

DATA CLEANING

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and its companion files (the “Work”), you
agree that this license grants permission to use the contents contained herein,
including the companion files, but does not give you the right of ownership to
any of the textual content in the book / files or ownership to any of the infor-
mation or products contained in it. This license does not permit uploading of
the Work onto the Internet or on a network (of any kind) without the written
consent of the Publisher. Duplication or dissemination of any text, code, sim-
ulations, images, etc. contained herein is limited to and subject to licensing
terms for the respective products, and permission must be obtained from the
Publisher or the owner of the content, etc., in order to reproduce or network
any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and
anyone involved in the creation, writing, or production of the companion files,
accompanying algorithms, code, or computer programs (“the software”), and
any accompanying Web site or software of the Work, cannot and do not war-
rant the performance or results that might be obtained by using the contents
of the Work. The author, developers, and the Publisher have used their best
efforts to insure the accuracy and functionality of the textual material and/or
programs contained in this package; we, however, make no warranty of any
kind, express or implied, regarding the performance of these contents or pro-
grams. The Work is sold “as is” without warranty (except for defective materi-
als used in manufacturing the book or due to faulty workmanship).

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and/or companion files, and only at the discretion
of the Publisher. The use of “implied warranty” and certain “exclusions” vary
from state to state, and might not apply to the purchaser of this product.

The companion files are available for downloading by writing to the publisher
at info@merclearning.com.

DATA CLEANING
Pocket Primer

Oswald Campesato

MERCURY LEARNING AND INFORMATION

Dulles, Virginia

Boston, Massachusetts

New Delhi

Copyright © 2018 by MERCURY LEARNING AND INFORMATION LLC. All rights
reserved.

This publication, portions of it, or any accompanying software may not be reproduced
in any way, stored in a retrieval system of any type, or transmitted by any means,
media, electronic display or mechanical display, including, but not limited to,
photocopy, recording, Internet postings, or scanning, without prior permission in
writing from the publisher.

Publisher: David Pallai
MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
800-232-0223

O. Campesato. Data Cleaning Pocket Primer.
ISBN: 978-1-68392-217-9

The publisher recognizes and respects all marks used by companies, manufacturers,
and developers as a means to distinguish their products. All brand names and product
names mentioned in this book are trademarks or service marks of their respective
companies. Any omission or misuse (of any kind) of service marks or trademarks, etc.
is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2017964301

181920321 Printed on acid-free paper in the United States of America

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc. For additional information, please contact the Customer Service
Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at authorcloudware.com and other
digital vendors. The sole obligation of MERCURY LEARNING AND INFORMATION to the
purchaser is to replace the book, based on defective materials or faulty workmanship,
but not based on the operation or functionality of the product.

I’d like to dedicate this book to my parents –
may this bring joy and happiness into their lives.

Preface: Data Cleaning Pocket Primer xiii

What Is the Goal? xiii
Is This Book is for Me and What Will I Learn? xiii
How Were the Code Samples Created? xiv
What You Need to Know for This Book xiv
Which bash Commands are Excluded? xiv
How Do I Set Up a Command Shell? xv
What Are the “Next Steps” after Finishing This Book? xv

About the Technical Reviewer xvii

Chapter 1: Introduction 1

What Is Unix? 2
Available Shell Types 2

What Is bash? 3
Getting Help for bash Commands 4
Navigating Around Directories 4
The history Command 5

Listing Filenames with the ls Command 6
Displaying Contents of Files 7

The cat Command 8
The head and tail Commands 9
The Pipe Symbol 10
The fold Command 11

File Ownership: Owner, Group, and World 12
Hidden Files 12
Handling Problematic Filenames 13
Working with Environment Variables 14

The env Command 14
Useful Environment Variables 14

CONTENTS

viii • CONTENTS

Setting the PATH Environment Variable 15
Specifying Aliases and Environment Variables 15

Finding Executable Files 16
What Are Shell Scripts? 17

A Simple Shell Script 18
Using a Semicolon to Separate Commands 19
The printf Command and the echo Command 20
The echo Command and Whitespaces 20
Command Substitution (“back tick”) 21
Setting Environment Variables via Shell Scripts 22

Sourcing or “Dotting” a Shell Script 23
Working with Arrays 24
Working with Nested Loops 27
The paste Command 29

Inserting Blank Lines with the paste Command 29
The cut Command 30
Working with Metacharacters 31
Working with Character Classes 32
The “pipe” Symbol and Multiple Commands 33
A Simple Use Case 34
Another Simple Use Case 35
Summary 37

Chapter 2: Useful Commands 39

The join Command 40
The fold Command 41
The split Command 41
The sort Command 42
The uniq Command 44
How to Compare Files 45
The od Command 45
The tr Command 46
A Simple Use Case 50
The find Command 51
The tee Command 52
File Compression Commands 52

The tar command 52
The cpio Command 53
The gzip and gunzip Commands 54
The bunzip2 Command 54
The zip Command 55

Commands for zip Files and bz Files 55

CONTENTS • ix

Internal Field Separator (IFS) 56
Data from a Range of Columns in a Dataset 56
Working with Uneven Rows in Datasets 58
Working with Functions in Shell Scripts 59
Recursion and Shell Scripts 61
Iterative Solutions for Factorial Values 62
Summary 64

Chapter 3: Filtering Data with grep 65

What Is the grep Command? 66
Metacharacters and the grep Command 67
Escaping Metacharacters with the grep Command 68
Useful Options for the grep Command 69

Character Classes and the grep Command 73
Working with the –c Option in grep 74
Matching a Range of Lines 75
Using Back References in the grep Command 77
Finding Empty Lines in Datasets 79
Using Keys to Search Datasets 80
The Backslash Character and the grep Command 81
Multiple Matches in the grep Command 81
The grep Command and the xargs Command 81

Searching zip Files for a String 83
Checking for a Unique Key Value 84

Redirecting Error Messages 85
The egrep Command and the fgrep Command 85

Displaying “Pure” Words in a Dataset with egrep 86
The fgrep Command 88

A Simple Use Case 88
Summary 90

Chapter 4: Transforming Data with sed 91

What Is the sed Command? 91
The sed Execution Cycle 92

Matching String Patterns Using sed 92
Substituting String Patterns Using sed 93

Replacing Vowels from a String or a File 95
Deleting Multiple Digits and Letters from a String 96

Search and Replace with sed 96
Datasets with Multiple Delimiters 99
Useful Switches in sed 99

x • CONTENTS

Working with Datasets 100
Printing Lines 101
Character Classes and sed 102
Removing Control Characters 103

Counting Words in a Dataset 104
Back References in sed 104
Displaying Only “Pure” Words in a Dataset 105
One-Line sed Commands 107
Summary 114

Chapter 5: Doing Everything Else with awk 115

The awk Command 116
Built-in Variables That Control awk 116
How Does the awk Command Work? 117

Aligning Text with the printf Command 118
Conditional Logic and Control Statements 119

The while Statement 119
A for loop in awk 120
A for loop with a break Statement 121
The next and continue Statements 121

Deleting Alternate Lines in Datasets 122
Merging Lines in Datasets 122

Printing File Contents as a Single Line 123
Joining Groups of Lines in a Text File 124
Joining Alternate Lines in a Text File 125

Matching with Metacharacters and Character Sets 126
Printing Lines Using Conditional Logic 127
Splitting Filenames with awk 128
Working with Postfix Arithmetic Operators 129
Numeric Functions in awk 130
One-Line awk Commands 132
Useful Short awk Scripts 133
Printing the Words in a Text String in awk 135
Count Occurrences of a String in Specific Rows 135
Printing a String in a Fixed Number of Columns 136
Printing a Dataset in a Fixed Number of Columns 137
Aligning Columns in Datasets 138
Aligning Columns and Multiple Rows in Datasets 139
Removing a Column from a Text File 140
Subsets of Columns of Even Rows in Datasets 141
Counting Word Frequency in Datasets 142
Displaying Only “Pure” Words in a Dataset 144

CONTENTS • xi

Working with Multiline Records in awk 146
A Simple Use Case 147
Another Use Case 148
Summary 149

Appendix: Other Code Samples 151

Examples for Chapter 1 151
Examples for Chapter 2 151
Calculating Fibonacci Numbers 152
Calculating the GCD of Two Positive Integers 153
Calculating the LCM of Two Positive Integers 155
Calculating Prime Divisors 156
Examples for Chapter 3 158
Simulating Relational Data with the grep Command 164
Checking Updates in a Logfile 167
Examples for Chapter 4 169
Examples for Chapter 5 169
Processing Multiline Records 169
Adding the Contents of Records 171
Using the split Function in awk 171
Scanning Diagonal Elements in Datasets 172
Adding Values from Multiple Datasets (1) 175
Adding Values from Multiple Datasets (2) 176
Adding Values from Multiple Datasets (3) 178
Calculating Combinations of Field Values 180
Summary 181

Index 183

PREFACE: DATA CLEANING

POCKET PRIMER

What Is the Goal?

The goal of this book is to introduce the reader to a powerful, flexible and
free set of data manipulation and cleansing commands developed over
decades in the unix/linux environment but are now available in any oper-
ating system with a minimum amount of effort to set up the environment.
While all examples and scripts use the “bash” command set, many of the
concepts translate into other forms of shell scripting (ksh, sh, csh), includ-
ing the concept of piping data between commands, regular expression
substitution and the sed and awk commands. Aimed at a reader relatively
new to working in a bash environment, the book is comprehensive enough
to be a good reference and teach a few new tricks to those who already
have some experience with using shells scripts for data cleansing.

This short book contains a variety of code fragments and shell scripts for
data scientists, data analysts, and other people who want shell-based solu-
tions to “clean” various types of datasets.

This book takes introductory concepts and commands in bash, and then
demonstrates their use in simple yet powerful shell scripts. This book does
not cover “pure” system administration functionality for Unix or Linux. In
general, topics that are not relevant in a shell-based Data Cleaning Pocket
Primer are not covered in this book.

Is This Book for Me and What Will I Learn?

This book is intended for data scientists, data analysts, and other people
who perform data cleaning tasks, and who also have a modest knowledge
of shell programming.

xiv • PREFACE: DATA CLEANING POCKET PRIMER

You will acquire an understanding of how to use various bash commands,
often as part of short shell scripts. The chapters also contain simple use
cases that illustrate how to perform various tasks involving datasets, such
as switching the order of a two-column dataset (Chapter 1), removing
control characters in a text file (Chapter 2), find specific lines and merge
them (Chapter 3), reformatting a date field in a dataset (Chapter 4),
removing nested quotes (Chapter 5), along with supplemental code sam-
ples in the Appendix.

This book saves you the time required to search for relevant code samples,
adapting them to your specific needs, which is a potentially time-consum-
ing process.

How Were the Code Samples Created?

The code samples in this book were created and tested using bash on a
Macbook Pro with OS X 10.12.6 (macOS Sierra). Regarding their con-
tent: the code samples are derived primarily from scripts prepared by
the author, and in some cases there are code samples that incorporate
short sections of code from discussions in online forums. The key point
to remember is that the code samples follow the “Four Cs”: they must be
Clear, Concise, Complete, and Correct to the extent that it’s possible to do
so, given the size of this book.

What You Need to Know for This Book

You need some familiarity with working from the command line in a Unix-
like environment. However, there are subjective prerequisites, such as
a desire to learn shell programming, along with the motivation and dis-
cipline to read and understand the code samples. In any case, if you’re
not sure whether or not you can absorb the material in this book, glance
through the code samples to get a feel for the level of complexity.

Which bash Commands are Excluded?

The commands that do not meet any of the criteria listed in the previ-
ous section are not included in this Primer. Consequently, there is no
coverage of commands for system administration (e.g., shutting down a
machine, scheduling backups, and so forth). The purpose of the material
in the chapters is to illustrate how to use bash commands for handling
common data cleaning tasks with datasets, after which you can do further
reading to deepen your knowledge.

PREFACE: DATA CLEANING POCKET PRIMER • xv

How Do I Set Up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is
to use Finder to navigate to Applications > Utilities and then
double click on the Utilities application. Next, if you already have a
command shell available, you can launch a new command shell by typing
the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a
Macbook from a command shell that is already visible simply by clicking
command+n in that command shell, and your Mac will launch another
command shell.

If you are a PC user, you can install Cygwin (open source https://cyg-
win.com/) that simulates bash commands, or use another toolkit such as
MKS (a commercial product). Please read the online documentation that
describes the download and installation process.

If you use RStudio, you launch a command shell inside of RStudio by
navigating to Tools > Command Line, and then you can launch bash
commands. Note that custom aliases are not automatically set if they are
defined in a file other than the main start-up file (such as .bash_login).

What Are the “Next Steps” after Finishing This Book?

The answer to this question varies widely, mainly because the answer
depends heavily on your objectives. The best answer is to try a new tool
or technique from the book out on a problem or task you care about,
professionally or personally. Precisely what that might be depends on who
you are, as the needs of a data scientist, manager, student, or developer
are all different. In addition, keep what you learned in mind as you tackle
new data cleaning or manipulation challenges. Sometimes knowing a
technique is possible makes finding a solution easier, even if you have to
re-read the section to remember exactly how the syntax works.

If you have reached the limits of what you have learned here and want to
get further technical depth on these commands, there is a wide variety of
literature published and online resources describing the bash shell, Unix
programming, and the grep, sed, and awk commands.

ABOUT THE

TECHNICAL REVIEWER

Bradley Shanrock-Solberg has 30 years of experience in analytics in
domains as diverse as freeway traffic flow, contracts management, war-
ranty & returns, logistics, supply chain, game mechanics, software qual-
ity assurance, asynchronous messaging systems, commissions & sales
support, order-to-cash processes, and volunteer management. Brad’s
career began at a traffic information startup, then he spent a few years
as a business analyst, followed by 20 years in various IT roles at Seagate
Technology. Since 2015, Brad has worked as a consulting data scientist in
the San Francisco Bay area, helping clients learn to get the most value out
of the data they own by using the tools they already understand. Brad is
a certified Six Sigma Blackbelt and has a BS in engineering and applied
science from the California Institute of Technology.

C H A P T E R

T
his chapter introduces you to the bash shell. You will learn how to
use some basic commands, such as navigating around the file sys-
tem, listing files, and displaying the contents of files. This chapter

is dense and contains a very eclectic mix of topics to quickly prepare you
for later chapters. If you already have some knowledge of shell program-
ming, you can probably skim quickly through this introductory chapter
and proceed to Chapter 2.

The first part of this chapter starts with a brief introduction to some Unix
shells, and then discusses files, file permissions, and directories. You will
also learn how to create files and directories and how to change their
permissions.

The second part of this chapter introduces simple shell scripts, along with
instructions for making them executable. As you will see, shell scripts con-
tain bash commands (and can optionally contain user-defined functions),
so it’s a good idea to learn about bash commands before you can create
shell scripts (which include bash scripts).

The third portion of this chapter discusses two useful bash commands:
the cut command (for cutting or extracting columns and/or fields from a
dataset) and the paste command (for “pasting” text or datasets together
vertically).

In addition, the final part of this chapter uses the material from the pre-
vious section (i.e., the cut command and paste command) in a use case
that illustrates how to switch the order of two columns in a dataset. As you
will see later, there are other ways to perform this task, such as invoking
the awk command (discussed in Chapter 5).

INTRODUCTION

1

2 • DATA CLEANING POCKET PRIMER

There are a few points to keep in mind before delving into the details of
shell scripts. First, shell scripts can be executed from the command line
after adding “execute” permissions to the text file containing the shell
script. Second, you can use the crontab utility to schedule the execution
of your shell scripts. The crontab utility allows you to specify the execu-
tion of a shell script on an hourly, daily, weekly, or monthly basis. Tasks
that are commonly scheduled via crontab include performing backups,
removing unwanted files, and so forth. If you are completely new to Unix,
just keep in mind that there is a way to run scripts both from the com-
mand line and in a “scheduled” manner. Setting file permissions to run
the script from the command line will be discussed later.

Third, the contents of any shell script can be as simple as a single com-
mand, or can comprise hundreds of lines of bash commands. In general,
the more interesting shell scripts involve a combination of several bash
commands. A learning tip: since there are usually several ways to produce
the desired result, it’s helpful to read other people’s shell scripts to learn
how to combine commands in useful ways.

What Is Unix?

Unix is an operating system created by Ken Thompson in the early 1970s,
and today there are several variants available, such as HP/UX for HP
machines and AIX for IBM machines. Linus Torvalds developed the
Linux operating system during the 1990s, and many Linux commands are
the same as their bash counterparts (but differences exist, often in the
commands for system administrators). The Mac OS X operating system is
based on AT&T Unix.

Unix has a rich and storied history, and if you are really interested in learn-
ing about its past, you can read online articles and also Wikipedia. This
book foregoes those details and focuses on helping you quickly learn how
to become productive with various commands.

Available Shell Types

The original Unix shell is the Bourne shell, which was written in the
mid-1970s by Stephen R. Bourne. In addition, the Bourne shell was the
first shell to appear on bash systems, and you will sometimes hear “the
shell” as a reference to the Bourne shell. The Bourne shell is a POSIX
standard shell, usually installed as /bin/sh on most versions of Unix,
whose default prompt is the $ character. Consequently, Bourne shell

INTRODUCTION • 3

scripts will execute on almost every version of Unix. In essence, the
AT&T branches of Unix support the Bourne shell (sh), bash, Korn shell
(ksh), tsh, and zsh.

However, there is also the BSD branch of Unix that uses the “C” shell
(csh), whose default prompt is the % character. In general, shell scripts
written for csh will not execute on AT&T branches of Unix, unless the
csh shell is also installed on those machines (and vice versa).

The Bourne shell is the most “unadorned” in the sense that it lacks
some commands that are available in the other shells, such as history,
noclobber, and so forth. The various subcategories for the Bourne Shell
are listed as follows:

Bourne shell (sh)
Korn shell (ksh)
Bourne Again shell (bash)
POSIX shell (sh)

The different C-type shells follow:

C shell (csh)
TENEX/TOPS C shell (tcsh)

While the commands and the shell scripts in this book are based on the
bash shell, many of the commands also work in other shells (and if not,
those other shells have a similar command to accomplish the same goal).
Performing an Internet search for “how do I do <bash command> in
<shell name>” will often get you an answer. Sometimes the command is
essentially the same, but with slightly different syntax, and typing “man
<command>” in a command shell can provide useful information.

What Is bash?

Bash is an acronym for “Bourne Again Shell,” which has its roots in the
Bourne shell created by Stephen R. Bourne. Shell scripts based on the
Bourne shell will execute in bash, but the converse is not true. The bash
shell provides additional features that are unavailable in the Bourne shell,
such as support for arrays (discussed later in this chapter).

On Mac OS X, the /bin directory contains the following executable shells:

-r-xr-xr-x 1 root wheel 1377872 Apr 28 2017 /bin/ksh

-r-xr-xr-x 1 root wheel 630464 Apr 28 2017 /bin/sh

-rwxr-xr-x 1 root wheel 375632 Apr 28 2017 /bin/csh

-rwxr-xr-x 1 root wheel 592656 Apr 28 2017 /bin/zsh

-r-xr-xr-x 1 root wheel 626272 Apr 28 2017 /bin/bash

4 • DATA CLEANING POCKET PRIMER

In case you’re interested, a nice comparison matrix of the support for
various features among the preceding shells is here:

https://stackoverflow.com/questions/5725296/difference-between
-sh-and-bash.

Something else that might surprise you: in some environments the Bourne
shell sh is the Bash shell, which you can check by typing the following
command:

sh --version

GNU bash, version 3.2.57(1)-release (x86_64-apple-darwin16)

Copyright (C) 2007 Free Software Foundation, Inc.

If you are new to the command line (be it Mac, Linux, or PCs), please
read the Preface, which provides some useful guidelines for accessing
command shells.

Getting Help for bash Commands

If you want to see the options for a specific bash command, specify the
-? switch. For example, cat -? displays the available options for the
cat command. You can invoke the man command to see a description of
a bash command and its options:

man cat

Keep in mind that the man command produces terse explanations, and if
those explanations are not clear enough, you can search for online code
samples that provide more details.

Navigating Around Directories

In a command shell you will often perform basic operations, such as
displaying (or changing) the current directory, listing the contents of a
directory, displaying the contents of a file, and so forth. The following set
of commands shows you how to perform these operations, and you can
execute a subset of these comments in the sequence that is relevant to
you. Options for some of the commands in this section (such as the ls
command) are described in greater detail later in this chapter.

A frequently used Bash command is pwd (“print working directory”),
which displays the current directory, as shown here:

pwd

The output of the preceding command might look something like this:

/Users/jsmith

INTRODUCTION • 5

Use the cd (“change directory”) command to go to a specific directory.
For example, type the command cd /Users/jsmith/Mail or cd Mail
if you are already in the /Users/jsmith directory. You can navigate to
your home directory with either of these commands:

$ cd $HOME

$ cd

One convenient way to return to the previous directory is the command
cd –. Keep in mind that the cd command on Windows merely displays
the current directory (which differs from the Unix cd command).

The history Command

The history command displays the history of commands that you exe-
cuted in the current command shell, as shown here:

history

A sample output of the preceding command is here:

 1202 cat longfile.txt > longfile2.txt
 1203 vi longfile2.txt
 1204 cat longfile2.txt |fold -40
 1205 cat longfile2.txt |fold -30
 1206 cat longfile2.txt |fold -50
 1207 cat longfile2.txt |fold -45
 1208 vi longfile2.txt
 1209 history

 1210 cd /Library/Developer/CommandLineTools/usr/include/c++/

 1211 cd /tmp

 1212 cd $HOME/Desktop

 1213 history

Now you can return to the directory in line 1210 with the following
command:

!1210

The command !cd will search backward through the history of com-
mands to find the first command that matches the cd command: in this
case, line 1212 is the first match. If there weren’t any intervening cd com-
mands between the current command and the command in line 1210,
then !1210 and !cd will have the same effect.

Be careful with the “!” option with bash commands, because the command
that matches the “!” might not be the one you intended, so it’s safer to use
the history command and then explicitly specify the correct number (in
that history) when you invoke the “!” operator.

NOTE

6 • DATA CLEANING POCKET PRIMER

Listing Filenames with the ls Command

The ls command is for listing filenames, and there are many switches
available that you can use, as shown in this section. For example, the ls
command displays the following filenames (the actual display depends on
the font size and the width of the command shell) on my Mac:

apple-care.txt iphonemeetup.txt outfile.txt ssl-
instructions.txt checkin-commands.txt kyrgyzstan.txt

output.txt

The command ls -1 (the digit “1”) displays a vertical listing of filenames:

apple-care.txt

checkin-commands.txt

iphonemeetup.txt

kyrgyzstan.txt

outfile.txt
output.txt

ssl-instructions.txt

The command ls -1 (the letter “l”) displays a long listing of filenames:

total 56

-rwx------ 1 ocampesato staff 25 Jan 06 19:21 apple-care.txt
-rwx------ 1 ocampesato staff 146 Jan 06 19:21 checkin-commands.txt
-rwx------ 1 ocampesato staff 478 Jan 06 19:21 iphonemeetup.txt
-rwx------ 1 ocampesato staff 12 Jan 06 19:21 kyrgyzstan.txt
-rw-r--r-- 1 ocampesato staff 11 Jan 06 19:21 outfile.txt
-rw-r--r-- 1 ocampesato staff 12 Jan 06 19:21 output.txt
-rwx------ 1 ocampesato staff 176 Jan 06 19:21 ssl-instructions.txt

The command ls -1t (the letters “l” and “t”) display a time-based long
listing:

total 56

-rwx------ 1 ocampesato staff 25 Jan 06 19:21 apple-care.txt
-rwx------ 1 ocampesato staff 146 Jan 06 19:21 checkin-commands.txt
-rwx------ 1 ocampesato staff 478 Jan 06 19:21 iphonemeetup.txt
-rwx------ 1 ocampesato staff 12 Jan 06 19:21 kyrgyzstan.txt
-rw-r--r-- 1 ocampesato staff 11 Jan 06 19:21 outfile.txt
-rw-r--r-- 1 ocampesato staff 12 Jan 06 19:21 output.txt
-rwx------ 1 ocampesato staff 176 Jan 06 19:21 ssl-instructions.txt

The command ls -ltr (the letters “l”, “t”, and “r”) display a reversed
time-based long listing of filenames:

total 56

-rwx------ 1 ocampesato staff 176 Jan 06 19:21 ssl-instructions.txt
-rw-r--r-- 1 ocampesato staff 12 Jan 06 19:21 output.txt

INTRODUCTION • 7

-rw-r--r-- 1 ocampesato staff 11 Jan 06 19:21 outfile.txt
-rwx------ 1 ocampesato staff 12 Jan 06 19:21 kyrgyzstan.txt
-rwx------ 1 ocampesato staff 478 Jan 06 19:21 iphonemeetup.txt
-rwx------ 1 ocampesato staff 146 Jan 06 19:21 checkin-commands.txt
-rwx------ 1 ocampesato staff 25 Jan 06 19:21 apple-care.txt

Here is the description about all the listed columns in the preceding
output:

Column #1: represents file type and permission given on the file (see the
following)
Column #2: shows the number of memory blocks taken by the file or
directory
Column #3: indicates the (Bash user) owner of the file
Column #4: represents group of the owner
Column #5: represents file size in bytes
Column #6: shows the date and time when this file was created or last
modified
Column #7: represents file or directory name

In the ls -l listing example, every file line began with a d, -, or l. These
characters indicate the type of file that’s listed. These (and other) initial
values are described as follows:

- Regular file (ASCII text file, binary executable, or hard link)
b Block special file (such as a physical hard drive)
c Character special file (such as a physical hard drive)
d Directory file that contains a listing of other files and directories
l Symbolic link file
p Named pipe (a mechanism for interprocess communications)
s Socket (for interprocess communication)

Consult online documentation for more details regarding the ls
command.

Displaying Contents of Files

Now let’s see how to display different lines of text in a text file. You can use
the cat command to display the entire contents of a file, but it’s a good
idea to first get some information about the file contents. Specifically, use
the wc (word count) command that displays the number of lines, words,
and characters in a text file, as shown here:

wc longfile.txt
37 80 408 longfile.txt

8 • DATA CLEANING POCKET PRIMER

The preceding output shows that the file longfile.txt contains 37 lines,
80 words, and 408 characters, which means that the file size is actually
quite small (despite its name).

The cat Command

You can use the cat command to display the contents of longfile.txt:

cat longfile.txt

The preceding command displays the following text:

the contents

of this

long file
are too long

to see in a

single screen

and each line

contains

one or

more words

and if you

use the cat

command the

(other lines are omitted)

As another example, suppose that the file temp1 has the following
contents:

this is line1 of temp1

this is line2 of temp1

this is line3 of temp1

Suppose that the file temp2 has these contents:

this is line1 of temp2

this is line2 of temp2

Now type the following command that contains the ? metacharacter (dis-
cussed in detail later in this chapter):

cat temp?

The output from the preceding command is shown here:

this is line1 of temp1

this is line2 of temp1

this is line3 of temp1

this is line1 of temp2

this is line2 of temp2

INTRODUCTION • 9

The head and tail Commands

The head command displays the first ten lines of a text file (by default),
an example of which is here:

head longfile.txt

The preceding command displays the following text:

the contents

of this

long file
are too long

to see in a

single screen

and each line

contains

one or

more words

The head command also provides an option to specify a different number
of lines to display, as shown here:

head -4 longfile.txt

The preceding command displays the following text:

the contents

of this

long file
are too long

The tail command displays the last ten lines (by default) of a text file:

tail longfile.txt

The preceding command displays the following text:

is available

in every shell

including the

bash shell

csh

zsh

ksh

and Bourne shell

The last two lines in the preceding output are blank lines (not a typo-
graphical error in this page).

NOTE

10 • DATA CLEANING POCKET PRIMER

Similarly, the tail command allows you to specify a different number
of lines to display: tail –4 longfile.txt displays the last 4 lines of
longfile.txt.

Use the more command to display a screenful of data, as shown here:

more longfile.txt

Press the <spacebar> to view the next screenful of data, and press the
<return> key to see the next line of text in a file. Incidentally, some
people prefer the less command, which generates essentially the same
output as the more command. (A geeky joke: “What’s less? It’s more.”)

The Pipe Symbol

A very useful feature of Bash is its support for the pipe symbol (“|”) that
enables you to “pipe” or redirect the output of one command to become
the input of another command. The pipe command is very handy when
you want to perform a sequence of operations involving various Bash
commands.

For example, the following code snippet combines the head command
with the cat command and the pipe (“|”) symbol:

cat longfile.txt| head -2

A technical point: the preceding command creates two bash processes
(more about processes later), whereas the command head -2 longfile.
txt only creates a single bash process.

You can use the head and tail commands in more interesting ways. For
example, the following command sequence displays lines 11 through 15
of longfile.txt:

head -15 longfile.txt |tail -5

The preceding command displays the following text:

and if you

use the cat

command the

file contents
scroll

Display the line numbers for the preceding output as follows:

cat –n longfile.txt | head -15 | tail -5

INTRODUCTION • 11

The preceding command displays the following text:

 11 and if you

 12 use the cat

 13 command the

 14 file contents
 15 scroll

You won’t see the “tab” character from the output, but it’s visible if you
redirect the previous command sequence to a file and then use the “-t”
option with the cat command:

cat –n longfile.txt | head -15 | tail -5 > 1
cat –t 1

 11^Iand if you

 12^Iuse the cat

 13^Icommand the

 14^Ifile contents
 15^Iscroll

The fold Command

The fold command enables you to “fold” the lines in a text file, which
is useful for text files that contain long lines of text that you want to split
into shorter lines. For example, here are the contents of longfile2.txt:

the contents of this long file are too long to see in a single
screen and each line contains one or more words and if you

use the cat command the file contents scroll off the screen so
you can use other commands such as the head or tail or more

commands in conjunction with the pipe command that is very

useful in Bash and is available in every shell including the

bash shell csh zsh ksh and Bourne shell

You can “fold” the contents of longfile2.txt into lines whose length is
45 (just as an example) with this command:

cat longfile2.txt |fold -45

The output of the preceding command is here:

the contents of this long file are too long t
o see in a single screen and each line contai

ns one or more words and if you use the cat c

ommand the file contents scroll off the scree
n so you can use other commands such as the h

ead or tail or more commands in conjunction w

ith the pipe command that is very useful in U

nix and is available in every shell including

 the bash shell csh zsh ksh and Bourne shell

12 • DATA CLEANING POCKET PRIMER

Notice that some words in the preceding output are split based on the line
width, and not “newspaper style.”

In Chapter 4 you will learn how to display the lines in a text file that match
a string or a pattern, and in Chapter 5 you will learn how to replace a
string with another string in a text file.

File Ownership: Owner, Group, and World

Bash files have rwx privileges, where r = read privilege, w = write privilege,
x = execute privilege can be executed from the command line, simply by typ-
ing the file name (or the full path to file name if the file is not in your current
directory). Invoking an executable file from the command line will cause the
operating system to attempt to execute commands inside the text file.

Use the chmod command to set permissions for files. For example, if you
need to set the permission rwx rw- r-- for a file, use the following:

chmod u=rwx g=rw o=r filename

In the preceding command the options u, g, and o represent user permis-
sions, group permissions, and other permissions, respectively.

In order to add additional permissions on the current file, use + to add
permission to user, group, or others and use - to remove the permissions.
For example, given a file with the permissions rwx rw- r--, add the
executable permission as follows:

chmod o+x filename

This command adds the x permission for others.

Add the executable permission to all permission categories—that is, for
user, group, and others—as follows:

chmod a+x filename

In the preceding command, the letter a means “all.”

Specify a - in order to remove any permission, as shown here:

chmod a-x filename

Hidden Files

A so-called “invisible” file is one whose first character is the dot or period
character (.). Bash programs (including the shell) use most of these files to

INTRODUCTION • 13

store configuration information. Some common examples of hidden files
include the following files:

.profile: the Bourne shell (sh) initialization script

.bash_profile: the bash shell (bash) initialization script

.kshrc: the Korn shell (ksh) initialization script

.cshrc: the C shell (csh) initialization script

.rhosts: the remote shell configuration file

To list invisible files, specify the -a option to ls:

ls -a

. .profile docs lib test_results

.. .rhosts hosts pub users

.emacs bin hw1 res.01 work

.exrc ch07 hw2 res.02

.kshrc ch07.bak hw3 res.03

Single dot .: This represents current directory.

Double dot ..: This represents parent directory.

Handling Problematic Filenames

Problematic filenames contain one or more whitespaces, hidden
(non-printing) characters, or start with a dash (“-”) character.

You can use double quotes to list filenames that contain whitespaces, or
you can precede each whitespace by a backslash (“\”) character.

For example, if you have a file named One Space.txt, you can use the
ls command as follows:

ls -1 "One Space.txt"

ls –l One\ Space.txt

Filenames that start with a dash (“-”) character are difficult to handle
because the dash character is the prefix that specifies options for bash
commands. Consequently, if you have a file whose name is –abc, then the
command ls –abc will not work correctly, because the “-a” is interpreted
as a switch for the ls command (and there is no “a” option).

In most cases the best solution to this type of file is to rename the file.
This can be done in your operating system if your client isn’t a Unix shell,
or you can use the following special syntax for the mv (“move”) command
to rename the file. The preceding two dashes tell mv to ignore the dash in
the filename. An example is here:
mv -- -abc.txt renamed-abc.txt

14 • DATA CLEANING POCKET PRIMER

Working with Environment Variables

There are many built-in environment variables available, and the follow-
ing subsections discuss some of the more common variables.

The env Command

The env (“environment”) command displays the variables that are in your
bash environment. An example of the output of the env command is
here:

SHELL=/bin/bash

TERM=xterm-256color

TMPDIR=/var/folders/73/39lngcln4dj_scmgvsv53g_w0000gn/T/

OLDPWD=/tmp

TERM_SESSION_ID=63101060-9DF0-405E-84E1-EC56282F4803

USER=ocampesato

COMMAND_MODE=bash2003PATH=/opt/local/bin:/Users/ocampesato/
android-sdk-mac_86/platform-tools:/Users/ocampesato/
android-sdk-mac_86/tools:/usr/local/bin:
PWD=/Users/ocampesato

JAVA_HOME=/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/
Contents/Home

LANG=en_US.UTF-8

NODE_PATH=/usr/local/lib/node_modules

HOME=/Users/ocampesato

LOGNAME=ocampesato

DISPLAY=/tmp/launch-xnTgkE/org.macosforge.xquartz:0
SECURITYSESSIONID=186a4

_=/usr/bin/env

Some interesting examples of setting an environment variable and also
executing a command are described here:

https://stackoverflow.com/questions/13998075/setting-environment
-variable-for-one-program-call-in-bash-using-env.

Useful Environment Variables

This section discusses some important environment variables, most of
which you probably will not need to modify, but it’s useful to be aware of
the existence of these variables and their purpose.

The HOME variable contains the absolute path of the user’s home directory.

The HOSTNAME variable specifies the Internet name of the host.

The LOGNAME variable specifies the user’s login name.

INTRODUCTION • 15

The PATH variable specifies the search path (see next subsection).

The SHELL variable specifies the absolute path of the current shell.

The USER specifies the user’s current username. This value might be dif-
ferent than the login name if a superuser executes the su command to
emulate another user’s permissions.

Setting the PATH Environment Variable

Programs and other executable files can live in many directories, so oper-
ating systems provide a search path that lists the directories that the OS
searches for executable files. Adding a directory to your path means an
executable file can be called by just using the filename as a command,
without having to call out its entire path, just as if it resided in your work-
ing directory.

The path is stored in an environment variable, which is a named string
maintained by the operating system. These variables contain information
available to the command shell and other programs.

The path variable is named PATH in bash or Path in Windows (bash is
case-sensitive; Windows is not).

Setting the path in bash/Linux:

export PATH=$HOME/anaconda:$PATH

To add the Python directory to the path for a particular session in bash:

export PATH="$PATH:/usr/local/bin/python"

In Bourne shell or ksh shell enter this command:

PATH="$PATH:/usr/local/bin/python"

/usr/local/bin is the location of the Python executable

Specifying Aliases and Environment Variables

The following command defines an environment variable called h1:

h1=$HOME/test

Now if you enter the following command:

echo $h1

NOTE

16 • DATA CLEANING POCKET PRIMER

you will see the following output on OS X:

/Users/jsmith/test

The next code snippet shows you how to set the alias ll so that it displays
a long listing of a directory:

alias ll="ls -l"

The following three alias definitions involve the ls command and various
switches:

alias ll="ls –l"

alias lt="ls –lt"

alias ltr="ls –ltr"

As an example, you can replace the command ls -ltr (the letters “l,” “t,”
and “r”) that you saw earlier in the chapter with the ltr alias, and you will
see the same reversed time-based long listing of filenames (reproduced
here):

total 56

-rwx------ 1 ocampesato staff 176 Jan 06 19:21 ssl-instructions.txt
-rw-r--r-- 1 ocampesato staff 12 Jan 06 19:21 output.txt
-rw-r--r-- 1 ocampesato staff 11 Jan 06 19:21 outfile.txt
-rwx------ 1 ocampesato staff 12 Jan 06 19:21 kyrgyzstan.txt
-rwx------ 1 ocampesato staff 478 Jan 06 19:21 iphonemeetup.txt
-rwx------ 1 ocampesato staff 146 Jan 06 19:21 checkin-commands.txt
-rwx------ 1 ocampesato staff 25 Jan 06 19:21 apple-care.txt

You can also define an alias that contains the Bash pipe (“|”) symbol:

alias ltrm="ls –ltr|more"

In a similar manner, you can define aliases for directory related commands:

alias ltd="ls –lt | grep '^d'"
alias ltdm="ls –lt | grep '^d'|more"

Finding Executable Files

There are several commands available for finding executable files (binary
files or shell scripts) by searching the directories in the PATH environment
variable: which, whence, whereis, and whatis. These commands
produce results similar to the which command, as discussed below.

The which command gives the full path to whatever executable that you
specify or a blank line if the executable is not in any directory that is

INTRODUCTION • 17

specified in the PATH environment variable. This is useful for finding out
whether a particular command or utility is installed on the system.

which rm

The output of the preceding command is here:

/usr/bin/rm

The whereis command provides the information that you get from the
where command, and also the location of the man page of the executable:

$ whereis rm

rm: /bin/rm /usr/share/man/man1/rm.1.bz2

The whatis command looks up the specified command in the whatis
database, which is useful for identifying system commands and important
configuration files. Consider it a simplified “man” command, which dis-
plays concise details about bash commands (e.g., type man ls and you
will see several pages of explanation regarding the ls command).

What Are Shell Scripts?

Shell scripts contain bash commands, which are executed sequentially
from top to bottom (i.e., in the sequence that they appear in a shell script),
unless they are defined inside a function. In particular, user-defined
functions in shell scripts are executed in the order that they are invoked
instead of in the order that they appear in the shell script. However, you
can change the sequence in which commands are executed by using con-
ditional logic, case statements, loops, and functions.

Shell scripts can contain whatever bash commands are available on your
system (but be aware that some commands require the sudo command,
which in turn requires a password). Simple examples of shell scripts
include file-related commands that create files, read data from files,
and update the contents of files. Regardless of the contents of your shell
scripts, they are interpreted “on the fly,” so there are no compilation steps
that create a binary executable.

The purpose of shell scripts is to automate the process of executing a
set of bash commands so that you don’t need to execute them manually
from the command line. If you need to execute a simple command from
the command line, then it’s unlikely that you need to do so via a shell

18 • DATA CLEANING POCKET PRIMER

script: just type the command and press the <RETURN> key. Note that
the bash crontab utility enables you to schedule the execution of shell
scripts at various points in time (the crontab utility is outside the scope
of this book).

As you probably know, comments are important in source code. A good
shell script contains meaningful comments, which are preceded by a
pound sign “#,” that explain the purpose of different sections in the shell
script. The exception is when the “#” symbol appears in the first line of a
shell script, as you will see in the next section.

A Simple Shell Script

Create the file test.sh (using your favorite text editor) with the follow-
ing contents:

#!/bin/bash

pwd

ls

cd /tmp

ls

mkdir /tmp/abc

touch /tmp/abc/emptyfile
ls /tmp/abc/

Now save the above content and make this script executable as follows:

chmod +x test.sh

Now you have your shell script ready to be executed as follows:

./test.sh

The output from launching test.sh depends on the contents of the /tmp
directory.

The first line in test.sh is called the “shebang” line, which directs the sys-
tem to launch the bash shell in order to invoke the commands in test.sh.
The term shebang is sort of a contraction of “hash” (for the “#” character)
and “bang” (for the “!” character). Note that the initial “./” of ./test.
sh specifies the file test.sh in the current directory: if the file test.
sh is in your home directory, specify $HOME/test.sh. In addition, if “.”
is included in the PATH environment variable, then you can simply type
test.sh without the “./” prefix.

NOTE

INTRODUCTION • 19

One point regarding the mkdir command: if you specify a path in which
intermediate directories do not exist, then you need to use the –p switch.
For example, if the directory /tmp/abc does not exist, then the following
command requires the –p switch:

mkdir –p /tmp/abc/def

As another example of a simple shell script, the following script uses the
read command, which takes the input from the keyboard and assigns
that input value as the value of the variable PERSON. The echo command
prints the input value on STDOUT, which is the screen (by default).

#!/bin/sh

echo "What is your name?"

read PERSON

echo "Hello, $PERSON"

Here is sample invocation of this script:

$./test.sh

What is your name?

John Smith
Hello, John Smith

Using a Semicolon to Separate Commands

You can combine multiple commands with a semicolon (“;”), as shown
here:

cd /tmp; pwd; cd ~; pwd

The preceding code snippet navigates to the /tmp directory, prints the full
path to the current directory, returns to the previous directory, and again
prints the full path to the current directory. The output of the preceding
command is here:

/tmp

/Users/jsmith

You can use command substitution (discussed in a later section) to assign
the output to a variable, as shown here:

x=`cd /tmp; pwd; cd ~; pwd`

echo $x

20 • DATA CLEANING POCKET PRIMER

The output of the preceding snippet is here:

/tmp /Users/jsmith

The printf Command and the echo Command

In brief, use the printf command instead of the echo command if you
need to control the output format. One key difference is that the echo
command prints a newline character whereas the printf statement does
not print a newline character. Keep this point in mind when you see the
printf statement in the awk code samples in Chapter 5.

As a simple example, place the following code snippet in a shell script:

printf "%-5s %-10s %-4s\n" ABC DEF GHI

printf "%-5s %-10s %-4.2f\n" ABC DEF 12.3456

Make the shell script executable and then launch the shell script, after
which you will see the following output:

ABC DEF GHI

ABC DEF 12.35

On the other hand, if you type the following pair of commands:

echo "ABC DEF GHI"

echo "ABC DEF 12.3456"

you will see the following output:

ABC DEF GHI

ABC DEF 12.3456

A detailed (and very lengthy) discussion regarding the printf statement
and the echo command is here:

https://unix.stackexchange.com/questions/65803/why-is-printf-better
-than-echo.

The echo Command and Whitespaces

The echo command preserves whitespaces in variables, but in some cases
the results might be different from your expectations.

Listing 1.1 displays the contents of EchoCut.sh that illustrates the differ-
ences that can occur when the echo command is used with the cut command.

INTRODUCTION • 21

LISTING 1.1. EchoCut.sh

x1="123 456 789"

x2="123 456 789"

echo "x1 = $x1"

echo "x2 = $x2"

x3=`echo $x1 | cut -c1-7`
x4=`echo "$x1" | cut -c1-7`
x5=`echo $x2 | cut -c1-7`
echo "x3 = $x3"

echo "x4 = $x4"

echo "x5 = $x5"

Launch the code in Listing 1.1 and you will see the following output:

x1 = 123 456 789

x2 = 123 456 789

x3 = 123 456

x4 = 123 4

x5 = 123 456

The value of x3 is probably different from what you expected: there is
only one blank space between 123 and 456 instead of the three blank
spaces that appear in the definition of the variable x1.

This seemingly minor detail is important when you write shell scripts
that check the values contained in specific columns of text files,
such as payroll files and other files with financial data. The solution
involves the use of double quote marks (and sometimes the IFS vari-
able that is discussed in Chapter 2) that you can see in the definition
of x4.

Command Substitution (“back tick”)

The “back tick” or command substitution feature of the Bourne shell is
very powerful and enables you to combine multiple bash commands. You
can also write very compact and powerful (and complicated) shell scripts
with command substitution. The syntax is to simply precede and follow
your command with a “`” (back tick) character. In Listing 1.2, the back tick
command is `ls *py`

Listing 1.2 displays the contents of CommandSubst.sh that displays a
subset of the list of files in a directory.

22 • DATA CLEANING POCKET PRIMER

LISTING 1.2. CommandSubst.sh

for f in `ls *py`

do

 echo "file is: $f"
done

Listing 1.2 contains a for loop that displays the filenames (in the current
directory) that have a “py” suffix.

The output of Listing 1.2 on my MacBook is here:

file is: CapitalizeList.py
file is: CompareStrings.py
file is: FixedColumnCount1.py
file is: FixedColumnWidth1.py
file is: LongestShortest1.py
file is: My2DMatrix.pyß
file is: PythonBash.py
file is: PythonBash2.py
file is: StringChars1.py
file is: Triangular1.py
file is: Triangular2.py
file is: Zip1.py

The output depends on whether or not you have any files with a .py suffix
in the directory where you execute CommandSubst.sh.

Setting Environment Variables via Shell Scripts

A very important concept when using shell scripts is that any variables set
inside the script are no longer set when the script finishes executing. The
rules are shown as follows:

�� If a variable isn’t set in a script, but is already defined before the
script is executed, that variable will also be available inside the
script.

�� If a variable is set in a script, it will override any existing variable with
the same name after the variable is set, but once the script ends, the
variable will revert to its old value (or to no value, if it did not exist
outside the shell script).

For example, if your $HOME directory is /Users/jsmith, but inside a
script on row 10 you define $HOME to be /Users/common/bin, then the
value of $HOME is initially /Users/jsmith for rows 1–9, then becomes
/Users/common/bin on row 10, and maintains that value until the
last command in the shell script is executed. Then the value reverts to /
Users/jsmith.

NOTE

INTRODUCTION • 23

The reason for this behavior is related to how Unix structures its pro-
cesses (known as “shells,” hence the term “shell script”). That discussion
is beyond the scope of this book.

Therefore, the default behavior is that if you set the value of a variable in a
shell script, then that variable (and its value) exist only for the duration of
the execution of the shell script. There is a simple “workaround” whereby
variables “hold” their values after a shell script has completed, and you’ll
learn how to do so in a subsequent section.

Just to make sure that the distinction is clear, consider Listing 1.3 that
displays the contents of the shell script abc.sh.

LISTING 1.3. abc.sh

export x="123"

echo "inside abc.sh"

echo "x = $x"

Make sure that abc.sh is an executable shell script with the chmod com-
mand (as shown earlier in this chapter) and then launch the following
sequence of commands from the command line:

export x="tom"

echo "x = $x"

./abc.sh

echo "x = $x"

The output from the preceding commands is here:

x = tom

inside abc.sh

x = 123

x = tom

As you can see, the value that is assigned to the variable x is only for the
duration of the process associated with the shell script abc.sh. After exe-
cution has competed, the process terminates and the value of x reverts to
its original value. Fortunately, there is a way to ensure that the values of
variables in a shell script can be “set” for the current shell, a technique
called “sourcing” the shell script, as described in the next section.

Sourcing or “Dotting” a Shell Script

Now execute the following sequence of commands:

export x="tom smith"

echo "x = $x"

. abc.sh

echo "x = $x"

24 • DATA CLEANING POCKET PRIMER

The output from the preceding commands is here:

x = "tom smith"

inside abc.sh

x = 123

x = 123

In the preceding code block, the value assigned to the variable x inside the
shell script abc.sh overrides its previously defined value because “sourc-
ing” (also called “dotting”) a shell script does not create a new process.
Consequently, if a shell script assigns a new value to an existing variable,
that new value is placed in the current environment and the previously
defined value is lost.

Working with Arrays

Arrays are critical to data management and appear in a variety of real
world contexts. It is a common problem to want to group related data
elements together, then reference it within a row.

For example, at a volunteer event you might have to sign in and provide your
name, address, and phone number so they can contact you later for future
events. That related data could be thought of (and defined in bash) as:

volunteer[0] = name

volunteer[1] = Address

volunteer[2] = phone number

The sign-in list could be then captured as a file that used an internal field
separator [IFS] to make each row a volunteer, and each data element
(name, address, phone number) distinct, easy to use with a later bash
script (or any other programming language or program that understands
the concept of IFS).

The IFS is a concept covered in detail in Chapter 2, but it will be used
in the following examples so you get a taste of how it is used. If you are
familiar with “.csv” (comma separated value) text output from spread-
sheets, the comma in those files is the IFS. If you were to open the sign-in
list in an Excel spreadsheet or Google Doc created with commas as IFS,
you would have column A = name, column B = address, and column C =
phone number, each row a separate volunteer.

This section contains several shell scripts that illustrate some useful fea-
tures of arrays in bash. Listing 1.4 displays the contents of array1.sh,
which illustrates how to use an array and some operations that you can
perform on arrays.

INTRODUCTION • 25

The syntax in bash is different enough from other programming languages
that it’s worthwhile to use several examples to explore its behavior.

LISTING 1.4. array1.sh

#!/bin/bash

method #1:
fruits[0]="apple"

fruits[1]="banana"

fruits[2]="cherry"

fruits[3]="orange"

fruits[4]="pear"

echo "first fruit: ${fruits[0]}"

method #2:
declare -a fruits2=(apple banana cherry orange pear)

echo "first fruit: ${fruits2[0]}"

range of elements:
echo "last two: ${fruits[@]:3:2}"

substring of element:
echo "substring: ${fruits[1]:0:3}"

arrlength=${#fruits[@]}
echo "length: ${#fruits[@]}"

Listing 1.5 displays the contents of names.txt and Listing 1.6 displays
the contents of array-from-file.sh, which contains a for loop to iter-
ate through the elements of an array whose initial values are based on the
contents of names.txt.

LISTING 1.5. names.txt

Jane Smith
John Jones
Dave Edwards

LISTING 1.6. array-from-file.sh

#!/bin/bash

names="names.txt"

contents1=(`cat "$names"`)

echo "First loop:"
for w in "${contents1[@]}"
do

 echo "$w"

done

26 • DATA CLEANING POCKET PRIMER

IFS=""

names="names.txt"

contents1=(`cat "$names"`)

echo "Second loop:"
for w in "${contents1[@]}"
do

 echo "$w"

done

Listing 1.6 initializes the array variable contents1 by using command
substitution with the cat command, followed by a loop that displays ele-
ments of the array contents1. The second for loop is the same code as
the first for loop, but this time with the value of IFS equal to “”, which has
the effect of using the newline as a separator, one data element per row.

Launch the code in Listing 1.6 and you will see the following output:

First loop:
Jane
Smith

John
Jones
Dave

Edwards

Second loop:
Jane Smith
John Jones
Dave Edwards

Listing 1.7 displays the contents of array-function.sh, which illus-
trates how to initialize an array and then display its contents in a user-de-
fined function.

LISTING 1.7. array-function.sh

#!/bin/bash

compact version of the code later in this script:
#items() { for line in "${@}" ; do printf "%s\n" "${line}" ;
done ; }
#aa=(7 -4 -e) ; items "${aa[@]}"

items() {
 for line in "${@}"
 do

 printf "%s\n" "${line}"
 done

}

arr=(123 -abc 'my data')
items "${arr[@]}"

INTRODUCTION • 27

Listing 1.7 contains the items() function that displays the contents of
the arr array that has been initialized prior to invoking this function. The
output is shown here:

123

-abc

my data

Listing 1.8 displays the contents of array-loops1.sh, which illustrates
how to determine the length of an initialized array and then display its
contents via a for loop.

LISTING 1.8. array-loops1.sh

#!/bin/bash

fruits[0]="apple"

fruits[1]="banana"

fruits[2]="cherry"

fruits[3]="orange"

fruits[4]="pear"

array length:
arrlength=${#fruits[@]}
echo "length: ${#fruits[@]}"

print each element via a loop:
for ((i=1; i<${arrlength}+1; i++));
do

 echo "element $i of ${arrlength} : " ${fruits[$i-1]}
done

Listing 1.8 contains straightforward code for initializing an array and dis-
playing its values.

Working with Nested Loops

This section is mainly for fun: you will see how to use nested loops to
display a “triangular” output. Listing 1.9 displays the contents of nested-
loops.sh, which illustrates how to display an alternating set of symbols
in a triangular fashion.

LISTING 1.9. nestedloops2.sh

#!/bin/bash

outermax=10

symbols[0]="#"

symbols[1]="@"

28 • DATA CLEANING POCKET PRIMER

for ((i=1; i<${outermax}; i++));
do

 for ((j=1; j<${i}; j++));
 do

 printf "%-2s" ${symbols[($i+$j)%2]}
 done

 printf "\n"

done

for ((i=1; i<${outermax}; i++));
do

 for ((j=${i}+1; j<${outermax}; j++));
 do

 printf "%-2s" ${symbols[($i+$j)%2]}
 done

 printf "\n"

done

Listing 1.9 initializes some variables, followed by a nested loop. The outer
loop is “controlled” by the loop variable i, whereas the inner loop (which
depends on the value of i) is “controlled” by the loop variable j. The key
point to notice is how the following code snippet prints alternating sym-
bols in the symbols array, depending on whether or not the value of $i +
$j is even or odd:

printf "%-2s" ${symbols[($i+$j)%2]}

You can easily generalize this code: if the symbols array contains arr-
length elements, then replace the preceding code snippet with the
following:

printf "%-2s" ${symbols[($i+$j)% $arrlength]}

Launch the code in Listing 1.9 and you will see the following output:

@
@
@ # @
@ # @
@ # @ # @
@ # @ # @
@ # @ # @ # @
@ # @ # @ # @
@ # @ # @ # @ #
@ # @ # @ # @
@ # @ # @ #
@ # @ # @
@ # @ #
@ # @
@ #
@

INTRODUCTION • 29

The paste Command

The paste command is useful when you need to combine two files in a
“pairwise” fashion. For example, Listing 1.10 and Listing 1.11 display the
contents of the text files list1 and list2, respectively. You can think of
paste as adding the contents of the second file as a new column in the
first file. In our first example, the first file has a list of files to copy, and
the second file has a list of files that are the destination for the copy com-
mand. Paste then merges the two files into output that could then be run
to execute all the copy commands in one step.

LISTING 1.10. list1

cp abc.sh

cp abc2.sh

cp abc3.sh

LISTING 1.11. list2

def.sh

def2.sh

def3.sh

Listing 1.12 displays the result of invoking the following command:

paste list1 list2 >list1.sh

LISTING 1.12. list1.sh

cp abc.sh def.sh

cp abc2.sh def2.sh

cp abc3.sh def3.sh

Listing 1.12 contains three cp commands that are the result of invoking
the paste command. If you want to execute the commands in Listing 1.12,
make this shell script executable and then launch the script, as shown
here:

chmod +x list1.sh

./list1.sh

Inserting Blank Lines with the paste Command

Instead of merging two equal length files, paste can also be used to add
the same thing to every line in a file. This example inserts a blank line
after every line in names.txt with this command:

paste -d'\n' - /dev/null < names.txt

30 • DATA CLEANING POCKET PRIMER

The output is here:

Jane Smith
John Jones
Dave Edwards

Insert a blank line after every other line in names.txt with this command:

paste -d'\n' - - /dev/null < names.txt

The output is here:

Jane Smith
John Jones

Dave Edwards

Insert a blank line after every third line in names.txt with this command:

paste -d'\n' - - - /dev/null < names.txt

The output is here:

Jane Smith
John Jones
Dave Edwards

Note that there is a blank line after the third line in the preceding output.
The shell script joinlines.sh (later in this chapter) also contains exam-
ples of one-line paste commands for joining consecutive lines of a dataset
or text file.

The cut Command

The cut command enables you to extract fields with a specified delimiter
(another word commonly used for IFS, especially when it’s part of a com-
mand syntax, instead of being set as an outside variable) as well as a range
of columns from an input stream. Some examples are here:

x="abc def ghi"

echo $x | cut –d" " –f2

The output (using space " " as IFS, and -f2 to indicate the second col-
umn) of the preceding code snippet is here:

def

INTRODUCTION • 31

Consider this code snippet:

x="abc def ghi"

echo $x | cut –c2-5

The output of the preceding code snippet (-c2-5 means extract the char-
acters in columns 2 through 5 from the variable) is here:

bc d

Listing 1.13 displays the contents of SplitName1.sh, which illus-
trates how to split a filename containing the “.” character as a
delimiter/IFS.

LISTING 1.13. SplitName1.sh

fileName="06.22.04p.vp.0.tgz"

f1=`echo $fileName | cut -d"." -f1`
f2=`echo $fileName | cut -d"." -f2`
f3=`echo $fileName | cut -d"." -f3`
f4=`echo $fileName | cut -d"." -f4`
f5=`echo $fileName | cut -d"." -f5`

f5=`expr $f5 + 12`

newFileName="${f1}.${f2}.${f3}.${f4}.${f5}"
echo "newFileName: $newFileName"

Listing 1.13 uses the echo command and the cut command in order
to initialize the variables f1, f2, f3, f4, and f5, after which a new
filename is constructed. The output of the preceding shell script is here:

newFileName: 06.22.04p.vp.12

Working with Metacharacters

Metacharacters can be thought of as a complex set of wildcards.
Regular expressions are a “search patterns” which are a combina-
tion of normal text and metacharacters. In concept it is much like
a “find” tool (press ctrl-f on your search engine), but bash (and
Unix in general) allows for much more complex pattern matching
because of its rich metacharacter set. There are entire books devoted
to regular expressions, but this section contains enough information
to get started, and the key concepts needed for data manipulation
and cleansing.

32 • DATA CLEANING POCKET PRIMER

The following metacharacters are useful with regular expressions:
The ? metacharacter refers to 0 or 1 occurrences of something.
The + metacharacter refers to 1 or more occurrences of something.
The * metacharacter refers to 0 more occurrences of something.

Note that “something” in the preceding descriptions can refer to a digit,
letter, word, or more complex combinations.

Some examples are shown here:

The expression a? matches zero or one occurrences of the letter a.

The expression a+ matches the string a followed by one or more occur-
rences of anything.

The expression a* matches the string a followed by zero or more occur-
rences of anything.

The pipe “|” metacharacter (which has a different context from the pipe
symbol in the command line: regular expressions have their own syntax,
which does not match that of the operating system a lot of the time) pro-
vides a choice of options. For example, the expression a|b means a or b,
and the expression a|b|c means a or b or c.

The “$” metacharacter refers to the end of a line of text, and in regular expres-
sions inside the vi editor, the “$” metacharacter refers to the last line in a file.

The “^” metacharacter refers to the beginning of a string or a line of text.
For example:

*a$ matches "Mary Anna" but not "Anna Mary"

^A* matches "Anna Mary" but not "Mary Anna"

In the case of regular expressions, the “^” metacharacter can also mean
“does not match.” The next section contains some examples of the “^”
metacharacter.

Working with Character Classes

Character classes enable you to express a range of digits, letters, or a com-
bination of both. For example, the character class [0-9] matches any
single digit; [a-z] matches any lowercase letter; and [A-Z] matches any
uppercase letter. You can also specify subranges of digits or letters, such as
[3-7], [g-p], and [F-X], as well as other combinations:

[0-9][0-9] matches a consecutive pair of digits
[0-9][0-9][0-9] matches three consecutive digits
\d{3} also matches three consecutive digits

INTRODUCTION • 33

The previous section introduced you to the “^” metacharacter, and here
are some examples of using “^” with character classes:

1) ^[a-z] matches any lowercase letter at the beginning of a line of text
2) ^[^a-z] matches any line of text that does not start with a lowercase

letter

Based on what you have learned thus far, you can understand the purpose
of the following regular expressions:

3) ([a-z]|[A-Z]): either a lowercase letter or an uppercase letter
4) (^[a-z][a-z]): an initial lowercase letter followed by another lowercase

letter
5) (^[^a-z][A-Z]): anything other than a lowercase letter followed by an

uppercase letter

Chapter 4 contains a section that discusses regular expressions, which
combine character classes and metacharacters in order to create sophis-
ticated expressions for matching complex string patterns (such as email
addresses).

The “pipe” Symbol and Multiple Commands

At this point you’ve seen various combinations of bash commands that
are connected with the “|” symbol. The general form looks something
like this:

cmd1 | cmd2 | cmd3 …. >mylist

What happens if there are intermediate errors? You’ve seen how to redi-
rect error messages to /dev/null, and you can also redirect error mes-
sages to a text file if you need to review them. Yet another option is to
redirect stderr (“standard error”) to stdout (“standard out”), which is
beyond the scope of this chapter.

Question: can an intermediate error cause the entire “pipeline” to fail?
Unfortunately, this scenario can occur, and in general it’s a trial-and-error
process to debug long and complex commands that involve multiple pipe
symbols.

Now consider the case where you need to redirect the output of multiple
commands to the same location. For example, the following commands
display output on the screen:

ls | sort; echo "the contents of /tmp: "; ls /tmp

34 • DATA CLEANING POCKET PRIMER

You can easily redirect the output to a file with this command:

(ls | sort; echo "the contents of /tmp:"; ls /tmp) > myfile1

However, each of the preceding commands inside the parentheses spawns
a subshell (which is an extra process that consumes memory and cpu). You
can avoid spawning subshells by using {} instead of (), as shown here
(and the whitespaces after { and before } are required):

{ ls | sort; echo "the contents of /tmp:"; ls /tmp } > myfile1

Suppose that you want to set a variable and execute a command, and then
invoke a second command via a pipe, as shown here:

name=SMITH cmd1 | cmd2

Unfortunately, cmd2 in the preceding code snippet does not recognize
the value of name, but there is a simple solution, as shown here:

(name=SMITH cmd1) | cmd2

Use the double ampersand && symbol if you want to execute a com-
mand only if a prior command succeeds. For example, the cd com-
mand only works if the mkdir command succeeds in the following
code snippet:

mkdir /tmp2/abc && cd /tmp2/abc

The preceding command will fail because (by default) the /tmp2 does not
exist. On the other hand, the following command succeeds because the
–p option ensures that intermediate directories are created:

mkdir –p /tmp/abc/def && cd /tmp/abc && ls -l

A Simple Use Case

The code sample in this section shows you how to use the paste com-
mand in order to join consecutive rows in a dataset. Listing 1.14 displays
the contents of linepairs.csv, which contains letter and number pairs,
and Listing 1.15 contains reversecolumns.sh, which illustrates how
to match the pairs even though the line breaks are in different places
between numbers and letters.

INTRODUCTION • 35

LISTING 1.14. linepairs.csv

a,b,c,d,e,f,g

h,i,j,k,l

1,2,3,4,5,6,7,8,9

10,11,12

LISTING 1.15. linepairs.sh

inputfile="linepairs.csv"
outputfile="linepairsjoined.csv"

join pairs of consecutive lines:
paste -d " " - - < $inputfile > $outputfile

join three consecutive lines:
#paste -d " " - - - < $inputfile > $outputfile

join four consecutive lines:
#paste -d " " - - - - < $inputfile > $outputfile

The contents of the output file are shown here (note that the script is
just joining pairs of lines; the three- and four-line command examples are
commented out):

a,b,c,d,e,f,g h,i,j,k,l

1,2,3,4,5,6,7,8,9 10,11,12

Notice that the preceding output is not completely correct: there is a
space “ ” instead of a “,” whenever a pair of lines is joined (between “g”
and “h” and “9” and “10”). We can make the necessary revision using the
sed command (discussed in Chapter 4):

cat $outputfile | sed "s/ /,/g" > $outputfile2

Examine the contents of $outputfile2 to see the result of the preceding
code snippet.

Another Simple Use Case

The code sample in this section shows you how to use the cut and
paste commands in order to reverse the order of two columns in a
dataset. Keep in mind that the purpose of the shell script in Listing
1.17 is to help you get some practice for writing bash scripts. The
better solution involves a single line of code (shown at the end of this
section).

36 • DATA CLEANING POCKET PRIMER

Listing 1.16 displays the contents of namepairs.csv, which contains
the first name and last name of a set of people, and Listing 1.17 con-
tains reversecolumns.sh, which illustrates how to reverse these two
columns.

LISTING 1.16. namepairs.csv

Jane,Smith
Dave,Jones
Sara,Edwards

LISTING 1.17. reversecolums.sh

inputfile="namepairs.csv"
outputfile="reversenames.csv"
fnames="fnames"

lnames="lnames"

cat $inputfile|cut -d"," -f1 > $fnames
cat $inputfile|cut -d"," -f2 > $lnames

paste –d"," $lnames $fnames > $outputfile

The contents of the output file are shown here:

Smith,Jane
Jones,Dave
Edwards,Sara

The code in Listing 1.17 (after removing blank lines) consists of seven
lines of code that involves creating two extra intermediate files. Unless
you need those files, it’s a good idea to remove those two files (which you
can do with one rm command).

Although Listing 1.17 is straightforward, there is a simpler way to exe-
cute this task: use the cat command and the awk command (discussed in
detail in Chapter 5).

Specifically, compare the contents of reversecolumns.sh with the fol-
lowing single line of code that combines the cat command and the awk
command in order to generate the same output:

cat namepairs.txt |awk -F"," '{print $2 "," $1}'

The output from the preceding code snippet is here:

Smith,Jane
Jones,Dave
Edwards,Sara

INTRODUCTION • 37

As you can see, there is a big difference in these two solutions. If you are
unfamiliar with the awk command, then obviously you would not have
thought of the second solution. However, the more you learn about bash
commands and how to combine them, the more adept you will become in
terms of writing better shell scripts to solve data cleaning tasks. Another
important point: document the commands as they get more complex, as
they can be hard to interpret later by others, or even by yourself if enough
time has passed. A comment like the following can be extremely helpful
to interpreting code:

This command reverses first and last names in namepairs.txt
cat namepairs.txt |awk -F"," '{print $2 "," $1}'

Summary

This chapter started with an introduction to some Unix shells, followed
by a brief discussion of files, file permissions, and directories. You also
learned how to create files and directories and how to change their per-
missions. Next you learned about environment variables, how to set them,
and also how to use aliases. You also learned about “sourcing” (also called
“dotting”) a shell script and how this changes variable behavior from call-
ing a shell script in the normal fashion.

Next you learned about the cut command (for cutting columns and/or
fields) and the paste command (for “pasting” test together vertically).
Finally, you saw two use cases, the first of which involved the cut com-
mand and paste command to switch the order to two columns in a data-
set, and the second showed you another way to perform the same task
using concepts from later chapters.

C H A P T E R2
USEFUL COMMANDS

T
his chapter discusses various bash commands that you can use
when working with datasets, such as splitting, sorting, and com-
paring datasets. You see examples of finding files in a directory and

then searching for strings in those files using the bash “pipe” command
that redirects the output of one bash command as the input of a second
bash command.

The first part of this chapter shows you how to merge, fold, and split data-
sets. This section also shows you how to sort files and find unique lines in
files using the sort and uniq commands, respectively. The last portion
explains how to compare text files and binary files.

The second section introduces you to the find command, which is a pow-
erful command that supports many options. For example, you can search
for files in the current directory or in subdirectories; you can search for
files based on their creation date and last modification date. One con-
venient combination is to “pipe” the output of the find command to the
xargs command in order to search files for a particular pattern. Next
you will see how to use the tr command, a tool which handles a lot of
commonly used text transformations such as capitalization or removal of
whitespace. After the section that discusses the tr command you will see
a use case that shows you how use the tr command in order to remove the
^M control character from a dataset.

The third section contains compression-related commands, such as cpio,
tar, and bash commands for managing files that are already compressed
(such as zdiff, zcmp, zmore, and so forth).

40 • DATA CLEANING POCKET PRIMER

The fourth section introduces you to the IFS option, which is useful for
extracting data from a range of columns in a dataset. You will also see how
to use the xargs command in order to “line up” the columns of a dataset
so that all rows have the same number of columns.

The fifth section shows you how to create shell scripts, which contain bash
commands that are executed sequentially, and also how to use recursion
in order to compute the factorial value of a positive integer. The Appendix
for this book contains additional shell scripts that use recursion in order to
calculate the GCD (greatest common divisor) and LCM (lowest common
multiple) of two positive integers, the Fibonacci value of a positive inte-
ger, and also the prime divisors of a positive integer.

The join Command

The join command allows you to merge two files in a meaningful fash-
ion, which essentially creates a simple version of a relational database.

The join command operates on exactly two files, but pastes together only
those lines with a common tagged field (usually a numerical label), and
writes the result to stdout. The files to be joined should be sorted accord-
ing to the tagged field for the matchups to work properly. Listing 2.1 and
Listing 2.2 display the contents of 1.data and 2.data, respectively.

LISTING 2.1 1.data

100 Shoes
200 Laces
300 Socks

LISTING 2.2 2.data

100 $40.00
200 $1.00
300 $2.00

Now launch the following command:

join 1.data 2.data

The output is here:

1) 100 Shoes $40.00
2) 200 Laces $1.00
3) 300 Socks $2.00

USEFUL COMMANDS • 41

The fold Command

As you know from Chapter 1, the fold command enables you to dis-
play a set of lines with a fixed column width, and this section contains a
few more examples. Note that this command does not take into account
spaces between words: the output is displayed in columns that resemble
a “newspaper” style.

The following command displays a set of lines with ten characters in each
line:

x="aa bb cc d e f g h i j kk ll mm nn"
echo $x |fold -10

The output of the preceding code snippet is here:

aa bb cc d
 e f g h i
 j kk ll m
m nn

As another example, consider the following code snippet:

x="The quick brown fox jumps over the fat lazy dog. "
echo $x |fold -10

The output of the preceding code snippet is here:

The quick
brown fox
jumps over
 the fat l
azy dog.

The split Command

The split command is useful when you want to create a set of subfiles of
a given file. By default, the subfiles are named xaa, xab, . . ., xaz, xba,
xbb, . . ., xbz, . . . xza, xzb, . . ., xzz. Thus, the split command creates
a maximum of 676 files (=26x26). The default size for each of these files
is 1,000 lines.

The following snippet illustrates how to invoke the split command in
order to split the file abc.txt into files with 500 lines each:

split -l 500 one-dl-course-outline.txt

42 • DATA CLEANING POCKET PRIMER

If the file abc.txt contains between 501 and 1,000 lines, then the
preceding command will create the following pair of files:

xaa

xab

You can also specify a file prefix for the created files, as shown here:

split -l 500 one-dl-course-outline.txt shorter

The preceding command creates the following pair of files:

shorterxaa
shorterxab

The sort Command

The sort command sorts the lines in a text file. For example, if the text
file test2.txt contains the following lines:

aa

cc

bb

The following simple example sorts the lines in test2.txt:

cat test2.txt |sort

The output of the preceding code snippet is here:

aa

bb

cc

The sort command arranges lines of text alphabetically by default. Some
options for the sort command are here:

Option Description
-n Sort numerically (example: 10 will sort after 2),
ignore blanks and tabs.
-r Reverse the order of sort.
-f Sort upper- and lowercase together.
+x Ignore first x fields when sorting.

You can use the sort command to display the files in a directory based on
their file size, as shown here:

-rw-r--r-- 1 ocampesato staff 11 Jan 06 19:21 outfile.txt
-rw-r--r-- 1 ocampesato staff 12 Jan 06 19:21 output.txt

USEFUL COMMANDS • 43

-rwx------ 1 ocampesato staff 12 Jan 06 19:21 kyrgyzstan.txt
-rwx------ 1 ocampesato staff 25 Jan 06 19:21 apple-care.txt
-rwx------ 1 ocampesato staff 146 Jan 06 19:21 checkin-commands.txt
-rwx------ 1 ocampesato staff 176 Jan 06 19:21 ssl-instructions.txt
-rwx------ 1 ocampesato staff 417 Jan 06 19:43 iphonemeetup.txt

The sort command supports many options, some of which are summa-
rized here.

The sort –r command sorts the list of files in reverse chronological
order. The sort –n command sorts on numeric data and sort –k com-
mand sorts on a field. For example, the following command displays the
long listing of the files in a directory that are sorted by their file size:

ls –l |sort –k 5

The output is here:

total 72
-rwx------ 1 ocampesato staff 12 Jan 06 20:46 kyrgyzstan.txt
-rw-r--r-- 1 ocampesato staff 12 Jan 06 20:46 output.txt
-rw-r--r-- 1 ocampesato staff 14 Jan 06 20:46 outfile.txt
-rwx------ 1 ocampesato staff 25 Jan 06 20:46 apple-care.txt
-rwxr-xr-x 1 ocampesato staff 90 Jan 06 20:50 testvars.sh
-rwxr-xr-x 1 ocampesato staff 100 Jan 06 20:50 testvars2.sh
-rwx------ 1 ocampesato staff 146 Jan 06 20:46 checkin-commands.txt
-rwx------ 1 ocampesato staff 176 Jan 06 20:46 ssl-instructions.txt
-rwx------ 1 ocampesato staff 417 Jan 06 20:46 iphonemeetup.txt

Notice that the file listing is sorted based on the fifth column, which dis-
plays the file size of each file. You can sort the files in a directory and
display them from largest to smallest with this command:

ls –l |sort –n

In addition to sorting lists of files, you can use the sort command to sort
the contents of a file. For example, suppose that the file abc2.txt con-
tains the following:

This is line one
This is line two
This is line one
This is line three
Fourth line
Fifth line
The sixth line
The seventh line

44 • DATA CLEANING POCKET PRIMER

The following command sorts the contents of abc2.txt:

sort abc2.txt

You can sort the contents of multiple files and redirect the output to
another file:

sort outfile.txt output.txt > sortedfile.txt

An example of combining the commands sort and tail is shown here:

cat abc2.txt |sort |tail -5

The preceding command sorts the contents of the file abc2.txt and then
displays the final five lines:

The seventh line
The sixth line
This is line one
This is line one
This is line three
This is line two

As you can see, the preceding output contains two duplicate lines. The
next section shows you how to use the uniq command in order to remove
duplicate lines.

The uniq Command

The uniq command prints only the unique lines in a sorted text file and
omits duplicates. As a simple example, suppose the file test3.txt con-
tains the following lines:

abc

def
abc

abc

The following command displays the unique lines:

cat test3.txt |sort | uniq

The output of the preceding code snippet is here:

abc

def

USEFUL COMMANDS • 45

How to Compare Files

The diff command enables you to compare two text files and the cmp
command compares two binary files. For example, suppose that the file
output.txt contains these two lines:

Hello
World

Suppose that the file outfile.txt contains these two lines:

goodbye
world

Then the output of this command:

diff output.txt outfile.txt

is shown here:

1,2c1,2
< Hello
< World

> goodbye
> world

Note that the diff command performs a case-sensitive text-based compar-
ison, which means that the strings Hello and hello are different.

The od Command

The od command displays an octal dump of a file, which can be very
helpful when you want to see embedded control characters (such as tab
characters) that are not normally visible on the screen. This command
contains many switches that you can see when you type man od.

As a simple example, suppose that the file abc.txt contains one line of
text with the following three letters, separated by a tab character (which
are not visible here) between each pair of letters:

a b c

The following command displays the tab and newline characters in the
file abc.txt:

cat control1.txt |od -tc

46 • DATA CLEANING POCKET PRIMER

The preceding command generates the following output:

0000000 a \t b \t c \n
0000006

In the special case of tabs, another way to see them is to use the following

cat command:

cat –t abc.txt

The output from the preceding command is here:

a^Ib^Ic

In Chapter 1 you learned that the echo command prints a newline char-

acter whereas the printf statement does not print a newline character

(unless it is explicitly included). You can verify this fact for yourself with

this code snippet:

echo abcde | od -c
0000000 a b c d e \n
0000006
printf abcde | od -c
0000000 a b c d e
0000005

The tr Command

The tr command is a highly versatile command that supports many

operations. For example, the tr command enables you to remove

extraneous whitespaces in datasets, insert blank lines, print words on

separate lines, and also translate characters from one character set

to another character set (i.e., from uppercase to lowercase, and vice

versa).

The following command capitalizes the letters in the variable x:

x="abc def ghi"
echo $x | tr [a-z] [A-Z]
ABC DEF GHI

Another way to convert from lowercase to uppercase:

cat columns4.txt | tr '[:lower:]' '[:upper:]'

USEFUL COMMANDS • 47

In addition to upper and lower, you can use the POSIX character classes
in the tr command:

alnum: alphanumeric characters
alpha: alphabetic characters
cntrl: control (non-printing) characters
digit: numeric characters
graph: graphic characters
lower: lowercase alphabetic characters
print: printable characters
punct: punctuation characters
space: whitespace characters
upper: uppercase characters
xdigit: hexadecimal characters 0–9 A–F

The following example removes white spaces in the variable x (initialized
above):

echo $x |tr -ds " " ""
abcdefghi

The following command prints each word on a separate line:

echo "a b c" | tr -s " " "\012"
a

b

c

The following command replaces commas “,” with a linefeed:

echo "a,b,c" | tr -s "," "\n"
a

b

c

The following example replaces the linefeed in each line with a blank
space, which produces a single line of output:

cat test4.txt |tr '\n' ' '

The output of the preceding command is here:

abc def abc abc

The following example removes the linefeed character at the end of each
line of text in a text file. As an illustration, Listing 2.3 displays the contents
of abc2.txt.

48 • DATA CLEANING POCKET PRIMER

LISTING 2.3 abc2.txt

This is line one
This is line two
This is line three
Fourth line
Fifth line
The sixth line
The seventh line

The following code snippet removes the linefeed character in the text file
abc2.txt:

tr -d '\n' < abc2.txt

The output of the preceding tr code snippet is here:

This is line oneThis is line twoThis is line threeFourth line-
Fifth lineThe sixth lineThe seventh line

As you can see, the output is missing a blank space between consecutive
lines, which we can insert with this command:

tr -s '\n' ' ' < abc2.txt

The output of the modified version of the tr code snippet is here:

This is line one This is line two This is line three Fourth line
Fifth line The sixth line The seventh line

You can replace the linefeed character with a period “.” with this version
of the tr command:

tr -s '\n' '.' < abc2.txt

The output of the preceding version of the tr code snippet is here:

This is line one.This is line two.This is line three.Fourth
line.Fifth line.The sixth line.The seventh line.

The tr command with the –s option works on a one-for-one basis, which
means that the sequence “.” has the same effect as the sequence “. ”. As a
sort of “preview,” we can add a blank space after each period “.” by com-
bining the tr command with the sed command (discussed in Chapter 4),
as shown here:

tr -s '\n' '.' < abc2.txt | sed 's/\./\. /g'

USEFUL COMMANDS • 49

The output of the preceding command is here:

This is line one. This is line two. This is line three. Fourth
line. Fifth line. The sixth line. The seventh line.

Think of the preceding sed snippet as follows: “whenever a ‘dot’ is
encountered, replace it with a ‘dot’ followed by a space, and do this for
every such occurrence.”

You can also combine multiple commands using the Unix pipe symbol.
For example, the following command sorts the contents of Listing 2.3,
retrieves the “bottom” five lines of text, retrieves the lines of text that are
unique, and then converts the text to upper case letters,

cat abc2.txt |sort |tail -5 | uniq | tr [a-z] [A-Z]

Here is the output from the preceding command

THE SEVENTH LINE
THE SIXTH LINE
THIS IS LINE ONE
THIS IS LINE THREE
THIS IS LINE TWO

You can also convert the first letter of a word to uppercase (or to lower-
case) with the tr command, as shown here:

x="pizza"

x=`echo ${x:0:1} | tr '[a-z]' '[A-Z]'`${x:1}
echo $x

A slightly longer (one extra line of code) way to convert the first letter to
uppercase is shown here:

x="pizza"

first=`echo $x|cut -c1|tr [a-z] [A-Z]`
second=`echo $x|cut -c2-`
echo $first$second

However, both of the preceding code blocks are somewhat obscure (at
least for novices), so it’s probably better to use other tools, such as data-
frames in R or RStudio.

As you can see, it’s possible to combine multiple commands using the
bash pipe symbol “|” in order to produce the desired output.

50 • DATA CLEANING POCKET PRIMER

A Simple Use Case

The code sample in this section shows you how to use the tr command
in order to replace the control character “^M” with a linefeed. Listing 2.4
displays the contents of the dataset controlm.csv that contains embed-
ded control characters.

LISTING 2.4 controlm.csv

IDN,TEST,WEEK_MINUS1,WEEK0,WEEK1,WEEK2,WEEK3,WEEK4,WEEK10,WEEK
12,WEEK14,WEEK15,WEEK17,WEEK18,WEEK19,
WEEK21^M1,BASO,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.4^M1,
BASOAB,,0.05,,0.04,,0.05,,0.04,,,0.07,,,0.05^M1,EOS,,
6.1,,6.2,,7.5,,6.6,,,7.0,,,6.2^M1,EOSAB,,0.22,,0.30,,
0.27,,0.25,,,0.22,,,0.21^M1,HCT,,35.0,,34.2,,34.6,,34.3,,,36.2
,,,34.1^M1,HGB,,11.8,,11.1,,11.6,,11.5,,,12.1,,,
11.3^M1,LYM,,36.7

Listing 2.5 displays the contents of the file controlm.sh that illustrates
how to remove the control characters from controlm.csv.

LISTING 2.5 controlm.sh

inputfile="controlm.csv"
removectrlmfile="removectrlmfile"
tr -s '\r' '\n' < $inputfile > $removectrlmfile

For convenience, Listing 2.5 contains a variable for the input file and one
for the output file, but you can simplify the tr command in Listing 2.5 by
using hard-coded values for the filenames.

The output from launching the shell script in Listing 2.5 is here:

IDN,TEST,WEEK_MINUS1,WEEK0,WEEK1,WEEK2,WEEK3,WEEK4,WEEK10,WEEK
12,WEEK14,WEEK15,WEEK17,WEEK18,WEEK19,WEEK21
1,BASO,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.4
1,BASOAB,,0.05,,0.04,,0.05,,0.04,,,0.07,,,0.05
1,EOS,,6.1,,6.2,,7.5,,6.6,,,7.0,,,6.2
1,EOSAB,,0.22,,0.30,,0.27,,0.25,,,0.22,,,0.21

As you can see, the task in this section is very easily solved via the tr com-
mand. Note that additional data cleaning is required in order to handle
the empty fields in the output.

You can also replace the current delimiter “,” with a different delimiter,
such as a “|” symbol with the following command:

cat removectrlmfile |tr -s ',' '|' > pipedfile

USEFUL COMMANDS • 51

The resulting output is shown here:

IDN|TEST|WEEK_MINUS1|WEEK0|WEEK1|WEEK2|WEEK3|WEEK4|WEEK10|WEEK
12|WEEK14|WEEK15|WEEK17|WEEK18|WEEK19|WEEK21
1|BASO|1.4|0.8|1.2|1.1|2.2|1.4
1|BASOAB|0.05|0.04|0.05|0.04|0.07|0.05
1|EOS|6.1|6.2|7.5|6.6|7.0|6.2
1|EOSAB|0.22|0.30|0.27|0.25|0.22|0.21

If you have a dataset with multiple delimiters in arbitrary order in multi-
ple files, you can replace those delimiters with a single delimiter via the
sed command, which is discussed in Chapter 4.

The find Command

The find command supports many options, including one for printing
(displaying) the files returned by the find command, and another one for
removing the files returned by the find command.

In addition, you can specify logical operators such as AND as well as
OR in a find command. You can also specify switches to find the files
(if any) that were created, accessed, or modified before (or after) a
specific date.

Several examples are here:

find . –print displays all the files (including subdirectories)
find . –print |grep "abc" displays all the files whose names
contain the string abc
find . –print |grep "sh$" displays all the files whose names have
the suffix sh
find . –depth 2 –print displays all files of depth at most 2
(including subdirectories)

You can also specify access times pertaining to files. For example, atime,
ctime, and mtime refer to the access time, creation time, and modifica-
tion time of a file.

As another example, the following command finds all the files modified in
less than 2 days and prints the record count of each:

$ find . –mtime -2 –exec wc –l {} ;

52 • DATA CLEANING POCKET PRIMER

You can remove a set of files with the find command. For example, you
can remove all the files in the current directory tree that have the suffix
“m” as follows:

find . –name "*m$" –print –exec rm {}

 Be careful when you remove files: run the preceding command without
“exec rm {}” to review the list of files before deleting them.

The tee Command

The tee command enables you to display output to the screen and also
redirect the output to a file at the same time. The –a option will append
subsequent output to the named file instead of overwriting the file. An
example is here:

find . –print |xargs grep "sh$" | tee /tmp/blue

The preceding code snippet redirects the list of all files in the current direc-
tory (and those in any subdirectories) to the xargs command, which then
searches—and prints—all the lines that end with the string “sh.” The result
is displayed on the screen and is also redirected to the file /tmp/blue.

find . –print |xargs grep "^abc$" | tee –a /tmp/blue

The preceding code snippet also redirects the list of all files in the current
directory (and those in any subdirectories) to the xargs command, which then
searches—and prints—all the lines that contain only the string “abc.” The
result is displayed on the screen and is also appended to the file /tmp/blue.

File Compression Commands

Bash supports various commands for compressing sets of files, including
the tar, cpio, gzip, and gunzip commands. The following subsections
contain simple examples of how to use these commands.

The tar Command

The tar command enables you to compress a set of files in a directory,
uncompress a tar file, and also display the contents of a tar file.

The “c” option specifies “create,” the “f” option specifies “file,” and the “v”
option specifies “verbose.” For example, the following command creates a

NOTE

USEFUL COMMANDS • 53

compressed file called testing.tar and displays the files that are included
in testing.tar during the creation of this file:

tar cvf testing.tar *.txt

The compressed file testing.tar contains the files with the suffix txt
in the current directory, and you will see the following output:

a apple-care.txt
a checkin-commands.txt
a iphonemeetup.txt
a kyrgyzstan.txt
a outfile.txt
a output.txt
a ssl-instructions.txt

The following command extracts the files that are in the tar file testing.
tar:

tar xvf testing.tar

The following command displays the contents of a tar file without uncom-
pressing its contents:

tar tvf testing.tar

The preceding command displays the same output as the “ls –l” com-
mand that displays a long listing.

The “z” option uses gzip compression. For example, the following com-
mand creates a compressed file called testing.tar.gz:

tar czvf testing.tar.gz *.txt

The cpio Command

The cpio command provides further compression after you create a tar
file. For example, the following command creates the file archive.cpio:

ls file1 file2 file3 | cpio -ov > archive.cpio

The “-o” option specifies an output file and the “-v” option specifies ver-
bose, which means that the files are displayed as they are placed in the
archive file. The “-I” option specifies input, and the “-d” option specifies
“display.”

54 • DATA CLEANING POCKET PRIMER

You can combine other commands (such as the find command) with the
cpio command, an example of which is here:

find . –name ".sh" | cpio -ov > shell-scripts.cpio

You can display the contents of the file archive.cpio with the following
command:

cpio -id < archive.cpio

The output of the preceding command is here:

file1
file2
file3
1 block

The gzip and gunzip Commands

The gzip command creates a compressed file. For example, the follow-
ing command creates the compressed file filename.gz:

gzip filename

Extract the contents of the compressed file filename.gz with the gunzip
command:

gunzip filename.gz

You can create gzipped tarballs using the following methods:

Method #1:

tar -czvf archive.tar.gz [LIST-OF-FILES]

Method #2:

tar -cavf archive.tar.gz [LIST-OF-FILES]

The -a option specifies that the compression format should automatically
be detected from the extension.

The bunzip2 Command

The bunzip2 utility uses a compression technique that is similar to gun-
zip2, except that bunzip2 typically produces smaller (more compressed)

USEFUL COMMANDS • 55

files than gzip. It comes with all Linux distributions. In order to com-

press with bzip2 use:

bzip2 filename
ls

filename.bz2

The zip Command

The zip command is another utility for creating zip files. For example, if

you have the files called file1, file2, and file3, then the following com-

mand creates the file file1.zip that contains these three files:

zip file?

The zip command has useful options (such as –x for excluding files), and

you can find more information in online tutorials.

Commands for zip Files and bz Files

There are various commands for handling zip files, including zdiff,
zcmp, zmore, zless, zcat, zipgrep, zipsplit, zipinfo,
zgrep, zfgrep, and zegrep.

Remove the initial “z” or “zip” from these commands to obtain the corre-

sponding “regular” bash command.

For example, the zcat command is the counterpart to the cat command,

so you can display the contents of a file in a .gz file without manually

extracting that file and also without modifying the contents of the .gz file.

Here is an example:

ls test.gz
zcat test.gz

A test file

file test contains a line “A test file”

Another set of utilities for bz files includes bzcat, bzcmp, bzdiff,
bzegrep, bzfgrep, bzgrep, bzless, and bzmore.
Read the online documentation to find out more about these commands.

56 • DATA CLEANING POCKET PRIMER

Internal Field Separator (IFS)

The Internal Field Separator is an important concept in shell script-
ing that is useful while manipulating text data. An Internal Field
Separator (IFS) is an environment variable that stores delimiting
characters. The IFS is the default delimiter string used by a running
shell environment.

Consider the case where we need to iterate through words in a string or
comma separated values (CSV). In the first case we will use IFS =" " and
in the second we will use IFS=",". Suppose that the shell variable data
is defined as follows:

data="name,sex,rollno,location"

#To read each of the data elements into a variable, we can use IFS as
shown here:

oldIFS=$IFS
IFS=,
for item in `echo $data`
do
 echo Item: $item
done
IFS=$oldIFS

The next section contains a code sample that relies on the value of IFS in
order to extract data correctly from a dataset.

Data from a Range of Columns in a Dataset

Listing 2.6 displays the contents of the dataset datacolumns1.txt and
Listing 2.7 displays the contents of the shell script datacolumns1.sh
that illustrates how to extract data from a range of columns from the data-
set in Listing 2.6.

LISTING 2.6 datacolumns1.txt

#23456789012345678901234567890
 1000 Jane Edwards
 2000 Tom Smith
 3000 Dave Del Ray

USEFUL COMMANDS • 57

LISTING 2.7 datacolumns1.sh

empid: 03-09
fname: 11-20
lname: 21-30
IFS=''
inputfile="datacolumns1.txt"

while read line
do
 pound="`echo $line |grep '^#'`"

 if [x"$pound" == x""]
 then
 echo "line: $line"
 empid=`echo "$line" |cut -c3-9`
 echo "empid: $empid"

 fname=`echo "$line" |cut -c11-19`
 echo "fname: $fname"

 lname=`echo "$line" |cut -c21-29`
 echo "lname: $lname"
 echo "--------------"
 fi
done < $inputfile

Listing 2.7 sets the value of IFS to an empty string, which is required for
this shell script to work correctly (try running this script without setting
IFS and see what happens). The body of this script contains a while loop
that reads each line from the input file called datacolumns1.txt and
sets the pound variable equal to “” if a line does not start with the “#”
character OR sets the pound variable equal to the entire line if it does
start with the “#” character. This is a simple technique for “filtering” lines
based on their initial character.

The if statement executes for lines that do not start with a “#” character,
and the variables empid, fname, and lname are initialized to the char-
acters in columns 3 through 9, then 11 through 19, and then 21 through
29, respectively. The values of those three variables are printed each time
they are initialized. As you can see, these variables are initialized by a
combination of the echo command and the cut command, and the value
of IFS is required in order to ensure that the echo command does not
remove blank spaces.

58 • DATA CLEANING POCKET PRIMER

The output from Listing 2.7 is shown below:

line: 1000 Jane Edwards
empid: 1000
fname: Jane
lname: Edwards

line: 2000 Tom Smith
empid: 2000
fname: Tom
lname: Smith

line: 3000 Dave Del Ray
empid: 3000
fname: Dave
lname: Del Ray

Working with Uneven Rows in Datasets

Listing 2.8 displays the contents of the dataset uneven.txt that contains
rows with a different number of columns. Listing 2.9 displays the contents
of the bash script uneven.sh that illustrates how to generate a dataset
whose rows have the same number of columns.

LISTING 2.8 uneven.txt

abc1 abc2 abc3 abc4
abc5 abc6
abc1 abc2 abc3 abc4
abc5 abc6

LISTING 2.9 uneven.sh

inputfile="uneven.txt"
outputfile="even2.txt"

==> four fields per line

#method #1: four fields per line
cat $inputfile | xargs -n 4 >$outputfile

#method #2: two equal rows
#xargs -L 2 <$inputfile > $outputfile

echo "input file:"
cat $inputfile

USEFUL COMMANDS • 59

echo "output file:"
cat $outputfile

Listing 2.9 contains two techniques for realigning the input file so that
the output appears with four columns in each row. As you can see, both
techniques involve the xargs command (which is an interesting use of
the xargs command).

Launch the code in Listing 2.9 and you will see the following output:

abc1 abc2 abc3 abc4
abc5 abc6 abc1 abc2
abc3 abc4 abc5 abc6

Working with Functions in Shell Scripts

A shell function can be defined by using the keyword function, followed
by the name of the function (specified by you) and a pair of round paren-
theses, followed by a pair of curly braces that contain shell commands.
The general form is shown here:

function fname()
{
 statements;
}

An alternate method of defining a shell function is shown here:

fname()
{
 statements;
}

A function can be invoked by its name:

fname ; # executes function

Arguments can be passed to functions and can be accessed by the shell
script:

fname arg1 arg2 ; # passing args

Listing 2.10 displays the contents of checkuser.sh, which illustrates
how to prompt users for two input strings and then invoke a function with
those strings as parameters.

60 • DATA CLEANING POCKET PRIMER

LISTING 2.10 checkuser.sh

#!/bin/bash

function checkNewUser()
{
 echo "argument #1 = $1"
 echo "argument #2 = $2"
 echo "arg count = $#"

 if test "$1" = "John" && test "$2" = "Smith"
 then
 return 1
 else
 return 0
 fi
}

/bin/echo -n "First name: "
read fname
/bin/echo -n "Last name: "
read lname

checkNewUser $fname $lname
echo "result = $?"

Listing 2.10 contains the function checkNewUser() that displays the
value of the first argument, the second argument, and the total number of
arguments, respectively. This function returns the value 1 if the first argu-
ment is John and the second argument is Smith; otherwise the function
returns 0.

The remaining portion of Listing 2.10 invokes the echo command
twice in order to prompt users to enter a first name and a last name,
and then invokes the function checkNewUser()with these two input
values. A sample output from launching Listing 2.10 is shown here:

First name: John
Last name: Smith
argument #1 = John
argument #2 = Smith
arg count = 2
result = 1

What about using command substitution in order to invoke the function
checkNewUser? In order to find out what would happen, let’s add the
following code snippet to the bottom of Listing 2.10:

result=`checkNewUser $fname $lname`
echo "result = $result"

USEFUL COMMANDS • 61

Launch the modified version of Listing 2.10, provide the same input val-
ues of John and Smith, and compare the following result with the pre-
vious result:

First name: John
Last name: Smith
argument #1 = John
argument #2 = Smith
arg count = 2
result = 1
result = argument #1 = John
argument #2 = Smith
arg count = 2

Recursion and Shell Scripts

This section contains several examples of shell scripts with recursion,
which is a topic that occurs in many programming languages. Although
you probably won’t need to write many scripts that use recursion, it’s
worthwhile to learn this concept, especially if you plan to study other
languages.

If you already understand recursion, then the scripts in this section will
be straightforward. In particular, you will learn how to calculate the fac-
torial value of a positive integer. In case you are interested, the Appendix
contains bash scripts for calculating the Fibonacci number of a positive
integer, as well as bash scripts for calculating the greatest common divisor
(GCD) and the least common multiple (LCM) of two positive integers.

Listing 2.11 displays the contents of Factorial.sh that computes the
factorial value of a positive integer.

LISTING 2.11 Factorial.sh

#!/bin/sh

factorial()
{

 if ["$1" -gt 1]
 then
 decr=`expr $1 - 1`
 result=`factorial $decr`
 product=`expr $1 * $result`
 echo $product
 else
 # we have reached 1:
 echo 1

62 • DATA CLEANING POCKET PRIMER

 fi
}
echo "Enter a number: "
read num

add code to ensure it's a positive integer

echo "$num! = `factorial $num`"

Listing 2.11 contains the factorial() function with conditional logic:
if the first parameter is greater than 1, then the variable decr is initialized
as 1 less than the value of $1, followed by initializing result with the recur-
sive invocation of the factorial() function with the argument decr.
Finally, this block of code initializes product as the value of $1 multiplied
by the value of result. Note that if the first parameter is not greater than
1, then the value 1 is returned.

The last portion of Listing 2.11 prompts users for a number and then the
factorial value of that number is computed and displayed. For simplicity,
non-integer values are not checked (you can try to add that functionality
yourself).

Iterative Solutions for Factorial Values

Listing 2.12 displays the contents of Factorial2.sh, which computes
the factorial value of a positive integer using a for loop.

LISTING 2.12 Factorial2.sh

#!/bin/bash

factorial()
{
 num=$1
 result=1
 for ((i=2; i<=${num}; i++));
 do
 result=$((${result}*$i))
 done

 echo $result
}

printf "Enter a number: "
read num

echo "$num! = `factorial $num`"

USEFUL COMMANDS • 63

Listing 2.12 contains a function called factorial() that initializes the

variable num to the first argument passed into the function factorial(),

followed by the variable result whose initial value is 1. The next portion

of Listing 2.12 is a for loop that iteratively multiples the value of result

by the numbers between 2 and num inclusive, and then returns the value

of the variable result.

The final portion of Listing 2.12 prompts users for a number and then

uses command substitution to invoke the function factorial() with

the user-supplied value. Note that no validation is performed in order to

ensure that the input value is a non-negative integer. The echo statement

displays the calculated factorial value.

Listing 2.13 displays the contents of Factorial3.sh, which computes

the factorial value of a positive integer using a for loop and an array that

keeps track of intermediate factorial values.

LISTING 2.13 Factorial3.sh

#!/bin/bash

factorial()
{
 num=$1
 result=1
 for ((i=2; i<=${num}; i++));
 do
 result=$((${result}*$i))
 factvalues[$i]=$result
 done
}

printf "Enter a number: "
read num

for ((i=1; i<=${num}; i++));
do
 factvalues[$i]=1
done

factorial $num

print each element via a loop:
for ((i=1; i<=${num}; i++));
do
 echo "Factorial of $i : " ${factvalues[$i]}
done

64 • DATA CLEANING POCKET PRIMER

Listing 2.13 is very similar to the code in Listing 2.12: the key difference
is that intermediate factorial values are stored in the array factvalues.
Notice that initial loop that initializes the values in factvalues: doing
so makes the values global, so we don’t need to return anything from the
factorial() function.
The last portion of Listing 2.13 contains a for loop that displays the inter-
mediate factorial values as well as the factorial of the user-provided input.

Summary

This chapter showed you examples of how to use some useful and versa-
tile bash commands. First you learned about the bash commands join,
fold, split, sort, and uniq. Next you learned about the find com-
mand and the xargs command. You also learned about various ways to
use the tr command, which is also in the use case in this chapter.

Then you saw some compression-related commands, such as cpio and
tar, which help you create new compressed files and also help you exam-
ine the contents of compressed files.

In addition, you learned how to extract column ranges of data, as well as
the usefulness of the IFS option. Finally, you saw an example of a bash
script for computing the factorial value of a number via recursion.

C H A P T E R3
FILTERING DATA WITH grep

T
his chapter introduces you to the versatile grep command, whose
purpose is to take a stream of text data and reduce it to only the
parts that you care about. The grep command is useful not only

by itself, but also in conjunction with other commands, especially the find
command. This chapter contains many short code samples that illustrate
various options of the grep command. Some code samples illustrate how
to combine the grep command with commands from previous chapters.

The first part of this chapter introduces the grep command used in isola-
tion, combined with the regular expression metacharacters (from Chapter
1) and also with code snippets that illustrate how to use some of the options
of the grep command. Next you will learn how to match ranges of lines,
how to use the so-called “back references” in grep, and how to “escape”
metacharacters in grep.

The second part of this chapter shows you how to use the grep command
in order to find empty lines and common lines in datasets, as well as how
to use keys to match rows in datasets. Next you will learn how to use
character classes with the grep command, as well as the backslash “\”
character, and how to specify multiple matching patterns. Next you will
learn how to combine the grep command with the find command and
the xargs command, which is useful for matching a pattern in files that
reside in different directories. This section also contains some examples of
common mistakes that people make with the grep command.

The third section briefly discusses the egrep command and the fgrep
command, which are related commands that provide additional function-
ality that is unavailable in the standard grep utility. The final section con-
tains a use case that illustrates how to use the grep command in order to
find matching lines that are then merged in order to create a new dataset.

66 • DATA CLEANING POCKET PRIMER

What Is the grep Command?

The grep (“Global Regular Expression Print”) command is useful for
finding substrings in one or more files. Several examples are here:

grep abc *sh displays all the lines of abc in files with suffix sh

grep –i abc *sh is the same as the preceding query, but case-insensitive

grep –l abc *sh displays all the filenames with suffix sh that contain abc

grep –n abc *sh displays all the line numbers of the occurrences of the
string abc in files with suffix sh

You can perform logical AND and logical OR operations with this syntax:

grep abc *sh | grep def matches lines containing abc AND def
grep "abc\|def" *sh matches lines containing abc OR def
You can combine switches as well: the following command displays the
names of the files that contain the string abc (case insensitive):

grep –il abc *sh

In other words, the preceding command matches filenames that contain
abc, Abc, ABc, ABC, abC, and so forth.

Another (less efficient way) to display the lines containing abc (case
insensitive) is here:

cat file1 |grep –i abc

The preceding command involves two processes, whereas the “grep using
–l switch instead of cat to input the files you want” approach involves a
single process. The execution time is roughly the same for small text files,
but the execution time can become more significant if you are working
with multiple large text files.

You can combine the sort command, the pipe symbol, and the grep
command. For example, the following command displays the files with a
“Jan” date in increasing size:

ls -l |grep " Jan " | sort -n

FILTERING DATA WITH GREP • 67

A sample output from the preceding command is here:

-rw-r--r-- 1 oswaldcampesato2 staff 3 Sep 27 2017 abc.txt
-rw-r--r-- 1 oswaldcampesato2 staff 6 Sep 21 2017 control1.txt
-rw-r--r-- 1 oswaldcampesato2 staff 27 Sep 28 2017 fiblist.txt
-rw-r--r-- 1 oswaldcampesato2 staff 28 Sep 14 2017 dest
-rw-r--r-- 1 oswaldcampesato2 staff 36 Sep 14 2017 source
-rw-r--r-- 1 oswaldcampesato2 staff 195 Sep 28 2017 Divisors.py
-rw-r--r-- 1 oswaldcampesato2 staff 267 Sep 28 2017 Divisors2.py

Metacharacters and the grep Command

The fundamental building blocks are the regular expressions that match a
single character. Most characters, including all letters and digits, are reg-
ular expressions that match themselves. Any meta-character with special
meaning may be quoted by preceding it with a backslash.

A regular expression may be followed by one of several repetition opera-
tors, as shown below.

‘.’ matches any single character.
‘?’ indicates that the preceding item is optional and will be matched

at most once: Z? matches Z or ZZ.
‘*’ indicates that the preceding item will be matched zero or more

times: Z* matches Z, ZZ, ZZZ, and so forth.
‘+’ indicates that the preceding item will be matched one or more

times: Z+ matches ZZ, ZZZ, and so forth.
‘{n}’indicates that the preceding item is matched exactly n times: Z{3}

matches ZZZ.
‘{n,}’ indicates that the preceding item is matched n or more times:

Z{3} matches ZZZ, ZZZZ, and so forth.
‘{,m}’ indicates that the preceding item is matched at most m times:

Z{,3} matches Z, ZZ, and ZZZ.
‘{n,m}’ indicates that the preceding item is matched at least n times,

but not more than m times: Z{2,4} matches ZZ, ZZZ, and ZZZZ.

The empty regular expression matches the empty string (i.e., a line
in the input stream with no data). Two regular expressions may be
joined by the infix operator ‘|.’ When used in this manner, the infix
operator behaves exactly like a logical “OR” statement, which directs
the grep command to return any line that matches either regular
expression.

68 • DATA CLEANING POCKET PRIMER

Escaping Metacharacters with the grep Command

Listing 3.1 displays the contents of lines.txt, which contains lines with
words and metacharacters.

LISTING 3.1 lines.txt

abcd
ab

abc

cd
defg
.*.
..

The following grep command lists the lines of length 2 (using the ^ begin
with and $ end with operators to restrict length) in lines.txt:

grep '^..$' lines.txt

The following command lists the lines of length two in lines.txt that
contain two dots (the backslash tells grep to interpret the dots as actual
dots, not as metacharacters):

grep '^\.\.$' lines.txt

The result is shown here:

ab

cd
..

The following command also displays lines of length two that begin and
end with a dot (the * matches any text of any length, including no text
at all, and is used as a metacharacter because it is not preceded with a
backslash):

grep '^\.*\.$' lines.txt

The following command lists the lines that contain a period, followed by
an asterisk, and then another period (the * is now a character that must be
matched because it is preceded by a backslash):

grep '^\.*\.$' lines.txt

FILTERING DATA WITH GREP • 69

Useful Options for the grep Command

There are many types of pattern matching possibilities with the grep
command, and this section contains an eclectic mix of such commands
that handle common scenarios.

In the following examples we have four text files (two .sh and two .txt) and
two Word documents in a directory. The string abc is found on one line in
abc1.txt and three lines in abc3.sh. The string ABC is found on 2 lines
in in ABC2.txt and 4 lines in ABC4.sh. Notice that abc is not found in
ABC files, and ABC is not found in abc files.

ls *

ABC.doc ABC4.sh abc1.txt ABC2.txt abc.doc
abc3.sh

The following code snippet searches for occurrences of the string abc in
all the files in the current directory that have sh as a suffix:

grep abc *sh

abc3.sh:abc at start
abc3.sh:ends with -abc
abc3.sh:the abc is in the middle

The “-c” option counts the number of occurrences of a string (note that
even though ABC4.sh has no matches, it still counts them and returns zero):

grep –c abc *sh

The output of the preceding command is here:

ABC4.sh:0
abc3.sh:3

The “-e” option lets you match patterns that would otherwise cause syntax
problems (the “–” character normally is interpreted as an argument for grep):

grep –e "-abc" *sh

abc3.sh:ends with -abc

The “-e” option also lets you match multiple patterns.

grep –e "-abc" -e "comment" *sh
ABC4.sh:# ABC in a comment
abc3.sh:ends with -abc

70 • DATA CLEANING POCKET PRIMER

The “-i” option is to perform a case insensitive match:

grep –i abc *sh

ABC4.sh:ABC at start
ABC4.sh:ends with ABC
ABC4.sh:the ABC is in the middle
ABC4.sh:# ABC in a comment
abc3.sh:abc at start
abc3.sh:ends with -abc
abc3.sh:the abc is in the middle

The “-v” option “inverts” the matching string, which means that the output
consists of the lines that do not contain the specified string (ABC doesn’t
match because -i is not used, and ABC4.sh has an entirely empty line):

grep –v abc *sh

Use the “-iv” options to display the lines that do not contain a specified
string using a case insensitive match:

grep –iv abc *sh
ABC4.sh:
abc3.sh:this line won't match

The “-l” option is to list only the filenames that contain a successful match
(note this matches contents of files, not the filenames). The Word docu-
ment matches because the actual text is still visible to grep, it is just sur-
rounded by proprietary formatting gibberish. You can do similar things with
other formats that contain text, such as XML, HTML, .csv, and so forth:

grep -l abc *

abc1.txt
abc3.sh
abc.doc

The “-l” option is to list only the filenames that contain a successful
match:

grep –l abc *sh

Use the “-il” options to display the filenames that contain a specified
string using a case insensitive match:

grep –il abc *doc

The preceding command is very useful when you want to check for the
occurrence of a string in Word documents.

FILTERING DATA WITH GREP • 71

The “-n” option specifies line numbers of any matching file:

grep –n abc *sh
abc3.sh:1:abc at start
abc3.sh:2:ends with -abc
abc3.sh:3:the abc is in the middle

The “-h” option suppresses the display of the filename for a successful
match:

grep –h abc *sh

abc at start

ends with -abc
the abc is in the middle

For the next series of examples, we will use columns4.txt as shown in
Listing 3.2.

LISTING 3.2 columns4.txt

123 ONE TWO
456 three four
ONE TWO THREE FOUR
five 123 six
one two three
 four five

The “-o” option shows only the matched string (this is how you avoid
returning the entire line that matches):

grep –o one columns4.txt

The “-o” option followed by the “-b” option shows the position of the
matched string (returns character position, not line number. The “o” in
“one” is the 59th character of the file):

grep –o –b one columns4.txt

You can specify a recursive search as shown here (output not shown
because it will be different on every client or account. This searches not
only every file in directory /etc, but every file in every subdirectory of
etc):

grep –r abc /etc

The preceding commands match lines where the specified string is a sub-
string of a longer string in the file. For instance, the preceding commands

72 • DATA CLEANING POCKET PRIMER

will match occurrences of abc as well as abcd, dabc, abcde, and so
forth.

grep ABC *txt

ABC2.txt:ABC at start or ABC in middle or end in ABC
ABC2.txt:ABCD DABC

If you want to exclude everything except for an exact match, you can use
the –w option, as shown here:

grep –w ABC *txt

ABC2.txt:ABC at start or ABC in middle or end in ABC

The --color switch displays the matching string in color:

grep --color abc *sh

abc3.sh:abc at start
abc3.sh:ends with -abc
abc3.sh:the abc is in the middle

You can use the pair of metacharacters .* to find the occurrences of
two words that are separated by an arbitrary number of intermediate
characters.

The following command finds all lines that contain the strings one and
three with any number of intermediate characters:

grep "one.*three" columns4.txt
one two three

You can “invert” the preceding result by using the –v switch, as shown
here:

grep –v "one.*three" columns4.txt
123 ONE TWO
456 three four
ONE TWO THREE FOUR
five 123 six
four five

The following command finds all lines that contain the strin
gs one and three with any number of intermediate characters, where the
match involves a case-insensitive comparison:

grep -i "one.*three" columns4.txt
ONE TWO THREE FOUR
one two three

FILTERING DATA WITH GREP • 73

You can “invert” the preceding result by using the –v switch, as shown here:

grep –iv "one.*three" columns4.txt
123 ONE TWO
456 three four
five 123 six
four five

Sometimes you need to search a file for the presence of either of two
strings. For example, the following command finds the files that contain
“start” or “end”:

grep -l 'start\|end' *
ABC2.txt
ABC4.sh
abc3.sh

Later in the chapter you will see how to find files that contain a pair of
strings via the grep and xargs commands.

Character Classes and the grep Command

This section contains some simple one-line commands that combine the
grep command with character classes.

echo "abc" | grep '[:alpha:]'
abc

echo "123" | grep '[:alpha:]'
(returns nothing, no match)
echo "abc123" | grep '[:alpha:]'
abc123
echo "abc" | grep '[:alnum:]'
abc

echo "123" | grep '[:alnum:]'
(returns nothing, no match)
echo "abc123" | grep '[:alnum:]'
abc123
echo "123" | grep '[:alnum:]'
(returns nothing, no match)
echo "abc123" | grep '[:alnum:]'
abc123
echo "abc" | grep '[0-9]'
(returns nothing, no match)
echo "123" | grep '[0-9]'
123
echo "abc123" | grep '[0-9]'
abc123
echo "abc123" | grep -w '[0-9]'
(returns nothing, no match)

74 • DATA CLEANING POCKET PRIMER

Working with the –c Option in grep

Consider a scenario in which a directory (such as a log directory) has files
created by an outside program. Your task is to write a shell script that
determines which (if any) of the files that contain two occurrences of a
string, after which additional processing is performed on the matching
files (e.g., use email to send log files containing two or more error mes-
sages to a system administrator for investigation).

One solution involves the –c option for grep, followed by additional invo-
cations of the grep command.

The command snippets in this section assume the following data files
whose contents are shown below.

The file hello1.txt contains the following:

hello world1

The file hello2.txt contains the following:

hello world2
hello world2 second time

The file hello3.txt contains the following:

hello world3
hello world3 two
hello world3 three

Now launch the following commands: (2>/dev/null keeps warnings and
errors caused by empty directories from cluttering up the output):

grep -c hello hello*txt 2>/dev/null
hello1.txt:1
hello2.txt:2
hello3.txt:3
grep -l hello hello*txt 2>/dev/null
hello1.txt
hello2.txt
hello3.txt
grep -c hello hello*txt 2>/dev/null |grep ":2$"
hello2.txt:2

Note how we use the “ends with” "$" metacharacter to grab just the
files that have exactly two matches. We also use the colon ":2$" rather
than just "2$" to prevent grabbing files that have 12, 32, or 142 matches
(which would end in :12, :32, and :142).

FILTERING DATA WITH GREP • 75

What if we wanted to show “two or more” (as in the “2 or more errors in a
log”)? You would instead use the invert (-v) command to exclude counts
of exactly 0 or exactly 1.

grep -c hello hello*txt 2>/dev/null |grep -v ':[0-1]$'
hello2.txt:2
hello3.txt:3

In a real-world application, you would want to strip off everything after
the colon to return only the filenames. There are many ways to do so,
but we’ll use the cut command we learned in Chapter 1, which involves
defining : as a delimiter with -d":" and using -f1 to return the first
column (i.e., the part before the colon in the return text):

grep -c hello hello*txt 2>/dev/null | grep -v ':[0-1]$'| cut
-d":" -f1
hello2.txt
hello3.txt

Matching a Range of Lines

In Chapter 1 you saw how to use the head and tail commands to display
a range of lines in a text file. Now suppose that you want to search a range
of lines for a string. For instance, the following command displays lines 9
through 15 of longfile.txt:

cat -n longfile.txt |head -15|tail -9

The output is here:

 7 and each line
 8 contains
 9 one or
 10 more words
 11 and if you
 12 use the cat
 13 command the
 14 file contents
 15 scroll
This command displays the subset of lines 9 through 15 of longfile.txt
that contain the string and:

cat -n longfile.txt |head -15|tail -9 | grep and

76 • DATA CLEANING POCKET PRIMER

The output is here:

 7 and each line
 11 and if you
 13 command the

This command includes a whitespace after the word and, thereby exclud-
ing the line with the word “command”:

cat -n longfile.txt |head -15|tail -9 | grep "and "

The output is here:

 7 and each line
 11 and if you

Note that the preceding command excludes lines that end in “and”
because they do not have the whitespace after “and” at the end of the
line. You could remedy this situation with an “OR” operator including
both cases:

cat -n longfile.txt |head -15|tail -9 | grep " and\|and "
 7 and each line
 11 and if you
 13 command the

However, the preceding allows “command” back into the mix. Hence, if
you really want to match a specific word, it’s best to use the -w tag, which
is smart enough to handle the variations:

cat -n longfile.txt |head -15|tail -9 | grep -w "and"
 7 and each line
 11 and if you

The use of whitespace is safer if you are looking for something at the
beginning or end of a line. This is a common approach when reading
contents of log files or other structured text where the first word is often
important (a tag like ERROR or Warning, a numeric code or a date). This
command displays the lines that start with the word and:

cat longfile.txt |head -15|tail -9 | grep "^and "

The output is here (without the line number because we are not using
“cat -n”):

and each line
and if you

FILTERING DATA WITH GREP • 77

Recall that the “use the file name(s) in the command, instead of using cat
to display the file first” style is more efficient:

head -15 longfile.txt |tail -9 | grep "^and "
and each line
and if you

However, the head command does not display the line numbers of a text
file, so the “cat first” (cat -n adds line numbers) style is used in the ear-
lier examples when you want to see the line numbers, even though this
style is less efficient. Basically, you only want to add an extra command to
a pipe if it is adding value, otherwise it’s better to start with a direct call
to the files you are trying to process with the first command in the pipe,
assuming the command syntax is capable of reading in filenames.

Using Back References in the grep Command

The grep command allows you to reference a set of characters that match a
regular expression placed inside a pair of parentheses. For grep to parse the
parentheses correctly, each has to be preceded with the escape character “\.”

For example, grep 'a\(.\)' uses the “.” regular expression to match
ab or “a3” but not “3a” or “ba.”

The back reference ‘\n,’ where n is a single digit, matches the substring
previously matched by the nth parenthesized sub-expression of the reg-
ular expression. For example, grep '\(a\)\1' matches “aa” and grep
'\(a\)\2' matches “aaa.”

When used with alternation, if the group does not participate in the match,
then the back reference makes the whole match fail. For example, grep
'a\(.\)|b\1' will not match ba or ab or bb (or anything else really).

If you have more than one regular expression inside a pair of parentheses,
they are referenced (from left to right) by \1, \2, . . ., \9:

grep -e '\([a-z]\)\([0-9]\)\1' is the same as this command:
grep -e '\([a-z]\)\([0-9]\)\([a-z]\)'
grep -e '\([a-z]\)\([0-9]\)\2' is the same as this command:
grep -e '\([a-z]\)\([0-9]\)\([0-9]\)'

The easiest way to think of it is that the number (for example, \2) is a
placeholder or variable that saves you from typing the longer regular
expression it references. As regular expressions can get extremely com-
plex, this often helps code clarity.

78 • DATA CLEANING POCKET PRIMER

You can match consecutive digits or characters using the pattern \([0-
9]\)\1. For example, the following command is a successful match
because the string “1223” contains a pair of consecutive identical digits:

echo "1223" | grep -e '\([0-9]\)\1'

Similarly, the following command is a successful match because the string
“12223” contains three consecutive occurrences of the digit 2:

echo "12223" | grep -e '\([0-9]\)\1\1'

You can check for the occurrence of two identical digits separated by any
character with this expression:

echo "12z23" | grep -e '\([0-9]\).\1'

In an analogous manner, you can test for the occurrence of duplicate let-
ters, as shown here:

echo "abbc" | grep -e '\([a-z]\)\1'

The following example matches an IP address, and does not use back ref-
erences, just the “\d” and “\.” Regular expressions to match digits and
periods are as follows:

echo "192.168.125.103" | grep -e
'\(\d\d\d\)\.\(\d\d\d\)\.\(\d\d\d\)\.\(\d\d\d\)'

If you want to allow for fewer than three digits, you can use the expression
{1,3}, which matches 1, 2, or 3 digits on the third block. In a situation
where any of the four blocks might have fewer than three characters, you
must use the following type of syntax in all four blocks:

echo "192.168.5.103" | grep -e
'\(\d\d\d\)\.\(\d\d\d\)\.\(\d\)\{1,3\}\.\(\d\d\d\)'

You can perform more complex matches using back references. Listing
3.3 displays the contents of columns5.txt, which contains several lines
that are palindromes (the same spelling from left-to-right as right-to-left).
Note that the third line is an empty line.

LISTING 3.3 columns5.txt

one eno
ONE ENO

FILTERING DATA WITH GREP • 79

ONE TWO OWT ENO
four five

The following command finds all lines that are palindromes:

grep -w -e '\(.\)\(.\).*\2\1' columns5.txt

The output of the preceding command is here:

one eno
ONE ENO
ONE TWO OWT ENO

The idea is as follows: the first \(.\) matches a set of letters, followed
by a second \(.\) that matches a set of letters, followed by any number
of intermediate characters. The sequence \2\1 reverses the order of the
matching sets of letters specified by the two consecutive occurrences of
\(.\).

Finding Empty Lines in Datasets

Recall that the metacharacter “^” refers to the beginning of a line and the
metacharacter “$” refers to the end of a line. Thus, an empty line consists
of the sequence ^$. You can find the single empty in columns5.txt with
this command:

grep -n "^$" columns5.txt

The output of the preceding grep command is here (use the -n switch
to display line numbers, as blank lines will not otherwise show in the
output):

3:

More commonly the goal is to simply strip the empty lines from a file.
We can do that just by inverting the prior query (and not showing the line
numbers):

grep -v "^$" columns5.txt
one eno
ONE ENO
ONE TWO OWT ENO
four five

80 • DATA CLEANING POCKET PRIMER

As you can see, the preceding output displays four non-empty lines,
and as we saw in the previous grep command, line #3 is an empty
line.

Using Keys to Search Datasets

Data is often organized around unique values (typically numbers)
in order to distinguish otherwise similar things: for example, John
Smith the manager must not be confused with John Smith the pro-
grammer in an employee dataset. Hence, each record is assigned a
unique number that will be used for all queries related to employees.
Moreover, their names are merely data elements of a given record,
rather than a means of identifying a record that contains a particular
person.

With the preceding points in mind, suppose that you have a text file in
which each line contains a single key value. In addition, another text file
consists of one or more lines, where each line contains a key value fol-
lowed by a quantity value.

As an illustration, Listing 3.4 displays the contents of skuvalues.txt
and Listing 3.5 displays the contents of skusold.txt. Note that an
SKU is a term often used to refer to an individual product configuration,
including its packaging, labeling, and so forth.

LISTING 3.4 skuvalues.txt

4520
5530
6550
7200
8000

LISTING 3.5 skusold.txt

4520 12
4520 15
5530 5
5530 12
6550 0
6550 8
7200 50
7200 10
7200 30
8000 25
8000 45
8000 90

FILTERING DATA WITH GREP • 81

The Backslash Character and the grep Command

The “\” character has a special interpretation when it’s followed by the
following characters:

“\b” = Match the empty string at the edge of a word.
“\B” = Match the empty string provided it’s not at the edge of a word, so:
 “\brat\b” matches the separate word “rat” but not “crate,” and
 “\Brat\B” matches “crate” but not “furry rat.”
“\<” = Match the empty string at the beginning of a word.
“\>” = Match the empty string at the end of a word.
“\w” = Match word constituent, it is a synonym for “[_[:alnum:]].”
“\W” = Match non-word constituent, it is a synonym for “[^_[:alnum:]].”
“\s” = Match whitespace, it is a synonym for “[[:space:]].”
“\S” = Match non-whitespace, it is a synonym for “[^[:space:]].”

Multiple Matches in the grep Command

In an earlier example you saw how to use the –i option to perform a case
insensitive match. However, you can also use the pipe “|” symbol to spec-
ify more than one sequence of regular expressions.

For example, the following grep expression matches any line that con-
tains “one” as well as any line that contains “ONE TWO”:

grep "one\|ONE TWO" columns5.txt

The output of the preceding grep command is here:

one eno
ONE TWO OWT ENO

Although the preceding grep command specifies a pair of character strings,
you can specify an arbitrary number of character sequences or regular expres-
sions, as long as you put "\|" between each thing you want to match.

The grep Command and the xargs Command

The xargs command is often used in conjunction with the find com-
mand in bash. For example, you can search for the files under the current
directory (including subdirectories) that have the sh suffix and then check
which one of those files contains the string abc, as shown here:

find . –print |grep "sh$" | xargs grep –l abc

82 • DATA CLEANING POCKET PRIMER

A more useful combination of the find and xargs commands is shown
here:

find . -mtime -7 -name "*.sh" –print | xargs grep –l abc

The preceding command searches for all the files (including subdirecto-
ries) with suffix “sh” that have not been modified in at least seven days,
and pipes that list to the xargs command, which displays the files that
contain the string abc (case insensitive).

The find command supports many options, which can be combined via
AND as well as OR in order to create very complex expressions.

Note that grep –R hello . also performs a search for the string hello
in all files, including subdirectories, and follows the “one process” recom-
mendation. On the other hand, the find . –print command searches
for all files in all subdirectories, and you can pipe the output to xargs
grep hello in order to find the occurrences of the word hello in all
files (which involves two processes instead of one process).

You can use the output of the preceding code snippet in order to copy the
matching files to another directory, as shown here:

cp `find . –print |grep "sh$" | xargs grep –l abc` /tmp

Alternatively, you can copy the matching files in the current directory
(without matching files in any subdirectories) to another directory with
the grep command:

cp `grep –l abc *sh` /tmp

Yet another approach is to use “back tick” so that you can obtain additional
information:

for file in `find . –print`
do
 echo "Processing the file: $file"
 # now do something here
done

Keep in mind that if you pass too many filenames to the xargs com-
mand you will see a “too many files” error message. In this situation, try to
insert additional grep commands prior to the xargs command in order
to reduce the number of files that are piped into the xargs command.

FILTERING DATA WITH GREP • 83

If you work with NodeJS, you know that the node_modules directory
contains a large number of files. In most cases, you probably want to
exclude the files in that directory when you are searching for a string, and
the “-v” option is ideal for this situation. The following command excludes
the files in the node_modules directory while searching for the names
of the HTML files that contain the string src and redirecting the list of
file names to the file src_list.txt (and also redirecting error messages to /
dev/null):

find . –print |grep –v node |xargs grep –il src >src_list.txt
2>/dev/null

You can extend the preceding command to search for the HTML files
that contain the string src and the string angular with the following
command:

find . –print |grep –v node |xargs grep –il src |xargs grep –il
angular >angular_list.txt 2>/dev/null

You can use the following combination of grep and xargs to find the files
that contain both xml and defs:

grep -l xml *svg |xargs grep -l def

A variation of the preceding command redirects error messages to /dev/
null, as shown here:
grep -l hello *txt 2>/dev/null | xargs grep -c hello

Searching Zip Files for a String

There are at least three ways to search for a string in one or more zip files.
As an example, suppose that you want to determine which zip files contain
SVG documents.

The first way is shown here:

for f in `ls *zip`
do
 echo "Searching $f"
 jar tvf $f |grep "svg$"
done

When there are many zip files in a directory, the output of the preced-
ing loop can be very verbose, in which case you need to scroll backward
and probably copy/paste the names of the files that actually contain SVG

84 • DATA CLEANING POCKET PRIMER

documents into a separate file. A better solution is to put the preceding
loop in a shell and redirect its output. For instance, create the file findsvg.
sh whose contents are the preceding loop, and then invoke this command:

./findsvg.sh 1>1 2>2

Notice that the preceding command redirects error message (2>) to the
file 2 and the results of the jar/grep command (1>) to the file 1. See the
Appendix for another example of searching zip files for SVG documents.

Checking for a Unique Key Value

Sometimes you need to check for the existence of a string (such as a
key) in a text file, and then perform additional processing based on its
existence. However, do not assume that the existence of a string means
that that string only occurs once. As a simple example, suppose the file
mykeys.txt has the following content:

2000
22000
10000
3000

Suppose that you search for the string 2000, which you can do with find-
key.sh, whose contents are displayed in Listing 3.6.

LISTING 3.6 findkey.sh

key="2000"
if ["`grep $key mykeys.txt`" != ""]
then
 foundkey=true
else

 foundkey=false
fi
echo "current key = $key"
echo "found key = $foundkey"

Listing 3.6 contains if/else conditional logic to determine whether or not
the file mykeys.txt contains the value of $key (which is initialized as
2000). Launch the code in Listing 3.6 and you will see the following output:

current key = 2000
found key = true
linecount = 2

FILTERING DATA WITH GREP • 85

While the key value of 2000 does exist in mykeys.txt, you can see that it
matches two lines in mykeys.txt. However, if mykeys.txt were part of
a file with 100,000 (or more) lines, it’s not obvious that the value of 2000
matches more than one line. In this dataset, 2000 and 22000 both match,
and you can prevent the extra matching line with this code snippet:

grep –w $key

Thus, in files that have duplicate lines, you can count the number of lines
that match the key via the preceding code snippet. Another way to do so
involves the use of wc –l, which displays the line count.

Redirecting Error Messages

Another scenario involves the use of the xargs command with the grep
command, which can result in “no such . . .” error messages:

find . –print |xargs grep –il abc

Make sure to redirect errors using the following variant:

find . –print |xargs grep –il abc 2>/dev/null

The egrep Command and the fgrep Command

The egrep command is an Extended grep that supports added grep
features like “+” (1 or more occurrence of previous character), “?” (0 or
1 occurrence of previous character), and “|” (alternate matching). The
egrep command is almost identical to the grep -E, along with some
caveats that are described here:

https://www.gnu.org/software/grep/manual/html_node/Basic-vs-
Extended.html.

One advantage of using the egrep command is that it’s easier to under-
stand the regular expressions than the corresponding expressions in grep
(when it’s combined with backward references).

The egrep (“extended grep”) command supports extended regular
expressions, as well as the pipe “|” in order to specify multiple words in
a search pattern. A match is successful if any of the words in the search
pattern appear, so you can think of the search pattern as an “any” match.
Thus, the pattern “abc|def” matches lines that contain either abc or def
(or both).

86 • DATA CLEANING POCKET PRIMER

For example, the following code snippet enables you to search for occur-
rences of the string abc as well as occurrences of the string def in all files
with the suffix sh:

egrep -w 'abc|def' *sh

The preceding egrep command is an “or” operation: a line matches if it
contains either abc or def.

You can also use metacharacters in egrep expressions. For example, the
following code snippet matches lines that start with abc or end with four
and a whitespace:

egrep '^123|four $' columns3.txt

A more detailed explanation of grep, egrep, and frep is here:

https://superuser.com/questions/508881/
what-is-the-difference-between-grep-pgrep-egrep-fgrep.

Displaying “Pure” Words in a Dataset with egrep

For simplicity, let’s work with a text string, and that way we can see the
intermediate results as we work toward the solution. Let’s initialize the
variable x as shown here:

x="ghi abc Ghi 123 #def5 123z"

The first step is to split x into words:

echo $x |tr -s ' ' '\n'

The output is here:

ghi

abc

Ghi
123
#def5
123z

The second step is to invoke egrep with the regular expression
^[a-zA-Z]+, which matches any string consisting of one or more upper-
case and/or lowercase letters (and nothing else):

echo $x |tr -s ' ' '\n' |egrep "^[a-zA-Z]+$"

FILTERING DATA WITH GREP • 87

The output is here:

ghi

abc

Ghi

If you also want to sort the output and print only the unique words, use
this command:

echo $x |tr -s ' ' '\n' |egrep "^[a-zA-Z]+$" |sort | uniq

The output is here:

123
123z
Ghi
abc

ghi

If you want to extract only the integers in the variable x, use this
command:

echo $x |tr -s ' ' '\n' |egrep "^[0-9]+$" |sort | uniq

The output is here:

123

If you want to extract alphanumeric words from the variable x, use this
command:

echo $x |tr -s ' ' '\n' |egrep "^[a-zA-Z0-9]+$" |sort | uniq

The output is here:

123
123z
Ghi
abc

ghi

Note that the ASCII collating sequences place digits before uppercase
letters, and the latter are before lowercase letters for the following reason:
0 through 9 are hexadecimal values 0x30 through 0x39, and the upper-
case letters in A–Z are hexadecimal 0x41 through 0x5a, and the lower-
case letters in a–z are hexadecimal 0x61 through 0x7a.

88 • DATA CLEANING POCKET PRIMER

Now you can replace echo $x with a dataset in order to retrieve only
alphabetic strings from that dataset.

The fgrep Command

The fgrep (“fast grep”) is the same as grep –F and although fgrep is
deprecated, it’s still supported in order to allow historical applications that
rely on them to run unmodified. In addition, some older systems might
not support the –F option for the grep command, so they use the fgrep
command. If you really want to learn more about the fgrep command,
perform an Internet search for tutorials.

A Simple Use Case

The code sample in this section shows you how to use the grep command
in order to find specific lines in a dataset and then “merge” pairs of lines
to create a new dataset. This is very much like what a “join” command
does in a relational database. Listing 3.7 displays the contents of the file
test1.csv, which contains the initial dataset.

LISTING 3.7 test1.csv

F1,F2,F3,M0,M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12
1,KLM,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.4
1,KLMAB,,0.05,,0.04,,0.05,,0.04,,,0.07,,,0.05
1,TP,,7.4,,7.7,,7.6,,7.6,,,8.0,,,7.3
1,XYZ,,4.03,3.96,,3.99,,3.84,4.12,,,,4.04,,
2,KLM,,0.9,0.7,,0.6,,0.8,0.5,,,,0.5,,
2,KLMAB,,0.04,0.04,,0.03,,0.04,0.03,,,,0.03,,
2,EGFR,,99,99,,99,,99,99,,,,99,,
2,TP,,6.6,6.7,,6.9,,6.6,7.1,,,,7.0,,
3,KLM,,0.9,0.1,,0.5,,0.7,,0.7,,,0.9,,
3,KLMAB,,0.04,0.01,,0.02,,0.03,,0.03,,,0.03,,
3,PLT,,224,248,,228,,251,,273,,,206,,
3,XYZ,,4.36,4.28,,4.58,,4.39,,4.85,,,4.47,,
3,RDW,,13.6,13.7,,13.8,,14.1,,14.0,,,13.4,,
3,WBC,,3.9,6.5,,5.0,,4.7,,3.7,,,3.9,,
3,A1C,,5.5,5.6,,5.7,,5.6,,5.5,,,5.3,,
4,KLM,,1.2,,0.6,,0.8,0.7,,,0.9,,,1.0,
4,TP,,7.6,,7.8,,7.6,7.3,,,7.7,,,7.7,
5,KLM,,0.7,,0.8,,1.0,0.8,,0.5,,,1.1,,

FILTERING DATA WITH GREP • 89

5,KLM,,0.03,,0.03,,0.04,0.04,,0.02,,,0.04,,
5,TP,,7.0,,7.4,,7.3,7.6,,7.3,,,7.5,,
5,XYZ,,4.73,,4.48,,4.49,4.40,,,4.59,,,4.63,

Listing 3.8 displays the contents of the file joinlines.sh, which illus-
trates how to merge the pairs of matching lines in joinlines.csv.

LISTING 3.8 joinlines.sh

inputfile="test1.csv"
outputfile="joinedlines.csv"
tmpfile2="tmpfile2"

patterns to match:
klm1="1,KLM,"
klm5="5,KLM,"
xyz1="1,XYZ,"
xyz5="5,XYZ,"

#output:
#klm1,xyz1
#klm5,xyz5

step 1: match patterns with CSV file:
klm1line="`grep $klm1 $inputfile`"
klm5line="`grep $klm5 $inputfile`"
xyz1line="`grep $xyz1 $inputfile`"
$xyz5 matches 2 lines (we want first line):
grep $xyz5 $inputfile > $tmpfile2
xyz5line="`head -1 $tmpfile2`"
echo "klm1line: $klm1line"
echo "klm5line: $klm5line"
echo "xyz1line: $xyz1line"
echo "xyz5line: $xyz5line"

step 3: create summary file:
echo "$klm1line" | tr -d '\n' > $outputfile
echo "$xyz1line" >> $outputfile
echo "$klm5line" | tr -d '\n' >> $outputfile
echo "$xyz5line" >> $outputfile
echo; echo

90 • DATA CLEANING POCKET PRIMER

The output from launching the shell script in Listing 3.8 is here:

1,KLM,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.41,
XYZ,,4.03,3.96,,3.99,,3.84,4.12,,,,4.04,,
5,KLM,,0.7,,0.8,,1.0,0.8,,0.5,,,1.1,,5,KLM,,0.03,,0.03,,0.04,0
.04,,0.02,,,0.04,,5,XYZ,,4.73,,4.48,,4.49,4.40,,,4.59,,,4.63,

As you can see, the task in this section is very easily solved via the grep
command. Note that additional data cleaning is required in order to han-
dle the empty fields in the output.

Summary

This chapter showed you how to work with the grep utility, which is a
very powerful Unix command for searching text fields for strings. You saw
various options for the grep command, and examples of how to use those
options to find string patterns in text files.

Next you learned about egrep, which is a variant of the grep command,
which can simplify and also expand on the basic functionality of grep,
indicating when you might choose one option over another.

Finally, you learned how to use key values in one text file to search for
matching lines of text in another file, and perform join-like operations
using the grep command.

C H A P T E R

I
n the prior chapter, we learned how to reduce a stream of data to
only the contents that interested us. In this chapter, we learn how to
transform that data using the Unix sed utility, which is an acronym

for “stream editor.”

The first part of this chapter contains basic examples of the sed com-
mand, such as replacing and deleting strings, numbers, and letters. The
second part of this chapter discusses various switches that are available for
the sed command, along with an example of replacing multiple delimiters
with a single delimiter in a dataset.

In the final section you will see a number of examples of how to perform
stream-oriented processing on datasets, bringing the capabilities of sed
together with the commands and regular expressions from prior chapters
to accomplish difficult tasks with relatively simple code.

What Is the sed Command?

The name sed is an acronym for “stream editor,” and the utility derives
many of its commands from the ed line-editor (ed was the first UNIX text
editor). The sed command is a “non-interactive” stream-oriented editor
that can be used to automate editing via shell scripts. This ability to mod-
ify an entire stream of data (which can be the contents of multiple files,
in a manner similar to how grep behaves) as if you were inside an editor
is not common in modern programming languages. This behavior allows
some capabilities not easily duplicated elsewhere, while behaving exactly

4
TRANSFORMING DATA WITH sed

92 • DATA CLEANING POCKET PRIMER

like any other command (grep, cat, ls, find, and so forth) in how it
can accept data, output data, and pattern match with regular expressions.

Some of the more common uses for sed include: print matching lines,
delete matching lines, and find/replace matching strings or regular
expressions.

The sed Execution Cycle

Whenever you invoke the sed command, an execution cycle refers to
various options that are specified and executed until the end of the file/
input is reached. Specifically, an execution cycle performs the following
steps:

Reads an entire line from stdin/file.
Removes any trailing newline.
Places the line in its pattern buffer.
Modifies the pattern buffer according to the supplied commands.
Prints the pattern buffer to stdout.

Matching String Patterns Using sed

The sed command requires you to specify a string in order to match the
lines in a file. For example, suppose that the file numbers.txt contains
the following lines:

1

2

123

3

five
4

The following sed command prints all the lines that contain the string 3:

cat numbers.txt |sed –n "/3/p"

Another way to produce the same result:

sed –n "/3/p" numbers.txt

In both cases the output of the preceding commands is as follows:

123

3

TRANSFORMING DATA WITH SED • 93

As we saw earlier with other commands, it is always more efficient to just
read in the file using the sed command than to pipe it in with a different
command. You can “feed” it data from another command, provided that
other command adds value (such as adding line numbers, removing blank
lines, or other similar helpful activities).

The –n option suppresses all output, and the p option prints the matching
line. If you omit the –n option, then every line is printed, and the p option
causes the matching line to be printed again. Hence, you can issue the
following command:

sed "/3/p" numbers.txt

The output (the data to the right of the colon) is as follows. Note that the
labels to the left of the colon show the source of the data, to illustrate the
“one row at a time” behavior of sed.

Basic stream output :1
Basic stream output :2
Basic stream output :123
Pattern Matched text:123
Basic stream output :3
Pattern Matched text:3
Basic stream output :five
Basic stream output :4

It is also possible to match two patterns and print everything between the
lines that match:

sed –n "/123/,/five/p" numbers.txt

The output of the preceding command (all lines between 123 and five,
inclusive) is here:

123

3

five

Substituting String Patterns Using sed

The examples in this section illustrate how to use sed to substitute new
text for an existing text pattern.

x="abc"
echo $x |sed "s/abc/def/"

94 • DATA CLEANING POCKET PRIMER

The output of the preceding code snippet is here:

def

In the prior command you have instructed sed to substitute ("s) the first
text pattern (/abc) with the second pattern (/def) and no further instruc-
tions (/").

Deleting a text pattern is simply a matter of leaving the second pattern
empty:

echo "abcdefabc" |sed "s/abc//"

The result is here:

defabc

As you see, this only removes the first occurrence of the pattern. You can
remove all the occurrences of the pattern by adding the “global” terminal
instruction (/g"):

echo "abcdefabc" |sed "s/abc//g"

The result of the preceding command is here:

def

Note that we are operating directly on the main stream with this com-
mand, as we are not using the -n tag. You can also suppress the main
stream with -n and print the substitution, achieving the same output if
you use the terminal p (print) instruction:

echo "abcdefabc" |sed -n "s/abc//gp"
def

For substitutions, either syntax will do, but that is not always true of other
commands.

You can also remove digits instead of letters, by using the numeric
metacharacters as your regular expression match pattern (from
Chapter 1):

ls svcc1234.txt |sed "s/[0-9]//g"
ls svcc1234.txt |sed –n "s/[0-9]//gp"

TRANSFORMING DATA WITH SED • 95

The result of either of the two preceding commands is here:

svcc.txt

Recall that the file columns4.txt contains the following text:

123 ONE TWO

456 three four
ONE TWO THREE FOUR

five 123 six
one two three
four five

The following sed command is instructed to identify the rows between 1
and 3, inclusive ("1,3), and delete (d") them from the output:

cat columns4.txt | sed "1,3d"

The output is here:

five 123 six
one two three
four five

The following sed command deletes a range of lines, starting from the
line that matches 123 and continuing through the file until reaching the
line that matches the string five (and also deleting all the intermediate
lines). The syntax should be familiar from the earlier matching example:

sed "/123/,/five/d" columns4.txt

The output is here:

one two three
four five

Replacing Vowels from a String or a File

The following code snippet shows you how simple it is to replace multiple
vowels from a string using the sed command:

echo "hello" | sed "s/[aeio]/u/g"

The output from the preceding code snippet is here:

Hullu

96 • DATA CLEANING POCKET PRIMER

Deleting Multiple Digits and Letters from a String

Suppose that we have a variable x that is defined as follows:

x="a123zAB 10x b 20 c 300 d 40w00"

Recall that an integer consists of one or more digits, so it matches the
regular expression [0-9]+, which matches one or more digits. However,
you need to specify the regular expression [0-9]* in order to remove every
number from the variable x:

echo $x | sed "s/[0-9]//g"

The output of the preceding command is here:

azAB x b c d w

The following command removes all lowercase letters from the variable x:

echo $x | sed "s/[a-z]*//g"

The output of the preceding command is here:

123AB 10 20 300 4000

The following command removes all lowercase and uppercase letters
from the variable x:

echo $x | sed "s/[a-z][A-Z]*//g"

The output of the preceding command is here:

123 10 20 300 4000

Search and Replace with sed

The previous section showed you how to delete a range of rows of a text
file, based on a start line and end line, using either a numeric range or a
pair of strings. As deleting is just substituting an empty result for what you
match, it should now be clear that a replace activity involves populating
that part of the command with something that achieves your desired out-
come. This section contains various examples that illustrate how to get the
exact substitution you desire.

TRANSFORMING DATA WITH SED • 97

The following examples illustrate how to convert lowercase abc to upper-
case ABC in sed:

echo "abc" |sed "s/abc/ABC/"

The output of the preceding command is here (which only works on one
case of abc):

ABC
echo "abcdefabc" |sed "s/abc/ABC/g"

The output of the preceding command is here (/g” means works on every
case of abc):

ABCdefABC

The following sed expression performs three consecutive substitutions,
using -e to string them together. It changes exactly one (the first) a to A,
one b to B, one c to C:

echo "abcde" |sed -e "s/a/A/" -e "s/b/B/" -e "s/c/C/"

The output of the preceding command is here:

ABCde

Obviously, you can use the following sed expression that combines the
three substitutions into one substitution:

echo "abcde" |sed "s/abc/ABC/"

Nevertheless, the –e switch is useful when you need to perform
more complex substitutions that cannot be combined into a single
substitution.

The “/” character is not the only delimiter that sed supports, which
is useful when strings contain the “/” character. For example, you can
reverse the order of /aa/bb/cc/ with this command:

echo "/aa/bb/cc" |sed -n "s#/aa/bb/cc#/cc/bb/aa/#p"

The output of the preceding sed command is here:

/cc/bb/aa/

98 • DATA CLEANING POCKET PRIMER

The following examples illustrate how to use the “w” terminal command
instruction to write the sed output to both standard output and also to a
named file upper1 if the match succeeds:

echo "abcdefabc" |sed "s/abc/ABC/wupper1"
ABCdefabc

If you examine the contents of the text file upper1 you will see that it
contains the same string ABCdefabc that is displayed on the screen. This
two-stream behavior that we noticed earlier with the print (“p”) terminal
command is unusual, but sometimes useful. It is more common to simply
send the standard output to a file using the “>” syntax, as shown in the
following (both syntaxes work for a replace operation), but in that case
nothing is written to the terminal screen. The previous syntax allows both
at the same time:

echo "abcdefabc" | sed "s/abc/ABC/" > upper1
echo "abcdefabc" | sed -n "s/abc/ABC/p" > upper1

Listing 4.1 displays the contents of update2.sh that replace the occur-
rence of the string hello with the string goodbye in the files with the
suffix txt in the current directory.

LISTING 4.1 update2.sh

for f in `ls *txt`
do
 newfile="${f}_new"
 cat $f | sed -n "s/hello/goodbye/gp" > $newfile
 mv $newfile $f
done

Listing 4.1 contains a for loop that iterates over the list of text files with
the txt suffix. For each such file, initialize the variable newfile that is
created by appending the string _new to the first file (represented by the
variable f). Next, replace the occurrences of hello with the string goodbye
in each file f, and redirect the output to $newfile. Finally, rename $new-
file to $f using the mv command.

If you want to perform the update in matching files in all subdirectories,
replace the “for” statement with the following:

for f in `find . –print |grep "txt$"`

TRANSFORMING DATA WITH SED • 99

Datasets with Multiple Delimiters

Listing 4.2 displays the contents of the dataset delim1.txt, which con-
tains multiple delimiters “|”, “:”, and “^”. Listing 4.3 displays the contents
of delimiter1.sh, which illustrates how to replace the various delimit-
ers in delimiter1.txt with a single comma delimiter “,”.

LISTING 4.2 delimiter1.txt

1000|Jane:Edwards^Sales
2000|Tom:Smith^Development
3000|Dave:Del Ray^Marketing

LISTING 4.3 delimiter1.sh

inputfile="delimiter1.txt"
cat $inputfile | sed -e 's/:/,/' -e 's/|/,/' -e 's/\^/,/'

As you can see, the second line in Listing 4.3 is simple yet very powerful:
you can extend the sed command with as many delimiters as you require
in order to create a dataset with a single delimiter between values. The
output from Listing 4.3 is shown here:

1000,Jane,Edwards,Sales
2000,Tom,Smith,Development
3000,Dave,Del Ray,Marketing

Do keep in mind that this kind of transformation can be a bit unsafe unless
you have checked that your new delimiter is not already in use. For that a
grep command is useful (you want result to be zero):

grep -c ',' $inputfile
0

Useful Switches in sed

The three command line switches -n, -e, and -i are useful when you
specify them with the sed command.

As a review, specify -n when you want to suppress the printing of the basic

stream output:

sed -n 's/foo/bar/'

100 • DATA CLEANING POCKET PRIMER

Specify -n and end with /p' when you want to match the result only:

sed -n 's/foo/bar/p'

We briefly touched on using -e to do multiple substitutions, but it can
also be used to combine other commands. This syntax lets us separate the
commands in the last example:

sed -n -e 's/foo/bar/' -e 'p'

A more advanced example that hints at the flexibility of sed involves the
insertion of a character after a fixed number of positions. For example,
consider the following code snippet:

echo "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | sed "s/.\{3\}/&\n/g"

The output from the preceding command is here:

ABCnDEFnGHInJKLnMNOnPQRnSTUnVWXnYZ

While the above example does not seem especially useful, consider a
large text stream with no line breaks (everything on one line). You could
use something like this to insert newline characters, or something else to
break the data into easier to process chunks. It is possible to work through
exactly what sed is doing by looking at each element of the command
and comparing it to the output, even if you don’t know the syntax. (Tip:
sometimes you will encounter very complex instructions for sed without
any documentation in the code: try not to be that person when coding.)

The output is changing after every three characters and we know dot (.)
matches any single character, so .{3} must be telling it to do that (with
escape slashes \ because brackets are a special character for sed, and it
won’t interpret it properly if we just leave it as .{3}. The “n” is clear
enough in the replacement column, so the “&\” must be somehow telling
it to insert a character instead of replacing it. The terminal g command of
course means to repeat. To clarify and confirm those guesses, take what
you could infer and perform an Internet search.

Working with Datasets

The sed utility is very useful for manipulating the contents of text files.
For example, you can print ranges of lines, and subsets of lines that match
a regular expression. You can also perform search-and-replace on the

TRANSFORMING DATA WITH SED • 101

lines in a text file. This section contains examples that illustrate how to
perform such functionality.

Printing Lines

Listing 4.4 displays the contents of test4.txt (doubled-spaced lines)
that are used for several examples in this section.

LISTING 4.4 test4.txt

abc

def

abc

abc

The following code snippet prints the first 3 lines in test4.txt (we
used this syntax before when deleting rows; it is equally useful for
printing):

cat test4.txt |sed -n "1,3p"

The output of the preceding code snippet is here (the second line is
blank):

abc

def

The following code snippet prints lines 3 through 5 in test4.txt:

cat test4.txt |sed -n "3,5p"

The output of the preceding code snippet is here:

def

abc

The following code snippet takes advantage of the basic output stream
and the second match stream to duplicate every line (including blank
lines) in test4.txt:

cat test4.txt |sed "p"

102 • DATA CLEANING POCKET PRIMER

The output of the preceding code snippet is here:

abc
abc

def
def

abc
abc

abc
abc

The following code snippet prints the first three lines and then capitalizes
the string abc, duplicating ABC in the final output because we did not use
-n and did end with /p" in the second sed command. Remember that
/p" only prints the text that matched the sed command, where the basic
output prints the whole file, which is why def does not get duplicated:

cat test4.txt |sed -n "1,3p" |sed "s/abc/ABC/p"
ABC
ABC

def

Character Classes and sed

You can also use regular expressions with sed. As a reminder, here are the
contents of columns4.txt:

123 ONE TWO

456 three four
ONE TWO THREE FOUR

five 123 six
one two three
four five

As our first example involving sed and character classes, the following
code snippet illustrates how to match lines that contain lowercase letters:

cat columns4.txt | sed -n '/[0-9]/p'

The output from the preceding snippet is here:

one two three
one two
one two three four
one

TRANSFORMING DATA WITH SED • 103

one three
one four

The following code snippet illustrates how to match lines that contain
lowercase letters:

cat columns4.txt | sed -n '/[a-z]/p'

The output from the preceding snippet is here:

123 ONE TWO

456 three four
five 123 six

The following code snippet illustrates how to match lines that contain the
numbers 4, 5, or 6:

cat columns4.txt | sed -n '/[4-6]/p'

The output from the preceding snippet is here:

456 three four

The following code snippet illustrates how to match lines that start with
any two characters followed by EE:

cat columns4.txt | sed -n '/^.\{2\}EE*/p'

The output from the preceding snippet is here:

ONE TWO THREE FOUR

Removing Control Characters

Listing 4.5 displays the contents of controlchars.txt that we used
before in Chapter 2. Control characters of any kind can be removed by
sed just like any other character.

LISTING 4.5 controlchars.txt

1 carriage return^M
2 carriage return^M
1 tab character^I

The following command removes the carriage return and the tab charac-
ters from the text file ControlChars.txt:

cat controlChars.txt | sed "s/^M//" |sed "s/ //"

104 • DATA CLEANING POCKET PRIMER

You cannot see the tab character in the second sed command in the
preceding code snippet; however, if you redirect the output to the file
nocontrol1.txt, you can see that there are no embedded control char-
acters in this new file by typing the following command:

cat –t nocontrol1.txt

Counting Words in a Dataset

Listing 4.6 displays the contents of WordCountInFile.sh, which illus-
trates how to combine various bash commands in order to count the
words (and their occurrences) in a file.

LISTING 4.6 wordcountinfile.sh

The file is fed to the “tr” command, which changes uppercase to
lowercase
sed removes commas and periods, then changes whitespace to
newlines
uniq needs each word on its own line to count the words properly
Uniq converts data to unique words and the number of times they
appeared
The final sort orders the data by the wordcount.

cat "$1" | xargs -n1 | tr A-Z a-z | \
sed -e 's/\.//g' -e 's/\,//g' -e 's/ /\ /g' | \
sort | uniq -c | sort -nr

The previous command performs the following operations:

�� List each word in each line of the file,
�� shift characters to lowercase,
�� filter out periods and commas,
�� change space between words to linefeed, and
�� remove duplicates, prefix occurrence count, and sort numerically.

Back References in sed

In the chapter describing grep you learned about back references, and
similar functionality is available with the sed command. The main dif-
ference is that the back references can also be used in the replacement
section of the command.

TRANSFORMING DATA WITH SED • 105

The following sed command matches the consecutive “a” letters and
prints four of them:

echo "aa" |sed -n "s#\([a-z]\)\1#\1\1\1\1#p"

The output of the preceding code snippet is here:
aaaa

The following sed command replaces all duplicate pairs of letters with the

letters aa:

echo "aa/bb/cc" |sed -n "s#\(aa\)/\(bb\)/\(cc\)#\1/\1/\1/#p"

The output of the previous sed command is here (note the trailing “/”

character):

aa/aa/aa/

The following command inserts a comma in a four-digit number:

echo "1234" |sed -n "s@\([0-9]\)\([0-9]\)\([0-9]\)\
([0-9]\)@\1,\2\3\4@p"

The preceding sed command uses the @ character as a delimiter. The
character class [0-9] matches one single digit. Since there are four digits
in the input string 1234, the character class [0-9] is repeated 4 times,
and the value of each digit is stored in \1, \2, \3, and \4. The output
from the preceding sed command is here:

1,234

A more general sed expression that can insert a comma in five-digit num-
bers is here:

echo "12345" | sed 's/\([0-9]\{3\}\)$/,\1/g;s/^,//'

The output of the preceding command is here:

12,345

Displaying Only “Pure” Words in a Dataset

In the previous chapter we solved this task using the egrep command,
and this section shows you how to solve this task using the sed command.

106 • DATA CLEANING POCKET PRIMER

For simplicity, let’s work with a text string, and that way we can see the
intermediate results as we work toward the solution. The approach will be
similar to the code block shown earlier that counted unique words. Let’s
initialize the variable x as shown here:

x="ghi abc Ghi 123 #def5 123z"

The first step is to split x into one word per line by replacing space with
newlines:

echo $x |tr -s ' ' '\n'

The output is here:

ghi
abc
Ghi
123

#def5
123z

The second step is to invoke old with the regular expression ̂ [a-zA-Z]+,
which matches any string consisting of one or more uppercase and/or low-
ercase letters (and nothing else). Note that the -E switch is needed to
parse this kind of regular expression in sed, as it uses some of the newer/
modern regular expression syntax not available when sed was new.

echo $x |tr -s ' ' '\n' |sed -nE "s/(^[a-zA-Z]
[a-zA-Z]*$)/\1/p"

The output is here:

ghi
abc
Ghi

If you also want to sort the output and print only the unique words, pipe
the result to the sort and uniq commands:

echo $x |tr -s ' ' '\n' |sed -nE "s/(^[a-zA-Z]
[a-zA-Z]*$)/\1/p"|sort|uniq

The output is here:

Ghi
abc
ghi

TRANSFORMING DATA WITH SED • 107

If you want to extract only the integers in the variable x, use this command:

echo $x |tr -s ' ' '\n' |sed -nE "s/(^[0-9][0-9]*$)/\1/p"
|sort|uniq

The output is here:

123

If you want to extract alphanumeric words from the variable x, use this
command:

echo $x |tr -s ' ' '\n' |sed -nE "s/(^[0-9a-zA-Z]
[0-9a-zA-Z]*$)/\1/p"|sort|uniq

The output is here:

123

123z
Ghi
abc
ghi

Now you can replace echo $x with a dataset in order to retrieve only
alphabetic strings from that dataset.

One-Line sed Commands

This section is intended to show a lot of the more useful problems you can
solve with a single line of sed, and to expose you to yet more switches and
arguments that you can mix and match to solve related tasks.

Moreover, sed supports other options (which are beyond the scope of
this book) to perform many other tasks, some of which are sophisticated
and correspondingly complex. If you encounter something that none of
the examples in this chapter cover, but it seems like the sort of thing sed
might do, the odds are decent that it does: an Internet search along the
lines of “how do I do <xxx> in sed” will likely either point you in the right
direction, or at least to an alternative bash command that will be helpful.

Listing 4.7 displays the contents of data4.txt that are referenced in
some of the sed commands in this section. Note that some examples
contain options that have not been discussed earlier in this chapter: they
are included in case you need the desired functionality (and you can find
more details by reading online tutorials).

108 • DATA CLEANING POCKET PRIMER

LISTING 4.7 data4.txt

hello world4
 hello world5 two
 hello world6 three
 hello world4 four
line five
line six
line seven

Print the first line of data4.txt with this command:

sed q < data4.txt

The output is here:

 hello world3

Print the first three lines of data4.txt with this command:

sed 3q < data4.txt

The output is here:

 hello world4
 hello world5 two
 hello world6 three

Print the last line of data4.txt with this command:

sed '$!d' < data4.txt

The output is here:

line seven

You can also use this snippet to print the last line:

sed -n '$p' < data4.txt

Print the last two lines of data4.txt with this command:

sed '$!N;$!D' <data4.txt

The output is here:

line six
line seven

TRANSFORMING DATA WITH SED • 109

Print the lines of data4.txt that do not contain world with this command:

sed '/world/d' < data4.txt

The output is here:

line five
line six
line seven

Print duplicates of the lines in data4.txt that contain the word world
with this command:

sed '/world/p' < data4.txt

The output is here:

 hello world4
 hello world4
 hello world5 two
 hello world5 two
 hello world6 three
 hello world6 three
 hello world4 four
 hello world4 four
line five
line six
line seven

Print the fifth line of data4.txt with this command:

sed -n '5p' < data4.txt

The output is here:

line five

Print the contents of data4.txt and duplicate line five with this
command:

sed '5p' < data4.txt

The output is here:

 hello world4
 hello world5 two
 hello world6 three
 hello world4 four

110 • DATA CLEANING POCKET PRIMER

line five
line five
line six
line seven

Print lines four through six of data4.txt with this command:

sed –n '4,6p' < data4.txt

The output is here:

hello world4 four
line five
line six

Delete lines four through six of data4.txt with this command:

sed '4,6d' < data4.txt

The output is here:

 hello world4
 hello world5 two
 hello world6 three
line seven

Delete the section of lines between world6 and six in data4.txt with
this command:

sed '/world6/,/six/d' < data4.txt

The output is here:

 hello world4
 hello world5 two
line seven

Print the section of lines between world6 and six of data4.txt with
this command:

sed -n '/world6/,/six/p' < data4.txt

The output is here:

hello world6 three
 hello world4 four
line five
line six

TRANSFORMING DATA WITH SED • 111

Print the contents of data4.txt and duplicate the section of lines
between world6 and six with this command:

sed '/world6/,/six/p' < data4.txt

The output is here:

 hello world4
 hello world5 two
 hello world6 three
 hello world6 three
 hello world4 four
 hello world4 four
line five
line five
line six
line six
line seven

Delete the even-numbered lines in data4.txt with this command:

sed 'n;d;' <data4.txt

The output is here:

 hello world4
 hello world6 three
line five
line seven

Replace letters a through m with a “,” with this command:

sed "s/[a-m]/,/g" <data4.txt

The output is here:

 ,,,,o wor,,4
 ,,,,o wor,,5 two
 ,,,,o wor,,6 t,r,,
 ,,,,o wor,,4 ,our
,,n, ,,v,
,,n, s,x
,,n, s,v,n

Replace letters a through m with the characters “,@#” with this
command:

sed "s/[a-m]/,@#/g" <data4.txt

112 • DATA CLEANING POCKET PRIMER

The output is here:

 ,@#,@#,@#,@#o wor,@#,@#4
,@#,@#,@#,@#o wor,@#,@#5 two

 ,@#,@#,@#,@#o wor,@#,@#6 t,@#r,@#,@#
,@#,@#,@#,@#o wor,@#,@#4 ,@#our

,@#,@#n,@# ,@#,@#v,@#
,@#,@#n,@# s,@#x
,@#,@#n,@# s,@#v,@#n

The sed command does not recognize escape sequences such as \t,
which means that you must literally insert a tab on your console. In the
case of the bash shell, enter the control character ^V and then press the
<TAB> key in order to insert a <TAB> character.

Delete the tab characters in data4.txt with this command:

sed 's/ //g' <data4.txt

The output is here:

 hello world4
hello world5 two
 hello world6 three
hello world4 four
line five
line six
line seven

Delete the tab characters and blank spaces in data4.txt with this
command:

sed 's/ //g' <data4.txt

The output is here:

helloworld4
helloworld5two
helloworld6three
helloworld4four
linefive
linesix
lineseven

Replace every line of data4.txt with the word pasta with this command:

sed 's/.*/\pasta/' < data4.txt

TRANSFORMING DATA WITH SED • 113

The output is here:

pasta

pasta

pasta

pasta

pasta

pasta

pasta

Insert two blank lines after the third line and one blank line after the fifth
line in data4.txt with this command:

sed '3G;3G;5G' < data4.txt

The output is here:

 hello world4
 hello world5 two
 hello world6 three

hello world4 four
line five
line six
line seven

Insert a blank line after every line of data4.txt with this command:

sed G < data4.txt

The output is here:

 hello world4
 hello world5 two
 hello world6 three

hello world4 four
line five
line six
line seven

Insert a blank line after every other line of data4.txt with this command:

sed n\;G < data4.txt

The output is here:

 hello world4
 hello world5 two

114 • DATA CLEANING POCKET PRIMER

 hello world6 three
hello world4 four

line five
line six

line seven

Reverse the lines in data4.txt with this command:

sed '1! G; h;$!d' < data4.txt

The output of the preceding sed command is here:

line seven
line six
line five

hello world4 four
 hello world6 three
 hello world5 two
 hello world4

Summary

This chapter introduced you to the sed utility, illustrating the basic tasks
of data transformation: allowing additions, removal, and mutation of data
by matching individual patterns, or matching the position of the rows in a
file, or a combination of the two.

Moreover, we showed that sed not only uses regular expressions to match
data, similar to the grep command, but can also use regular expressions
to describe how to transform the data. Finally, there was a list of examples
showing both the versatility of the sed command, and hopefully commu-
nicating the sense that it is an even more flexible and powerful utility than
we can show in a single chapter.

C H A P T E R5
DOING EVERYTHING ELSE WITH
awk

T
his chapter introduces you to the awk command, which is a highly
versatile utility for manipulating data and restructuring datasets.
In fact, this utility is so versatile that entire books have been writ-

ten about the awk utility. Awk is essentially an entire programming lan-
guage in a single command, which accepts standard input, gives standard
output, and uses regular expressions and metacharacters in the same way
other Unix commands do. This lets you plug it into other expressions and
do almost anything, at the cost of adding complexity to a command string
that may already be doing quite a lot already. It is almost always worth-
while to add a comment when using awk; it is so versatile that it won’t be
clear which of the many features you are using at a glance.

The first part of this chapter provides a very brief introduction of the
awk command. You will learn about some built-in variables for awk,
and also how to manipulate string variables using awk. Note that some
of these string-related examples can also be handled using other bash
commands.

The second part of this chapter shows you conditional logic, while loops,
and for loops in awk in order to manipulate the rows and columns in
datasets. This section also shows you how to delete lines and merge lines
in datasets, and also how to print the contents of a file as a single line of
text. You will see how to “join” lines and groups of lines in datasets.

The third section contains code samples that involve metacharacters
(introduced in Chapter 1) and character sets in awk commands. You will

116 • DATA CLEANING POCKET PRIMER

also see how to use conditional logic in awk commands in order to deter-
mine whether or not to print a line of text.

The fourth section illustrates how to “split” a text string that contains mul-
tiple “.” characters as a delimiter, followed by examples of awk to perform
numeric calculations (such as addition, subtraction, multiplication, and
division) in files containing numeric data. This section also shows you var-
ious numeric functions that are available in awk, and also how to print text
in a fixed set of columns.

The fifth section explains how to align columns in a dataset and also how to
align and merge columns in a dataset. You will see how to delete columns,
how to select a subset of columns from a dataset, and how to work with
multiline records in datasets. This section contains some one-line awk
commands that can be useful for manipulating the contents of datasets.

The final section of this chapter has a pair of use cases involving nested
quotes and date formats in structured data sets.

The awk Command

The awk (Aho, Weinberger, and Kernighan) command has a C-like syntax,
and you can use this utility to perform very complex operations on num-
bers and text strings.

As a side comment, there is also the gawk command which is GNU awk,
as well as the nawk command which is “new” awk (neither command is
discussed in this book). One advantage of nawk is that it allows you to set
externally the value of an internal variable.

Built-In Variables That Control awk

The awk command provides variables that you can change from their
default values in order to control how awk performs operations. Examples
of such variables (and their default values) include: FS (" "), RS ("\n"),
OFS (" "), ORS ("\n"), SUBSEP, and IGNORECASE. The variables FS
and RS specify the field separator and record separator, whereas the varia-
bles OFS and ORS specify the output field separator and the output record
separator, respectively.

You can think of the field separators as delimiters/IFS we used in other
commands earlier. The record separators behave in a way similar to how
sed treats individual lines—for example sed can match or delete a range
of lines instead of matching or deleting something that matches a regular
expression (and the default awk record separator is the newline character,

DOING EVERYTHING ELSE WITH AWK • 117

so by default awk and sed have similar ability to manipulate and refer-
ence lines in a text file).

As a simple example, you can print a blank line after each line of a file
by changing the ORS, from the default of one newline to two newlines, as
shown here:

cat columns.txt | awk 'BEGIN { ORS ="\n\n" } ; { print $0 }'

Other built-in variables include FILENAME (the name of the file that awk
is currently reading), FNR (the current record number in the current file),
NF (the number of fields in the current input record), and NR (the number
of input records awk has processed since the beginning of the program’s
execution).

Consult the online documentation for additional information regarding
these (and other) arguments for the awk command.

How Does the awk Command Work?

The awk command reads the input files one record at a time (by default,
one record is one line). If a record matches a pattern, then an action is
performed (otherwise no action is performed). If the search pattern is
not given, then awk performs the given actions for each record of the
input. The default behavior if no action is given is to print all the records
that match the given pattern. Finally, empty braces without any action
do nothing; that is, they will not perform the default printing operation.
Note that each statement in actions should be delimited by semicolons.

In other to make the preceding paragraph more concrete, here are some
simple examples involving text strings and the awk command (the results
are displayed after each code snippet). The -F switch sets the field sep-
arator to whatever follows it, in this case a space. Switches will often
provide a shortcut to an action that normally needs a command inside a
“BEGIN{}” block:

x="a b c d e"

echo $x |awk -F" " '{print $1}'

a

echo $x |awk -F" " '{print NF}'

5

echo $x |awk -F" " '{print $0}'

a b c d e

echo $x |awk -F" " '{print $3, $1}'

c a

118 • DATA CLEANING POCKET PRIMER

Now let’s change the FS (record separator) to an empty string to calculate
the length of a string, this time using the BEGIN{} syntax:

echo "abc" | awk 'BEGIN { FS = "" } ; { print NF }'

3

The following example illustrates several equivalent ways to specify test.
txt as the input file for an awk command:

awk < test.txt '{ print $1 }'

awk '{ print $1 }' < test.txt

awk '{ print $1 }' test.txt

Yet another way is shown here (but as we’ve discussed earlier, it can be
inefficient, so only do it if the cat command is adding value in some way):

cat test.txt | awk '{ print $1 }'

This simple example of four ways to do the same task should illustrate why
commenting awk calls of any complexity is almost always a good idea. The next
person to look at your code may not know/remember the syntax you are using.

Aligning Text with the printf Command

Since awk is a programming language inside a single command, it also
has its own way of producing formatted output via the printf command.

Listing 5.1 displays the contents of columns2.txt and Listing 5.2 dis-
plays the contents of the shell script AlignColumns1.sh, which shows
you how to align the columns in a text file.

LISTING 5.1 columns2.txt

one two

three four

one two three four

five six
one two three

four five

LISTING 5.2 Align Columns1.sh

awk '

{

 # left-align $1 on a 10-char column

 # right-align $2 on a 10-char column

 # right-align $3 on a 10-char column

 # right-align $4 on a 10-char column

 printf("%-10s*%10s*%10s*%10s*\n", $1, $2, $3, $4)

DOING EVERYTHING ELSE WITH AWK • 119

}

' columns2.txt

Listing 5.2 contains a printf() statement that displays the first four
fields of each row in the file columns2.txt, where each field is 10 char-
acters wide.
The output from launching the code in Listing 5.2 is here:

one * two* * *

three * four* * *

one * two* three* four*

five * six* * *
one * two* three* *

four * five* * *

Keep in mind that printf is reasonably powerful and as such has its own
syntax, which is beyond the scope of this chapter. A search online can find
the manual pages and also discussions of “how to do X with printf().”

Conditional Logic and Control Statements

Like other programming languages, awk provides support for condi-
tional logic (if/else) and control statements (for/while loops). awk is
the only way to put conditional logic inside a piped command stream
without creating, installing, and adding to the path a custom executa-
ble shell script. The following code block shows you how to use if/else
logic:

echo "" | awk '

BEGIN { x = 10 }

{

 if (x % 2 == 0) }

 print "x is even"
 }

 else }

 print "x is odd"

 }

}

'

The preceding code block initializes the variable x with the value 10 and
prints “x is even” if x is divisible by 2, otherwise it prints “x is odd”.

The while Statement

The following code block illustrates how to use a while loop in awk:

echo "" | awk '

{

120 • DATA CLEANING POCKET PRIMER

 x = 0

 while(x < 4) {

 print "x:",x

 x = x + 1

 }

}

'

The preceding code block generates the following output:

x:0

x:1

x:2

x:3

The following code block illustrates how to use a do while loop in awk:

echo "" | awk '

{

 x = 0

 do {

 print "x:",x

 x = x + 1

 } while(x < 4)

}

'

The preceding code block generates the following output:

x:0

x:1

x:2

x:3

A for loop in awk

Listing 5.3 displays the contents of Loop.sh, which illustrates how to
print a list of numbers in a loop. Note that “i++” is another way of writing
“i=i+1” in awk (and most c-derived languages).

LISTING 5.3 Loop.sh

awk '

BEGIN {}

{

 for(i=0; i<5; i++) {

 printf("%3d", i)

 }

}

DOING EVERYTHING ELSE WITH AWK • 121

END { print "\n" }

'

Listing 5.3 contains a for loop that prints numbers on the same line via
the printf() statement. Notice that a newline is printed only in the END
block of the code. The output from Listing 5.3 is here:

0 1 2 3 4

A for loop with a break Statement

The following code block illustrates how to use a break statement in a
for loop in awk:

echo "" | awk '

{

 for(x=1; x<4; x++) {

 print "x:",x

 if(x == 2) {

 break;

 }

 }

}

'

The preceding code block prints output only until the variable x has the
value 2, after which the loop exits (because of the break inside the condi-
tional logic). The following output is displayed:

x:1

The next and continue Statements

The following code snippet illustrates how to use next and continue in
a for loop in awk:

awk '

{

 /expression1/ { var1 = 5; next }
 /expression2/ { var2 = 7; next }
 /expression3/ { continue }

 // some other code block here

' somefile

When the current line matches expression1, then var1 is assigned the
value 5 and awk reads the next input line: hence, expression2 and
expression3 will not be tested. If expression1 does not match and
expression2 does match, then var2 is assigned the value 7 and then

122 • DATA CLEANING POCKET PRIMER

awk will read the next input line. If only expression3 results in a posi-
tive match, then awk skips the remaining block of code and processes the
next input line.

Deleting Alternate Lines in Datasets

Listing 5.4 displays the contents of linepairs.csv and Listing 5.5 dis-
plays the contents of deletelines.sh, which illustrates how to print
alternating lines from the dataset linepairs.csv that have exactly two
columns.

LISTING 5.4 linepairs.csv

a,b,c,d

e,f,g,h

1,2,3,4

5,6,7,8

LISTING 5.5 deletelines.sh

inputfile="linepairs.csv"
outputfile="linepairsdeleted.csv"
awk ' NR%2 {printf "%s", $0; print ""; next}' < $inputfile >
$outputfile

Listing 5.5 checks if the current record number NR is divisible by 2, in
which case it prints the current line and skips the next line in the dataset.
The output is redirected to the specified output file, the contents of which
are here:

a,b,c,d

1,2,3,4

A slightly more common task involves merging consecutive lines, which is
the topic of the next section.

Merging Lines in Datasets

Listing 5.6 displays the contents of columns.txt and Listing 5.7 dis-
plays the contents of ColumnCount1.sh, which illustrates how to print
the lines from the text file columns.txt that have exactly two columns.

LISTING 5.6 columns.txt

one two three

one two

DOING EVERYTHING ELSE WITH AWK • 123

one two three four

one

one three

one four

LISTING 5.7 ColumnCount1.sh

awk '

{

 if(NF == 2) { print $0 }

}

' columns.txt

Listing 5.7 is straightforward: if the current record number is even, then
the current line is printed (i.e., odd-numbered rows are skipped). The
output from launching the code in Listing 5.7 is here:

one two

one three

one four

If you want to display the lines that do not contain 2 columns, use the
following code snippet:

if(NF != 2) { print $0 }

Printing File Contents as a Single Line

The contents of test4.txt are here (note the blank lines):

abc

def

abc

abc

The following code snippet illustrates how to print the contents of test4.
txt as a single line:

awk '{printf("%s", $0)}' test4.txt

The output of the preceding code snippet is here. See if you can tell what
is happening before reading the explanation in the next paragraph:

Abcdefabcabc

Explanation: %s here is the record separator syntax for printf, and
having the end quote after it means the record separator is the empty
field “”. Our default record separator for awk is \n (newline); what the
printf is doing is stripping out all the newlines. The blank rows will

124 • DATA CLEANING POCKET PRIMER

vanish entirely, as all they have is the newline, so the result is that any
actual text will be merged together with nothing between them. Had
we added a space between the %s and the ending quote, there would
be a space between each character block, plus an extra space for each
newline.
Notice how the following comment helps the comprehension of the code
snippet:

Merging all text into a single line by removing the newlines
awk '{printf("%s", $0)}' test4.txt

Joining Groups of Lines in a Text File

Listing 5.8 displays the contents of digits.txt and Listing 5.9 displays
the contents of digits.sh, which “joins” three consecutive lines of text
in the file digits.txt.

LISTING 5.8 digits.txt

1

2

3

4

5

6

7
8
9

LISTING 5.9 digits.sh

awk -F" " '{

 printf("%d",$0)

 if(NR % 3 == 0) { printf("\n") }

}' digits.txt

Listing 5.9 prints three consecutive lines of text on the same line, after
which a linefeed is printed. This has the effect of “joining” every three
consecutive lines of text. The output from launching digits.sh is
here:

123

456

789

DOING EVERYTHING ELSE WITH AWK • 125

Joining Alternate Lines in a Text File

Listing 5.10 displays the contents of columns2.txt and Listing 5.11 dis-
plays the contents of JoinLines.sh, which “joins” two consecutive lines
of text in the file columns2.txt.

LISTING 5.10 columns2.txt

one two

three four

one two three four

five six
one two three

four five

LISTING 5.11 JoinLines.sh

awk '

{

 printf("%s",$0)

 if($1 !~ /one/) { print " " }

}

' columns2.txt

The output from launching Listing 5.11 is here:

one two three four

one two three four five six
one two three four five

Notice that the code in Listing 5.11 depends on the presence of the
string “one” as the first field in alternating lines of text—we are merg-
ing based on matching a simple pattern, instead of tying it to record
combinations.

To merge each pair of lines instead of merging based on matching a pat-
tern, use the modified code in Listing 5.12.

LISTING 5.12 JoinLines2.sh

awk '

BEGIN { count = 0 }

{

 printf("%s",$0)

 if(++count % 2 == 0) { print " " }

} columns2.txt

126 • DATA CLEANING POCKET PRIMER

Yet another way to “join” consecutive lines is shown in Listing 5.13, where
the input file and output file refer to files that you can populate with
data. This is another example of an awk command that might be a puzzle
if encountered in a program without a comment. It is doing exactly the
same thing as Listing 5.12, but its purpose is less obvious because of the
more compact syntax.

LISTING 5.13 JoinLines2.sh

inputfile="linepairs.csv"
outputfile="linepairsjoined.csv"
awk ' NR%2 {printf "%s,", $0; next;}1' < $inputfile >
$outputfile

Matching with Metacharacters and Character Sets

If we can match a simple pattern, by now you probably expect that you can
also match a regular expression, just as we did in grep and sed. Listing
5.14 displays the contents of Patterns1.sh, which uses metacharacters
to match the beginning and the end of a line of text in the file columns2.
txt.

LISTING 5.14 Patterns1.sh

awk '

 /^f/ { print $1 }

 /two $/ { print $1 }

' columns2.txt

The output from launching Listing 5.14 is here:

one

five
four

Listing 5.15 displays the contents of RemoveColumns.txt with lines that
contain a different number of columns.

LISTING 5.15 columns3.txt

123 one two

456 three four

one two three four

five 123 six
one two three

four five

DOING EVERYTHING ELSE WITH AWK • 127

Listing 5.16 displays the contents of MatchAlpha1.sh, which matches
text lines that start with alphabetic characters as well as lines that contain
numeric strings in the second column.

LISTING 5.16 MatchAlpha1.sh

awk '

{

 if($0 ~ /^[0-9]/) { print $0 }

 if($0 ~ /^[a-z]+ [0-9]/) { print $0 }

}

' columns3.txt

The output from Listing 5.16 is here:

123 one two

456 three four

five 123 six

Printing Lines Using Conditional Logic

Listing 5.17 displays the contents of products.txt, which contains
three columns of information.

LISTING 5.17 products.txt

MobilePhone 400 new

Tablet 300 new

Tablet 300 used

MobilePhone 200 used

MobilePhone 100 used

The following code snippet prints the lines of text in products.txt
whose second column is greater than 300:

awk '$2 > 300' products.txt

The output of the preceding code snippet is here:

MobilePhone 400 new

The following code snippet prints the lines of text in products.txt
whose product is “new”:

awk '($3 == "new")' products.txt

128 • DATA CLEANING POCKET PRIMER

The output of the preceding code snippet is here:

MobilePhone 400 new

Tablet 300 new

The following code snippet prints the first and third columns of the lines
of text in products.txt whose cost equals 300:

awk ' $2 == 300 { print $1, $3 }' products.txt

The output of the preceding code snippet is here:

Tablet new

Tablet used

The following code snippet prints the first and third columns of the lines
of text in products.txt that start with the string Tablet:

awk '/^Tablet/ { print $1, $3 }' products.txt

The output of the preceding code snippet is here:

Tablet new

Tablet used

Splitting Filenames with awk

Listing 5.18 displays the contents of SplitFilename2.sh, which illus-
trates how to split a filename containing the “.” character in order to
increment the numeric value of one of the components of the filename.
Note that this code only works for a file name with exactly the expected
syntax. It is possible to write more complex code to count the number of
segments, or alternately to just say “change the field right before the .zip”,
which would only require that the filename have a format matching the
final two sections (<anystructure>.number.zip).

LISTING 5.18 SplitFilename2.sh

echo "05.20.144q.az.1.zip" | awk -F"." '

{

 f5=$5 + 1

 printf("%s.%s.%s.%s.%s.%s",$1,$2,$3,$4,f5,$6)

}'

The output from Listing 5.18 is here:

05.20.144q.az.2.zip

DOING EVERYTHING ELSE WITH AWK • 129

Working with Postfix Arithmetic Operators

Listing 5.19 displays the contents of mixednumbers.txt that contain postfix
operators, which means numbers where the negative (and/or positive) sign
appears at the end of a column value instead of at the beginning of the number.

LISTING 5.19 mixednumbers.txt

324.000-|10|983.000-
453.000-|30|298.000-
783.000-|20|347.000-

Listing 5.20 displays the contents of AddSubtract1.sh, which illustrates
how to add the rows of numbers in Listing 5.19.

LISTING 5.20 AddSubtract1.sh

myFile="mixednumbers.txt"

awk -F"|" '

BEGIN { line = 0; total = 0 }

{

 split($1, arr, "-")

 f1 = arr[1]

 if($1 ~ /-/) { f1 = -f1 }

 line += f1

 split($2, arr, "-")

 f2 = arr[1]

 if($2 ~ /-/) { f2 = -f2 }

 line += f2

 split($3, arr, "-")

 f3 = arr[1]

 if($3 ~ /-/) { f3 = -f3 }

 line += f3

 printf("f1: %d f2: %d f3: %d line: %d\n",f1,f2,f3, line)

 total += line

 line = 0

}

END { print "Total: ",total }

' $myfile

The output from Listing 5.20 is here. See if you can work out what the
code is doing before reading the explanation that follows:

f1: -324 f2: 10 f3: -983 line: -1297
f1: -453 f2: 30 f3: -298 line: -721
f1: -783 f2: 20 f3: -347 line: -1110
Total: -3128

130 • DATA CLEANING POCKET PRIMER

The code assumes we know the format of the file. For each field in a
given record, the split function returns a vector of length two, where
the first position = number, the second position either an empty value or
a dash, after which the first position number is “captured” into a variable.
The if statement just sees if the original field has a dash in it. If the field
has a dash, then the numeric variable is made negative, otherwise it is left
alone. Then it adds the line up.

Numeric Functions in awk

The int(x) function returns the integer portion of a number. If the num-
ber is not already an integer, it falls between two integers. Of the two
possible integers, the function will return the one closest to zero. This is
different from a rounding function, which chooses the closer integer.

For example, int(3) is 3, int(3.9) is 3, int(-3.9) is -3, and int(-3) is
-3 as well. An example of the int(x) function in an awk command is here:

awk 'BEGIN {

 print int(3.534);

 print int(4);

 print int(-5.223);

 print int(-5);

}'

The output is here:

3

4

-5

-5

The exp(x) function gives you the exponential of x, or reports an error if x
is out of range. The range of values x can have depends on your machine’s
floating point representation.

awk 'BEGIN{

 print exp(123434346);

 print exp(0);

 print exp(-12);

}'

The output is here:

inf

1

6.14421e-06

DOING EVERYTHING ELSE WITH AWK • 131

The log(x) function gives you the natural logarithm of x, if x is posi-
tive; otherwise, it reports an error (inf means infinity and nan in output
means “not a number”).

awk 'BEGIN{

 print log(12);

 print log(0);

 print log(1);

 print log(-1);

}'

The output is here:

2.48491
-inf

0

nan

The sin(x) function gives you the sine of x and cos(x) gives you the
cosine of x, with x in radians:

awk 'BEGIN {

 print cos(90);

 print cos(45);

}'

The output is here:

-0.448074
0.525322

The rand() function gives you a random number. The values of rand()
are uniformly distributed between 0 and 1: the value is never 0 and never 1.

Often you want random integers instead. Here is a user-defined function
you can use to obtain a random, nonnegative integer less than n:

function randint(n) {

 return int(n * rand())

}

The product produces a random real number greater than 0 and less than
n. We then make it an integer (using int) between 0 and n - 1.

Here is an example where a similar function is used to produce random
integers between 1 and n:

awk '

Function to roll a simulated die.

132 • DATA CLEANING POCKET PRIMER

function roll(n) { return 1 + int(rand() * n) }

Roll 3 six-sided dice and print total number of points.

{

 printf("%d points\n", roll(6)+roll(6)+roll(6))

}'

Note that rand starts generating numbers from the same point (or “seed”)
each time awk is invoked. Hence, a program will produce the same results
each time it is launched. If you want a program to do different things each
time it is used, you must change the seed to a value that will be different
in each run.

Use the srand(x) function to set the starting point, or seed, for generat-
ing random numbers to the value x. Each seed value leads to a particular
sequence of “random” numbers. Thus, if you set the seed to the same
value a second time, you will get the same sequence of “random” numbers
again. If you omit the argument x, as in srand(), then the current date
and time of day are used for a seed. This is how to obtain random numbers
that are truly unpredictable. The return value of srand()is the previous
seed. This makes it easy to keep track of the seeds for use in consistently
reproducing sequences of random numbers.

The time() function (not in all versions of awk) returns the current time
in seconds since January 1, 1970. The function ctime (not in all versions
of awk) takes a numeric argument in seconds and returns a string repre-
senting the corresponding date, suitable for printing or further processing.

The sqrt(x) function gives you the positive square root of x. It reports
an error if x is negative. Thus, sqrt(4) is 2.

awk 'BEGIN{

 print sqrt(16);

 print sqrt(0);

 print sqrt(-12);

}'

The output is here:

4

0

nan

One-Line awk Commands

The code snippets in this section reference the text file short1.txt,
which you can populate with any data of your choice.

DOING EVERYTHING ELSE WITH AWK • 133

The following code snippet prints each line preceded by the number of
fields in each line:

awk '{print NF ":" $0}' short1.txt

Print the right-most field in each line:

awk '{print $NF}' short1.txt

Print the lines that contain more than 2 fields:

awk '{if(NF > 2) print }' short1.txt

Print the value of the right-most field if the current line contains more
than 2 fields:

awk '{if(NF > 2) print $NF }' short1.txt

Remove leading and trailing whitespaces:

echo " a b c " | awk '{gsub(/^[\t]+|[\t]+$/,"");print}'

Print the first and third fields in reverse order for the lines that contain
at least 3 fields:

awk '{if(NF > 2) print $3, $1}' short1.txt

Print the lines that contain the string one:

awk '{if(/one/) print }' *txt

As you can see from the preceding code snippets, it’s easy to extract infor-
mation or subsets of rows and columns from text files using simple condi-
tional logic and built-in variables in the awk command.

Useful Short awk Scripts

This section contains a set of short awk -based scripts for performing vari-
ous operations. Some of these scripts can also be used in other shell scripts
to perform more complex operations. Listing 5.21 displays the contents of
the file data.txt, which is used in various code samples in this section.

LISTING 5.21 data.txt

this is line one that contains more than 40 characters

this is line two

this is line three that also contains more than 40 characters

four

134 • DATA CLEANING POCKET PRIMER

this is line six and the preceding line is empty

line eight and the preceding line is also empty

The following code snippet prints every line that is longer than 40 characters:

awk 'length($0) > 40' data.txt

Now print the length of the longest line in data.txt:

awk '{ if (x < length()) x = length() }

END { print "maximum line length is " x }' < data.txt

The input is processed by the expand utility to change tabs into spaces, so
the widths compared are actually the right-margin columns.

Print every line that has at least one field:

awk 'NF > 0' data.txt

The preceding code snippet illustrates an easy way to delete blank lines
from a file (or rather, to create a new file similar to the old file but from
which the blank lines have been removed).

Print seven random numbers from 0 to 100, inclusive:

awk 'BEGIN { for (i = 1; i <= 7; i++)
print int(101 * rand()) }'

Count the lines in a file:

awk 'END { print NR }' < data.txt

Print the even-numbered lines in the data file:

awk 'NR % 2 == 0' data.txt

If you use the expression 'NR % 2 == 1' in the previous code snippet,
the program would print the odd-numbered lines.

Insert a duplicate of every line in a text file:

awk '{print $0, '\n', $0}' < data.txt

Insert a duplicate of every line in a text file and also remove blank lines:

awk '{print $0, "\n", $0}' < data.txt | awk 'NF > 0'

Insert a blank line after every line in a text file:

awk '{print $0, "\n"}' < data.txt

DOING EVERYTHING ELSE WITH AWK • 135

Printing the Words in a Text String in awk

Listing 5.22 displays the contents of Fields2.sh, which illustrates how
to print the words in a text string using the awk command.

LISTING 5.22 Fields2.sh

echo "a b c d e"| awk '

{

 for(i=1; i<=NF; i++) {

 print "Field ",i,":",$i

 }

}

'

The output from Listing 5.22 is here:

Field 1 : a

Field 2 : b

Field 3 : c

Field 4 : d

Field 5 : e

Count Occurrences of a String in Specific Rows

Listing 5.23 and Listing 5.24 display the contents data1.csv and
data2.csv, respectively, and Listing 5.25 displays the contents of
checkrows.sh, which illustrates how to count the number of occur-
rences of the string “past” in column 3 in rows 2, 5, and 7.

LISTING 5.23 data1.csv

in,the,past,or,the,present

for,the,past,or,the,present

in,the,past,or,the,present

for,the,paste,or,the,future

in,the,past,or,the,present

completely,unrelated,line1

in,the,past,or,the,present

completely,unrelated,line2

LISTING 5.24 data2.csv

in,the,past,or,the,present

completely,unrelated,line1

for,the,past,or,the,present

completely,unrelated,line2

for,the,paste,or,the,future

in,the,past,or,the,present

136 • DATA CLEANING POCKET PRIMER

in,the,past,or,the,present

completely,unrelated,line3

LISTING 5.25 checkrows.sh

files="`ls data*.csv| tr '\n' ' '`"
echo "List of files: $files"
awk -F"," '

(FNR==2 || FNR==5 || FNR==7) {
 if ($3 ~ "past") { count++ }

}

END {

 printf "past: matched %d times (INEXACT) ", count

 printf "in field 3 in lines 2/5/7\n"
}' data*.csv

Listing 5.25 looks for occurrences in the string past in columns 2, 5, and
7 because of the following code snippet:

(FNR==2 || FNR==5 || FNR==7) {
 if ($3 ~ "past") { count++ }

}

If a match occurs, then the value of count is incremented. The END block
reports the number of times that the string past was found in columns
2, 5, and 7. Note that strings such as paste and pasted will match the
string past. The output from Listing 5.25 is here:

List of files: data1.csv data2.csv
past: matched 5 times (INEXACT) in field 3 in lines 2/5/7

The shell script checkrows2.sh replaces the term $3 ~ "past" with
the term $3 == "past" in checkrows.sh in order to check for exact
matches, which produces the following output:

List of files: data1.csv data2.csv
past: matched 4 times (EXACT) in field 3 in lines 2/5/7

Printing a String in a Fixed Number of Columns

Listing 5.26 displays the contents of FixedFieldCount1.sh, which
illustrates how to print the words in a text string using the awk command.

LISTING 5.26 FixedFieldCount1.sh

echo "aa bb cc dd ee ff gg hh"| awk '
BEGIN { colCount = 3 }

{

 for(i=1; i<=NF; i++) {

DOING EVERYTHING ELSE WITH AWK • 137

 printf("%s ", $i)

 if(i % colCount == 0) {

 print " "

 }

 }

}

'

The output from Listing 5.26 is here:

aa bb cc

dd ee ff
gg hh

Printing a Dataset in a Fixed Number of Columns

Listing 5.27 displays the contents of VariableColumns.txt with lines
of text that contain a different number of columns.

LISTING 5.27 VariableColumns.txt

this is line one

this is line number one

this is the third and final line

Listing 5.28 displays the contents of Fields3.sh, which illustrates how
to print the words in a text string using the awk command.

LISTING 5.28 Fields3.sh

awk '{printf("%s ", $0)}' | awk '

BEGIN { columnCount = 3 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0)

 print " "

 }

}

' VariableColumns.txt

The output from Listing 5.28 is here:

this is line

one this is

line number one

this is the

third and final
line

138 • DATA CLEANING POCKET PRIMER

Aligning Columns in Datasets

If you have read the preceding two examples, the code sample in this sec-
tion is easy to understand: you will see how to realign columns of data that
are correct in terms of their content, but have been placed in different
rows (and therefore are misaligned). Listing 5.29 displays the contents of
mixed-data.csv with misaligned data values. In addition, the first line
and final line in Listing 5.28 are empty lines, which will be removed by
the shell script in this section.

LISTING 5.29 mixed-data.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,

Dave, Jones, 3000, FL, John, Jones,
4000, CA,

Dave, Jones, 5000, NY, Mike,
Jones, 6000, NY, Tony, Jones, 7000, WA

Listing 5.30 displays the contents of mixed-data.sh, which illustrates
how to realign the dataset in Listing 5.29.

LISTING 5.30 mixed-data.sh

#---

1) remove blank lines
2) remove line feeds
3) print a LF after every fourth field
4) remove trailing ',' from each row
#---

inputfile="mixed-data.csv"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}' | awk '
BEGIN { columnCount = 4 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0) { print "" }

 }

}' > temp-columns
4) remove trailing ',' from output:
cat temp-columns | sed 's/, $//' | sed 's/ $//' > $outputfile

Listing 5.30 starts with a grep command that removes blank lines, fol-
lowed by an awk command that prints the rows of the dataset as a single
line of text. The second awk command initializes the columnCount var-
iable with the value 4 in the BEGIN block, followed by a for loop that
iterates through the input fields. After four fields are printed on the same

DOING EVERYTHING ELSE WITH AWK • 139

output line, a linefeed is printed, which has the effect of realigning the
input dataset as an output dataset consisting of rows that have four fields.
The output from Listing 5.30 is here:

Sara, Jones, 1000, CA

Sally, Smith, 2000, IL

Dave, Jones, 3000, FL
John, Jones, 4000, CA

Dave, Jones, 5000, NY
Mike, Jones, 6000, NY
Tony, Jones, 7000, WA

Aligning Columns and Multiple Rows in Datasets

The preceding section showed you how to realign a dataset so that each
row contains the same number of columns and also represents a single
data record. The code sample in this section illustrates how to realign col-
umns of data that are correct in terms of their content, and also place two
records in each line of the new dataset. Listing 5.31 displays the contents
of mixed-data2.csv with misaligned data values, followed by Listing
5.32 that displays the contents of aligned-data2.csv with the correctly
formatted dataset.

LISTING 5.31 mixed-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,

Dave, Jones, 3000, FL, John, Jones,
4000, CA,

Dave, Jones, 5000, NY, Mike,
Jones, 6000, NY, Tony, Jones, 7000, WA

LISTING 5.32 aligned-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL

Dave, Jones, 3000, FL, John, Jones, 4000, CA
Dave, Jones, 5000, NY, Mike, Jones, 6000, NY
Tony, Jones, 7000, WA

Listing 5.33 displays the contents of mixed-data2.sh, which illustrates
how to realign the dataset in Listing 5.31.

LISTING 5.33 mixed-data2.sh

#---

1) remove blank lines
2) remove line feeds
3) print a LF after every 8 fields

140 • DATA CLEANING POCKET PRIMER

4) remove trailing ',' from each row
#---

inputfile="mixed-data2.txt"
outputfile="aligned-data2.txt"
grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}' | awk '
BEGIN { columnCount = 4; rowCount = 2; currRow = 0 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0) { ++currRow }

 if(currRow > 0 && currRow % rowCount == 0) {currRow = 0;
print ""}

 }

}' > temp-columns
4) remove trailing ',' from output:
cat temp-columns | sed 's/, $//' | sed 's/ $//' > $outputfile

Listing 5.33 is very similar to Listing 5.30. The key idea is to print
a linefeed character after a pair of “normal” records have been pro-
cessed, which is implemented via the code that is shown in bold in
Listing 5.33.

Now you can generalize Listing 5.33 very easily by changing the initial
value of the rowCount variable to any other positive integer, and the code
will work correctly without any further modification. For example, if you
initialize rowCount to the value 5, then every row in the new dataset
(with the possible exception of the final output row) will contain 5 “nor-
mal” data records.

Removing a Column from a Text File

Listing 5.34 displays the contents of VariableColumns.txt with lines
of text that contain a different number of columns.

LISTING 5.34 VariableColumns.txt

this is line one

this is line number one

this is the third and final line

Listing 5.35 displays the contents of RemoveColumn.sh that removes the
first column from a text file.

LISTING 5.35 RemoveColumn.sh

awk '{ for (i=2; i<=NF; i++) printf "%s ", $i; printf "\n"; }'

products.txt

DOING EVERYTHING ELSE WITH AWK • 141

The loop is between 2 and NF, which iterates over all the fields except for
the first field. In addition, printf explicitly adds newlines. The output of
the preceding code snippet is here:

400 new

300 new

300 used

200 used

100 used

Subsets of Columns of Even Rows in Datasets

Listing 5.35 showed you how to align the rows of a dataset, and the code
sample in this section illustrates how to extract a subset of the existing
columns and a subset of the rows. Listing 5.36 displays the contents of
sub-rows-cols.txt of the desired dataset that contains two columns
from every even row of the file aligned-data.txt.

LISTING 5.36 sub-rows-cols.txt

Sara, 1000

Dave, 3000
Dave, 5000
Tony, 7000

Listing 5.37 displays the contents of sub-rows-cols.sh, which illus-
trates how to generate the dataset in Listing 5.36. Most of the code is the
same as Listing 5.33, with the new code shown in bold.

LISTING 5.37 sub-rows-cols.sh

#---

1) remove blank lines
2) remove line feeds
3) print a LF after every fourth field
4) remove trailing ',' from each row
#---

inputfile="mixed-data.txt"
grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}' | awk '
BEGIN { columnCount = 4 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0) { print "" }

 }

}' > temp-columns
4) remove trailing ',' from output:
cat temp-columns | sed 's/, $//' | sed 's/$//' > temp-columns2

142 • DATA CLEANING POCKET PRIMER

cat temp-columns2 | awk '

 BEGIN { rowCount = 2; currRow = 0 }

 {

 if(currRow % rowCount == 0) { print $1, $3 }

 ++currRow

 }' > temp-columns3

 cat temp-columns3 | sed 's/,$//' | sed 's/ $//' >

$outputfile

Listing 5.37 contains a new block of code that redirects the output of step
#4 to a temporary file temp-columns2 whose contents are processed by
another awk command in the last section of Listing 5.37. Notice that the
awk command contains a BEGIN block that initializes the variables row-
Count and currRow with the values 2 and 0, respectively.

The main block prints columns 1 and 3 of the current line if the current
row number is even, and then the value of currRow is incremented. The
output of this awk command is redirected to yet another temporary file
that is the input to the final code snippet, which uses the cat command
and two occurrences of the sed command in order to remove a trailing “,”
and a trailing space, as shown here:

cat temp-columns3 | sed 's/,$//' | sed 's/ $//' > $outputfile

Keep in mind that there are other ways to perform the functionality in
Listing 5.37, and the main purpose is to show you different techniques for
combining various bash commands.

Counting Word Frequency in Datasets

Listing 5.38 displays the contents of WordCounts1.sh, which illustrates
how to count the frequency of words in a file.

LISTING 5.38 WordCounts1.sh

awk '

Print list of word frequencies

{

 for (i = 1; i <= NF; i++)

 freq[$i]++

}

END {

 for (word in freq)

 printf "%s\t%d\n", word, freq[word]

}

' columns2.txt

Listing 5.38 contains a block of code that processes the lines in col-
umns2.txt. Each time that a word (of a line) is encountered, the code

DOING EVERYTHING ELSE WITH AWK • 143

increments the number of occurrences of that word in the hash table
freq. The END block contains a for loop that displays the number of
occurrences of each word in columns2.txt.

The output from Listing 5.38 is here:

two 3

one 3

three 3

six 1

four 3

five 2

Listing 5.39 displays the contents of WordCounts2.sh, which performs a
case insensitive word count.

LISTING 5.39 WordCounts2.sh

awk '

{

 # convert everything to lower case
 $0 = tolower($0)

 # remove punctuation
 #gsub(/[^[:alnum:]_[:blank:]]/, "", $0)

 for(i=1; i<=NF; i++) {

 freq[$i]++

 }

}

END {

 for(word in freq) {

 printf "%s\t%d\n", word, freq[word]

 }

}

' columns4.txt

Listing 5.39 is almost identical to Listing 5.38, with the addition of the fol-
lowing code snippet that converts the text in each input line to lowercase
letters, as shown here:

$0 = tolower($0)

Listing 5.40 displays the contents of columns4.txt.

LISTING 5.40 columns4.txt

123 ONE TWO
456 three four

ONE TWO THREE FOUR
five 123 six

144 • DATA CLEANING POCKET PRIMER

one two three

four five

The output from launching Listing 5.39 with columns4.txt is here:

456 1

two 3

one 3

three 3

six 1

123 2

four 3

five 2

Displaying Only “Pure” Words in a Dataset

For simplicity, let’s work with a text string and that way we can see
the intermediate results as we work toward the solution. This exam-
ple will be familiar from prior chapters, but now we see how awk
does it.

Listing 5.41 displays the contents of onlywords.sh, which contains
three awk commands for displaying the words, integers, and alphanu-
meric strings, respectively, in a text string.

LISTING 5.41 onlywords.sh

x="ghi abc Ghi 123 #def5 123z"

echo "Only words:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

 if($0 ~ /^[a-zA-Z]+$/) { print $0 }

}

' | sort | uniq

echo

echo "Only integers:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

 if($0 ~ /^[0-9]+$/) { print $0 }

}

' | sort | uniq

echo

echo "Only alphanumeric words:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

 if($0 ~ /^[0-9a-zA-Z]+$/) { print $0 }

}

' | sort | uniq

echo

DOING EVERYTHING ELSE WITH AWK • 145

Listing 5.41 starts by initializing the variable x:

x="ghi abc Ghi 123 #def5 123z"

The next step is to split x into words:

echo $x |tr -s ' ' '\n'

The output is here:

ghi

abc

Ghi

123

#def5

123z

The third step is to invoke awk and check for words that match the regular
expression ^[a-zA-Z]+, which matches any string consisting of one or
more uppercase and/or lowercase letters (and nothing else):

if($0 ~ /^[a-zA-Z]+$/) { print $0 }

The output is here:

ghi

abc

Ghi

Finally, if you also want to sort the output and print only the unique
words, redirect the output from the awk command to the sort command
and the uniq command.

The second awk command uses the regular expression ^[0-9]+ to check
for integers and the third awk command uses the regular expression
^[0-9a-zA-Z]+ to check for alphanumeric words. The output from
launching Listing 5.37 is here:

Only words:

Ghi

abc

ghi

Only integers:

123

Only alphanumeric words:

123

146 • DATA CLEANING POCKET PRIMER

123z

Ghi

abc

ghi

Now you can replace the variable x with a dataset in order to retrieve only
alphabetic strings from that dataset.

Working with Multiline Records in awk

Listing 5.42 displays the contents of employee.txt and Listing 5.43 dis-
plays the contents of Employees.sh, which illustrates how to concate-
nate text lines in a file.

LISTING 5.42 employees.txt

Name: Jane Edwards

EmpId: 12345

Address: 123 Main Street Chicago Illinois

Name: John Smith

EmpId: 23456

Address: 432 Lombard Avenue SF California

LISTING 5.43 employees.sh

inputfile="employees.txt"
outputfile="employees2.txt"
awk '

{

 if($0 ~ /^Name:/) {

 x = substr($0,8) ","
 next

 }

 if($0 ~ /^Empid:/) {

 #skip the Empid data row

 #x = x substr($0,7) ","
 next

 }

 if($0 ~ /^Address:/) {

 x = x substr($0,9)

 print x

 }

}

' < $inputfile > $outputfile

The output from launching the code in Listing 5.43 is here:

Jane Edwards, 123 Main Street Chicago Illinois

John Smith, 432 Lombard Avenue SF California

DOING EVERYTHING ELSE WITH AWK • 147

Now that you have seen a plethora of awk code snippets and shell scripts
containing the awk command that illustrate various types of tasks that you
can perform on files and datasets, you are ready for some uses cases. The
next section (which is the first use case) shows you how to replace multi-
ple field delimiters with a single delimiter, and the second use case shows
you how to manipulate date strings.

A Simple Use Case

The code sample in this section shows you how to use the awk command
in order to split the comma-separated fields in the rows of a dataset,
where fields can contain nested quotes of arbitrary depth.

Listing 5.44 displays the contents of the file quotes3.csv, which con-
tains a “,” delimiter and multiple quoted fields.

LISTING 5.44 quotes3.csv

field5,field4,field3,"field2,foo,bar",field1,field6,field7,"fieldZ"
fname1,"fname2,other,stuff",fname3,"fname4,foo,bar",fname5
"lname1,a,b","lname2,c,d","lname3,e,f","lname4,foo,bar",lname5

Listing 5.45 displays the contents of the file delim1.sh, which illustrates
how to replace the delimiters in delim1.csv with a “,” character.

LISTING 5.45 delim1.sh

#inputfile="quotes1.csv"
#inputfile="quotes2.csv"
inputfile="quotes3.csv"
grep -v "^$" $inputfile | awk '
{

 print "LINE #" NR ": " $0

 printf ("-------------------------\n")

 for (i = 0; ++i <= NF;)

 printf "field #%d : %s\n", i, $i
 printf ("\n")

}' FPAT='([^,]+)|(“[^”]+”)' < $inputfile

The output from launching the shell script in Listing 5.44 is here:

LINE #1:

field5,field4,field3,"field2,foo,bar",field1,field6,field7,"fieldZ"

field #1 : field5
field #2 : field4
field #3 : field3
field #4 : "field2,foo,bar"

148 • DATA CLEANING POCKET PRIMER

field #5 : field1
field #6 : field6
field #7 : field7
field #8 : "fieldZ"
LINE #2: fname1,"fname2,other,stuff",fname3,"fname4,foo,bar",
fname5

field #1 : fname1
field #2 : "fname2,other,stuff"
field #3 : fname3
field #4 : "fname4,foo,bar"
field #5 : fname5
LINE #3: "lname1,a,b","lname2,c,d","lname3,e,f","lname4,foo,

bar",lname5

field #1 : "lname1,a,b"
field #2 : "lname2,c,d"
field #3 : "lname3,e,f"
field #4 : "lname4,foo,bar"
field #5 : lname5
LINE #4: "Outer1 "Inner "Inner "Inner C" B" A"

Outer1","XYZ1,c,d","XYZ2lname3,e,f"

field #1 : "Outer1 "Inner "Inner "Inner C" B" A" Outer1"
field #2 : "XYZ1,c,d"
field #3 : "XYZ2lname3,e,f"
LINE #5:

As you can see, the task in this section is very easily solved via the awk
command.

Another Use Case

The code sample in this section shows you how to use the awk command
in order to reformat the date field in a dataset and change the order of
the fields in the new dataset. For example, given the following input line
in the original dataset:

Jane,Smith,20140805234658

The reformatted line in the output dataset has this format:

2014-08-05 23:46:58,Jane,Smith

Listing 5.46 displays the contents of the file dates2.csv, which contains
a “,” delimiter and three fields.

DOING EVERYTHING ELSE WITH AWK • 149

LISTING 5.46 dates2.csv

Jane,Smith,20140805234658
Jack,Jones,20170805234652
Dave,Stone,20160805234655
John,Smith,20130805234646
Jean,Davis,20140805234649
Thad,Smith,20150805234637
Jack,Pruit,20160805234638

Listing 5.47 displays the contents of string2date2.sh, which converts
the date field to a new format and shifts the new date to the first field.

LISTING 5.47 string2date2.sh

inputfile="dates2.csv"
outputfile="formatteddates2.csv"
rm -f $outputfile; touch $outputfile
for line in `cat $inputfile`
do

 fname=`echo $line |cut -d"," -f1`
 lname=`echo $line |cut -d"," -f2`
 date1=`echo $line |cut -d"," -f3`
 # convert to new date format
 newdate=`echo $date1 | awk '{ print
substr($0,1,4)"-"substr($0,5,2)"-"substr($0,7,2)"
"substr($0,9,2)":"substr($0,11,2)":"substr($0,13,2)}'`
 # append newly formatted row to output file
 echo "${newdate},${fname},${lname}" >> $outputfile
done

The contents of the new dataset is here:

2014-08-05 23:46:58,Jane,Smith
2017-08-05 23:46:52,Jack,Jones
2016-08-05 23:46:55,Dave,Stone
2013-08-05 23:46:46,John,Smith
2014-08-05 23:46:49,Jean,Davis
2015-08-05 23:46:37,Thad,Smith
2016-08-05 23:46:38,Jack,Pruit

Summary

This chapter introduced the awk command, which is essentially an entire
programming language packaged into a single Unix command.

We explored some of its built-in variables as well as conditional logic,
while loops, and for loops in awk in order to manipulate the rows and

150 • DATA CLEANING POCKET PRIMER

columns in datasets. You then saw how to delete lines and merge lines
in datasets, and also how to print the contents of a file as a single line of
text. Next you learned how to use meta characters and character sets in
awk commands. You learned how to perform numeric calculations (such
as addition, subtraction, multiplication, and division) in files containing
numeric data, and also some numeric functions that are available in awk.

In addition, you saw how to align columns in a dataset, how to delete col-
umns, how to select a subset of columns from a dataset, and how to work
with multiline records in datasets. Finally, you saw a couple of simple use
cases involving nested quotes and date formats in a structured dataset.

At this point you have all the tools necessary to do quite sophisticated
data cleansing and processing, and it is strongly encouraged that you try
to apply them on some task or problem of interest. The final step of the
learning process is doing something real.

“I saw something similar once, I wonder if there is a way to . . .” or the
even more common “how do I do XXX in language YYY?” You can’t ask
those questions if you don’t have a sense of what is possible.

At this point there is one more thing to say: congratulations! You have
completed a fast-paced yet dense book, and if you are a bash neophyte, the
material will probably keep you busy for many hours. The examples in the
chapters provide a solid foundation, and the Appendix contains additional
examples and use cases to further illustrate how the Unix commands work
together. The combined effect demonstrates that the universe of possibil-
ities is larger than the examples in this book, and ultimately they will spark
ideas in you. Good luck!

OTHER CODE SAMPLES

This appendix contains an assortment of bash scripts that illustrate how
to solve some well-known tasks, such as recursion-based solutions for the
GCD and LCM of two positive integers, as well as awk commands for
processing multiple datasets in order to perform arithmetic calculations.

The shell scripts are grouped corresponding to their respective chapters:
for instance, awk -related bash scripts are listed as part of the section for
Chapter 5. In some cases (such as Chapter 1), N/A is listed when there are
no samples for a chapter. Please keep in mind that there is fairly light cov-
erage (in terms of explanations) for the code samples in this Appendix: the
assumption is that you have read the code samples in the chapters, thereby
enabling you to understand the code without in-depth explanations.

Examples for Chapter 1

N/A

Examples for Chapter 2

The examples in this Appendix for Chapter 2 contains the following shell
scripts for calculating Fibonacci numbers, the GCD and LCM of two pos-
itive integers, and the divisors of a positive integer:

�� Fibonacci.sh
�� gcd.sh
�� lcm.sh
�� Divisors2.sh

A P P E N D I X

152 • DATA CLEANING POCKET PRIMER

Calculating Fibonacci Numbers

Listing A.1 displays the contents of Fibonacci.sh that computes the
Fibonacci value of a positive integer.

LISTING A.1: Fibonacci.sh

#!/bin/sh

LOGFILE="/tmp/a1"

rm -f $LOGFILE 2>/dev/null

fib()
{

 if ["$1" -gt 3]

 then

echo "1 = $1 2 = $2 3 = $3" >> $LOGFILE

 decr1=`expr $2 - 1`

 decr2=`expr $3 - 1`

 decr3=`expr $3 - 2`

echo "d1 = $decr1 d2 = $decr2 d3 = $decr3" >> $LOGFILE

 fib1=`fib $2 $3 $decr2`
 fib2=`fib $3 $decr2 $decr3`
 fib=`expr $fib1 + $fib2`
 echo $fib
 else

 if ["$1" -eq 3]

 then

 echo 2

 else

 echo 1

 fi
 fi
}

echo "Enter a number: "

read num

APPENDIX: OTHER CODE SAMPLES • 153

add code to ensure it's a positive integer

if ["$num" -lt 3]

then

 echo "fibonacci $num = 1"
else

 decr1=`expr $num - 1`

 decr2=`expr $num - 2`

 echo "fibonacci $num = `fib $num $decr1 $decr2`"
fi

In case you don't already know, the Fibonacci sequence is defined as
follows:

F(1) = 1; F(2) = 2; and F(n) = F(n-1) + F(n-2) for n >= 2.

Listing A.1 looks complicated, but in a sense it "extends" the technique
shown in Listing 2.10 in Chapter 2. In particular, the code for calculating
factorial values involves decrementing one variable, whereas calculating
Fibonacci numbers involves decrementing two variables (which are called
decr1 and decr2 in Listing A.1) in order to make recursive invocations
of the fib() function.

Calculating the GCD of Two Positive Integers

Listing A.2 displays the contents of the shell script gcd.sh that computes
the greatest common divisor of two positive integers.

LISTING A.2 gcd.sh

#!/bin/sh

function gcd()
{

 if [$1 -lt $2]

 then

 result=`gcd $2 $1`

 echo $result

 else

 remainder=`expr $1 % $2`

154 • DATA CLEANING POCKET PRIMER

 if [$remainder == 0]

 then

 echo $2

 else

 echo `gcd $2 $remainder`

 fi
 fi
}

a="4"

b="20"

result=`gcd $a $b`

echo "GCD of $a and $b = $result"

a="4"

b="22"

result=`gcd $a $b`

echo "GCD of $b and $a = $result"

a="20"

b="3"

result=`gcd $a $b`

echo "GCD of $b and $a = $result"

a="10"

b="10"

result=`gcd $a $b`

echo "GCD of $b and $a = $result"

Listing A.2 is a straightforward implementation of the Euclidean algo-
rithm (check Wikipedia for details) for finding the GCD of two positive
integers. The output from Listing A.2 shows the GCD of 4 and 20, as
shown here:

GCD of 4 and 20 = 4

GCD of 22 and 4 = 2

GCD of 3 and 20 = 1

GCD of 10 and 10 = 10

APPENDIX: OTHER CODE SAMPLES • 155

 Calculating the LCM of Two Positive Integers

Listing A.3 displays the contents of the shell script lcm.sh that computes
the lowest common multiple (LCM) of two positive integers. This script
contains the code in the shell script gcd.sh in order to compute the LCM
of two positive integers.

LISTING A.3: lcm.sh

#!/bin/sh

function gcd()
{

 if [$1 -lt $2]

 then

 result=`gcd $2 $1`

 echo $result

 else

 remainder=`expr $1 % $2`

 if [$remainder == 0]

 then

 echo $2

 else

 result=`gcd $2 $remainder`

 echo $result

 fi
 fi
}

function lcm()
{

 gcd1=`gcd $1 $2`

 lcm1=`expr $1 / $gcd1`

 lcm2=`expr $lcm1 * $2`

 echo $lcm2

}

a="24"

b="10"

156 • DATA CLEANING POCKET PRIMER

result=`lcm $a $b`

echo "The LCM of $a and $b = $result"

a="10"

b="30"

result=`lcm $a $b`

echo "The LCM of $a and $b = $result"

Notice that Listing A.3 contains the gcd() function to compute the GCD
of two positive integers. This function is necessary because the next por-
tion of Listing A.3 contains the lcm() function that invokes the gcd()
function, followed by some multiplication steps in order to calculate the
LCM of two numbers. The output from Listing A.3 displays the LCM of
10 and 24, as shown here:

The LCM of 24 and 10 = 120

The LCM of 10 and 30 = 30

Calculating Prime Divisors

Listing A.4 displays the contents of the shell script Divisors2.sh that
calculates the prime factors of a positive integer.

LISTING A.4: Divisors2.sh

#!/bin/sh

function divisors()
{

 div="2"

 num="$1"

 primes=""

 while (true)
 do

 remainder=`expr $num % $div`

 if [$remainder == 0]

 then

 #echo "divisor: $div"

 primes="${primes} $div"

APPENDIX: OTHER CODE SAMPLES • 157

 num=`expr $num / $div`

 else

 div=`expr $div + 1`
 fi

 if [$num -eq 1]

 then

 break

 fi
 done

 # use 'echo' instead of 'return'

 echo $primes

}

num="12"

primes=`divisors $num`

echo "The prime divisors of $num: $primes"

num="768"

primes=`divisors $num`

echo "The prime divisors of $num: $primes"

num="12345"

primes=`divisors $num`

echo "The prime divisors of $num: $primes"

num="23768"

primes=`divisors $num`

echo "The prime divisors of $num: $primes"

Listing A.4 contains the divisors() function that consists primarily of a
while loop that checks for the divisors of num (which is initialized as the
value of $1). The initial value of div is 2, and each time div divides num,
the value of div is appended to the primes string, and num is replaced by
num/div. If div does not divide num, div is incremented by 1. Note that
the while loop in Listing A.4 terminates when num reaches the value of 1.

158 • DATA CLEANING POCKET PRIMER

The output from Listing A.4 displays the prime divisors of 12, 768, 12345,
and 23768, as shown here:

The prime divisors of 12: 2 2 3

The prime divisors of 768: 2 2 2 2 2 2 2 2 3

The prime divisors of 12345: 3 5 823

The prime divisors of 23768: 2 2 2 2971

The prime factors of 12 and 678 are computed in less than 1 second, but
the calculation of the prime factors of 12345 and 23768 is significantly
slower.

Examples for Chapter 3

The first example in this section illustrates how to determine which zip
files contain SVG documents. The second example in this section shows
you how to check the entries in a log file (with simulated values). The
third code sample shows you how to use the grep command in order to
simulate a relational database consisting of three "tables", each of which is
represented by a dataset.

Listing A.5 displays the contents of myzip.sh that produces two lists of
files: the first list contains the names of the zip files that contain SVG
documents, and the second list contains the names of the zip files that do
not contain SVG documents.

LISTING A.5: myzip.sh

foundlist=""

notfoundlist=""

for f in `ls *zip`

do

 found=`unzip -v $f |grep "svg$"`

 if ["$found" != ""]

 then

 #echo "$f contains SVG documents:"

 #echo "$found"

 foundlist="$f ${foundlist}"

 else

APPENDIX: OTHER CODE SAMPLES • 159

 notfoundlist="$f ${notfoundlist}"

 fi
done

echo "Files containing SVG documents:"

echo $foundlist| tr ' ' '\n'

echo "Files not containing SVG documents:"

echo $notfoundlist |tr ' ' '\n'

Listing A.5 searches ("looks inside") zip files for the hard-coded string
svg. If you want to search for some other string in a set of zip files, then
manually replace this string with that other string. Alternatively, you can
prompt users for a search string so you don't need to make manual modi-
fications to the shell script.

For your convenience, Listing A.6 displays the contents of searchstrings.
sh that illustrates how to enter one or more strings on the command line, in
order to search for those strings in the zip files in the current directory.

LISTING A.6: searchstrings.sh

foundlist=""

notfoundlist=""

if ["$#" == 0]

then

 echo "Usage: $0 <string-list>"

 exit

fi

 zipfiles=`ls *zip 2>/dev/null`

if ["$zipfiles" = ""]
then

 echo "*** No zip files in `pwd` ***"
 exit

fi

for str in "$@"

do

160 • DATA CLEANING POCKET PRIMER

 echo "Checking zip files for $str:"
 for f in `ls *zip`

 do

 found=`unzip -v $f |grep "$str"`

 if ["$found" != ""]

 then

 foundlist="$f ${foundlist}"

 else

 notfoundlist="$f ${notfoundlist}"

 fi
 done

 echo "Files containing $str:"

 echo $foundlist| tr ' ' '\n'

 echo "Files not containing $str:"

 echo $notfoundlist |tr ' ' '\n'

 foundlist=""

 notfoundlist=""

done

Listing A.6 first checks that at least one file is specified on the command
line, and then initializes the zipfiles variable with the list of zip files in the
current directory. If zipfiles is null, an appropriate message is displayed.

The next section of Listing A.6 contains a for loop that processes each
argument that was specified at the command line. For each such argu-
ment, another for loop will check for the names of the zip files that con-
tain that argument. If there is a match, then the variable $foundlist
is updated, otherwise the $notfoundlist variable is updated. When
the inner loop has completed, the names of the matching files and the
non-matching files are displayed, and then the outer loop is executed with
the next command line argument.

Although the preceding explanation might seem complicated, a sample
output from launching Listing A.6 will clarify how the code works:

./searchstrings.sh svg abc

Checking zip files for svg:
Files containing svg:

Files not containing svg:

shell-programming-manuscript.zip

APPENDIX: OTHER CODE SAMPLES • 161

shell-progr-manuscript-0930-2013.zip

shell-progr-manuscript-0207-2015.zip

shell-prog-manuscript.zip

Checking zip files for abc:
Files containing abc:

Files not containing abc:

shell-programming-manuscript.zip

shell-progr-manuscript-0930-2013.zip

shell-progr-manuscript-0207-2015.zip

shell-prog-manuscript.zip

If you want to perform the search for zip files in subdirectories, modify
the loop as shown here:

for f in `find . –print |grep "zip$"`
do

 echo "Searching $f…"

 unzip -v $f |grep "svg$"

done

If you have the Java SDK on your machine, you can also use the jar com-
mand instead of the unzip command, as shown here:

jar tvf $f |grep "svg$"

Listing A.7 displays the contents of skutotals.sh that calculates the
number of units sold for each SKU in skuvalues.txt.

LISTING A.7: skutotals.sh

SKUVALUES="skuvalues.txt"

SKUSOLD="skusold.txt"

for sku in `cat $SKUVALUES`

do

 total=`cat $SKUSOLD |grep $sku | awk '{total += $2} END
{print total}'`

 echo "UNITS SOLD FOR SKU $sku: $total"

done

162 • DATA CLEANING POCKET PRIMER

Listing A.7 contains a for loop that iterates through the rows of the file
skuvalues.txt, and passes those SKU values – one at a time – to a com-
mand that involves the cat, grep, and awk commands. The purpose
of the latter combination of commands is to 1) find the matching lines in
skusold.txt, 2) compute the sum of the values of the numbers in the
second column, and 3) print the subtotal for the current SKU. In essence,
this shell script prints the subtotals for each SKU value.

Launch skutotals.sh and you will see the following output:

UNITS SOLD FOR SKU 4520: 27

UNITS SOLD FOR SKU 5530: 17

UNITS SOLD FOR SKU 6550: 8

UNITS SOLD FOR SKU 7200: 90

UNITS SOLD FOR SKU 8000: 160

We can generalize the previous shell script to take into account different
prices for each SKU. Listing A.8 displays the contents of skuprices.txt.

LISTING A.8: skuprices.txt

4520 3.50

5530 5.00

6550 2.75

7200 6.25

8000 3.50

Listing A.9 displays the contents of skutotals2.sh that extends the
code in Listing A.8 in order to calculate the revenue for each SKU.

LISTING A.9: skutotals2.sh

SKUVALUES="skuvalues.txt"

SKUSOLD="skusold.txt"

SKUPRICES="skuprices.txt"

for sku in `cat $SKUVALUES`

do

 skuprice=`grep $sku $SKUPRICES | cut -d" " -f2`

 subtotal=`cat $SKUSOLD |grep $sku | awk '{total += $2} END
{print total}'`

APPENDIX: OTHER CODE SAMPLES • 163

 total=`echo "$subtotal * $skuprice" |bc`

 echo "AMOUNT SOLD FOR SKU $sku: $total"

done

Listing A.9 contains a slight enhancement: instead of computing the sub-
totals of the number of units for each SKU, the revenue for each SKU is
computed, where the revenue for each item equals the price of the SKU
multiplied by the number of units sold for the given SKU. Launch sku-
totals2.sh and you will see the following output:

AMOUNT SOLD FOR SKU 4520: 94.50

AMOUNT SOLD FOR SKU 5530: 85.00

AMOUNT SOLD FOR SKU 6550: 22.00

AMOUNT SOLD FOR SKU 7200: 562.50

AMOUNT SOLD FOR SKU 8000: 560.00

Listing A.10 displays the contents of skutotals3.sh that calculates the
minimum, maximum, average, and total number of units sold for each
SKU in skuvalues.txt.

LISTING A.10: skutotals3.sh

SKUVALUES="skuvalues.txt"

SKUSOLD="skusold.txt"

TOTALS="totalspersku.txt"

rm -f $TOTALS 2>/dev/null

##############################

#calculate totals for each sku

##############################

for sku in `cat $SKUVALUES`

do

 total=`cat $SKUSOLD |grep $sku | awk '{total += $2} END
{print total}'`

 echo "UNITS SOLD FOR SKU $sku: $total"

 echo "$sku|$total" >> $TOTALS

done

##########################

#calculate max/min/average

##########################

164 • DATA CLEANING POCKET PRIMER

awk -F"|" '

 BEGIN {first = 1;}
 {if(first) { min = max= avg = sum = $2; first=0; next}}
 { if($2 < min) { min = $2 }
 if($2 > max) { max = $2 }
 sum += $2
 }

 END {print "Minimum = ",min

 print "Maximum = ",max

 print "Average = ",avg

 print "Total = ",sum

 }

' $TOTALS

Listing A.10 initializes some variables, followed by a for loop that invokes
an awk command in order to compute subtotals (i.e., number of units
sold) for each SKU value. The next portion of Listing A.10 contains an awk
command that calculates the maximum, minimum, average, and sum for
the SKU units in the files $TOTALS.

Launch the script file in Listing A.10 and you will see the following output:

UNITS SOLD FOR SKU 4520: 27

UNITS SOLD FOR SKU 5530: 17

UNITS SOLD FOR SKU 6550: 8

UNITS SOLD FOR SKU 7200: 90

UNITS SOLD FOR SKU 8000: 160

Minimum = 8

Maximum = 160

Average = 27

Total = 302

 Simulating Relational Data with the grep Command

This section shows you how to combine the grep and cut commands in
order to keep track of a small database of customers, their purchases, and
the details of their purchases that are stored in three text files.

Keep in mind that there are many open source toolkits available that can greatly
facilitate working with relational data and non-relational data. Those toolkits
can be very robust and also minimize the amount of coding that is required.

APPENDIX: OTHER CODE SAMPLES • 165

Moreover, you can use the join command (discussed in Chapter 2) to
perform SQL-like operations on datasets. Nevertheless, the real purpose
of this section is to illustrate some techniques with grep that might be
useful in your own shell scripts.

Listing A.11 displays the contents of the MasterOrders.txt text file.

LISTING A.11: MasterOrders.txt

M10000 C1000 12/15/2012

M11000 C2000 12/15/2012

M12000 C3000 12/15/2012

Listing A.12 displays the contents of the Customers.txt text file.

LISTING A.12: Customers.txt

C1000 John Smith LosAltos California 94002

C2000 Jane Davis MountainView California 94043

C3000 Billy Jones HalfMoonBay California 94040

Listing A.13 displays the contents of the PurchaseOrders.txt text file.

LISTING A.13: PurchaseOrders.txt

C1000,"Radio",54.99,2,"01/22/2013"

C1000,"DVD",15.99,5,"01/25/2013"

C2000,"Laptop",650.00,1,"01/24/2013"

C3000,"CellPhone",150.00,2,"01/28/2013"

Listing A.14 displays the contents of the MasterOrders.sh bash script.

LISTING A.14: MasterOrders.sh

initialize variables for the three main files
MasterOrders="MasterOrders.txt"

CustomerDetails="Customers.txt"

PurchaseOrders="PurchaseOrders.txt"

iterate through the "master table"

for mastCustId in `cat $MasterOrders | cut -d" " -f2`

do

166 • DATA CLEANING POCKET PRIMER

 # get the customer information

 custDetails=`grep $mastCustId $CustomerDetails`

 # get the id from the previous line

 custDetailsId=`echo $custDetails | cut -d" " -f1`

 # get the customer PO from the PO file
 custPO=`grep $custDetailsId $PurchaseOrders`

 # print the details of the customer

 echo "Customer $mastCustId:"

 echo "Customer Details: $custDetails"

 echo "Purchase Orders: $custPO"

 echo "----------------------"

 echo

done

Listing A.14 initializes some variables for orders, details, and pur-
chase-related datasets. The next portion of Listing A.14 contains a for
loop that iterates through the id values in the MasterOrders.txt file
and uses each id to find the corresponding row in the Customers.
txt file as well as the corresponding row in the PurchaseOrders.
txt file. Finally, the bottom of the loop displays the details of the
information that were retrieved from the initial portion of the for
loop. The output from Listing A.14 is here:

Customer C1000:

Customer Details: C1000 John Smith LosAltos California 94002

Purchase Orders: C1000,"Radio",54.99,2,"01/22/2013"

C1000,"DVD",15.99,5,"01/25/2013"

Customer C2000:

Customer Details: C2000 Jane Davis MountainView California

94043

Purchase Orders: C2000,"Laptop",650.00,1,"01/24/2013"

Customer C3000:

Customer Details: C3000 Billy Jones HalfMoonBay California

94040

APPENDIX: OTHER CODE SAMPLES • 167

Purchase Orders: C3000,"CellPhone",150.00,2,"01/28/2013"

Checking Updates in a Logfile

Listing A.15 displays the contents of CheckLogUpdates.sh that illus-
trates how to periodically check the last line in a log file to determine the
status of a system. This shell script simulates the status of a system by
appending a new row that is based on the current timestamp. The shell
script sleeps for a specified number of seconds, and on the third iteration
the script appends a row with an error status in order to simulate an error.
In the case of a shell script that is monitoring a live system, the error code
is obviously generated outside the shell script.

LISTING A.15: CheckLogUpdates.sh

DataFile="mylogfile.txt"
OK="okay"

ERROR="error"

sleeptime="2"

loopcount=0

rm -f $DataFile 2>/dev/null; touch $DataFile
newline="`date` SYSTEM IS OKAY"

echo $newline >> $DataFile

while (true)
do

 loopcount=`expr $loopcount + 1`
 echo "sleeping $sleeptime seconds..."

 sleep $sleeptime

 echo "awake again..."

 lastline=`tail -1 $DataFile`

 if ["$lastline" == ""]

 then

 continue

 fi
 okstatus=`echo $lastline |grep -i $OK`

 badstatus=`echo $lastline |grep -i $ERROR`

 if ["$okstatus" != ""]

 then

168 • DATA CLEANING POCKET PRIMER

 echo "system is normal"

 if [$loopcount –lt 5]
 then

 newline="`date` SYSTEM IS OKAY"

 else

 newline="`date` SYSTEM ERROR"

 fi
 echo $newline >> $DataFile

 elif ["$badstatus" != ""]

 then

 echo "Error in logfile: $lastline"
 break

 fi
done

Listing A.15 initializes some variables and then ensures that the log file
mylogfile.txt is empty. After an initial line is added to this log file, a
while loop sleeps periodically and then examines the contents of the final
line of text in the log file. New text lines are appended to this log file, and
when an error message is detected, the code exits the while loop. A
sample invocation of Listing A.15 is here:

sleeping 2 seconds...

awake again...

system is normal

sleeping 2 seconds...

awake again...

system is normal

sleeping 2 seconds...

awake again...

system is normal

sleeping 2 seconds...

awake again...

system is normal

sleeping 2 seconds...

awake again...

system is normal

sleeping 2 seconds...

awake again...

APPENDIX: OTHER CODE SAMPLES • 169

Error in logfile: Thu Nov 23 18:22:22 PST 2017 SYSTEM ERROR

The contents of the log file are shown here:

Thu Nov 23 18:22:12 PST 2017 SYSTEM IS OKAY

Thu Nov 23 18:22:14 PST 2017 SYSTEM IS OKAY

Thu Nov 23 18:22:16 PST 2017 SYSTEM IS OKAY

Thu Nov 23 18:22:18 PST 2017 SYSTEM IS OKAY

Thu Nov 23 18:22:20 PST 2017 SYSTEM IS OKAY

Thu Nov 23 18:22:22 PST 2017 SYSTEM ERROR

Examples for Chapter 4

N/A

Examples for Chapter 5

This section of the Appendix contains an assortment of bash scripts that
use awk in order to perform various tasks:

1) multiline.sh: convert multi-line records into single-line records
2) sumrows.sh: compute the total of each row in a dataset
3) genetics.sh: an example of the awk 'split' function
4) diagonal.sh: display the main/off-diagonal values and also com-

pute the sum of the main/off-diagonal values
5) calculate column totals from multiple files
6) display main diagonal and off-diagonal values, as well as the

sum of those values
The details of these shell scripts are discussed in the following sections.

Processing Multiline Records

Listing A.16 displays the contents of the dataset multiline.txt and
Listing A.17 displays the contents of the shell script multiline.sh that
combines multiple lines into a single record.

LISTING A.16: multiline.txt

 Mary Smith

999 Appian Way

170 • DATA CLEANING POCKET PRIMER

Roman Town, SF 94234

 Jane Adams

123 Main Street

Chicago, IL 67840

John Jones

321 Pine Road

Anywhere, MN 94949

Note that each record spans multiple lines that can contain whitespaces,
and records are separated by a blank line.

LISTING A.17: multiline.sh

Records are separated by blank lines

awk '

BEGIN { RS = "" ; FS = "\n" }
{

 gsub(/[\t]+$/, "", $1)
 gsub(/[\t]+$/, "", $2)
 gsub(/[\t]+$/, "", $3)

 gsub(/^[\t]+/, "", $1)
 gsub(/^[\t]+/, "", $2)
 gsub(/^[\t]+/, "", $3)

 print $1 ":" $2 ":" $3 ""

 #printf("%s:%s:%s\n",$1,$2,$3)
}

' multiline.txt

Listing A.17 contains a BEGIN block that sets RS ("record separator") as an
empty string and FS ("field separator") as a linefeed. Doing so enables us
to "slurp" multiple lines into the same record, using a blank line as a sep-
arator for different records. The gsub() function removes leading and
trailing whitespaces and tabs for three fields in the datasets. The output
from launching Listing A.17 is here:

Mary Smith:999 Appian Way:Roman Town, SF 94234

Jane Adams:123 Main Street:Chicago, IL 67840

John Jones:321 Pine Road:Anywhere, MN 94949

APPENDIX: OTHER CODE SAMPLES • 171

Adding the Contents of Records

Listing A.18 displays the contents of the dataset numbers.txt and Listing
A.19 displays the contents of the shell script sumrows.sh that combines
and adds the fields in each record.

LISTING A.18: numbers.txt

1 2 3 4 5

6 7 8 9 10

5 5 5 5 5

LISTING A.19: sumrows.sh

awk '{ for(i=1; i<=NF;i++) j+=$i; print j; j=0 }' numbers.txt

Listing A.19 contains a simple invocation of the awk command that con-
tains a for loop that uses the variable j to hold the sum of the values of the
fields in each record; after which the sum is printed and j is re-initialized
to 0. The output from Listing A.19 is here:

15

40

25

Using the split Function in awk

Listing A.20 displays the contents of the dataset genetics.txt (some
rows wrap across more than one line) and Listing A.21 displays the con-
tents of the shell script genetics.sh that uses the split() function in
order to parse the contents of a field in a record.

LISTING A.20: genetics.txt

#extract rows with 'gene' and print rows and 'key' value

xyz3 GTF2GFF chro 55555 44444 key=chr1;Name=chr1
xyz3 GTF2GFF gene 77774 11111

key=XYZ123;NB=standard;Name=extra
xyz3 GTF2GFF exon 71874 12227 Super=NR_55555

xyz3 GTF2GFF exon 72613 12721 Super=NR_55555

xyz3 GTF2GFF exon 83221 14408 Super=NR_55555

xyz3 GTF2GFF gene 84362 29370

key=WASH7P;Note=extra;Name=ALPHA

xyz3 GTF2GFF exon 84362 14829 Super=NR_222222

172 • DATA CLEANING POCKET PRIMER

LISTING A.21: genetics.sh

required output:

#xyz3:77774:XYZ123

#xyz3:84362:WASH7P

awk -F" " '

{

 if($3 == "gene") {
 split($6, triplet, /[;=]/)
 printf("%s:%s:%s\n", $1, $4, triplet[2])
 }

}

' genetics.txt

Listing A.21 matches input lines whose third field equals gene, after
which the array triplet is populated with the components of the sixth field,
using the characters ";" and "=" as delimiters in the sixth field. The output
consists of the first field, the fourth field, and the second element in the
array triplet. The output from launching Listing A.21 is here:

xyz3:77774:XYZ123

xyz3:84362:WASH7P

Scanning Diagonal Elements in Datasets

Listing A.22 displays the contents of the dataset diagonal.txt and
Listing A.23 displays the contents of the shell script diagonal.sh that
displays the elements in the main diagonal and off-diagonal, and also
computes the sum of the elements in the main diagonal and off-diagonal.

LISTING A.22: diagonal.csv

1,1,1,1,1

5,4,3,2,1

8,8,1,8,8

5,4,3,2,1

1,6,6,7,7

LISTING A.23: diagonal.sh

NF is the number of fields in the current record.
NR is the number of the current record/line

APPENDIX: OTHER CODE SAMPLES • 173

(not the number of records in the file).
In the END block (or the last line of the file)
it's the number of lines in the file.
Solution in R: https://gist.github.com/dsparks/3693115

echo "Main diagonal:"

awk -F"," '{ for (i=0; i<=NF; i++) if (NR >= 1 && NR == i)
print $(i) }' diagonal.csv

echo "Off diagonal:"
awk -F"," '{print $(NF+1-NR)}' diagonal.csv

echo "Main diagonal sum:"

awk -F"," '

BEGIN { sum = 0 }

{

 for (i=0; i<=NF; i++) { if (NR >= 1 && NR == i) { sum += $i
} }

}

END { printf ("sum = %s\n",sum) }
' diagonal.csv

echo "Off diagonal sum:"
awk -F"," '

BEGIN { sum = 0 }

{

 for (i=0; i<=NF; i++) { if(NR >= 1 && i+NR == NF+1) { sum +=
$i; } }
}

END { printf ("sum = %s\n",sum) }
' diagonal.csv

Listing A.23 starts with an awk command that contains a loop that matches
"diagonal" elements of the dataset, which is to say the first field of the first
record, the second field of the second record, the third field of the third
record, and so forth. This matching process is handled by the conditional
logic inside the for loop.

The second part of Listing A.23 contains an awk command that prints
the off-diagonal elements of the dataset, using a very simple print
statement.

174 • DATA CLEANING POCKET PRIMER

The third part of Listing A.23 contains an awk command that contains the
same logic as the first awk command, and then calculates the cumulative
sum of the diagonal elements.

The fourth part of Listing A.23 contains an awk command that contains
logic that is similar to the first awk command, with the following variation:

if(NR >= 1 && i+NR == NF+1)
The preceding logic enables us to calculate the cumulative sum of the
off-diagonal elements. The output from launching Listing A.23 is here:

Main diagonal:

1

4

1

2

7

Off diagonal:
1

2

1

4

1

Main diagonal sum:

sum = 15

Off diagonal sum:
sum = 9

Listing A.24, Listing A.25, and Listing A.26 display the contents of the
dataset rain1.csv, rain2.csv, and rain3.csv.txt that are used
in several shell scripts in this section.

LISTING A.24: rain1.csv

1,0.10,53,15

2,0.12,54,16

3,0.19,65,10

4,0.25,86,23

5,0.18,57,17

6,0.23,79,34

7,0.34,66,21

APPENDIX: OTHER CODE SAMPLES • 175

LISTING A.25: rain2.csv

1,0.00,63,24

2,0.02,64,25

3,0.09,75,19

4,0.15,66,28

5,0.08,67,36

6,0.13,79,23

7,0.24,68,25

LISTING A.26: rain3.csv

1,1.00,83,34

2,0.02,84,35

3,1.09,75,19

4,0.15,86,38

5,1.08,87,36

6,0.13,79,33

7,0.24,88,45

Adding Values From Multiple Datasets (1)

Listing A.27 displays the contents of the shell script rainfall1.sh that
adds the numbers in the corresponding fields of several CSV files and
displays the results.

LISTING A.27: rainfall1.sh

=> Calculate COLUMN averages for multiple files

#columns in rain.csv:

#DOW,inches of rain, degrees F, humidity (%)

#files: rain1.csv, rain2.csv, rain3.csv
echo "FILENAMES:"

ls rain?.csv

awk -F',' '

{

 inches+=$2

176 • DATA CLEANING POCKET PRIMER

 degrees+=$3
 humidity+=$4
}

END {

 printf("FILENAME: %s\n", FILENAME)
 printf("inches: %.2f\n", inches/7)
 printf("degrees: %.2f\n", degrees/7)
 printf("humidity: %.2f\n", humidity/7)
}

' rain?.csv

Listing A.27 calculates the sum of the numbers in three columns (i.e.,
inches of rainfall, degrees Fahrenheit, and humidity as a percentage) in
the datasets specified by the expression rain?.csv, which in this par-
ticular example consists of the datasets rain1.csv, rain2.csv, and
rain3.csv. Thus, Listing A.27 can handle multiple datasets (rain1.
csv through rain9.csv). You can generalize this example to handle any
dataset that starts with the string rain and ends with the suffix csv with
the following expression:

rain*.csv

The output from launching Listing A.27 is here:

FILENAMES:

rain1.csv rain2.csv rain3.csv

inches: 0.83

degrees: 217.71

humidity: 79.43

Adding Values From Multiple Datasets (2)

Listing A.28 displays the contents of the shell script rainfall12.sh that
adds the numbers in the corresponding fields of several CSV files and
displays the results.

LISTING A.28: rainfall2.sh

=> Calculate ROW averages for multiple files

#columns in rain.csv:

#DOW,inches of rain, degrees F, humidity (%)

APPENDIX: OTHER CODE SAMPLES • 177

#files: rain1.csv, rain2.csv, rain3.csv

awk -F',' '

{

 mon_rain[FNR]+=$2
 mon_degrees[FNR]+=$3
 mon_humidity[FNR]+=$4
 idx[FNR]++
}

END {

 printf("DAY INCHES DEGREES HUMIDITY\n")

 for(i=1; i<=FNR; i++){
 printf("%3d %-6.2f %-8.2f %-7.2f\n",
 i,mon_rain[i]/idx[i],mon_degrees[i]/idx[i],mon_humidity[i]/

idx[i])
 }

}

' rain?.csv

Listing A.28 is similar to Listing A.27, except that this code sample
uses the value of FNR in order to calculate the average rainfall, degrees
Fahrenheit, and percentage humidity only for Monday. The output from
launching Listing A.28 is here:

DAY INCHES DEGREES HUMIDITY

 1 0.37 66.33 24.33

 2 0.05 67.33 25.33

 3 0.46 71.67 16.00

 4 0.18 79.33 29.67

 5 0.45 70.33 29.67

 6 0.16 79.00 30.00

 7 0.27 74.00 30.33

Listing A.29, Listing A.30, and Listing A.31 display the contents of the
dataset zain1.csv, zain2.csv, and rainz.csv.txt that are used
in an upcoming shell script in this section.

178 • DATA CLEANING POCKET PRIMER

LISTING A.29: zain1.csv

1,0.10,53,15

2,0.12,54,16

3,0.19,65,10

4,0.25,86,23

5,0.18,57,17

6,0.23,79,34

7,0.34,66,21

LISTING A.30: zain2.csv

1,0.00,63,24

2,0.02,64,25

3,0.09,75,19

4,0.15,66,28

5,0.08,67,36

6,0.13,79,23

7,0.24,68,25

LISTING A.31: zain3.csv

1,1.00,83,34

2,0.02,84,35

3,1.09,75,19

4,0.15,86,38

5,1.08,87,36

6,0.13,79,33

7,0.24,88,45

Adding Values From Multiple Datasets (3)

Listing A.32 displays the contents of the shell script rainfall3.sh that
adds the numbers in the corresponding fields of several CSV files and
displays the results.

LISTING A.32: rainfall3.sh

=> Calculate COLUMN averages for multiple files (backtick)

#columns in rain.csv:

#DOW,inches of rain, degrees F, humidity (%)

APPENDIX: OTHER CODE SAMPLES • 179

specify the list of CSV files (supports multiple regexs)
files=`ls rain*csv zain*csv`

echo "FILES: `echo $files`"

awk -F',' '

{

 mon_rain[FNR]+=$2
 mon_degrees[FNR]+=$3
 mon_humidity[FNR]+=$4
 idx[FNR]++
}

END {

 printf("DAY INCHES DEGREES HUMIDITY\n")

 for(i=1; i<=FNR; i++){
 printf("%3d %-6.2f %-8.2f %-7.2f\n",
 i,mon_rain[i]/idx[i],mon_degrees[i]/idx[i],mon_humidity[i]/

idx[i])
 }

}

' `echo $files`

Listing A.32 performs the same calculations as Listing A.28, with the
following variation: the datasets specified by the variable files that is
defined by the regular expression `ls rain*csv zain*csv`. You can
modify this regular expression to include any list of files that need to be
processed. Notice that the final line of code in Listing A.32 uses back-
tick substitution to expand the regular expression in the definition of the
variable files:

' `echo $files`

As yet another variation, you can specify a file – let's call it filelist.
txt - that contains a list of filenames that you want to process, and then
replace the preceding line as follows:

' `cat filelist.txt`

180 • DATA CLEANING POCKET PRIMER

The output from launching Listing A.32 is here:

FILES: rain1.csv rain2.csv rain3.csv zain1.csv zain2.csv

zain3.csv

DAY INCHES DEGREES HUMIDITY

 1 0.37 66.33 24.33

 2 0.05 67.33 25.33

 3 0.46 71.67 16.00

 4 0.18 79.33 29.67

 5 0.45 70.33 29.67

 6 0.16 79.00 30.00

 7 0.27 74.00 30.33

Calculating Combinations of Field Values

Listing A.33 displays the contents of the shell script linear-combo.sh
that computes various linear combinations of the columns in multiple
datasets and displays one combined dataset as the output.

LISTING A.33: linear-combo.sh

=> combinations of columns

awk -F',' '

{

 $2 += $3 * 2 + $4 / 2
 $3 += $4 / 3 + $2 * $2 / 10
 $4 += $2 + $3
 $1 += $2 * 3 - $4 / 10
 printf("%d,%.2f,%.2f,%.2f\n",$1,$2,$3,$4)
}

' rain?.csv

Listing A.33 processes the values of the datasets rain1.csv, rain2.
csv, and rain3.csv whose contents are shown earlier in this section.
The key observation to make is that the sequence of calculations in the cal-
culations in the body of the awk statement involved inter-dependencies.

Specifically, the value of $2 is a linear combination of the values of $3
and $4. Next, the value of $3 is a linear combination of the value of $4
and $2, where the latter is not the original value from the datasets, but

APPENDIX: OTHER CODE SAMPLES • 181

its calculated value. Third, the value of $4 is a linear combination of $2
and of $3, both of which are calculated values and not the values in the
datasets. Finally, the value of $1 is a linear combination of the newly cal-
culated values for $2 and $4.

As you can see, awk provides the flexibility to specify practically any com-
bination of calculations (including non-linear combinations) in a very sim-
ple and sequential fashion. The output of Listing A.33 is here:

194,113.60,1348.50,1477.10

196,116.12,1407.72,1539.84

204,135.19,1895.97,2041.16

187,183.75,3470.07,3676.82

202,122.68,1567.70,1707.38

194,175.23,3160.89,3370.12

207,142.84,2113.33,2277.17

201,138.00,1975.40,2137.40

202,140.52,2046.92,2212.44

201,159.59,2628.23,2806.82

203,146.15,2211.32,2385.47

203,152.08,2391.83,2579.91

199,169.63,2964.10,3156.73

206,148.74,2288.69,2462.43

183,184.00,3479.93,3697.93

182,185.52,3537.43,3757.95

200,160.59,2660.25,2839.84

179,191.15,3752.50,3981.65

178,193.08,3826.99,4056.07

195,174.63,3139.56,3347.19

173,198.74,4052.76,4296.50

Summary

In this appendix, you saw examples of how to use some useful and versa-
tile bash commands. First you saw examples of shell scripts for various
tasks involving recursion, such as computing the GCD (greatest common
divisor) and the LCM (lowest common multiple) of two positive integers,
the Fibonacci value of a positive integer, and also the prime divisors of a
positive integer.

182 • DATA CLEANING POCKET PRIMER

Next you saw a bash script with the grep command, a while loop, and
other constructs that append data to a log file, with logic to determine
when to exit the bash script. In addition, you learned how to use the grep
command to simulate a simple relational database.

In the final portion of this Appendix you learned how to use awk to pro-
cess records that span multiple lines, how to compute column sums and
averages involving multiple datasets, and how to use awk -related func-
tions such as gsub() and split(). Finally, you learned how to dynami-
cally calculate various combinations of columns of numbers from multiple
datasets.

A
abc.sh, 23
AddSubtract1.sh, 129–130
AlignColumns1.sh, 118–119
aligned-data2.csv, 139
aligned-data.txt, 141
array-from-file.sh, 25–26
array-function.sh, 26–27
array-loops1.sh, 27

Arrays, 24–27
array1.sh, 25
awk command

built-in variables control, 116–117
character sets, 126–127
code sample, 147–149
count occurrences, 135–136
Fields2.sh, 135
Fields3.sh, 137
FixedFieldCount1.sh,

136–137
for loop in, 120–121
Loop.sh in, 120–121
metacharacters, 126–127
multiline records in, 146–147
numeric functions in, 130–132
one-line, 132–133
onlywords.sh, 144–145
printing lines using conditional logic,

127–128
printing the words in, 135
short, 133–134
split() function, 171–172
splitting filenames with, 128
string2date2.sh, 149
test. txt as, 118
VariableColumns.txt, 137

I N D E X

while loop statement, 119–120
working, 117–118

B
Backslash character, 13, 81
“Back tick”, 21–22
bash commands, 4, 55, 104
Bash pipe symbol, 16, 49
bash shell, 3
BEGIN{} block, 117–118, 170
Bourne shell, 2–3

command substitution of, 21–22
Bourne, Stephen R., 2
break statement, for loop in awk

command, 121
bunzip2 command, 54–55
bz files, 55

C
cat command, 8, 36, 46

and pipe symbol, 10–11
cd command, 5
Character

backslash, 13, 81
classes, 32–33, 73, 102–103
control, 103–104
dash, 13
intermediate, 72
sets, 126–127
slashes, 97, 100

CheckLogUpdates.sh, 167–168
checkNewUser() function, 60
checkrows.sh, 136
checkuser.sh, 59, 60
chmod command, 12, 23
cmp command, 45

184 • DATA CLEANING POCKET PRIMER

finding empty lines in, 79–80
in fixed number of columns, 137
merging lines in, 122–126
with multiple delimiters, 99
multiple rows in, 139–140
scanning diagonal elements in,

172–175
uneven.sh, 58–59
uneven.txt, 58
working with, 100–104

data.txt file, 133–134
data4.txt with sed command, 107–114
dates2.csv, 148–149
def string, 86
deletelines.sh, 122
delim1.csv, 147
delimiter1.sh, 99
delimiter1.txt, 99
delim1.sh, 147
delim1.txt, 99
diagonal.txt, 172
diff command, 45
digits.sh, 124
digits.txt, 124
divisors() function, 157
Divisors2.sh, 156–158

E
echo command, 19, 20–21, 31, 46, 57
EchoCut.sh, 21
egrep command, 85–88, 105
employee.txt, using awk command,

146
END block, 136, 143
env command, 14
Environment variables, 14–16
Error messages, 85
Euclidean algorithm, 154
Executable files, 16–17
Execution time, 66
exp(x) function, 130

F
factorial() function, 62, 63
Factorial.sh, 61–62
Factorial2.sh, 62–63

ColumnCount1.sh, 123
columnCount variable, 138
columns.txt, 122–123
columns2.txt, 118

joining alternate lines in, 125
columns4.txt, 71–73, 95, 102–103,

143–144
columns5.txt, 78–79
Command substitution (“back tick”), 21–22
CommandSubst.sh, 22
Comma separated values (CSV), 56
continue statement, for loop in awk

command, 121–122
Control characters, 103–104
controlchars.txt file, 103–104
controlm.csv dataset, 50
controlm.sh, 50–51
cp command, 29
cpio command, 53–54
csh shell script, 3
CSV. See Comma separated values
C-type shells, 3
currRow, 142
Customers.txt text file, 165
cut command, 20, 30–31, 75, 164

D
Dash character, 13
datacolumns1.sh dataset, 57–58
datacolumns1.txt dataset, 56, 57
data1.csv, 135
data2.csv, 135–136
Datasets

adding values from multiple,
175–176

aligning columns in, 138–140
contents of, 171
counting words in, 104, 142–144
datacolumns1.sh, 57–58
datacolumns1.txt, 56, 57
deleting alternate lines in, 122
delim1.txt, 99
displaying only “pure” words in,

144–146
with egrep command, 86–88
even rows in, 141–142

INDEX • 185

G
gawk command, 116
gcd() function, 156
GCD of two positive integers, 153–154
gcd.sh, 153–154
genetics.txt, 171–172
Global Regular Expression Print (grep),

66–67
grep command, 66–67, 99, 138, 158

backslash character and, 81
character classes and, 73
-c option in, 74–75
egrep command, 85–88
fgrep command, 85–88
intermediate characters, 72
metacharacters and, 67, 68
multiple matches in, 81
simulating relational data with,

164–167
useful options for, 69–73
using back references in, 77–79
and xargs command, 81–84

gsub() function, 170, 182
gunzip command, 54
gzip command, 54

H
head command, 9–10, 75–77
Hidden files, 12–13
history command, 5
HOME environment variable, 14
HOSTNAME environment variable, 14

I
if statement, 57
Intermediate characters, 72
Internal field separator (IFS), 24, 56
int(x) function, 130
Invisible files. see Hidden files
items() function, 27
Iterative solutions, for factorial values,

62–64

J
jar command, 161
join command, 40, 165

Factorial3.sh, 63–64
factvalues, 64
fgrep command, 85–88, 88
fib() function, 153
Fibonacci numbers, calculation of,

152–153
Fibonacci.sh, 152–153
Fields2.sh, 135
Fields3.sh, using awk command,

137
File compression commands

bunzip2 command, 54–55
cpio command, 53–54
gunzip command, 54
gzip command, 54
tar command, 52–53
zip command, 55

File contents, 7–8
File ownership, 12
find command, 51–52, 54, 82
findkey.sh, 84
findsvg.sh, 84
FixedFieldCount1.sh, 136–137
fold command, 11–12, 41
for loop, 98

in awk command, 120–121
with break statement, 121
next and continue statement,

121–122
-F switch sets, 117
Function

divisors(), 157
exp(x), 130
fib(), 153
gcd(), 156
gsub(), 170, 182
int(x), 130
items(), 27
lcm(), 156
log(x), 131
rand(), 131–132
sin(x), 131
split(), 171–172, 182
sqrt(x), 132
srand(x), 132
time(), 132

186 • DATA CLEANING POCKET PRIMER

N
namepairs.csv, 36
names.txt, using paste command,

25, 29–30
nawk command, 116
Nested loops, 27–28
nestedloops.sh, 27–28
nocontrol1.txt file, 104
node_modules directory, 83
numbers.txt, 171
numbers.txt file, 92
Numeric functions, in awk command,

130–132

O
od command, 45–46
One-line awk command, 132–133
One-line sed command, 107–114
One Space.txt, 13

P
paste command, 29–30
PATH environment variable, 15
Patterns1.sh, 126
Pipe symbol, 10–11, 33–34
POSIX character, 47
Postfix arithmetic operators, 129–130
Prime divisors, 156–158
printf command, 20, 118–119
Printing lines, 101–102

using conditional logic, 127–128
Problematic filenames, 13
products.txt, 127–128
PurchaseOrders.txt text file, 165
pwd command, 4

Q
quotes3.csv, 147

R
rainfall1.sh, 175–176
rainfall12.sh, 176–177
rand() function, 131–132
Recursion, 61–62
Recursion-based solutions, 151
Regular expressions, 31, 67, 78

JoinLines.sh, 89–90, 125
JoinLines2.sh, 125–126

K
Korn shell, 3

L
lcm() function, 156
lcm.sh, 155–156
linear-combo.sh, 180–181
linepairs.csv, 35, 122
lines.txt, 68
Linux operating system, 2
Log directory, 74
Logfile, checking updates in, 167–169
log(x) function, 131
LOGNAME environment variable, 14
longfile.txt, 75
Loop.sh in awk command, 120–121
Lowest common multiple (LCM)

of two positive integers, 155–156
ls command, 6–7

M
Mac OS X operating system, 2, 3
man command, 4
MasterOrders.sh, 165–166
MasterOrders.txt text file, 165
MatchAlpha1.sh, 127
Metacharacters, 31–32, 67, 68

and character sets, 126–127
in egrep expressions, 86

mixed-data.csv, 138
mixed-data2.csv, 139
mixed-data.sh, 138
mixed-data2.sh, 139–140
mixednumbers.txt, 129
mkdir command, 19, 34
more command, 10
Multiline records processing, 169–170
multiline.txt, 169–170
Multiple commands, 33–34
mv command, 13, 98
mykeys.txt, 84, 85
mylogfile.txt, 168
myzip.sh, 158–159

INDEX • 187

sumrows.sh, 171
WordCounts1.sh, 142–143
WordCounts2.sh, 143

sin(x) function, 131
skuprices.txt, 162
skusold.txt, 80
skutotals.sh, 161–162
skuvalues.txt, 80
Slashes character, 97, 100
sort command, 42–44, 66, 106, 145
split command, 41–42
SplitFilename2.sh, 128
split() function, 130, 171–172, 182
SplitName1.sh, 31
sqrt(x) function, 132
srand(x) function, 132
sub-rows-cols.sh, 141–142
sub-rows-cols.txt, 141

T
Tablet string, 128
tail command, 9–10, 44, 75
tar command, 52–53
tee command, 52
test1.csv, 88–89
testing.tar file, 53
testing.tar.gz, 53
test.sh, 18
test4.txt file

doubled-spaced lines, 101–102
as single line, 123–124

Thompson, Ken, 2
time() function, 132
Torvalds, Linus, 2
tr command, 46–49

U
uneven.sh dataset, 58–59
uneven.txt dataset, 58
uniq command, 44, 106, 145
Unix

operating system, 2–3
pipe symbol, 49

unzip command, 161
update2.sh, 98
USER environment variable, 15

RemoveColumn.sh, 140–141
RemoveColumns.txt, 126
reversecolumns.sh, 35, 36–37
rowCount variable, 140

S
Scanning diagonal elements, in datasets,

172–175
searchstrings.sh, 159–160
sed command, 48, 49, 91–92

back references in, 104–105
character classes and, 102–103
data4.txt with, 107–114
delimiter1.sh, 99
execution cycle, 92
matching string using, 92–93
one-line, 107–114
“pure” words in, 105–107
search and replace with, 96–98
substituting string using, 93–96
useful switches in, 99–100
world with, 109

Semicolon, to separate commands,
19–20

Shebang, 18
SHELL environment variable, 15
Shell scripts, 17–19

abc.sh, 23
AlignColumns1.sh, 118
checkrows2.sh, 136
diagonal.sh, 172–173
Divisors2.sh, 156–158
Fibonacci.sh, 152–153
function, 59–61
gcd.sh, 153–154
genetics.sh, 172
joinlines.sh, 30
lcm.sh, 155–156
linear-combo.sh, 180–181
multiline.sh, 170
rainfall1.sh, 175–176
rainfall12.sh, 176–177
recursion and, 61–62
setting environment variables in,

22–24
sourcing/dotting, 23–24

188 • DATA CLEANING POCKET PRIMER

WordCountInFile.sh file, 104
WordCounts1.sh, 142–143
WordCounts2.sh, 143

X
xargs command, 52, 59, 73, 81–85

Z
zcat command, 55
zip command, 55
zipfiles, 55, 83–84, 158–164

V
VariableColumns.txt, 140

W
wc command, 7
whatis command, 17
where command, 17
whereis command, 17
which command, 16
while loop statement, 119–120
Whitespaces, 20

	Data Cleaning Pocket Primer_FM
	Data Cleaning Pocket Primer_Chapter 1
	Data Cleaning Pocket Primer_Chapter 2
	Data Cleaning Pocket Primer_Chapter 3
	Data Cleaning Pocket Primer_Chapter 4
	Data Cleaning Pocket Primer_Chapter 5
	Data Cleaning_Pocket_Primer_Appendices
	Data Cleaning_Pocket_Primer_Index

