \ and control character

OEBPS/httpatomoreillycomsourceoreillyimages1893435.png
regexp literal

/

o

[

(&)

L

OEBPS/httpatomoreillycomsourceoreillyimages1893507.png
literal

|——| number literal

OEBPS/httpatomoreillycomsourceoreillyimages1893379.png

OEBPS/httpatomoreillycomsourceoreillyimages1893431.png
object literal

OEBPS/httpatomoreillycomsourceoreillyimages1893557.png
JSON value

— [}

true)

null

OEBPS/httpatomoreillycomsourceoreillyimages1893555.png
whitespace

space

tab

line 1

any character
except line end

)

end

any character
except *and / ~

®

)
\O,

OEBPS/httpatomoreillycomsourceoreillyimages1893443.png
parse_url
scheme
H—{Geginstring_} {eter }
slash
host
letter or digit

(| or.or-]
port
)
path
‘any character
? except 2orit [

K

query
any character |
? except
hash

any character
? [except line end]

~—| endstring

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/httpatomoreillycomsourceoreillyimages1893541.png
statements

label

expression statement G
disruptive statement
try statement

if statement

while statement

do statement

OEBPS/httpatomoreillycomsourceoreillyimages1893513.png
object literal

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages1893417.png
expression statement

I
I name

expression I_

mvocation

L| refinement

invocation

delete)—| expression

=

refinement }—————/

-

OEBPS/httpatomoreillycomsourceoreillyimages1893447.png
regexp literal

L

OEBPS/httpatomoreillycomsourceoreillyimages1893475.png
break statement J label |
—(break) name

OEBPS/httpatomoreillycomsourceoreillyimages1893481.png
dostatement

St (i) O e - G

OEBPS/httpatomoreillycomsourceoreillyimages1893453.png
regexp factor

any Unicode character except / and \ and

[ul
T

[and] and (and) and { andgaand ?and
+and * and | and control character

regexp group

OEBPS/httpatomoreillycomsourceoreillyimages1893477.png
case clause
. ——
expression statements

OEBPS/httpatomoreillycomsourceoreillyimages1893385.png
string literal

o

any Unicode character except

" and \ and control character

any Unicode character except

" and \ and control character

OEBPS/httpatomoreillycomsourceoreillyimages1893399.png
switch statement

disruptive
statement

OEBPS/httpatomoreillycomsourceoreillyimages1893383.png
exponent
L

digit

{digit |

OEBPS/httpatomoreillycomsourceoreillyimages1893511.png
number literal

H—{ Trteger }

OEBPS/httpatomoreillycomsourceoreillyimages1893397.png
if statement
then

expression_|—()—{_block_}

OEBPS/httpatomoreillycomsourceoreillyimages1893523.png
regexp dass

any Unicode character except / and \
and [and] and " and - and
control character

‘regexp class escape

OEBPS/httpatomoreillycomsourceoreillyimages1893565.png
JSON number

|| integer
L

fraction

exponent

digit1-9

OEBPS/httpatomoreillycomsourceoreillyimages1893419.png
expression

literal

1 fiteral

M name

O)
prefix operator

expression

M| expression infix operator

[ewresion |

expression

O _ewression 1

refinement
D oprestor _—{Twaion]

\(delete)—{ enpression |

refinement | ———————/

OEBPS/httpatomoreillycomsourceoreillyimages1893521.png
regexp choice

regexp sequence

OEBPS/httpatomoreillycomsourceoreillyimages1893465.png

OEBPS/httpatomoreillycomsourceoreillyimages1893377.png
number literal

H—{ Trteger }

OEBPS/httpatomoreillycomsourceoreillyimages1893473.png
block
(G statements D)

OEBPS/httpatomoreillycomsourceoreillyimages1893373.png
whitespace

space

tab

line 1

any character
except line end

)

end

any character
except *and / ~

®

)
\O,

OEBPS/httpatomoreillycomsourceoreillyimages1893493.png
fraction

OEBPS/httpatomoreillycomsourceoreillyimages1893509.png
name

letter

OEBPS/httpatomoreillycomsourceoreillyimages1893409.png
try statement variable

() —{ ook _}—catch)»—O—{ _name }—Q)—{ block }———|

OEBPS/httpatomoreillycomsourceoreillyimages1893501.png
infix operator

| logical or
! multiply add greater or equal Ia%v{m
divide subtract less or equal not equal
remainder

OEBPS/httpatomoreillycomsourceoreillyimages1893403.png
while statement

—Ghile)—O— ewression Q) blok }— |

OEBPS/httpatomoreillycomsourceoreillyimages1893491.png
forstatement

initialization

expression statement

condition

expression

increment

expression statement

variable

expression

OEBPS/httpatomoreillycomsourceoreillyimages1893499.png
if statement
then

expression_|—()—{_block_}

OEBPS/httpatomoreillycomsourceoreillyimages1893559.png
JSON string

JSON value

OEBPS/httpatomoreillycomsourceoreillyimages1893485.png
exponent
L

digit

{digit |

OEBPS/httpatomoreillycomsourceoreillyimages1893529.png
regexp factor

any Unicode character except / and \ and

[ul
T

[and] and (and) and { andgaand ?and
+and * and | and control character

regexp group

OEBPS/httpatomoreillycomsourceoreillyimages1893535.png
‘regexp quantifier

OEBPS/httpatomoreillycomsourceoreillyimages1893421.png
prefix operator

L typeof
I typeof’
tonumber
N\
~ negate

logical not

OEBPS/httpatomoreillycomsourceoreillyimages1893427.png
refinement

O name

OEBPS/httpatomoreillycomsourceoreillyimages1893489.png
expression statement

I
I name

expression I_

mvocation

L| refinement

invocation

delete)—| expression

=

refinement }—————/

-

OEBPS/httpatomoreillycomsourceoreillyimages1893415.png
break statement J label |
—(break) name

OEBPS/httpatomoreillycomsourceoreillyimages1893413.png
return statement J |
|—(return expression

OEBPS/httpatomoreillycomsourceoreillyimages1893433.png
array literal

OEBPS/httpatomoreillycomsourceoreillyimages1893405.png
forstatement

initialization

expression statement

condition

expression

increment

expression statement

variable

expression

OEBPS/httpatomoreillycomsourceoreillyimages1893441.png
function body

O varstatements __}{_statemens -(D——

OEBPS/httpatomoreillycomsourceoreillyimages1893425.png
invocation
O “expression 0!

OEBPS/httpatomoreillycomsourceoreillyimages1893463.png
‘regexp quantifier

OEBPS/httpatomoreillycomsourceoreillyimages1893439.png
parameters

OEBPS/httpatomoreillycomsourceoreillyimages1893457.png
regexp group

H—O g e -0

noncapturing

positive lookahead
O,

negative lookahead

OEBPS/httpatomoreillycomsourceoreillyimages1893487.png
expression

literal

1 fiteral

M name

O)
prefix operator

expression

M| expression infix operator

[ewresion |

expression

O _ewression 1

refinement
D oprestor _—{Twaion]

\(delete)—{ enpression |

refinement | ———————/

OEBPS/httpatomoreillycomsourceoreillyimages1893563.png
JSON string

any Unicode character except
""or \ or control character

\

C quotation mark

C reversesolidus

C solidus

® backspace

3 formfeed

C newline

C carriage return

3 ‘horizontal tab

O

OEBPS/httpatomoreillycomsourceoreillyimages1893451.png
regexp sequence

H_F regexp factor ‘regexp quantifier

