

Microsoft®

Access® 2016
Programming

Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this
license grants permission to use the contents contained herein, including the

disc, but does not give you the right of ownership to any of the textual content in
the book / disc or ownership to any of the information or products contained in
it. This license does not permit uploading of the Work onto the Internet or on a
network (of any kind) without the written consent of the Publisher. Duplication
or dissemination of any text, code, simulations, images, etc. contained herein
is limited to and subject to licensing terms for the respective products, and

permission must be obtained from the Publisher or the owner of the content,
etc., in order to reproduce or network any portion of the textual material (in any

media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc,

accompanying algorithms, code, or computer programs (“the software”), and any
accompanying Web site or software of the Work, cannot and do not warrant the

performance or results that might be obtained by using the contents of the Work.
The author, developers, and the Publisher have used their best efforts to insure
the accuracy and functionality of the textual material and/or programs contained
in this package; we, however, make no warranty of any kind, express or implied,

regarding the performance of these contents or programs. The Work is sold “as is”
without warranty (except for defective materials used in manufacturing the book

or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this work
will not be liable for damages of any kind arising out of the use of (or the inability

to use) the algorithms, source code, computer programs, or textual material
contained in this publication. This includes, but is not limited to, loss of revenue

or profit, or other incidental, physical, or consequential damages arising out of the
use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and/or disc, and only at the discretion of the Publisher.

The use of “implied warranty” and certain “exclusions” vary from state to state, and
might not apply to the purchaser of this product.

Julitta Korol

Mercury Learning and Information
Dulles, Virginia

Boston, Massachusetts
New Delhi

Microsoft

Access 2016
Programming

Pocket Primer

Copyright © 2016 by Mercury Learning and Information LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic
display or mechanical display, including, but not limited to, photocopy, recording, Internet
postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
800-232-0223

J.Korol. Microsoft® Access® 2016 Programming Pocket Primer.
ISBN: 978-1-942270-81-2

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.

Library of Congress Control Number: 2016931652

161718321  Printed in the United States of America
This book is printed on acid-free paper.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223 (toll free).

All of our titles are available in digital format at authorcloudware.com and other digital
vendors. Companion files (figures and code listings) for this title are available by contacting
info@merclearning.com. The sole obligation of Mercury Learning And Information to the
purchaser is to replace the disc, based on defective materials or faulty workmanship, but not
based on the operation or functionality of the product.

Acknowledgments... xiii
Introduction..xv

1. Getting Started with Access VBA...1
Understanding VBA Modules and Procedure Types...1
Writing Procedures in a Standard Module..4

Hands-On 1.1. Working in a Standard Module... 4
Executing Your Procedures..7

Hands-On 1.2. Running Procedures and Functions.. 7
Understanding Class Modules..9
Events, Event Properties, and Event Procedures...11

Why Use Events?...13
Walking Through an Event Procedure...13
Hands-On 1.3. Writing an Event Procedure.. 13

Compiling Your Procedures..19
Placing a Database in a Trusted Location..19

Hands-On 1.4. Placing an Access Database in a Trusted Location..................... 20
Summary..22

2. Getting to Know Visual Basic Editor (VBE)........................23
Understanding the Project Explorer Window...23
Understanding the Properties Window..25

Hands-On 2.1. Using the Properties Window to View Control Properties......... 26
Understanding the Code Window..27
Other Windows in the VBE..29
Assigning a Name to the VBA Project..30
Renaming the Module..30
Syntax and Programming Assistance..31

Contents

vi  •   Microsoft Access 2016 Programming Pocket Primer

List Properties/Methods..31
Parameter Info...32
List Constants...33
Quick Info..34
Complete Word..34
Indent/Outdent..35
Hands-On 2.2. Using the Indent/Outdent Feature.. 36
Comment Block/Uncomment Block...36

Using the Object Browser...36
Hands-On 2.3. Using the Object Browser.. 38

Using the VBA Object Library...39
Hands-On 2.4. Using Built-In VBA Functions.. 39

Using the Immediate Window..40
Hands-On 2.5. Experiments in the Immediate Window...................................... 40
Hands-On 2.6. Asking Questions in the Immediate Window.............................. 41

Summary..42

3. Access VBA Fundamentals...43
Introduction to Data Types...43
Understanding and Using Variables...46

Declaring Variables..46
Hands-On 3.1. Using Variables.. 48
Specifying the Data Type of a Variable...50
Hands-On 3.2. Understanding the Data Type of a Variable................................ 50

Using Type Declaration Characters..51
Hands-On 3.3. Using Type Declaration Characters in Variable Names....51

Assigning Values to Variables...52
Hands-On 3.4. Assigning Values to Variables.. 52
Forcing Declaration of Variables...54
Hands-On 3.5. Forcing Declaration of Variables... 54
Understanding the Scope of Variables..56

Procedure-Level (Local) Variables...56
Module-Level Variables..57
Hands-On 3.6. Understanding Module-Level Variables............................ 58
Project-Level Variables...59

Understanding the Lifetime of Variables..61
Using Temporary Variables..61

Creating a Temporary Variable with a TempVars
  Collection Object...62
Retrieving Names and Values of TempVar Objects.......................62
Using Temporary Global Variables in Expressions........................63
Removing a Temporary Variable from a TempVars Collection
  Object...63

Using Static Variables...64
Hands-On 3.7. Using Static Variables.. 64

Contents   •  vii

Using Object Variables...65
Hands-On 3.8. Working with Object Variables... 66

Disposing of Object Variables...67
Finding a Variable Definition..67
Hands-On 3.9. Finding a Variable Definition.. 68
Determining the Data Type of a Variable...68
Hands-On 3.10. Asking Questions about the Variable Type............................... 68

Using Constants in VBA Procedures..69
Intrinsic Constants...70
Hands-On 3.11. Exploring Access’s Constants... 70
Hands-On 3.12. Using Intrinsic Constants in a VBA Procedure........................ 72

Summary..72

4. Access VBA Built-In and Custom Functions.......................73
Writing Function Procedures...73
Hands-On 4.1. Writing a Function Procedure with Arguments................................... 73
Various Methods of Running Function Procedures..74
Hands-On 4.2. Executing a Function Procedure from the
  Immediate Window... 74
Hands-On 4.3. Executing a Function Procedure from a Subroutine............................ 74
Specifying the Data Type for a Function’s Result..75
Hands-On 4.4. Calling a Function from a Procedure.. 76
Passing Arguments to By Reference and By Value...77
Hands-On 4.5. Passing Arguments to Subroutines and Functions............................... 77
Using Optional Arguments...78
Hands-On 4.6. Using Optional Arguments.. 79
Using the IsMissing Function...80
Using VBA Built-In Functions for User Interaction.......................................80

Using the MsgBox Function..81
Hands-On 4.7. Formatting the Message Box... 82
Hands-On 4.8. Using the MsgBox Function with Arguments............................. 87

Returning Values from the MsgBox Function...............................89
Hands-On 4.9. Returning Values from the MsgBox Function................... 89

Using the InputBox Function..90
Hands-On 4.10. Using the InputBox Function.. 91

Converting Data Types...92
Hands-On 4.11. Converting Data Types.. 92
Summary..94

5. Adding Decisions to Your Access VBA Programs................95
Relational and Logical Operators...95
If...Then Statement...96
Hands-On 5.1. Using the If…Then Statement... 96

Multiline If…Then Statement...98
Hands-On 5.2. Using the Multiline If…Then Statement..................................... 98

viii  •   Microsoft Access 2016 Programming Pocket Primer

Decisions Based on More Than One Condition ...99
Hands-On 5.3. Using the If…Then…AND Statement.. 100
If…Then…Else Statement...101
Hands-On 5.4. Using the If…Then…Else Statement.. 102
If...Then...ElseIf Statement..103
Nested If…Then Statements..104
Hands-On 5.5. Using Nested If…Then Statements... 104
Select Case Statement..106
Hands-On 5.6. Using the Select Case Statement.. 107

Using Is with the Case Clause...109
Specifying a Range of Values in a Case Clause.....................................109
Hands-On 5.7. Using the Select Case Statement in a Function......................... 110
Specifying Multiple Expressions in a Case Clause...............................111

Summary..111

6. �Adding Repeating Actions to Your Access
VBA Programs...113

Using the Do…While Statement...113
Hands-On 6.1. Using the Do…While Statement... 114

Another Approach to the Do…While Statement.................................115
Hands-On 6.2. Using the Do…While Statement with a Condition
  at the Bottom of the Loop... 115

Using the Do…Until Statement...116
Hands-On 6.3. Using the Do…Until Statement... 117

Another Approach to the Do…Until Statement..................................117
Hands-On 6.4. Using the Do…Until Statement with a Condition
  at the Bottom of the Loop... 118

Using the For…Next Statement...118
Hands-On 6.5. Using the For…Next Statement... 119
Using the For Each…Next Statement...121
Hands-On 6.6. Using the For Each…Next Statement... 121
Exiting Loops Early..122
Hands-On 6.7. Early Exit from a Loop.. 122
Nested Loops..123
Hands-On 6.8. Using Nested Loops.. 123
Summary..124

7. Keeping Track of Multiple Values Using Arrays...............125
Understanding Arrays...125

Declaring Arrays..127
Array Upper and Lower Bounds...129
Initializing and Filling an Array...129

Filling an Array Using Individual Assignment Statements..........129
Filling an Array Using the Array Function...................................130
Filling an Array Using For…Next Loop.......................................130

Contents   •  ix

Using a One-Dimensional Array..131
Hands-On 7.1. Using a One-Dimensional Array... 131
Arrays and Looping Statements...133
Hands-On 7.2. Using the For Each…Next Statement to List the Array Elements..... 133
Hands-On 7.3. Passing Elements of an Array to Another Procedure......................... 134
Hands-On 7.4. Using Arrays and Loops in Real Life.. 135
Using a Two-Dimensional Array...136
Hands-On 7.5. Using a Two-Dimensional Array .. 136
Static and Dynamic Arrays...137
Hands-On 7.6. Using a Dynamic Array .. 138
Array Functions...139

The Array Function..139
Hands-On 7.7. Using the Array Function.. 139
The IsArray Function...140
Hands-On 7.8. Using the IsArray Function... 140
The Erase Function...141
Hands-On 7.9. Removing Data from an Array.. 141
The LBound and UBound Functions...142
Hands-On 7.10. Finding the Lower and Upper Bounds of an Array............... 142

Errors in Arrays...142
Hands-On 7.11. Understanding Errors in Arrays... 144
Parameter Arrays...145
Hands-On 7.12. Working with Parameter Arrays .. 145
Passing Arrays to Function Procedures..146
Hands-On 7.13. Passing an Array to a Function Procedure....................................... 146
Sorting an Array..147
Hands-On 7.14. Sorting an Array.. 147
Summary..148

8. �Keeping Track of Multiple Values Using Object
Collections..149

Working with Collections of Objects..150
Declaring a Custom Collection...151
Adding Objects to a Custom Collection..151
Hands-On 8.1. Creating a Custom Collection... 152
Removing Objects from a Custom Collection......................................153
Hands-On 8.2. Removing Objects from a Collection... 153

Creating Custom Objects in Class Modules..154
Creating a Class..154
Custom Project 8.1. (Step 1) Creating a Class Module...................................... 154
Variable Declarations...155
Custom Project 8.1. (Step 2) Declaring Class Members.................................... 156
Defining the Properties for the Class..156

Creating the Property Get Procedures...157
Custom Project 8.1. (Step 3) Writing Property Get Procedures.............. 157

x  •   Microsoft Access 2016 Programming Pocket Primer

Creating the Property Let Procedures...158
Custom Project 8.1. (Step 4) Writing Property Let Procedures.............. 158

Creating the Class Methods..159
Custom Project 8.1. (Step 5) Writing Class Methods... 159
Creating an Instance of a Class...160
Custom Project 8.1. (Step 6) Creating an Instance of a Class........................... 161
Event Procedures in the Class Module...161

Creating the User Interface..162
Custom Project 8.1. (Step 7) Designing a User Form.. 162
Custom Project 8.1. (Step 8) Writing Event Procedures.. 164
Running the Custom Application...171
Custom Project 8.1. (Step 9) Running the Custom Project.. 171
Watching the Execution of Your VBA Procedures..172
Custom Project 8.1. (Step 10) Custom Project Code Walkthrough............................. 172
Summary..174

9. �Getting to Know Built-In Tools for Testing and
Debugging..175

Stopping a Procedure..176
Using Breakpoints...177
Custom Project 9.1. Debugging a Function Procedure.. 178

Removing Breakpoints...182
Using the Immediate Window in Break Mode..182
Using the Stop Statement...184
Using the Assert Statement..185
Using the Add Watch Window...186
Hands-On 9.1. Watching the Values of VBA Expressions... 187

Removing Watch Expressions...189
Using Quick Watch...190
Hands-On 9.2. Using the Quick Watch Dialog Box... 190
Using the Locals Window...191
Hands-On 9.3. Using the Locals Window.. 192
Using the Call Stack Dialog Box...192
Stepping Through VBA Procedures...193
Hands-On 9.4. Stepping Through a Procedure.. 193

Stepping Over a Procedure...194
Hands-On 9.5. Stepping Over a Procedure... 194
Stepping Out of a Procedure...195
Running a Procedure to Cursor..195
Setting the Next Statement...195
Showing the Next Statement ..196

Navigating with Bookmarks..196
Stopping and Resetting VBA Procedures..197
Trapping Errors...197

Using the Err Object...198

Contents   •  xi

Hands-On 9.6. Error Trapping Techniques... 199
Procedure Testing..202
Setting Error Trapping Options..204

Summary..204

Index...207

AAs years pass and we gain more and more knowledge on a particular
subject there is a tendency to publish books for people who want to
know it all. But the truth is that we really don’t have time to read all

the printed pages. I thank my publisher, David Pallai, for suggesting that I
consider creating a smaller book that will serve as a starting point for anyone
attempting to get into VBA programming in Access. I hope that you as a reader
of this primer book will appreciate this short book and find that the knowledge
gained from its pages will not only allow you to continue your programming
journey, but also take you places you never thought possible.

I’m also thankful to Jennifer Blaney for her expert management of this book
project. I owe a heartfelt thanks to my copyeditor at Educator’s International
Press for the thorough review of the manuscript. I am grateful to the compositor,
DataWorks, for all the typesetting efforts that gave this book the easy-to-follow
look and feel.

Julitta Korol
Brooklyn, New York
February, 2016

Acknowledgments

Introduction

I’ve been working with Access since the very beginning. Database concepts
were completely new to me but Access interface made it a pleasure to
work with almost daily. Step by step I acquired the skills of database

management and then programming. I learned the latter by trial and error.
When the first consulting opportunity came up to use my Access skills I found
that I barely knew enough to get started. But challenges do not scare me.
I was eager to learn on the job. My first Access programming project was
designing a custom quotation system for an automotive manufacturer. Despite
my limited prior exposure to the programming concepts I was able to deliver
a system that automated a big chunk of work for that company. How was I
able to do this? I find reading and doing is the first step towards mastering
a skill like programming. This book presents enough programming concepts
to get you started tackling your own Access database challenges. This is not
a book about using Access. I assume you are already familiar with most tasks
that you can achieve using Access built-in commands. But if you are ready to
take a look beyond the standard user interface, you have come to the right
place and have made a decision that will bring a whole set of new possibilities
to Access. So let’s forget the menus for now. Do your own thing. Automating
Access is something everyone can do. With the right training, that is. This
book’s purpose is to introduce you to Access built-in language, known as Visual
Basic for Applications (VBA). With VBA you can begin delegating repetitive
tasks to Access while freeing your time for projects that are more fun to do.
Besides, knowing how to program these days is a lucrative skill. It will get you
a secure, well-paying job.

This book was designed for someone like you who needs to master Access
programming fundamentals without spending too much time. Most of the time
all you need is a short book to get you started. It’s less overwhelming to deal
with a new subject in smaller chunks. The VBA Programming Pocket Primer

xvi  •   Microsoft Access 2016 Programming Pocket Primer

series will show you only the things you need to know to feel at home with VBA.
What you learn in this book on Access programming will apply to, say, Excel
programming. Just see my other book, the Microsoft Excel 2016 Programming
Pocket Primer, to see what I mean. How’s that for knowledge transfer? Learn
in Access, and use it in Excel or other Microsoft Office applications. I call this
sweet learning.

If you are looking for in-depth knowledge of Access programming (and
have time to read through a 1,000-page book), then go ahead and try some of
my thicker books available from Mercury Learning and Information.

Access is about doing and so is this book. So do not try to read it while not
at the computer. You can sit, stand, or lie down; it does not matter. But you do
need to work with this book. Do the examples, read the comments. Do this
until it becomes easy to do without the step-by-step instructions. Do not skip
anything as the concepts in later chapters build on material introduced earlier.

Chapter Overview

Before you get started, allow me to give you a short overview of the
things you’ll be learning as you progress through this primer book. Microsoft
Access 2016 Programming Pocket Primer is divided into nine chapters that
progressively introduce you to programming Microsoft Access.

Chapter 1 — Getting Started with Access VBA
In this chapter you learn about the types of Access procedures you can

write and learn how and where they are written.

Chapter 2 — Getting to Know Visual Basic Editor (VBE)
In this chapter you learn almost everything you need to know about working

with the Visual Basic Editor window, commonly referred to as VBE. Some of
the programming tools that are not covered here are discussed and put to use
in Chapter 9.

Chapter 3 — Access VBA Fundamentals
This chapter introduces basic VBA concepts that allow you to store various

pieces of information for later use.

Chapter 4 — Access VBA Built-In and Custom Functions
In this chapter you find out how to provide additional information to your

procedures and functions before they are run.

Chapter 5 — Adding Decisions to Your Access VBA Programs
In this chapter you learn how to control your program flow with a number

of different decision-making statements.

Introduction   •  xvii

Chapter 6 — Adding Repeating Actions to Your Access VBA Programs
In this chapter you learn how to repeat the same actions in your code by

using looping structures.

Chapter 7 — Keeping Track of Multiple Values Using Arrays
In this chapter you learn about static and dynamic arrays and how to use

them for holding various values.

Chapter 8 — Keeping Track of Multiple Values Using Object Collections
This chapter teaches you how you can create and use your own objects and

collections of objects.

Chapter 9 — Getting to Know Built-In Tools for Testing and Debugging
In this chapter you begin using built-in debugging tools to test your

programming code. You also learn how to add effective error-handling code
to your procedures.

The above nine chapters will give you the fundamental techniques and
concepts you will need in order to continue your Access VBA learning path.

The Companion Files

The example files for all the hands-on activities in this book are available on
the CD-ROM included with this book. Replacement files may be downloaded
by contacting the publisher at info@merclearning.com. Digital versions of this
title are available at authorcloudware.com and other digital vendors.

chapter 1
Getting Started with
Access VBA

Visual Basic for Applications (VBA) is the programming language
built into all Microsoft® Office® applications, including Microsoft®
Access®. In this chapter you acquire the fundamentals of VBA that you

will use over and over again in building real-life Microsoft Access database
applications.

Understanding VBA Modules and Procedure Types

Your job as a programmer (at least during the course of this book) will
boil down to writing various procedures. A procedure is a group of instruc-
tions that allows you to accomplish specific tasks when your program runs.
When you place instructions (programming code) in a procedure, you can
call this procedure whenever you need to perform that particular task.
Although many tasks can be automated in Access by using macro actions,
such as opening forms and reports, finding records, and executing queries,
you will need VBA skills to perform advanced customizations in your Access
databases.

In VBA you can write four types of procedures: subroutine procedures,
function procedures, event procedures, and property procedures. Proce-
dures are created and stored in modules. A module resembles a blank
document in Microsoft Word. Each procedure in the same module must
have a unique name; however, procedures in different modules can have
the same name. Let’s learn a bit about each procedure type so that you can
quickly recognize them when you see them in books, magazine articles, or
online.

1.	 Subroutine procedures (also called subroutines or subprocedures)
Subroutine procedures perform useful tasks but never return values.

They begin with the keyword Sub and end with the keywords End Sub.

2  •  Microsoft Access 2016 Programming Pocket Primer

Keywords are words that carry a special meaning in VBA. Let’s look at the
simple subroutine ShowMessage that displays a message to the user:

Sub ShowMessage()
 MsgBox "This is a message box in VBA."
End Sub

Notice a pair of empty parentheses after the procedure name. The
instruction that the procedure needs to execute is placed on a separate line
between the Sub and End Sub keywords. You may place one or more
instructions and even complex control structures within a subroutine proce-
dure. Instructions are also called statements. The ShowMessage procedure
will always display the same message when executed. MsgBox is a built-in
VBA function often used for programming user interactions (see Chapter 4,
“Access VBA Built-In and Custom Functions,” for more information on this
function).

If you’d like to write a more universal procedure that can display a
different message each time the procedure is executed, you will need to write
a subroutine that takes arguments. Arguments are values that are needed for
a procedure to do something. Arguments are placed within the parentheses
after the procedure name. Let’s look at the following procedure that also
displays a message to the user; however, this time we can pass any text string
to display:

Sub ShowMessage2(strMessage)
 MsgBox strMessage
End Sub

This subprocedure requires one text value before it can be run;
strMessage is the arbitrary argument name. It can represent any text you
want. Therefore, if you pass it the text “Today is Monday,” that is the text the
user will see when the procedure is executed. If you don’t pass the value to this
procedure, VBA will display an error.

If your subprocedure requires more than one argument, list the arguments
within the parentheses and separate them with commas. For example, let’s
improve the preceding procedure by also passing it a text string containing a
user name:

Sub ShowMessage3(strMessage, strUserName)
 MsgBox strUserName & ", your message is: " & strMessage
End Sub

The ampersand (&) operator is used for concatenating text strings inside
the VBA procedure. If we pass to the above subroutine the text “Keep on
learning.” as the strMessage argument and “John” as the strUserName
argument, the procedure will display the following text in a message
box:

John, your message is: Keep on learning.

Getting Started with Access VBA   •  3

2.	 Function procedures (functions)
Functions perform specific tasks and can return values. They begin with

the keyword Function and end with the keywords End Function. Let’s
look at a simple function that adds two numbers:

Function addTwoNumbers()
 Dim num1 As Integer
 Dim num2 As Integer
 num1 = 3
 num2 = 2
 addTwoNumbers = num1 + num2
End Function

The preceding function procedure always returns the same result, which
is the value 5. The Dim statements inside this function procedure are used
to declare variables that the function will use. A variable is a name that is
used to refer to an item of data. Because we want the function to perform a
calculation, we specify that the variables will hold integer values. Variables
and data types are covered in detail in Chapter 3, “Access VBA Fundamen-
tals.”

The variable definitions (the lines with the Dim statements) are followed
by the variable assignment statements in which we assign specific numbers to
the variables num1 and num2. Finally, the calculation is performed by adding
together the values held in both variables: num1 + num2. To return the result
of our calculation, we set the function name to the value or the expression we
want to return:

addTwoNumbers = num1 + num2

Although this function example returns a value, not all functions have to
return values. Functions, like subroutines, can perform a number of actions
without returning any values.

Similar to procedures, functions can accept arguments. For example, to
make our addTwoNumbers function more versatile, we can rewrite it as follows:

Function addTwoNumbers2(num1 As Integer, num2 As Integer)
 addTwoNumbers2 = num1 + num2
End Function

Now we can pass any two numbers to the preceding function to add them
together. For example, we can write the following statement to display the
result of the function in a message box:

Sub DisplayResult()
 MsgBox("Total=" & addTwoNumbers2(34,80))
End Sub

3.	 Event procedures
Event procedures are automatically executed in response to an event

initiated by the user or program code, or triggered by the system. Events, event

4  •  Microsoft Access 2016 Programming Pocket Primer

properties, and event procedures are introduced later in this chapter. They are
also covered in Chapter 9, “Getting to Know Built-In Tools for Testing and
Debugging.”

4.	 Property procedures

Property procedures are used to get or set the values of custom properties
for forms, reports, and class modules. The three types of property procedures
(Property Get, Property Let, and Property Set) begin with the Property
keyword followed by the property type (Get, Let, or Set), the property
name, and a pair of empty parentheses, and end with the End Property
keywords. Here’s an example of a property procedure that retrieves the value
of an author’s royalty:

Property Get Royalty()
 Royalty = (Sales * Percent) – Advance
End Property

Property procedures are covered in detail in Chapter 8, “Keeping Track of
Multiple Values Using Object Collections.”

Writing Procedures in a Standard Module

As mentioned earlier, procedures are created and stored in modules. Access
has two types of modules: standard and class. Standard modules are used to
hold subprocedures and function procedures that can be run from anywhere
in the application because they are not associated with any particular form or
report.

Because we already have a couple of procedures to try out, let’s do a quick
hands-on exercise to learn how to open standard modules, write procedures,
and execute them.

	 �Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 1.1. Working in a Standard Module

1.	 Create a folder on your hard drive named C:\VBAPrimerAccess_ByExample.
2.	 Open Microsoft Access and click Blank desktop database (see Figure 1.1).

Type Chap01 in the File Name box, and click the folder button to set the
location for the database to the C:\VBAPrimerAccess_ByExample folder.
Finally, click the Create button to create the specified database. Access will
create the database in its default .ACCDB format.

O

N THE CD

Getting Started with Access VBA   •  5

FIGURE 1.1. Creating a blank desktop Access database.

3.	 To launch the programming environment, select the Database Tools tab and click
Visual Basic (see Figure 1.2). You can also press Alt+F11 to get to this screen.

FIGURE 1.2. Activating a Visual Basic development environment.

4.	 Insert a standard module by choosing Module from the Insert menu (see
Figure 1.3).

FIGURE 1.3. Inserting a standard module.

6  •  Microsoft Access 2016 Programming Pocket Primer

Each module begins with a declaration section that lists various settings
and declarations that apply to every procedure in the module. Figure 1.4
shows the default declaration. Option Compare Database specifies
how string comparisons are evaluated in the module—whether the compar-
ison is case-sensitive or insensitive. This is a case-insensitive comparison
that respects the sort order of the database. This means that “a” is the same
as “A”. If you delete the Option Compare Database statement, the
default string comparison setting for the module is Option Compare
Binary (used for case-sensitive comparisons where “a” is not the same
as “A”).

FIGURE 1.4. Standard module.

Another declaration (not shown here) called the Option Explicit
statement is often used to ensure that all variables used within this module
are formally declared. You will learn about this statement and variables in
Chapter 4.

Following the declaration section is the procedure section, which holds
the module’s procedures. You can begin writing your procedures at the cursor
position within the Module1 (Code) window.

5.	 In the Module1 (Code) window, enter the code of subroutines and function
procedures as shown in Figure 1.5.

Notice that Access inserts a horizontal line after each End Sub or End
Function keyword to make it easier to identify each procedure. The Proce-
dure drop-down box at the top-right corner of the Module1 (Code) window
displays the name of the procedure in which the insertion point is currently
located.

Getting Started with Access VBA   •  7

FIGURE 1.5. Standard module with subprocedures and functions.

Executing Your Procedures

Now that you’ve filled the standard module with some procedures and func-
tions, let’s see how you can run them. There are many ways of running your code.
In the next hands-on exercise, you will execute your code in four different ways:

QQ Run menu (Run Sub/UserForm)
QQ Toolbar button (Run Sub/UserForm)
QQ Keyboard (F5)
QQ Immediate window

 Hands-On 1.2. Running Procedures and Functions

1.	 Place the insertion point anywhere within the ShowMessage procedure. The
Procedure box in the top-right corner of the Module1 (Code) window should
display ShowMessage. Choose Run Sub/UserForm from the Run menu.

8  •  Microsoft Access 2016 Programming Pocket Primer

Access runs the selected procedure and displays the message box with the
text “This is a message box in VBA.”

2.	 Click OK to close the message box. Try running this procedure again, this time
by pressing the F5 key on the keyboard. Click OK to close the message box. If
the Access window seems stuck and you can’t activate any menu option, this is
often an indication that there is a message box open in the background. Access
will not permit you to do any operation until you close the pop-up window.

3.	 Now, run this procedure for the third time by clicking the Run Sub/UserForm
button () on the toolbar. This button has the same tooltip as the Run Sub/
UserForm (F5) option on the Run menu.

�Procedures that require arguments cannot be executed directly using the
methods you just learned. You need to type some input values for these
procedures to run. A perfect place to do this is the Immediate window,
which is covered in detail in Chapter 2, “Getting to Know Visual Basic
Editor (VBE).” For now, let’s open this window and see how you can use
it to run VBA procedures.

4.	 Select Immediate Window from the View menu.
Access opens a small window and places it just below the Module1 (Code)

window. You can size and reposition this window as needed. Figure 1.6 shows
statements that you will run from the Immediate window in steps 5–8.

5.	 Type the following in the Immediate window and press Enter to execute.

ShowMessage2 “I’m learning VBA."

Access executes the procedure and displays the message in a message box.
Click OK to close the message box. Notice that to execute the ShowMessage2
procedure, you need to type the procedure name, a space, and the text you
want to display. The text string must be surrounded by double quotation marks.
In a similar way you can execute the ShowMessage3 procedure by providing
two required text strings. For example, on a new line in the Immediate window,
type the following statement and press Enter to execute:

ShowMessage3 "Keep on learning.", "John"

When you press the Enter key, Access executes the ShowMessage3 proce-
dure and displays the text “John, your message is: Keep on learning.” Click OK
to close this message box.

You can also use the Call statement to run a procedure in the Immediate
window. When using this statement, you must place the values of argu-
ments within parentheses, as shown here:

Call ShowMessage3("Keep on learning.", "John")

Function procedures are executed using different methods. Step 6 demon-
strates how to call the addTwoNumbers function.

NOTE

NOTE

Getting Started with Access VBA   •  9

6.	 On a new line in the Immediate window, type a question mark followed by the
name of the function procedure and press Enter:

?addTwoNumbers

Access should display the result of this function (the number 5) on the next
line in the Immediate window.

7.	 Now run the addTwoNumbers2 procedure. Type the following instruction in
the Immediate window and press Enter:

?addTwoNumbers2(56, 24)

Access displays the result of adding these two numbers on the next line.
8.	 If you’d rather see the function result in a message box, type the following

instruction in the Immediate window and press Enter:

MsgBox("Total=" & addTwoNumbers2(34,80))

Access displays a message box with the text “Total=114”.

See Chapter 2 for more information on running your procedures and
functions from the Immediate window.

FIGURE 1.6. Running procedures and functions in the Immediate window.

Now that you’ve familiarized yourself a bit with standard modules, let’s
move on to another type of module known as the class module.

Understanding Class Modules

Class modules come in three varieties: standalone class modules, form
modules, and report modules.

1.	 Standalone class modules—These modules are used to create your own cus-
tom objects with their own properties and methods. You create a standalone
class module by choosing Insert | Class Module in the Microsoft Visual Basic
for Applications window. Access will create a default class module named
Class1 and will list it in the Class modules folder in the Project Explorer win-
dow. You will work with standalone class modules in Chapter 8.

NOTE

10  •  Microsoft Access 2016 Programming Pocket Primer

			� Form modules and report modules—Each Access form can contain a
form module, and each report can contain a report module. These mod-
ules are special types of class modules that are saved automatically when-
ever you save the form or report.

All newly created forms and reports are lightweight by design because they
don’t have modules associated with them when they’re first created. There-
fore, they load and display faster than forms and reports with modules. These
lightweight forms and reports have their Has Module property set to No (see
Figure 1.7). When you open a form or report in Design view and click the View
Code button in the Tools section of the Design tab, Access creates a form or
report module. The Has Module property of a form or report is automatically
set to Yes to indicate that the form or report now has a module associated with
it. Note that this happens even if you have not written a single line of VBA
code. Access opens a module window and assigns a name to the module that
consists of three parts: the name of the object (e.g., form or report), an under-
score character, and the name of the form or report. For example, a newly
created form that has not been saved is named Form_Form1, a form module
in the Customers form is named Form_Customers, and a report module in the
Customers report is named Report_Customers (see Figure 1.8).

As with report modules, form modules store event procedures for events recog-
nized by the form and its controls, as well as general function procedures and subpro-
cedures. You can also write Property Get, Property Let, and Property Set procedures
to create custom properties for the form or report. The procedures stored in their
class modules areavailable only while you are using that particular form or report.

FIGURE 1.7. When you begin designing a new form in the Microsoft Access user interface,
the form does not have a module associated with it. Notice that the Has Module property on
the form’s property sheet is set to No.

2. and 3.

Getting Started with Access VBA   •  11

FIGURE 1.8. Database modules are automatically organized in folders. Form and report
modules are listed in the Microsoft Access Class Objects folder. Standard modules can
be found in the Modules folder. The Class Modules folder organizes standalone class
modules.

Events, Event Properties, and Event Procedures

In order to customize your database applications or to deliver prod-
ucts that fit your users’ specific needs, you’ll be doing quite a bit of event-
driven programming. Microsoft Access is an event-driven application. This
means that whatever happens in an Access application is the result of an
event that Access has detected. Events are things that happen to objects,
and can be triggered by the user or by the system, such as clicking a mouse
button, pressing a key, selecting an item from a list, or changing a list of
items available in a listbox. As a programmer, you will often want to modify
the application’s built-in response to a particular event. Before the applica-
tion processes the user’s mouseclicks and keypresses in the usual way, you
can tell the application how to react to the activity. For example, if a user
clicks a Delete button on your form, you can display a custom delete confir-
mation message to ensure that the user selected the intended record for
deletion.

For each event defined for a form, form control, or report, there is a corre-
sponding eventproperty. If you open any Microsoft Access form in Design
view and choose Properties in the Tools section of the Design tab, and then
click the Event tab of the property sheet, you will see a long list of events your
form can respond to (see Figure 1.9).

12  •  Microsoft Access 2016 Programming Pocket Primer

FIGURE 1.9. Event properties for an Access form are listed on the Event tab in the property
sheet.

Forms, reports, and the controls that appear on them have various event
properties you can use to trigger desired actions. For example, you can open or
close a form when a user clicks a command button, or you can enable or disable
controls when the form loads.

To specify how a form, report, or control should respond to events, you can
write event procedures. In your programming code, you may need to describe
what should happen if a user clicks on a particular command button or makes
a selection from a combo box. For example, when you design a custom form,
you should anticipate and program events that can occur at runtime (while the
form is being used). The most common event is the Click event. Every time
a command button is clicked, it triggers an event procedure to respond to the
Click event for that button.

When you assign your event procedure to an event property, you set an
event trap. Event trapping gives you considerable control in handling events
because you basically interrupt the default processing that Access would
normally carry out in response to the user’s keypress or mouseclick. If a user
clicks a command button to save a form, whatever code you’ve written in the
Click event of that command button will run. The event programming code
is stored as a part of a form, report, or control and is triggered only when
user interaction with a form or report generates a specific event; therefore, it
cannot be used as a standalone procedure.

Getting Started with Access VBA   •  13

Why Use Events?

Events allow you to make your applications dynamic and interactive.
To handle a specific event, you need to select the appropriate event
property on the property sheet and then write an event handling proce-
dure. Access will provide its own default response to those events
you have not programmed. Events cannot be defined for tables or
queries.

Walking Through an Event Procedure

The following hands-on exercise demonstrates how to write event proce-
dures. Your task is to change the background color of a text box control on a
form when the text box is selected and then return the default background
color when you tab or click out of that text box.

 Hands-On 1.3. Writing an Event Procedure

1.	 Close the Chap01.accdb database file used in Hands-On 1.1, and save
changes to the file when prompted.

2.	 Copy the AssetTracking.accdb database from the companion CDto your
C:\VBAPrimerAccess_ByExample folder. This file is a copy of the Asset
tracking database provided with Microsoft Access 2016.

3.	 Open the database C:\VBAPrimerAccess_ByExample\AssetTracking.accdb.
Upon loading, when you see a Welcome screen, click the Get Started button.

4.	 Access opens the database and displays a security warning message (see Figure
1.10). In order to use the file, click the Enable Content button in the mes-
sage bar. Access will close the database and reopen it. If you see the Welcome
screen, click the Get Started button again.

The last section of this chapter explains how you can use trusted loca-
tions to keep Access from disabling the VBA code upon opening a data-
base.

5.	 Open the Asset Details form in Design view. To do this, right-click the
Asset Details form and choose Design View from the shortcut menu.

�If the property sheet is not displayed next to the Customers form, click the
Property Sheet button in the Tools group of the Form Design Tools
tab on the Ribbon.

6.	 Click the Manufacturer text box control on the Asset Details form, and then
click the Event tab in the property sheet. The property sheet will display
Manufacturer in the control drop-down box.

The list of event procedures available for the text box control appears, as
shown in Figure 1.11.

NOTE

NOTE

14  •  Microsoft Access 2016 Programming Pocket Primer

FIGURE 1.10. Active content such as VBA Macros can contain viruses and other security
hazards. By default, Access displays a Security Warning message when you first load a
database file that contains active content. You should enable content only if you trust the
contents of the file.

FIGURE 1.11. To create an event procedure for a form control, use the Build button, which is
displayed as an ellipsis (…). This button is not available unless an event is selected.

7.	 Click in the column next to the On Got Focus event name, and then click the
Build button (…), as shown in Figure 1.11 in the previous step. This will bring
up the Choose Builder dialog box (see Figure 1.12).

Getting Started with Access VBA   •  15

FIGURE 1.12. To write VBA programming code for your event procedure, choose Code
Builder in the Choose Builder dialog box.

8.	 Select Code Builder in the Choose Builder dialog box and click OK. This will
display a VBA code module in the Visual Basic Editor window (see Figure 1.13).
This window (often referred to as VBE) is discussed in detail in Chapter 2.

FIGURE 1.13. Code Builder displays the event procedure Code window with a blank event
procedure for the selected object. Here you can enter the code for Access to run when the
specified GotFocus procedure is triggered.

16  •  Microsoft Access 2016 Programming Pocket Primer

Take a look at Figure 1.13. Access creates a skeleton of the GotFocus event
procedure. The name of the event procedure consists of three parts: the object
name (Manufacturer), an underscore character (_), and the name of the event
(GotFocus) occurring to that object. The word Private indicates that the
event procedure cannot be triggered by an event from another form. The word
Sub in the first line denotes the beginning of the event procedure. The words
End Sub in the last line denote the end of the event procedure. The state-
ments to be executed when the event occurs are written between these two
lines.

Notice that each procedure name ends with a pair of empty paren-
theses (). Words such as Sub, End, or Private have special meaning to
Visual Basic and are called keywords (reserved words). Visual Basic displays
keywords in blue, but you can change the color of your keywords from the
Editor Format tab in the Options dialog box (choose Tools | Options in the
Visual Basic Editor window). All VBA keywords are automatically capital-
ized.

At the top of the Code window (see Figure 1.13), there are two drop-
down listboxes. The one on the left is called Object. This box displays the
currently selected control (Manufacturer). The box on the right is called
Procedure. If you position the mouse over one of these boxes, the tooltip
indicates the name of the box. Clicking on the down arrow at the right of
the Procedure box displays a list of all possible event procedures associ-
ated with the object type selected in the Object box. You can close the
drop-down listbox by clicking anywhere in the unused portion of the Code
window.

9.	 To change the background color of a text box control to green, enter the follow-
ing statement between the existing lines:

Me.Manufacturer.BackColor = RGB(0, 255, 0)

Notice that when you type each period, Visual Basic displays a list
containing possible item choices. This feature, called List Properties/
Methods, is a part of Visual Basic’s on-the-fly syntax and programming assis-
tance, and is covered in Chapter 2. When finished, your first event procedure
should look as follows:

Private Sub Manufacturer_GotFocus()
 Me.Manufacturer.BackColor = RGB(0, 255, 0)
End Sub

The statement you just entered tells Visual Basic to change the back-
ground color of the Manufacturer text box to green when the cursor
is moved into that control. The color is specified by using the RGB
function.

Getting Started with Access VBA   •  17

10.	 In the Visual Basic window, choose File | Close and Return to Microsoft
Access. Notice that [Event Procedure] now appears next to the On Got Focus
event property in the property sheet for the selected Manufacturer text box
control (see Figure 1.14).

FIGURE 1.14. [Event Procedure] in the property sheet denotes that the text box’s On Got
Focus event has an event procedure associated with it.

18  •  Microsoft Access 2016 Programming Pocket Primer

11.	 To test your GotFocus event procedure, switch from the Design view of the
Asset Details form to Form view by clicking the View button on the Ribbon’s
Design tab.

12.	 While in the Form view, click in the Manufacturer text box and notice the
change in the background color.

13.	 Now, click on any other text box control on the Asset Details form.
Notice that the Manufacturer text box does not return to the original color.

So far, you’ve told Visual Basic only what to do when the specified control
receives the focus. If you want the background color to change when the focus
moves to another control, there is one more event procedure to write—On
Lost Focus.

14.	 To create the LostFocus procedure, return your form to Design view and
click the Manufacturer control. In the property sheet for this control,
select the Event tab, and then click the Build button to the right of the On
Lost Focus event property. In the Choose Builder dialog box, select Code
Builder.

15.	 To change the background color of a text box control to white, enter the follow-
ing statement inside the Manufacturer_LostFocus event procedure:

 Me.Manufacturer.BackColor = RGB(255,255,255)

The completed On Lost Focus procedure is shown in Figure 1.15.

FIGURE 1.15. The GotFocus and LostFocus event procedures will now control the behavior of
the Manufacturer control when the control is in focus and out of focus.

16.	 In the Visual Basic window, choose File | Close and Return to Microsoft
Access. Notice that [Event Procedure] now appears next to the On Lost Focus
event property in the property sheet for the selected Manufacturer text box con-
trol.

17.	 Repeat steps 11–12 to test both of the event procedures you have written.
18.	 When you are done, close the Asset Tracking database and click OK when

prompted to save the changes.

Getting Started with Access VBA   •  19

Compiling Your Procedures

The VBA code you write in the Visual Basic Editor Code window is
automatically compiled by Microsoft Access before you run it. The syntax
of your VBA statements is first thoroughly checked for errors, and then
your procedures are converted into executable format. If an error is discov-
ered during the compilation process, Access stops compiling and displays an
error message. It also highlights the line of code that contains the error. The
compiling process can take from seconds to minutes or longer, depending on
the number of procedures written and the number of modules used.

To ensure that your procedures have been compiled, you can explicitly
compile them after you are done programming. You can do this by choosing
Debug | Compile in the Visual Basic Editor window.

Microsoft Access saves all the code in your database in its compiled form.
Compiled code runs more quickly the next time you open it. You should always
save your modules after you compile them. In Chapter 9, “Getting to Know
Built-In Tools for Testing and Debugging,” you will learn how to test and trou-
bleshoot your VBA procedures.

Placing a Database in a Trusted Location

By default, the security features built into Access disable the VBA code when
you open a database. To make it easy to work with Access databases in this book,
you will not want to bother with enabling content each time you open a database.
To trust your databases permanently, you can place them in a trusted location—a
folder on your local or network drive that you mark as trusted. You can get more
information about the Enable Content button and access the Trust Center to set
up a trusted folder by choosing File | Info (see Figure 1.16). This screen can also be
activated by clicking the text message in the Security Warning message bar: “Some
active content has been disabled. Click for more details.” (See Figure 1.10 earlier.)

FIGURE 1.16. The Info tab with an explanation of the Security Warning message.

20  •  Microsoft Access 2016 Programming Pocket Primer

Hands-On 1.4 will take you through the process of setting up a trusted
folder for your Access databases by using the Options button.

 Hands-On 1.4. Placing an Access Database in a Trusted Location

1.	 Open the Chap01.accdb database and click the Enable Content button in the
Security Warning message.

2.	 Choose File | Options.
3.	 In the left pane of the Access Options dialog box, click Trust Center, and then

click Trust Center Settings in the right pane, as shown in Figure 1.17.

FIGURE 1.17. Working with the Trust Center (Step 1).

4.	 In the left pane of the Trust Center dialog box, click Trusted Locations, as
shown in Figure 1.18.

FIGURE 1.18. Working with the Trust Center (Step 2).

Getting Started with Access VBA   •  21

5.	 Click the Add new location button, as shown in Figure 1.18.
6.	 In the Path text box, type the path and folder name of the location on your local

drive that you want to set up as a trusted source for opening files. Let’s enter
C:\VBAPrimerAccess_ByExample to designate this folder as a trusted loca-
tion for this book’s database programming exercises (see Figure 1.19).

FIGURE 1.19. Working with the Trust Center (Step 3).

7.	 Click OK to close the Microsoft Office Trusted Location dialog box.
8.	 The Trusted Locations list in the Trust Center dialog box now includes the

C:\VBAPrimerAccess_ByExample folder as a trusted source (see Figure 1.20).
Files put in a trusted location can be opened without being checked by the
Trust Center security feature. Click OK to close the Trust Center dialog box.

FIGURE 1.20. Working with the Trust Center (Step 4).

22  •  Microsoft Access 2016 Programming Pocket Primer

9.	 Click OK to close the Access Options dialog box.
10.	 Close the open Access databases and exit Microsoft Access.
11.	 Open the Chap01.accdb database file from your C:\VBAPrimerAccess_

ByExample folder and notice that Access no longer displays the Security
Warning message.

12.	 Close the Chap01.accdb database.

Summary

In this chapter, you learned about subroutine procedures, function proce-
dures, property procedures, and event procedures. You also learned different
ways of executing subroutines and functions. The main hands-on exercise in
this chapter walked you through writing two event procedures in the Asset
Details form’s class module for a Manufacturer text control placed in the form.
You finished this chapter by designating a trusted location folder for your
Access databases.

This chapter has given you a glimpse of the Microsoft Visual Basic program-
ming environment built into Access. The next chapter will take you deeper into
this interface, showing you various windows and shortcuts that you can use to
program faster and with fewer errors.

Chapter 2
Getting to Know
Visual Basic Editor (VBE)

Now that you know how to write procedures and functions in standard
modules and event procedures in modules placed behind a form, we’ll
spend some time in the Visual Basic Editor window to become famil-

iar with the multitude of tools it offers to simplify your programming tasks.
With the tools located in the Visual Basic Editor window, you can:

QQ Write your own VBA procedures
QQ Create custom forms
QQ View and modify object properties
QQ Test and debug VBA procedures and locate errors

You can enter the VBA programming environment in either of the
following ways:

QQ By selecting the Database Tools tab, and then Visual Basic in the
Macro group

QQ From the keyboard, by pressing Alt+F11

Understanding the Project Explorer Window

The Project Explorer window, located on the left side of the Visual Basic
Editor window, provides access to modules behind forms and reports via the
Microsoft Access Class Objects folder (see Figure 2.1). The Modules folder
lists only standard modules that are not behind a form or report.

In addition to the Microsoft Access Class Objects and Modules folders,
the VBA Project Explorer window can contain a Class Modules folder. Class
modules are used for creating your own objects, as demonstrated in Chapter 8.
Using the Project Explorer window, you can easily move between modules
currently loaded into memory.

24  •   Microsoft Access 2016 Programming Pocket Primer

You can activate the Project Explorer window in one of three ways:

QQ From the View menu by selecting Project Explorer
QQ From the keyboard by pressing Ctrl-R
QQ From the Standard toolbar by clicking the Project Explorer button ()

as shown in Figure 2.2

FIGURE 2.1. Provides easy access to your VBA procedure code.

If the Project Explorer window is visible but not active, activate it by
clicking the Project Explorer titlebar.

Buttons on the Standard toolbar (Figure 2.2) provide a quick way to access
many Visual Basic features.

FIGURE 2.2. Use the toolbar buttons to quickly access frequently used features in the
VBE window.

The Project Explorer window (see Figure 2.3) contains three buttons:

QQ View Code—Displays the Code window for the selected module.
QQ View Object—Displays the selected form or report in the Microsoft

Access Class Objects folder. This button is disabled when an object in the
Modules or Class Modules folder is selected.

QQ Toggle Folders—Hides and unhides the display of folders in the Project
Explorer window.

NOTE

Getting to Know Visual Basic Editor (VBE)   •  25

FIGURE 2.3. The VBE Project Explorer window contains three buttons that allow you to view
code or objects and toggle folders.

Understanding the Properties Window

The Properties window allows you to review and set properties for the currently
selected Access class or module. The name of the selected object is displayed in
the Object box located just below the Properties window titlebar. The Properties
window displays the current settings for the selected object. Object properties
can be viewed alphabetically or by category by clicking on the appropriate tab.

QQ Alphabetic tab—Lists all properties for the selected object alphabetically.
You can change the property setting by selecting the property name, and
then typing or selecting the new setting.

QQ Categorized tab—Lists all properties for the selected object by cat-
egory. You can collapse the list so that you see only the category names
or you can expand a category to see the properties. The plus (+) icon to
the left of the category name indicates that the category list can be ex-
panded. The minus (–) indicates that the category is currently expanded.

The Properties window can be accessed in the following ways:

QQ From the View menu by selecting Properties Window
QQ From the keyboard by pressing F4
QQ From the Standard toolbar by clicking the Properties Window button ()

located to the right of the Project Explorer button

Figure 2.4 displays the properties of the E-mail Address text box control
located in the Form_Order Details form in the Northwind 2007 sample Access
database. In order to access properties for a form control, you need to perform
the steps outlined in Hands-On 2.1.

	 �Please note files for the hands-on project may be found on the companion
CD-ROM.

O

N THE CD

26  •   Microsoft Access 2016 Programming Pocket Primer

 Hands-On 2.1. �Using the Properties Window to View Control
Properties

1.	 Copy the Northwind 2007 sample database from the companion CD to your
C:\AccessVBAPrimer_ByExample folder.

2.	 Open Access 2013 and load the C:\AccessVBAPrimer_ByExample\
Northwind 2007.accdb file. Log in to the database as Andrew Cencini.

3.	 When Northwind 2007 opens, press Alt+F11 to activate the Visual Basic
Editor window.

4.	 In the Project Explorer window, click the Toggle Folders button () and
select the Microsoft Access Class Objects folder. Highlight the Form_
Order Details form (Figure 2.4) and click the View Object button ().
This will open the selected form in Design view.

Press Alt+F11 to return to the Visual Basic Editor. The Properties window
will be filled with the properties for the Form_Order Details form. To view
the properties of the E-mail Address text box control on this form, as shown in
Figure 2.4, select E-mail Address from the drop-down list located below the
Properties window’s titlebar.

FIGURE 2.4. You can edit object properties in the Properties window, or you can edit them in

the property sheet when a form or report is open in Design view.

Getting to Know Visual Basic Editor (VBE)   •  27

Understanding the Code Window

The Code window is used for Visual Basic programming as well as for
viewing and modifying the code of existing Visual Basic procedures. Each VBA
module can be opened in a separate Code window.

There are several ways to activate the Code window:

QQ From the Project Explorer window, choose the appropriate module and
then click the View Code button ()

QQ From the Microsoft Visual Basic menu bar, choose View | Code
QQ From the keyboard, press F7

At the top of the Code window there are two drop-down listboxes that allow
you to move quickly within the Visual Basic code. In the Object box on the left
side of the Code window, you can select the object whose code you want to
view, as shown in Figure 2.5.

FIGURE 2.5. The Object drop-down box lists objects that are available in the module selected
in the Project Explorer window.

The box on the right side of the Code window lets you select a procedure
to view. When you click the down arrow at the right of this box, the names of
all procedures located in a module are listed alphabetically, as shown in Figure
2.6. When you select a procedure in the Procedure box, the cursor will jump to
the first line of that procedure.

28  •   Microsoft Access 2016 Programming Pocket Primer

FIGURE 2.6. The Procedure drop-down box lists events to which the object selected in the
Object drop-down box can respond. If the selected module contains events written for
the highlighted object, the names of these events appear in bold type.

By choosing Window | Split or dragging the split bar down to a selected
position in the Code window, you can divide the Code window into two panes,
as shown in Figure 2.7.

FIGURE 2.7. By splitting the Code window, you can view different sections of a long
procedure or a different procedure in each window pane.

Getting to Know Visual Basic Editor (VBE)   •  29

Setting up the Code window for the two-pane display is useful for copying,
cutting, and pasting sections of code between procedures in the same module.
To return to a one-window display, drag the split bar all the way to the top of
the Code window or choose Window | Split again.

There are two icons at the bottom of the Code window (see Figure 2.7).
The Procedure View icon changes the display to only one procedure at a
time in the Code window. To select another procedure, use the Procedure
drop-down box. The Full Module View icon changes the display to all the
procedures in the selected module. Use the vertical scrollbar in the Code
window to scroll through the module’s code. The Margin Indicator bar is
used by the Visual Basic Editor to display helpful indicators during editing
and debugging.

Other Windows in the VBE

In addition to the Code window, there are several other windows that
are frequently used in the Visual Basic environment, such as the Immediate,
Locals, Watch, Project Explorer, Properties, and Object Browser windows.
The Docking tab in the Options dialog box, shown in Figure 2.8, displays a list
of available windows and allows you to choose which windows you want to be
dockable. To access this dialog box, select Tools | Options in the Visual Basic
Editor window.

FIGURE 2.8. You can use the Docking tab in the Options dialog box to control which
windows are currently displayed in the Visual Basic programming environment.

30  •   Microsoft Access 2016 Programming Pocket Primer

Assigning a Name to the VBA Project

A VBA Project is a set of Microsoft Access objects, modules, forms, and
references.

When you create a Microsoft Access database and later switch to the
VBE window, you will see in the Project Explorer window that Access had
automatically assigned the database name to the VBA Project. For example, if
your database is named Chap01.accdb, the Project Properties window displays
Chap01 (Chap01) where the first “Chap01” denotes the VBA Project name
and the “Chap01” in the parentheses is the name of the database. You can
change the name of the VBA Project in one of the following ways:

QQ Choose Tools | <database name> Properties, enter a new name in the
Project Name box of the Project Properties window (see Figure 2.9), and
click OK.

QQ In the Project Explorer window, right-click the name of the project and
select <database name> Properties. Enter a new name in the Project Name
box of the Project Properties window (see Figure 2.9) and click OK.

To avoid naming conflicts between projects, make sure that you give your
projects unique names.

FIGURE 2.9. Use the Project Properties dialog box to rename the VBA Project.

Renaming the Module

When you insert a new module to your VBA Project, Access generates
a default name for the module—Module1, Module2, and so on. You can
rename your modules right after you insert them into the VBA project or when
your project is being saved for the first time. In the latter case, Access will
iterate through all the newly added (not saved) modules and will prompt you

Getting to Know Visual Basic Editor (VBE)   •  31

with the Save As dialog box to accept or change the module name. You can
change the module name at any time via the Properties window. Simply select
the module name (e.g., Module1) in the Project Explorer window and double-
click the Name property in the Properties window. This action will highlight
the default module name next to the Name property. Type the new name for
the module and press Enter. The module name in the Project Explorer window
should now reflect your change.

Syntax and Programming Assistance

Writing procedures in Visual Basic requires that you use hundreds of
built-in instructions and functions. Because most people cannot memorize
the correct syntax of all the instructions available in VBA, the IntelliSense®
technology provides you with syntax and programming assistance on demand
while you are entering instructions. While working in the Code window, you
can have special tools pop up and guide you through the process of creating
correct VBA code. The Edit toolbar in the VBE window, shown in Figure 2.10,
contains several buttons that let you enter correctly formatted VBA instruc-
tions with speed and ease. If the Edit toolbar isn’t currently docked in the
Visual Basic Editor window, you can turn it on by choosing View | Toolbars.

FIGURE 2.10. The Edit toolbar provides timesaving buttons while entering VBA code.

List Properties/Methods

Each object can contain one or more properties and methods. When you
enter the name of the object in the Code window followed by a period that
separates the name of the object from its property or method, a pop-up menu
may appear. This menu lists the properties and methods available for the
object that precedes the period. To turn on this automated feature, choose

32  •   Microsoft Access 2016 Programming Pocket Primer

Tools | Options. In the Options dialog box, click the Editor tab, and make
sure the Auto List Members checkbox is selected. As you enter VBA instruc-
tions, Visual Basic suggests properties and methods that can be used with the
particular object, as demonstrated in Figure 2.11.

FIGURE 2.11. When Auto List Members is selected, Visual Basic suggests properties and
methods that can be used with the object as you are entering the VBA instructions.

To choose an item from the pop-up menu, start typing the name of the
property or method you want to use. When the correct item name is high-
lighted, press Enter to insert the item into your code and start a new line, or
press the Tab key to insert the item and continue writing instructions on the
same line. You can also double-click the item to insert it in your code. To close
the pop-up menu without inserting an item, press Esc. When you press Esc to
remove the pop-up menu, Visual Basic will not display the menu for the same
object again.

To display the Properties/Methods pop-up menu again, you can:

QQ Press Ctrl-J
QQ Use the Backspace key to delete the period, and then type the period again
QQ Right-click in the Code window, and select List Properties/Methods from

the shortcut menu
QQ Choose Edit | List Properties/Methods
QQ Click the List Properties/Methods button () on the Edit toolbar

Parameter Info

Some VBA functions and methods can take one or more arguments (or
parameters). If a Visual Basic function or method requires an argument,
you can see the names of required and optional arguments in a tip box that
appears just below the cursor as soon as you type the open parenthesis or
enter a space. The Parameter Info feature (see Figure 2.12) makes it easy for
you to supply correct arguments to a VBA function or method. In addition, it
reminds you of two other things that are very important for the function or
method to work correctly: the order of the arguments and the required data

Getting to Know Visual Basic Editor (VBE)   •  33

type of each argument. For example, if you enter in the Code window the
instruction DoCmd.OpenForm and type a space after the OpenForm method,
a tip box appears just below the cursor. Then as soon as you supply the first
argument and enter the comma, Visual Basic displays the next argument in
bold. Optional arguments are surrounded by square brackets []. To close the
Parameter Info window, all you need to do is press Esc.

FIGURE 2.12. A tip window displays a list of arguments used by a VBA function or method.

To open the tip box using the keyboard, enter the instruction or function,
followed by the open parenthesis, and then press Ctrl-Shift-I. You can also
click the Parameter Info button () on the Edit toolbar or choose Edit |
Parameter Info from the menu bar.

You can also display the Parameter Info box when entering a VBA function.
To try this out quickly, choose View | Immediate Window, and then type the
following in the Immediate window:

Mkdir(

You should see the MkDir(Path As String) tip box just below the cursor.
Now, type "C:\NewFolder" followed by the ending parenthesis. When you
press Enter, Visual Basic will create a folder named NewFolder in the root
directory of your computer. Activate Explorer and check it out!

List Constants

If there is a check mark next to the Auto List Members setting in the
Options dialog box (Editor tab), Visual Basic displays a pop-up menu listing the
constants that are valid for the property or method. A constant is a value that
indicates a specific state or result. Access and other members of the Microsoft
Office suite have a number of predefined, built-in constants.

Suppose you want to open a form in Design view. In Microsoft Access, a
form can be viewed in Design view (acDesign), Datasheet view (acFormDS),
PivotChart view (acFormPivotChart), PivotTable view (acFormPivotTable),
Form view (acNormal), and Print Preview (acPreview). Each of these options
is represented by a built-in constant. Microsoft Access constant names begin
with the letters “ac.” As soon as you enter a comma and a space following

34  •   Microsoft Access 2016 Programming Pocket Primer

your instruction in the Code window (e.g., DoCmd.OpenForm "Products",), a
pop-up menu will appear with the names of valid constants for the OpenForm
method, as shown in Figure 2.13.

FIGURE 2.13. The List Constants pop-up menu displays a list of constants that are valid for
the property or method typed.

The List Constants menu can be activated by pressing Ctrl+Shift+J or by
clicking the List Constants button () on the Edit toolbar.

Quick Info

When you select an instruction, function, method, procedure name, or
constant in the Code window and then click the Quick Info button () on
the Edit toolbar (or press Ctrl+I), Visual Basic will display the syntax of the
highlighted item as well as the value of its constant (see Figure 2.14). The
Quick Info feature can be turned on or off using the Options dialog box (Tools |
Options). To use the feature, click the Editor tab in the Options dialog box, and
make sure there is a check mark in the box next to Auto Quick Info.

FIGURE 2.14. The Quick Info feature provides a list of function parameters, as well as
constant values and VBA statement syntax.

Complete Word

Another way to increase the speed of writing VBA procedures in the Code
window is with the Complete Word feature. As you enter the first few letters
of a keyword and click the Complete Word button () on the Edit toolbar,

Getting to Know Visual Basic Editor (VBE)   •  35

Visual Basic will complete the keyword entry for you. For example, if you enter
the first three letters of the keyword DoCmd (DoC) in the Code window, and
then click the Complete Word button on the Edit toolbar, Visual Basic will
complete the rest of the command. In the place of DoC you will see the entire
instruction, DoCmd.

If there are several VBA keywords that begin with the same letters, when
you click the Complete Word button on the Edit toolbar Visual Basic will display
a pop-up menu listing all of them. To try this, enter only the first three letters
of the word Application (App), and then press the Complete Word button on
the toolbar. You can then select the appropriate word from the pop-up menu.

Indent/Outdent

The Editor tab in the Options dialog box, shown in Figure 2.15, contains
many settings you can enable to make automated features available in the
Code window.

FIGURE 2.15. The Options dialog box lists features you can turn on and off to fit the VBA
programming environment to your needs.

When the Auto Indent option is turned on, Visual Basic automatically
indents the selected lines of code using the Tab Width value. The default entry
for Auto Indent is four characters (see Figure 2.15). You can easily change
the tab width by typing a new value in the text box. Why would you want to
use indentation in your code? Indentation makes your VBA procedures more
readable and easier to understand. Indenting is especially recommended for
entering lines of code that make decisions or repeat actions.

Let’s see how you can indent and outdent lines of code using the Form_
InventoryList form in the Northwind database that you opened in the previous
hands-on exercise.

36  •   Microsoft Access 2016 Programming Pocket Primer

 Hands-On 2.2. Using the Indent/Outdent Feature

1.	 In the Project Explorer window in the Microsoft Access Class Objects folder,
double-click Form_Inventory List. The Code window should now show the
CmdPurchase_Click event procedure written for this form.

2.	 In the Code window, select the block of code beginning with the keyword If
and ending with the keywords End If.

3.	 Click the Indent button () on the Edit toolbar or press Tab on the key-
board. The selected block of code will move four spaces to the right. You can
adjust the number of spaces to indent by choosing Tools | Options and enter-
ing the appropriate value in the Tab Width box on the Editor tab.

4.	 Now, click the Outdent button () on the Edit toolbar or press Shift+Tab
to return the selected lines of code to the previous location in the Code window.
The Indent and Outdent options are also available from Visual Basic Editor’s
Edit menu.

Comment Block/Uncomment Block
The apostrophe placed at the beginning of a line of code denotes a comment.

Besides the fact that comments make it easier to understand what the proce-
dure does, comments are also very useful in testing and troubleshooting VBA
procedures. For example, when you execute a procedure, it may not run as
expected. Instead of deleting the lines of code that may be responsible for the
problems encountered, you may want to skip the lines for now and return to
them later. By placing an apostrophe at the beginning of the line you want to
avoid, you can continue checking the other parts of your procedure. While
commenting one line of code by typing an apostrophe works fine for most
people, when it comes to turning entire blocks of code into comments, you’ll
find the Comment Block and Uncomment Block buttons on the Edit toolbar
very handy and easy to use.

To comment a few lines of code, select the lines and click the Comment
Block button (). To turn the commented code back into VBA instructions,
click the Uncomment Block button (). If you click the Comment Block
button without selecting a block of text, the apostrophe is added only to the
line of code where the cursor is currently located.

Using the Object Browser

If you want to move easily through the myriad of VBA elements and
features, examine the capabilities of the Object Browser. This special built-in
tool is available in the Visual Basic Editor window.

To access the Object Browser, use any of the following methods:

QQ Press F2
QQ Choose View | Object Browser
QQ Click the Object Browser button () on the toolbar

Getting to Know Visual Basic Editor (VBE)   •  37

The Object Browser allows you to browse through the objects available to
your VBA procedures, as well as view their properties, methods, and events.
With the aid of the Object Browser, you can quickly move between procedures
in your database application and search for objects and methods across various
type libraries.

The Object Browser window, shown in Figure 2.16, is divided into several
sections. The top of the window displays the Project/Library drop-down listbox
with the names of all currently available libraries and projects.

A library is a special file that contains information about the objects in
an application. New libraries can be added via the References dialog box
(select Tools | References). The entry for <All Libraries> lists the objects of all
libraries installed on your computer. While the Access library contains objects
specific to using Microsoft Access, the VBA library provides access to three
objects (Debug, Err, and Collection), as well as a number of built-in functions
and constants that give you flexibility in programming. You can send output to
the Immediate window, get information about runtime errors, work with the
Collection object, manage files, deal with text strings, convert data types, set
date and time, and perform mathematical operations.

Below the Project/Library drop-down listbox is a search box (Search Text)
that allows you to quickly find information in a particular library. This field
remembers the last four items you searched for. To find only whole words,
right-click anywhere in the Object Browser window, and then choose Find
Whole Word Only from the shortcut menu. The Search Results section of the
Object Browser displays the Library, Class, and Member elements that meet
the criteria entered in the Search Text box. When you type the search text and
click the Search button, Visual Basic expands the Object Browser window to
show the search results. You can hide or show the Search Results section by
clicking the button located to the right of the binoculars. In the lower section
of the Object Browser window, the Classes listbox displays the available object
classes in the selected library. If you select the name of the open database
(e.g., Northwind) in the Project/Library listbox, the Classes list will display the
objects as listed in the Explorer window.

In Figure 2.16, the Form_Inventory List object class is selected. When
you highlight a class, the list on the right side (Members) shows the prop-
erties, methods, and events available for that class. By default, members are
listed alphabetically. You can, however, organize the Members list by group
type (properties, methods, or events) using the Group Members command
from the Object Browser shortcut menu (right-click anywhere in the Object
Browser window to display this menu).

When you select the Northwind 2007 project in the Project/Library listbox,
the Members listbox will list all the procedures available in this project. To
examine a procedure’s code, double-click its name. When you select a VBA library
in the Project/Library listbox, you will see the Visual Basic built-in functions and
constants. If you need more information on the selected class or member, click
the question mark button located at the top of the Object Browser window.

38  •   Microsoft Access 2016 Programming Pocket Primer

The bottom of the Object Browser window displays a code template area
with the definition of the selected member. Clicking the green hyperlink text
in the code template lets you jump to the selected member’s class or library in
the Object Browser window. Text displayed in the code template area can be
copied and pasted to a Code window. If the Code window is visible while the
Object Browser window is open, you can save time by dragging the highlighted
code template and dropping it into the Code window. You can easily adjust
the size of the various sections of the Object Browser window by dragging the
dividing horizontal and vertical lines.

FIGURE 2.16. The Object Browser window allows you to browse through all the objects,
properties, and methods available to the current VBA project.

Let’s put the Object Browser to use in VBA programming. Assume that
you want to write a VBA procedure to control a checkbox placed on a form
and would like to see the list of properties and methods that are available for
working with checkboxes.

 Hands-On 2.3. Using the Object Browser

1.	 In the Visual Basic Editor window, press F2 to display the Object Browser.
2.	 In the Project/Library listbox (see Figure 2.16), click the drop-down arrow and

select the Access library.
3.	 Type checkbox in the Search Text box and click the Search button ().

Make sure you don’t enter a space in the search string.
Visual Basic begins to search the Access library and displays the search

results. By analyzing the search results in the Object Browser window, you
can find the appropriate VBA instructions for writing your VBA procedures.

Getting to Know Visual Basic Editor (VBE)   •  39

For example, looking at the Members list lets you quickly determine that
you can enable or disable a checkbox by setting the Enabled property. To get
detailed information on any item found in the Object Browser, select the item
and press F1 to activate online help.

Using the VBA Object Library

While the Access library contains objects specific to using Microsoft Access,
the VBA Object Library provides access to many built-in VBA functions
grouped by categories. These functions are general in nature. They allow you
to manage files, set the date and time, interact with users, convert data types,
deal with text strings, or perform mathematical calculations. In the following
exercise, you will see how to use one of the built-in VBA functions to create a
new subfolder without leaving Access.

 Hands-On 2.4. Using Built-In VBA Functions

1.	 In the Visual Basic Editor window with the Northwind 2007 database open,
choose Insert | Module to create a new standard module.

2.	 In the Properties Window, change the Name property of Module1 to Access-
VBAPrimer_Chapter2.

3.	 In the Code window, enter Sub NewFolder() as the name of the procedure
and press Enter. Visual Basic will enter the ending keywords: End Sub.

4.	 Press F2 to display the Object Browser.
5.	 Click the drop-down arrow in the Project/Library listbox and select VBA.
6.	 Enter file in the Search Text box and press Enter.
7.	 Scroll down in the Members listbox and highlight the MkDir method.
8.	 Click the Copy button in the Object Browser window to copy the selected

method name to the Windows clipboard.
9.	 Close the Object Browser and return to the Code window. Paste the copied

instruction inside the NewFolder procedure.
10.	 Now, enter a space, followed by “C:\Study”. Be sure to enter the name of the

entire path and the quotation marks. Your NewFolder procedure should look
like the following:

Sub NewFolder()
 MkDir "C:\Study"
End Sub

11.	 Choose Run | Run Sub/UserForm to run the NewFolder procedure.
After you run the NewFolder procedure, Visual Basic creates a new folder

on drive C called Study. To see the folder, activate Windows Explorer. After
creating a new folder, you may realize that you don’t need it after all. Although
you could easily delete the folder while in Windows Explorer, how about
getting rid of it programmatically?

The Object Browser contains many other methods that are useful for
working with folders and files. The RmDir method is just as simple to use

40  •   Microsoft Access 2016 Programming Pocket Primer

as the MkDir method. To remove the Study folder from your hard drive,
replace the MkDir method with the RmDir method and rerun the NewFolder
procedure. Or create a new procedure called RemoveFolder, as shown here:

Sub RemoveFolder()
	 RmDir "C:\Study"
End Sub

When writing procedures from scratch, it’s a good idea to consult the
Object Browser for names of the built-in VBA functions.

Using the Immediate Window

The Immediate window is a sort of VBA programmer’s scratch pad. Here
you can test VBA instructions before putting them to work in your VBA proce-
dures. It is a great tool for experimenting with your new language. Use it to try
out your statements. If the statement produces the expected result, you can
copy the statement from the Immediate window into your procedure (or you
can drag it right onto the Code window if the window is visible).

To activate the Immediate window, choose View | Immediate Window
in the Visual Basic Editor, or press Ctrl+G while in the Visual Basic Editor
window.

The Immediate window can be moved anywhere on the Visual Basic Editor
window, or it can be docked so that it always appears in the same area of the
screen. The docking setting can be turned on and off from the Docking tab in
the Options dialog box (Tools | Options).

To close the Immediate window, click the Close button in the top-right
corner of the window.

The following hands-on exercise demonstrates how to use the Immediate
window to check instructions and get answers.

 Hands-On 2.5. Experiments in the Immediate Window

1.	 If you are not in the VBE window, press Alt+F11 to activate it.
2.	 Press Ctrl+G to activate the Immediate window, or choose View | Immediate

Window.
3.	 In the Immediate window, type the following instruction and press Enter:

DoCmd.OpenForm "Inventory List"

4.	 If you entered the preceding VBA statement correctly, Visual Basic opens the
Inventory List form, assuming the Northwind database is open.

5.	 Enter the following instruction in the Immediate window:

Debug.Print Forms![Inventory List].RecordSource

When you press Enter, Visual Basic indicates that Inventory is the
RecordSource for the Inventory List form. Every time you type an instruction

Getting to Know Visual Basic Editor (VBE)   •  41

in the Immediate window and press Enter, Visual Basic executes the statement
on the line where the insertion point is located. If you want to execute the
same instruction again, click anywhere in the line containing the instruction
and press Enter. For more practice, rerun the statements shown in Figure
2.17. Start from the instruction displayed in the first line of the Immediate
window. Execute the instructions one by one by clicking in the appropriate line
and pressing Enter.

FIGURE 2.17. Use the Immediate window to evaluate and try Visual Basic statements.

So far you have used the Immediate window to perform some actions. The
Immediate window also allows you to ask questions. Suppose you want to find
out the answers to “How many controls are in the Inventory List form?” or
“What’s the name of the current application?” When working in the Immediate
window, you can easily get answers to these and other questions.

In the preceding exercise, you entered two instructions. Let’s return to
the Immediate window to ask some questions. Access remembers the instruc-
tions entered in the Immediate window even after you close this window. The
contents of the Immediate window are automatically deleted when you exit
Microsoft Access.

 Hands-On 2.6. Asking Questions in the Immediate Window

1.	 Click in a new line of the Immediate window and enter the following state-
ment to find out the number of controls in the Inventory List form:

?Forms![Inventory List].Controls.Count

When you press Enter, Visual Basic enters the number of controls on a
new line in the Immediate window.

2.	 Click in a new line of the Immediate window, and enter the following state-
ment:

?Application.Name

When you press Enter, Visual Basic enters the name of the active applica-
tion on a new line in the Immediate window.

3.	 In a new line in the Immediate window, enter the following instruction:

?12/3

When you press Enter, Visual Basic shows the result of the division on a
new line. But what if you want to know the result of 3 + 2 and 12 × 8 right

42  •   Microsoft Access 2016 Programming Pocket Primer

away? Instead of entering these instructions on separate lines, you can enter
them on one line as in the following example:

?3+2:?12*8

Notice the colon separating the two blocks of instructions. When you press
the Enter key, Visual Basic displays the results 5 and 96 on separate lines in the
Immediate window.

Here are a couple of other statements you may want to try out on your own
in the Immediate window:

?Application.GetOption("Default Database Directory")
?Application.CodeProject.Name

Instead of using the question mark, you may precede the statement typed
in the Immediate window with the Print command, like this:

Print Application.CodeProject.Name

To delete the instructions from the Immediate window, highlight all the
lines and press Delete.

4.	 In the Visual Basic Editor window, choose File | Close and Return to
Microsoft Access.

5.	 Close the Northwind 2007.accdb database.

Recall that in Chapter 1 you learned how to run subroutine procedures
and functions from the Immediate window. You will find other examples
of running procedures and functions from this window in subsequent
chapters.

Summary

Programming in Access requires a working knowledge of objects and
collections of objects. In this chapter, you explored features of the Visual Basic
Editor window that can assist you in writing VBA code. Here are some impor-
tant points:

1.	 When in doubt about objects, properties, or methods in an existing VBA pro-
cedure, highlight the instruction in question and fire up the online help by
pressing F1.

2.	 When you need on-the-fly programming assistance while typing your VBA
code, use the shortcut keys or buttons available on the Edit toolbar.

3.	 If you need a quick listing of properties and methods for every available
object, or have trouble locating a hard-to-find procedure, go with the Object
Browser.

4.	 If you want to experiment with VBA and see the results of VBA commands
immediately, use the Immediate window.

In the next chapter, you will learn how you can remember values in your
VBA procedures by using various types of variables and constants.

NOTE

Chapter 3
Access VBA Fundamentals

In Chapter 2, you used the question mark to have Visual Basic return some
information in the Immediate window. Unfortunately, when you write
Visual Basic procedures outside the Immediate window, you can’t use the

question mark. So how do you obtain answers to your questions in VBA proce-
dures? To find out what a particular VBA instruction (statement) has returned,
you must tell Visual Basic to memorize it. This is done by using variables. This
chapter introduces you to many types of variables, data types, and constants
that you can and should use in your VBA procedures.

Introduction to Data Types

When you create Visual Basic procedures you have a purpose in mind: You
want to manipulate data. Because your procedures will handle different kinds
of information, you should understand how Visual Basic stores data.

The data type determines how the data is stored in the computer’s memory.
For example, data can be stored as a number, text, date, object, etc. If you
forget to tell Visual Basic the data type, it is assigned the Variant data type.
The Variant type has the ability to figure out on its own what kind of data is
being manipulated and then take on that type. The Visual Basic data types are
shown in Table 3.1. In addition to the built-in data types, you can define your
own data types; these are known as user-defined data types. Because data types
take up different amounts of space in the computer’s memory, some of them
are more expensive than others. Therefore, to conserve memory and make
your procedure run faster, you should select the data type that uses the fewest
bytes but at the same time is capable of handling the data that your procedure
has to manipulate.

44  •   Microsoft Access 2016 Programming Pocket Primer

Table 3.1. VBA data types.

Data Type Storage
Size

Range

Byte 1 byte A number in the range of 0 to 255.

Boolean 2 bytes Stores a value of True (0) or False (–1).

Integer 2 bytes A number in the range of –32,768 to 32,767.
The type declaration character for Integer is the
percent sign (%).

Long
(long integer)

4 bytes A number in the range of –2,147,483,648 to
2,147,483,647.
The type declaration character for
Long is the ampersand (&).

LongLong 8 bytes Stored as a signed 64-bit (8-byte)
number ranging in value from
–9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.
The type declaration character for LongLong is
the caret (^). LongLong is a valid declared type
only on 64-bit platforms.

LongPtr
(Long integer on
32-bit systems;
LongLong
integer
on 64-bit
systems)

4 bytes on
32-bit;
8 bytes on
64-bit

Numbers ranging in value from
–2,147,483,648 to 2,147,483,647 on 32-bit
systems; –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 on 64-bit systems.
Using LongPtr enables writing code that can
run in both 32-bit and 64-bit environments.

Single
(single-precision
floating-point)

4 bytes Single-precision floating-point real number
ranging in value from –3.402823E38 to
–1.401298E–45 for negative values and from
1.401298E–45 to 3.402823E38 for positive
values.
The type declaration character for Single is the
exclamation point (!).

Double
(double-precision
floating-point)

8 bytes Double-precision floating-point real number
in the range of –1.79769313486231E308
to –4.94065645841247E–324 for nega-
tive values and 4.94065645841247E–324 to
1.79769313486231E308 for positive values.
The type declaration character for Double is
the number sign (#).

Currency
(scaled integer)

8 bytes Monetary values used in fixed-point calcu-
lations: –922,337,203,685,477.5808 to
922,337,203,685,477.5807.
The type declaration character for Currency is
the at sign (@).

Access VBA Fundamentals   •  45

Data Type Storage
Size

Range

Decimal 14 bytes 96-bit (12-byte) signed integer scaled by a
variable power of 10. The power of 10 scaling
factor specifies the number of digits to the right
of the decimal point, and ranges from 0 to 28.
With no decimal point (scale of 0), the largest
value is +/–79,228,162,514,264,337,593,543,95
0,335. With 28 decimal places, the largest value
is +/–7.9228162514264337593543950335. The
smallest nonzero value is +/–0.00000000000000
00000000000001.
You cannot declare a variable to be of type
Decimal. You must use the Variant data type.
Use the CDec function to convert a value to a
decimal number:
Dim numDecimal As Variant
numDecimal = CDec(0.02 × 15.75 × 0.0006)

Date 8 bytes Date from January 1, 100, to December 31,
9999, and times from 0:00:00 to 23:59:59. Date
literals must be enclosed within number signs
(#); for example: #January 1, 2011#

Object 4 bytes Any Object reference.
Use the Set statement to declare a variable as an
Object.

String
(variable-length)

10 bytes
+ string
length

A variable-length string can contain up to
approximately 2 billion characters.
The type declaration character for String is the
dollar sign ($).

String
(fixed-length)

Length of
string

A fixed-length string can contain 1 to approxi-
mately 65,400 characters.

Variant
(with numbers)

16 bytes Any numeric value up to the range of a Double.

Variant
(with characters)

22 bytes
+ string
length

Any valid nonnumeric data type in the same
range as for a variable-length string.

User-defined
(using Type)

One or
more
elements

A data type you define using the Type statement.
User-defined data types can contain one or more
elements of a data type, an array, or a previously
defined user-defined type. For example:
Type custInfo
 custFullName as String
 custTitle as String
 custBusinessName as String
 custFirstOrderDate as Date
End Type

46  •   Microsoft Access 2016 Programming Pocket Primer

Understanding and Using Variables

A variable is a name used to refer to an item of data. Each time you want to
remember the result of a VBA instruction, think of a name that will represent it.
For example, if you want to keep track of the number of controls on a particular
form, you can make up a name such as NumOfControls, TotalControls, or
FormsControlCount.

The names of variables can contain characters, numbers, and punctuation
marks except for the following:

, # $ % & @ !
The name of a variable cannot begin with a number or contain a space. If you

want the name of the variable to include more than one word, use the underscore
(_) as a separator. Although a variable name can contain as many as 254 characters,
it’s best to use short and simple names. Using short names will save you typing
time when you need to reuse the variable in your Visual Basic procedure. Visual
Basic doesn’t care whether you use uppercase or lowercase letters in variable
names; however, most programmers use lowercase letters. When the variable
name is composed of more than one word, most programmers capitalize the first
letter of each word, as in the following: NumOfControls, First_Name.

sidebar  Reserved Words Can’t Be Used for Variable Names

You can use any label you want for a variable name except for the
reserved words that VBA uses. Visual Basic function names and words
that have a special meaning in VBA cannot be used as variable names.
For example, words such as Name, Len, Empty, Local, Currency, or Exit
will generate an error message if used as a variable name.

Give your variables names that can help you remember their roles. Some
programmers use a prefix to identify the variable’s type. A variable name
preceded with “str,” such as strName, can be quickly recognized within the
procedure code as the variable holding the text string.

Declaring Variables

You can create a variable by declaring it with a special command or by
just using it in a statement. When you declare your variable, you make Visual
Basic aware of the variable’s name and data type. This is called explicit variable
declaration.

Sidebar  Advantages of Explicit Variable Declaration

Explicit variable declaration:

QQ Speeds up the execution of your procedure. Since Visual Basic knows the
data type, it reserves only as much memory as is absolutely necessary to
store the data.

Sidebar

Sidebar

Access VBA Fundamentals   •  47

QQ Makes your code easier to read and understand because all the variables
are listed at the very beginning of the procedure.

QQ Helps prevent errors caused by misspelling a variable name. Visual Basic
automatically corrects the variable name based on the spelling used in the
variable declaration.

If you don’t let Visual Basic know about the variable prior to using it, you are
implicitly telling VBA that you want to create this variable. Implicit variables
are automatically assigned the Variant data type (see Table 3.1 earlier in the
chapter). Although implicit variable declaration is convenient (it allows you to
create variables on the fly and assign values to them without knowing in advance
the data type of the values being assigned), it can cause several problems.

Sidebar  Disadvantages of Implicit Variable Declaration

QQ If you misspell a variable name in your procedure, Visual Basic may display
a runtime error or create a new variable. You are guaranteed to waste some
time troubleshooting problems that could easily have been avoided had you
declared your variable at the beginning of the procedure.

QQ Since Visual Basic does not know what type of data your variable will store,
it assigns it a Variant data type. This causes your procedure to run slower
because Visual Basic has to check the data type every time it deals with your
variable. And because Variant variables can store any type of data, Visual
Basic has to reserve more memory to store your data.

You declare a variable with the Dim keyword. Dim stands for “dimension.”
The Dim keyword is followed by the variable’s name and type.

Suppose you want the procedure to display the age of an employee. Before
you can calculate the age, you must feed the procedure the employee’s date
of birth. To do this, you declare a variable called dateOfBirth, as follows:

Dim dateOfBirth As Date

Notice that the Dim keyword is followed by the name of the variable
(dateOfBirth). If you don’t like this name, you are free to replace it with
another word, as long as the word you are planning to use is not one of the VBA
keywords. You specify the data type the variable will hold by including the As
keyword followed by one of the data types from Table 3.1. The Date data type
tells Visual Basic that the variable dateOfBirth will store a date.

To store the employee’s age, you declare the variable as follows:

Dim intAge As Integer

The intAge variable will store the number of years between today’s date
and the employee’s date of birth. Because age is displayed as a whole number,
the intAge variable has been assigned the Integer data type. You may also
want your procedure to keep track of the employee’s name, so you declare
another variable to hold the employee’s first and last name:

Sidebar

48  •   Microsoft Access 2016 Programming Pocket Primer

Dim strFullName As String

Because the word Name is on the VBA list of reserved words, using it in
your VBA procedure would guarantee an error. To hold the employee’s full
name, we used the variable strFullName and declared it as the String data
type because the data it will hold is text. Declaring variables is regarded as
good programming practice because it makes programs easier to read and
helps prevent certain types of errors.

Sidebar  Informal (Implicit) Variables

Variables that are not explicitly declared with Dim statements are said
to be implicitly declared. These variables are automatically assigned a data
type called Variant. They can hold numbers, strings, and other types of
information. You can create an informal variable by assigning some value
to a variable name anywhere in your VBA procedure. For example, you
implicitly declare a variable in the following way: intDaysLeft = 100.

Now that you know how to declare your variables, let’s write a procedure
that uses them.

O

N THE CD 	Please note that files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 3.1. Using Variables

1.	 Start Microsoft Access and create a new database named Chap03.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2.	 Once your new database is opened, press Alt+F11 to switch to the Visual Basic
Editor window.

3.	 Choose Insert | Module to add a new standard module, and notice Module1
under the Modules folder in the Project Explorer window.

4.	 In the Module1 (Code) window, enter the following AgeCalc procedure.

Sub AgeCalc()
 ' variable declaration
 Dim strFullName As String
 Dim dateOfBirth As Date
 Dim intAge As Integer

 ' assign values to variables
 strFullName = "John Smith"
 dateOfBirth = #1/3/1967#

 ' calculate age
 IntAge = Year(Now()) - Year(dateOfBirth)

 ' print results to the Immediate window
 Debug.Print strFullName & " is " & intAge & " years old."
End Sub

Sidebar

Access VBA Fundamentals   •  49

Notice that in the AgeCalc procedure the variables are declared on
separate lines at the beginning of the procedure. You can also declare several
variables on the same line, separating each variable name with a comma, as
shown here (be sure to enter this on one line):

Dim strFullName As String, dateOfBirth As Date, intAge As
Integer

When you list all your variables on one line, the Dim keyword appears only
once at the beginning of the variable declaration line.

5.	 If the Immediate window is not open, press Ctrl+G or choose View | Immediate
Window. Because the example procedure writes the results to the Immedi-
ate window, you should ensure that this window is open prior to executing
Step 6.

6.	 To run the AgeCalc procedure, click any line between the Sub and End Sub
keywords and press F5.

Sidebar  What Is the Variable Type?

You can find out the type of a variable used in your procedure by right-
clicking the variable name and selecting Quick Info from the shortcut
menu.

When Visual Basic executes the variable declaration statements, it creates
the variables with the specified names and reserves memory space to store
their values. Then specific values are assigned to these variables. To assign a
value to a variable, you begin with a variable name followed by an equal sign.
The value entered to the right of the equal sign is the data you want to store in
the variable. The data you enter here must be of the type stated in the variable
declaration. Text data should be surrounded by quotation marks and dates by
characters.

Using the data supplied by the dateOfBirth variable, Visual Basic
calculates the age of an employee and stores the result of the calculation in
the variable called intAge. Then, the full name of the employee and the age
are printed to the Immediate window using the instruction Debug.Print.

Sidebar  Concatenation

You can combine two or more strings to form a new string. The joining
operation is called concatenation. You saw an example of concatenated
strings in the AgeCalc procedure in Hands-On 3.1. Concatenation is
represented by an ampersand character (&). For instance, "His name
is " & strFirstName will produce a string like: His name is John
or His name is Michael. The name of the person is determined by the
contents of the strFirstName variable. Notice that there is an extra
space between “is” and the ending quotation mark: "His name is ".

Sidebar

Sidebar

50  •   Microsoft Access 2016 Programming Pocket Primer

Concatenation of strings can also be represented by a plus sign (+);
however, many programmers prefer to restrict the plus sign to numerical
operations to eliminate ambiguity.

Specifying the Data Type of a Variable

If you don’t specify the variable’s data type in the Dim statement, you end
up with the untyped variable. Untyped variables in VBA are always assigned
the Variant data type. Variant data types can hold all the other data types
(except for user-defined data types). This feature makes Variant a very flexible
and popular data type. Despite this flexibility, it is highly recommended that
you create typed variables. When you declare a variable of a certain data type,
your VBA procedure runs faster because Visual Basic does not have to stop to
analyze the variable to determine its type.

Visual Basic can work with many types of numeric variables. Integer vari-
ables can hold only whole numbers from –32,768 to 32,767. Other types of
numeric variables are Long, Single, Double, and Currency. The Long varia-
bles can hold whole numbers in the range –2,147,483,648 to 2,147,483,647. As
opposed to Integer and Long variables, Single and Double variables can hold
decimals.

String variables are used to refer to text. When you declare a variable of the
String data type, you can tell Visual Basic how long the string should be. For
instance, Dim strExtension As String * 3 declares the fixed-length
String variable named strExtension that is three characters long. If you
don’t assign a specific length, the String variable will be dynamic. This means
that Visual Basic will make enough space in computer memory to handle what-
ever text length is assigned to it.

After a variable is declared, it can store only the type of information that
you stated in the declaration statement.

Assigning string values to numeric variables or numeric values to string
variables results in the error message “Type Mismatch” or causes Visual Basic
to modify the value. For example, if your variable was declared to hold whole
numbers and your data uses decimals, Visual Basic will disregard the decimals
and use only the whole part of the number.

Let’s use the MyNumber procedure in Hands-On 3.2 as an example of how
Visual Basic modifies the data according to the assigned data types.

 Hands-On 3.2. Understanding the Data Type of a Variable

This hands-on exercise uses the C:\VBAPrimerAccess_ByExample\
Chap03.accdb database that you created in Hands-On 3.1.

1.	 In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2.	 Enter the following procedure code for MyNumber in the new module’s
Code window.

Access VBA Fundamentals   •  51

Sub MyNumber()
 Dim intNum As Integer
 intNum = 23.11
 MsgBox intNum
End Sub

3.	 To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm.

When you run this procedure, Visual Basic displays the contents of the vari-
able intNum as 23, and not 23.11, because the intNum variable was declared
as an Integer data type.

Using Type Declaration Characters

If you don’t declare a variable with a Dim statement, you can still designate
a type for it by using a special character at the end of the variable name. For
example, to declare the FirstName variable as String, you append the dollar
sign to the variable name:

Dim FirstName$

This is the same as Dim FirstName As String. Other type declara-
tion characters are shown in Table 3.2. Notice that the type declaration charac-
ters can be used only with six data types. To use the type declaration character,
append the character to the end of the variable name.

Table 3.2. Type declaration characters.

Data Type Character

Integer %

Long &

Single !

Double #

Currency @

String $

Sidebar  Declaring Typed Variables

The variable type can be indicated by the As keyword or by attach-
ing a type symbol. If you don’t add the type symbol or the As command,
VBA will default the variable to the Variant data type.

 Hands-On 3.3. Using Type Declaration Characters in Variable Names

This hands-on exercise uses the Chap03.accdb database that you created
in Hands-On 3.1.

1.	 In the Visual Basic window, choose Insert | Module to add a new module.

Sidebar

52  •   Microsoft Access 2016 Programming Pocket Primer

2.	 Enter the AgeCalc2 procedure code in the new module’s Code window.

Sub AgeCalc2()
 ' variable declaration
 Dim FullName$
 Dim DateOfBirth As Date
 Dim age%
 ' assign values to variables
 FullName$ = "John Smith"
 DateOfBirth = #1/3/1967#
 ' calculate age
 age% = Year(Now()) - Year(DateOfBirth)
 ' print results to the Immediate window
 Debug.Print FullName$ & " is " & age% & " years old."
End Sub

3.	 To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm.

Assigning Values to Variables

Now that you know how to correctly name and declare variables, it’s time
to learn how to initialize them.

 Hands-On 3.4. Assigning Values to Variables

This hands-on exercise uses the C:\VBAPrimerAccess_ByExample\
Chap03.accdb database that you created in Hands-On 3.1.

1.	 In the Visual Basic window, choose Insert | Module to add a new module.
2.	 Enter the code of the CalcCost procedure in the new module’s Code

window.

Sub CalcCost()
 slsPrice = 35

 slsTax = 0.085
 cost = slsPrice + (slsPrice * slsTax)
 strMsg = "The calculator total is " & "$" & cost & "."
 MsgBox strMsg
End Sub

3.	 To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm.

4.	 Change the calculation of the cost variable in the CalcCost procedure as
follows:

cost = Format(slsPrice + (slsPrice * slsTax), "0.00")

5.	 To run the modified procedure, click any line between the Sub and End Sub
keywords and press F5 or choose Run | Run Sub/UserForm.

Access VBA Fundamentals   •  53

The CalcCost procedure uses four variables: slsPrice, slsTax, cost,
and strMsg. Because none of these variables have been explicitly declared
with the Dim keyword and a specific data type, they all have the same data
type—Variant. The variables slsPrice and slsTax were created by
assigning some values to the variable names at the beginning of the proce-
dure. The cost variable was assigned the value resulting from the calculation
slsPrice + (slsPrice × slsTax). The cost calculation uses the values
supplied by the slsPrice and slsTax variables. The strMsg variable puts
together a text message to the user. This message is then displayed with the
MsgBox function.

When you assign values to variables, you follow the name of the variable
with the equal sign. After the equal sign you enter the value of the variable.
This can be text surrounded by quotation marks, a number, or an expression.
While the values assigned to the variables slsPrice, slsTax, and cost
are easily understood, the value stored in the strMsg variable is a little more
involved.

Let’s examine the content of the strMsg variable:

strMsg = "The calculator total is " & "$" & cost & "."

QQ The string "The calculator total is " begins and ends with
quotation marks. Notice the extra space before the ending quotation
mark.

QQ The & symbol allows one string to be appended to another string or to the
contents of a variable and must be used every time you want to append a
new piece of information to the previous string.

QQ The $ character is used to denote the type of currency. Because it is a char-
acter, it is surrounded by quotation marks.

QQ The & symbol attaches another string.
QQ The cost variable is a placeholder. The actual cost of the calculator will be

displayed here when the procedure runs.
QQ The & symbol attaches yet another string.
QQ The period (.) is a character and must be surrounded by quotation marks.

When you require a period at the end of the sentence, you must attach it
separately when it follows the name of a variable.

Sidebar  Variable Initialization

Visual Basic automatically initializes a new variable to its default value
when it is created. Numerical variables are set to zero (0), Boolean variables
are initialized to False, string variables are set to the empty string (“”),
and Date variables are set to December 30, 1899.

Sidebar

54  •   Microsoft Access 2016 Programming Pocket Primer

Notice that the cost displayed in the message box has three decimal places.
To display the cost of a calculator with two decimal places, you need to use
a function. VBA has special functions that allow you to change the format of
data. To change the format of the cost variable you should use the Format
function. This function has the following syntax:

Format(expression, format)

where expression is a value or variable you want to format and format
is the type of format you want to apply.

After having tried the CalcCost procedure, you may wonder why you should
bother declaring variables if Visual Basic can handle undeclared variables so
well. The CalcCost procedure is very short, so you don’t need to worry about
how many bytes of memory will be consumed each time Visual Basic uses
the Variant variable. In short procedures, however, it is not the memory that
matters but the mistakes you are bound to make when typing variable names.
What will happen if the second time you use the cost variable you omit the
“o” and refer to it as cst?

strMsg = "The calculator total is " & "$" & cst & "."

And what will you end up with if, instead of slsTax, you use the word tax
in the formula?

cost = Format(slsPrice + (slsPrice * tax), "0.00")

When you run the procedure with the preceding errors introduced, Visual
Basic will not show the cost of the calculator because it does not find the
assignment statement for the cst variable. And because Visual Basic does
not know the sales tax, it displays the price of the calculator as the total cost.
Visual Basic does not guess—it simply does what you tell it to do. This brings
us to the next section, which explains how to make sure that errors of this sort
don’t occur.

Before you continue with this chapter, be sure to replace the names of the
variables cst and tax with cost and slsTax.

Forcing Declaration of Variables

Visual Basic has an Option Explicit statement that you can use to
automatically remind yourself to formally declare all your variables. This
statement must be entered at the top of each of your modules. The Option
Explicit statement will cause Visual Basic to generate an error message
when you try to run a procedure that contains undeclared variables.

 Hands-On 3.5. Forcing Declaration of Variables

1.	 Return to the Code window where you entered the CalcCost procedure
(see Hands-On 3.4).

NOTE

Access VBA Fundamentals   •  55

2.	 At the top of the module window (below the Option Compare Database
statement), enter

Option Explicit

and press Enter. Visual Basic will display the statement in blue.
3.	 Position the insertion point anywhere within the CalcCost procedure and press

F5 to run it. Visual Basic displays this error message: “Compile error: Variable
not defined.”

4.	 Click OK to exit the message box. Visual Basic selects the name of the
variable, slsPrice, and highlights in yellow the name of the procedure,
Sub CalcCost(). The titlebar displays “Microsoft Visual Basic for
Applications—Chap03 [break]—[Module4 (Code)].” The Visual Basic Break
mode allows you to correct the problem before you continue. Now you have to
formally declare the slsPrice variable.

5.	 Enter the declaration statement

Dim slsPrice As Currency

on a new line just below Sub CalcCost()and press F5 to continue.
When you declare the slsPrice variable and rerun your procedure, Visual
Basic will generate the same compile error as soon as it encounters another
variable name that was not declared. To fix the remaining problems with the
variable declaration in this procedure, choose Run | Reset to exit the Break
mode.

6.	 Enter the following declarations at the beginning of the CalcCost proce-
dure:

' declaration of variables
Dim slsPrice As Currency
Dim slsTax As Single
Dim cost As Currency
Dim strMsg As String

7.	 To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm. Your revised CalcCost
procedure looks like this:

' revised CalcCost procedure with variable declarations
Sub CalcCost()
 ' declaration of variables
 Dim slsPrice As Currency
 Dim slsTax As Single
 Dim cost As Currency
 Dim strMsg As String
 slsPrice = 35
 slsTax = 0.085
 cost = Format(slsPrice + (slsPrice * slsTax), "0.00")
 strMsg = "The calculator total is " & "$" & cost & "."
 MsgBox strMsg
End Sub

56  •   Microsoft Access 2016 Programming Pocket Primer

The Option Explicit statement you entered at the top of the module
Code window (see step 2) forced you to declare variables. Because you must
include the Option Explicit statement in each module where you want
to require variable declaration, you can have Visual Basic enter this statement
for you each time you insert a new module.

To automatically include Option Explicit in every new module you
create, follow these steps:

1.	 Choose Tools | Options.
2.	 Ensure that the Require Variable Declaration checkbox is selected in the

Options dialog box (Editor tab).
3.	 Choose OK to close the Options dialog box.

From now on, every new module will be added with the Option
Explicit statement. If you want to require variables to be explicitly declared
in a module you created prior to enabling Require Variable Declaration in the
Options dialog box, you must enter the Option Explicit statement manu-
ally by editing the module yourself.

Sidebar  More about Option Explicit

Option Explicit forces formal (explicit) declaration of all
variables in a particular module. One big advantage of using Option
Explicit is that misspellings of variable names will be detected at
compile time (when Visual Basic attempts to translate the source code
to executable code). The Option Explicit statement must appear
in a module before any procedures.

Understanding the Scope of Variables

Variables can have different ranges of influence in a VBA procedure. Scope
defines the availability of a particular variable to the same procedure or other
procedures.

Variables can have the following three levels of scope in Visual Basic for
Applications:

QQ Procedure-level scope
QQ Module-level scope
QQ Project-level scope

Procedure-Level (Local) Variables

From this chapter you already know how to declare a variable using the
Dim statement. The position of the Dim statement in the module determines
the scope of a variable. Variables declared with the Dim statement within a
VBA procedure have a procedure-level scope. Procedure-level variables can

Sidebar

Access VBA Fundamentals   •  57

also be declared by using the Static statement (see “Using Static Variables”
later in this chapter).

Procedure-level variables are frequently referred to as local variables,
which can be used only in the procedure where they were declared. Unde-
clared variables always have a procedure-level scope.

A variable’s name must be unique within its scope. This means that you
cannot declare two variables with the same name in the same procedure.
However, you can use the same variable name in different procedures. In
other words, the CalcCost procedure can have the slsTax variable, and the
ExpenseRep procedure in the same module can have its own variable called
slsTax. Both variables are independent of each other.

Sidebar  Local Variables: With Dim or Static?

When you declare a local variable with the Dim statement, the value
of the variable is preserved only while the procedure in which it is de-
clared is running. As soon as the procedure ends, the variable dies. The
next time you execute the procedure, the variable is reinitialized.

When you declare a local variable with the Static statement, the
value of the variable is preserved after the procedure in which the variable
was declared has finished running. Static variables are reset when you quit
the Microsoft Access application or when a runtime error occurs while the
procedure is running.

Module-Level Variables

Often you want the variable to be available to other VBA procedures in the
module after the procedure in which the variable was declared has finished
running. This situation requires that you change the variable’s scope to module-
level.

Module-level variables are declared at the top of the module (above the
first procedure definition) by using the Dim or Private statement. These
variables are available to all of the procedures in the module in which they
were declared, but are not available to procedures in other modules.

For instance, to make the slsTax variable available to any other procedure
in the module, you could declare it by using the Dim or Private statement:

Option Explicit
Dim slsTax As Single ' module-level variable declared with
 ' Dim statement

Sub CalcCost()
 ...Instructions of the procedure...
End Sub

Sidebar

58  •   Microsoft Access 2016 Programming Pocket Primer

Notice that the slsTax variable is declared at the top of the module, just
below the Option Explicit statement and before the first procedure defi-
nition. You could also declare the slsTax variable like this:

Option Explicit
Private slsTax As Single ' module-level variable declared with
 ' Private statement
Sub CalcCost()
 ...Instructions of the procedure...
End Sub

There is no difference between module-level variables declared with Dim
or Private statements.

Before you can see how module-level variables actually work, you need
another procedure that also uses the slsTax variable.

 Hands-On 3.6. Understanding Module-Level Variables

This hands-on exercise requires the prior completion of Hands-On 3.4
and 3.5.

1.	 In the Code window, in the same module where you entered the CalcCost
procedure, cut the declaration line Dim slsTax As Single and paste it at the
top of the module sheet, below the Option Explicit statement.

2.	 Enter the following code of the ExpenseRep procedure in the same module
where the CalcCost procedure is located (see Figure 3.1).

Sub ExpenseRep()
 Dim slsPrice As Currency
 Dim cost As Currency
 slsPrice = 55.99
 cost = slsPrice + (slsPrice * slsTax)
 MsgBox slsTax
 MsgBox cost
End Sub

The ExpenseRep procedure declares two Currency type variables:
slsPrice and cost. The slsPrice variable is then assigned a value of
55.99. The slsPrice variable is independent of the slsPrice variable
declared within the CalcCost procedure.

The ExpenseRep procedure calculates the cost of a purchase. The cost
includes the sales tax. Because the sales tax is the same as the one used in the
CalcCost procedure, the slsTax variable has been declared at the module
level. After Visual Basic executes the CalcCost procedure, the contents of the
slsTax variable equals 0.085. If slsTax were a local variable, the contents
of this variable would be empty upon the termination of the CalcCost proce-
dure. The ExpenseRep procedure ends by displaying the value of the slsTax
and cost variables in two separate message boxes.

After running the CalcCost procedure, Visual Basic erases the contents
of all the variables except for the slsTax variable, which was declared at

Access VBA Fundamentals   •  59

a module level. As soon as you attempt to calculate the cost by running the
ExpenseRep procedure, Visual Basic retrieves the value of the slsTax vari-
able and uses it in the calculation.

FIGURE 3.1. Using module-level variables.

3.	 Click anywhere inside the revised CalcCost procedure and press F5 to
run it.

4.	 As soon as the CalcCost procedure finishes executing, run the ExpenseRep
procedure.

Project-Level Variables

In the previous sections, you learned that declaring a variable with the
Dim or Private keyword at the top of the module makes it available to
other procedures in that module. Module-level variables that are declared
with the Public keyword (instead of Dim or Private) have project-level
scope. This means that they can be used in any Visual Basic for Applications
module. When you want to work with a variable in all the procedures in all

60  •   Microsoft Access 2016 Programming Pocket Primer

the open VBA projects, you must declare it with the Public keyword—for
instance:

Option Explicit
Public gslsTax As Single
Sub CalcCost()
...Instructions of the procedure...
End Sub

Notice that the gslsTax variable declared at the top of the module with
the Public keyword will now be available to any VBA modules that your code
references.

A variable declared in the declaration section of a module using the
Public keyword is called a global variable. This variable can be seen by all
procedures in the database’s modules. It is customary to use the prefix “g” to
indicate this type of variable.

When using global variables, it’s important to keep in mind the
following:

QQ The value of the global variable can be changed anywhere in your program.
An unexpected change in the value of a variable is a common cause of prob-
lems. Be careful not to write a block of code that modifies a global variable.
If you need to change the value of a variable within your application, make
sure you are using a local variable.

QQ Values of all global variables declared with the Public keyword are
cleared when Access encounters an error. Since the release of the Access
2007 database format (ACCDB), you can use the TempVars collection for
your global variable needs (see “Using Temporary Variables” later in this
chapter).

QQ Don’t put your global variable declaration in a form class module.
Variables in the code module behind the form are never global even
if you declare them as such. You must use a standard code module
(Insert | Module) to declare variables to be available in all modules and
forms. Variables declared in a standard module can be used in the code
for any form.

QQ Use constants as much as possible whenever your application requires
global variables. Constants are much more reliable because their values are
static. Constants are covered later in this chapter.

Sidebar  Public Variables and the Option Private Module Statement

Variables declared using the Public keyword are available to
all procedures in all modules across all applications. To restrict a
public module-level variable to the current database, include the
Option Private Module statement in the declaration section of
the standard or class module in which the variable is declared.

Sidebar

Access VBA Fundamentals   •  61

Understanding the Lifetime of Variables

In addition to scope, variables have a lifetime. The lifetime of a variable
determines how long a variable retains its value. Module-level and project-
level variables preserve their values as long as the project is open. Visual
Basic, however, can reinitialize these variables if required by the program’s
logic. Local variables declared with the Dim statement lose their values when a
procedure has finished. Local variables have a lifetime as long as a procedure is
running, and they are reinitialized every time the program is run. Visual Basic
allows you to extend the lifetime of a local variable by changing the way it is
declared.

Using Temporary Variables

In the previous section, you learned that you can declare a global variable
with the Public keyword and use it throughout your entire application. You
also learned that these variables can be quite problematic, especially when
you or another programmer accidentally changes the value of the variable or
your application encounters an error and the values of the variables you have
initially set for your application to use are completely wiped out. To avoid
such problems, many programmers resort to using a separate global variables
form to hold their global variables. And if they need certain values to be avail-
able the next time the application starts, they create a separate database table
to store these values. A global variables form is simply a blank Access form
where you can place both bound and unbound controls. Bound controls are
used to pull the data from the table where global variables have been stored.
You can use unbound controls on a form to store values of global variables that
are not stored in a separate table. Simply set the ControlSource property
of the unbound control by typing a value in it or use a VBA procedure to set
the value of the ControlSource. The form set up as a global variables form
must be open while the application is running for the values of the bound and
unbound controls to be available to other forms, reports, and queries in the
database. A global variables form can be hidden if the values of the global
variables are pulled from a database table or set using VBA procedures or
macro actions.

If your database is in the ACCDB format, instead of using a database table
or a global variables form, you can use the TempVars collection to store the
Variant values you want to reuse. TempVars stands for temporary variables.
Temporary variables are global. You can refer to them in VBA modules, event
procedures, queries, expressions, add-ins, and in any referenced databases.
Access .ACCDB databases allow you to define up to 255 temporary variables
at one time. These variables remain in memory until you close the database
(unless you remove them when you are finished working with them). Unlike
public variables, temporary variable values are not cleared when an error
occurs.

62  •   Microsoft Access 2016 Programming Pocket Primer

Creating a Temporary Variable with a TempVars Collection Object

Let’s look at some examples of using the TempVars collection first
introduced in Access 2007. Assume your application requires three variables
named gtvUserName, gtvUserFolder, and gtvEndDate.

To try this out, open the Immediate window and type the following state-
ments. The variable is created as soon as you press Enter after each statement.

TempVars("gtvUserName").Value = "John Smith"
TempVars("gtvUserFolder").Value = Environ("HOMEPATH")
TempVars("gtvEndDate").Value = Format(now(),"mm/dd/yyyy")

Notice that to create a temporary variable all you have to do is specify its
value. If the variable does not already exist, Access adds it to the TempVars
collection. If the variable exists, Access modifies its value.

You can explicitly add a global variable to the TempVars collection by
using the Add method, like this:

TempVars.Add "gtvCompleted", "true"

Retrieving Names and Values of TempVar Objects

Each TempVar object in the TempVars collection has Name and Value
properties that you can use to access the variable and read its value from any
procedure. By default, the items in the collection are numbered from zero (0),
with the first item being zero, the second item being one, the third two, and
so on. Therefore, to find the value of the second variable in the TempVars
you have entered (gtvUserFolder), type the following statement in the
Immediate window:

?TempVars(1).Value

When you press Enter, you will see the location of the user’s private folder on
the computer. In this case, it is your private folder. The folder information was
returned by passing the “HOMEPATH” parameter to the built-in Environ
function. Functions and parameter passing are covered in Chapter 4.

You can also retrieve the value of the variable from the TempVars collec-
tion by using its name, like this:

?TempVars("gtvUserFolder").Value

You can iterate through the TempVars collection to see the names and
values of all global variables that you have placed in it. To do this from the
Immediate window, you need to use the colon operator (:) to separate lines of
code. Type the following statement all on one line to try this out:

For Each gtv in TempVars : Debug.Print gtv.Name & ":"
& gtv.Value : Next

When you press Enter, the Debug.Print statement will write to the
Immediate window a name and value for each variable that is currently stored
in the TempVars collection:

Access VBA Fundamentals   •  63

gtvUserName:John Smith
gtvUserFolder:\Documents and Settings\John
gtvEndDate:09/12/2015
gtvCompleted:true

The For Each…Next statement, a popular VBA programming construct,
is covered in detail in Chapter 6. The “gtv” is an object variable used as an iter-
ator. An iterator allows you to traverse through all the elements of a collection.
You can use any variable name as an iterator as long as it is not a VBA keyword.
Object variables are discussed later in this chapter. For more information on
working with collections, see Chapter 8.

Using Temporary Global Variables in Expressions

You can use temporary global variables anywhere expressions can be
used. For example, you can set the value of the unbound text box control on
a form to display the value of your global variable by activating the property
sheet and typing the following in the ControlSource property of the text
box:

=[TempVars]![gtvCompleted]

You can also use a temporary variable to pass selection criteria to queries:

SELECT * FROM Orders WHERE Order_Date = TempVars!gtvEndDate

Removing a Temporary Variable from a TempVars Collection Object

When you are done using a variable, you can remove it from the TempVars
collection with the Remove method, like this:

TempVars.Remove "gtvUserFolder"

To check the number of the TempVar objects in the TempVars collec-
tion, use the Count property in the Immediate window:

?TempVars.Count

Finally, to quickly remove all global variables (TempVar objects) from the
TempVars collection, simply use the RemoveAll method, like this:

TempVars.RemoveAll

Sidebar  The TempVars Collection Is Exposed to Macros

The following three macros allow macro users to set and remove TempVar
objects:

QQ SetTempVar—Sets a TempVar to a given value. You must specify the
name of the temporary variable and the expression that will be used to set
the value of this variable. Expressions must be entered without an equal
sign (=).

Sidebar

64  •   Microsoft Access 2016 Programming Pocket Primer

QQ RemoveTempVar—Removes the TempVar from the TempVars collection.
You must specify the name of the temporary variable you want to remove.

QQ RemoveAllTempVars—Clears the TempVars collection.

The values of TempVar objects can be used in the arguments and
in the condition columns of macros.

Using Static Variables

A variable declared with the Static keyword is a special type of local
variable. Static variables are declared at the procedure level. Unlike the local
variables declared with the Dim keyword, static variables remain in existence
and retain their values when the procedure in which they were declared ends.

The CostOfPurchase procedure (see Hands-On 3.7) demonstrates the use
of the static variable allPurchase. The purpose of this variable is to keep
track of the running total.

 Hands-On 3.7. Using Static Variables

This hands-on exercise uses the C:\VBAPrimerAccess_ByExample\
Chap03.accdb database that you created in Hands-On 3.1.

1.	 In the Visual Basic window, choose Insert | Module to add a new module.
2.	 Enter the following CostOfPurchase procedure code in the new module’s

Code window.

Sub CostOfPurchase()
 ' declare variables
 Static allPurchase
 Dim newPurchase As String
 Dim purchCost As Single
 newPurchase = InputBox("Enter the cost of a purchase:")
 purchCost = CSng(newPurchase)
 allPurchase = allPurchase + purchCost
 ' display results
 MsgBox "The cost of a new purchase is: " & newPurchase
 MsgBox "The running cost is: " & allPurchase
End Sub

This procedure begins with declaring a static variable named allPurchase
and two local variables named newPurchase and purchCost. The
InputBox function is used to get a user’s input while the procedure is running.
As soon as the user inputs the value and clicks OK, Visual Basic assigns the
value to the newPurchase variable. Because the result of the InputBox
function is always a string, the newPurchase variable was declared as the
String data type. You cannot use strings in mathematical calculations, so the
next instruction uses a type conversion function (CSng) to translate the text
value into a numeric value, which is stored as a Single data type in the variable
purchCost. The CSng function requires only one argument: the value you

Access VBA Fundamentals   •  65

want to translate. Refer to Chapter 4 for more information about converting
data types.

The next instruction, allPurchase = allPurchase +
purchCost, adds the new value supplied by the InputBox function
to the current purchase value. When you run this procedure for the first
time, the value of the allPurchase variable is the same as the value
of the purchCost variable. During the second run, the value of the
static variable is increased by the new value entered in the dialog box. You
can run the CostOfPurchase procedure as many times as you want. The
allPurch variable will keep the running total for as long as the project is
open.

3.	 To run the procedure, position the insertion point anywhere within the
CostOfPurchase procedure and press F5.

4.	 When the dialog box appears, enter a number. For example, type 100 and
press Enter. Visual Basic displays the message “The cost of a new purchase
is: 100.”

5.	 Click OK in the message box. Visual Basic displays the second message
“The running cost is: 100.”

6.	 Rerun the same procedure.
7.	 When the input box appears, enter another number. For example, type 50 and

press Enter. Visual Basic displays the message “The cost of a new purchase
is: 50.”

8.	 Click OK in the message box. Visual Basic displays the second message
“The running cost is: 150.”

9.	 Run the procedure a couple of times to see how Visual Basic keeps track of the
running total.

Sidebar  Type Conversion Functions

To learn more about the CSng function, position the insertion point
anywhere within the word CSng and press F1.

Using Object Variables

The variables you’ve learned about so far are used to store data, which is
the main reason for using “normal” variables in your procedures. There are
also special variables that refer to the Visual Basic objects. These variables are
called object variables. Object variables don’t store data; they store the loca-
tion of the data. You can use them to reference databases, forms, and controls
as well as objects created in other applications. Object variables are declared
in a similar way as the variables you’ve already seen. The only difference is
that after the As keyword, you enter the type of object your variable will point
to—for instance:

Dim myControl As Control

Sidebar

66  •   Microsoft Access 2016 Programming Pocket Primer

This statement declares the object variable called myControl of type
Control.

Dim frm As Form

This statement declares the object variable called frm of type Form.
You can use object variables to refer to objects of a generic type, such

as Application, Control, Form, or Report, or you can point your object
variable to specific object types, such as TextBox, ToggleButton, CheckBox,
CommandButton, ListBox, OptionButton, Subform or Subreport, Label,
BoundObjectFrame or UnboundObjectFrame, and so on. When you declare
an object variable, you also have to assign it a specific value before you can
use it in your procedure. You assign a value to the object variable by using the
Set keyword followed by the equal sign and the value that the variable refers
to—for example:

Set myControl = Me!CompanyName

The preceding statement assigns a value to the object variable called
myControl. This object variable will now point to the CompanyName control
on the active form. If you omit the word Set, Visual Basic will display the error
message “Runtime error 91: Object variable or With block variable not set.”

Again, it’s time to see a practical example. The HideControl procedure
in Hands-On 3.8 demonstrates the use of the object variables frm and
myControl.

 Hands-On 3.8. Working with Object Variables

1.	 Close the currently open Access database Chap03.accdb. When prompted to
save changes in the modules, click OK. Save the modules with the suggested
default names Module1, Module2, and so on.

2.	 Copy the HandsOn_03_8.accdb database from the companion CD to
your C:\VBAPrimerAccess_ByExample folder. This database contains a
Customer table and a simple Customer form imported from the Northwind.
mdb sample database that shipped with an earlier version of Microsoft Access.

3.	 Open Access and load the C:\VBAPrimerAccess_ByExample\Hand-
sOn_03_8.accdb database file.

4.	 Open the Customers form in Form view.
5.	 Press Alt+F11 to switch to the Visual Basic Editor window.
6.	 Choose Insert | Module to add a new module.
7.	 Enter the following HideControl procedure code in the new module’s Code

window.

Sub HideControl()
 ' this procedure is run against the open Customers form
 Dim frm As Form
 Dim myControl As Control
 Set frm = Forms!Customers

Access VBA Fundamentals   •  67

 Set myControl = frm.CompanyName
 myControl.Visible = False
End Sub

8.	 To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm.

The procedure begins with the declaration of two object variables called
frm and myControl. The object variable frm is set to reference the
Customers form. For the procedure to work, the referenced form must be
open. Next, the myControl object variable is set to point to the Company-
Name control located on the Customers form.

Instead of using the object’s entire address, you can use the shortcut—the
name of the object variable. For example, the statement

Set myControl = frm.CompanyName

is the same as

Set myControl = Forms!Customers.CompanyName

The purpose of this procedure is to hide the control referenced by the
object variable myControl. After running the HideControl procedure,
switch to the Microsoft Access window containing the open Customers form.
The CompanyName control should not be visible on the form.

To make the CompanyName text box visible again, modify the last line of
this procedure by setting the Visible property of myControl to True and
rerun the procedure.

Sidebar  Advantages of Using Object Variables

The advantages of object variables are:

QQ They can be used instead of the actual object.
QQ They are shorter and easier to remember than the actual values they point

to.
QQ You can change their meaning while your procedure is running.

Disposing of Object Variables

When the object variable is no longer needed, you should assign Nothing to
it. This frees up memory and system resources:

Set frm = Nothing
Set myControl = Nothing

Finding a Variable Definition

When you find an instruction that assigns a value to a variable in a VBA
procedure, you can quickly locate the definition of the variable by selecting

Sidebar

NOTE

68  •   Microsoft Access 2016 Programming Pocket Primer

the variable name and pressing Shift+F2. Alternately, you can choose View |
Definition. Visual Basic will jump to the variable declaration line. To return
your mouse pointer to its previous position, press Ctrl+Shift+F2 or choose
View | Last Position. Let’s try it out.

 Hands-On 3.9. Finding a Variable Definition

This hands-on exercise requires prior completion of Hands-On 3.8.

1.	 Locate the code of the procedure HideControl you created in Hands-On
3.8.

2.	 Locate the statement myControl.Visible = .
3.	 Right-click the myControl variable name and choose Definition from the

shortcut menu.
4.	 Press Ctrl+Shift+F2 to return to the previous location in the procedure code

(myControl.Visible =).

Determining the Data Type of a Variable

Visual Basic has a built-in VarType function that returns an integer
indicating the variable’s type. Let’s see how you can use this function in the
Immediate window.

 Hands-On 3.10. Asking Questions about the Variable Type

1.	 Open the Immediate window (View | Immediate Window) and type the
following statements that assign values to variables:

age = 28
birthdate = #1/1/1981#
firstName = "John"

2.	 Now, ask Visual Basic what type of data each variable holds:

?varType(age)

When you press Enter, Visual Basic returns 2. The number 2 represents
the Integer data type, as shown in Table 3.3.

?varType(birthdate)

Now Visual Basic returns 7 for Date. If you make a mistake in the vari-
able name (let’s say you type birthday instead of birthdate), Visual Basic
returns zero (0).

?varType(firstName)

Visual Basic tells you that the value stored in the firstName variable is
a String (8).

Access VBA Fundamentals   •  69

Table 3.3. Values returned by the VarType function.

Constant Value Description

vbEmpty 0 Empty (uninitialized)

vbNull 1 Null (no valid data)

vbInteger 2 Integer

vbLong 3 Long integer

vbSingle 4 Single-precision floating-point number

vbDouble 5 Double-precision floating-point
number

vbCurrency 6 Currency value

vbDate 7 Date value

vbString 8 String

vbObject 9 Object

vbError 10 Error value

vbBoolean 11 Boolean value

vbVariant 12 Variant (used only with arrays of vari-
ants)

vbDataObject 13 Data access object

vbDecimal 14 Decimal value

vbByte 17 Byte value

vbLongLong 20 Long Long integer (on 64-bit platform
only)

vbUserDefinedType 36 Variants that contain user-defined
types

vbArray 8192 Array

Using Constants in VBA Procedures

The value of a variable can change while your procedure is executing. If
your procedure needs to refer to unchanged values over and over again, you
should use constants. A constant is like a named variable that always refers to
the same value. Visual Basic requires that you declare constants before you
use them.

You declare constants by using the Const statement, as in the following
examples:

Const dialogName = "Enter Data" As String
Const slsTax = 8.5
Const Discount = 0.5
Const ColorIdx = 3

70  •   Microsoft Access 2016 Programming Pocket Primer

A constant, like a variable, has a scope. To make a constant available within
a single procedure, you declare it at the procedure level, just below the name
of the procedure—for instance:

Sub WedAnniv()
 Const Age As Integer = 25
 ...instructions...
End Sub

If you want to use a constant in all the procedures of a module, use the
Private keyword in front of the Const statement—for instance:

Private Const dsk = "B: " As String

The Private constant has to be declared at the top of the module, just
before the first Sub statement.

If you want to make a constant available to all modules in your application,
use the Public keyword in front of the Const statement—for instance:

Public Const NumOfChar As Integer = 255

The Public constant has to be declared at the top of the module, just
before the first Sub statement.

When declaring a constant, you can use any one of the following data types:
Boolean, Byte, Integer, Long, Currency, Single, Double, Date, String, or Variant.

Like variables, constants can be declared on one line if separated by
commas—for instance:

Const Age As Integer = 25, PayCheck As Currency = 350

Using constants makes your VBA procedures more readable and easier to
maintain. For example, if you need to refer to a certain value several times in your
procedure, use a constant instead of using a value. This way, if the value changes
(e.g., the sales tax rate goes up), you can simply change the value in the declaration
of the Const statement instead of tracking down every occurrence of the value.

Intrinsic Constants

Both Microsoft Access and Visual Basic for Applications have a long list of
predefined (intrinsic) constants that do not need to be declared. These built-
in constants can be looked up using the Object Browser window, which was
discussed in detail in Chapter 2.

Let’s open the Object Browser to take a look at the list of constants in Access.

 Hands-On 3.11. Exploring Access’s Constants

1.	 In the Visual Basic Editor window, choose View | Object Browser.
2.	 In the Project/Library list box, click the drop-down arrow and select the

Access library.

Access VBA Fundamentals   •  71

3.	 Enter constants as the search text in the Search Text box and either press
Enter or click the Search button. Visual Basic shows the results of the search
in the Search Results area. The right side of the Object Browser window dis-
plays a list of all built-in constants available in the Microsoft Access Object
Library (see Figure 3.2). Notice that the names of all the constants begin with
the prefix “ac.”

4.	 To look up VBA constants, choose VBA in the Project/Library list box.
Notice that the names of the VBA built-in constants begin with the prefix
“vb.”

FIGURE 3.2. Use the Object Browser to look up any intrinsic constant.

Hands-On 3.12 illustrates how to use the intrinsic constants
acFilterByForm and acFilterAdvanced to disable execution of
filtering on a form.

72  •   Microsoft Access 2016 Programming Pocket Primer

 Hands-On 3.12. Using Intrinsic Constants in a VBA Procedure

This hands-on exercise uses the HandsOn_03_8.accdb database file used
in Hands-On 3.8.

1.	 Open the Customers form in Design view.
2.	 If the property sheet is not visible, activate it by pressing Alt+Enter.
3.	 In the property sheet, click the Event tab. Make sure that Form is selected in

the drop-down box on the top of the property sheet.
4.	 Click to the right of the On Filter property and select the Build button (…).
5.	 In the Choose Builder dialog box, select Code Builder and click OK.
6.	 In the Code window, enter the following Form_Filter event procedure code.

Private Sub Form_Filter(Cancel As Integer, FilterType As Integer)
 If FilterType = acFilterByForm Or _
 FilterType = acFilterAdvanced Then
 MsgBox "You need authorization to filter records."
 Cancel = True
 End If
End Sub

7.	 Press Alt+F11 to switch back to Design view in the Customers form.
8.	 Right-click the Customers form tab and choose Form View. You can also use

the Views section of the Design tab to activate the Form view.
9.	 Choose Home | Sort & Filter | Advanced Filter Options | Filter By Form.

Access displays the message “You need authorization to filter records.”
The same message appears when you choose Advanced Filter/Sort from the
Advanced Filter Options.

Summary

This chapter has introduced you to several important VBA concepts such as
data types, variables, and constants. You learned how to declare various types
of variables and define their types. You also saw the difference between a vari-
able and a constant.

In the next chapter, you will expand your knowledge of Visual Basic for
Applications by writing procedures and functions with arguments. In addi-
tion, you will learn about built-in functions that allow your VBA procedures to
interact with users.

Chapter 4
Access VBA Built-In and
Custom Functions

As you already know from Chapter 1, VBA subroutines and function
procedures often require arguments to perform certain tasks. In this
chapter, you learn various methods of passing arguments to procedures

and functions.

Writing Function Procedures

Function procedures can perform calculations based on data received
through arguments. When you declare a function procedure, you list the
names of arguments inside a set of parentheses, as shown in Hands-On 4.1.

O

N THE CD 	�Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 4.1. Writing a Function Procedure with Arguments

1.	 Start Microsoft Access and create a new database named Chap04.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2.	 Once your new database is opened, press Alt+F11 to switch to the Visual Basic
Editor window.

3.	 Choose Insert | Module to add a new standard module and notice that Mod-
ule1 appears under the Modules folder in the Project Explorer window.

4.	 In the Module1 (Code) window, enter the code of the JoinText function
procedure as shown here.

Function JoinText(k, o)
 JoinText = k + " " + o
End Function

74  •   Microsoft Access 2016 Programming Pocket Primer

Note that there is a space character in quotation marks concatenated
between the two arguments of the JoinText function’s result: JoinText =
k + " " + o.

A better way of adding a space is by using one of the following built-in
functions:

JoinText = k + Space(1) + o

or:

JoinText = k + Chr(32) + o

The Space function returns a string of spaces as indicated by the number
in the parentheses. The Chr function returns a string containing the character
associated with the specified character code.

Other control characters you may need to use when writing your VBA
procedures include:

Tab			 Chr(9)
Linefeed		 Chr(10)
Carriage Return		 Chr(13)

Various Methods of Running Function Procedures

You can execute a function procedure from the Immediate window, or
you can write a subroutine to call the function. See Hands-On 4.2 and 4.3 for
instructions on how to run the JoinText function procedure using these two
methods.

 Hands-On 4.2. Executing a Function Procedure from the Immediate Window

This hands-on exercise requires prior completion of Hands-On 4.1.

1.	 Choose View | Immediate Window or press Ctrl+G, and enter the following
statement:

?JoinText("function", " procedure")

Notice that as soon as you type the opening parenthesis, Visual Basic
displays the arguments that the function expects. Type the value of the first
argument, enter the comma, and supply the value of the second argument.
Finish by entering the closing parenthesis.

2.	 Press Enter to execute this statement from the Immediate window. When you
press Enter, the string “function procedure” appears in the Immediate window.

 Hands-On 4.3. Executing a Function Procedure from a Subroutine

This hands-on exercise requires prior completion of Hands-On 4.1.

1.	 In the same module where you entered the JoinText function procedure, enter
the following EnterText subroutine:

Access VBA Built-In and Custom Functions •  75

Sub EnterText()
 Dim strFirst As String, strLast As String, strFull As String
 strFirst = InputBox("Enter your first name:")
 strLast = InputBox("Enter your last name:")
 strFull = JoinText(strFirst, strLast)

 MsgBox strFull
End Sub

2.	 Place the cursor anywhere inside the code of the EnterText procedure and
press F5 to run it.

As Visual Basic executes the statements of the EnterText procedure, it uses
the InputBox function to collect the data from the user, and then stores the
data (the values of the first and last names) in the variables strFirst and
strLast. Then these values are passed to the JoinText function. Visual Basic
substitutes the variables’ contents for the arguments of the JoinText function
and assigns the result to the name of the function (JoinText). When Visual
Basic returns to the EnterText procedure, it stores the function’s value in the
strFull variable. The MsgBox function then displays the contents of the
strFull variable in a message box. The result is the full name of the user
(first and last name separated by a space).

Sidebar  More about Arguments

Argument names are like variables. Each argument name refers to
whatever value you provide at the time the function is called. You write a
subroutine to call a function procedure. When a subroutine calls a func-
tion procedure, the required arguments are passed to the procedure as
variables. Once the function does something, the result is assigned to the
function name. Notice that the function procedure’s name is used as if
it were a variable.

Specifying the Data Type for a Function’s Result

Like variables, functions can have types. The data type of your func-
tion’s result can be a String, Integer, Long, and so forth. To specify the
data type for your function’s result, add the As keyword and the name
of the desired data type to the end of the function declaration line—for
example:

Function MultiplyIt(num1, num2) As Integer

If you don’t specify the data type, Visual Basic assigns the default type
(Variant) to your function’s result. When you specify the data type for your
function’s result, you get the same advantages as when you specify the data
type for your variables—your procedure uses memory more efficiently, and
therefore runs faster.

Let’s take a look at an example of a function that returns an integer, even
though the arguments passed to it are declared as Single in a calling subroutine.

Sidebar

76  •   Microsoft Access 2016 Programming Pocket Primer

 Hands-On 4.4. Calling a Function from a Procedure

1.	 In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2.	 Enter the following HowMuch subroutine in the Code window:

Sub HowMuch()
 Dim num1 As Single
 Dim num2 As Single
 Dim result As Single

 num1 = 45.33
 num2 = 19.24
 result = MultiplyIt(num1, num2)

 MsgBox result
End Sub

3.	 Enter the following MultiplyIt function procedure in the Code window below
the HowMuch subroutine:

Function MultiplyIt(num1, num2) As Integer
 MultiplyIt = num1 * num2
End Function

4.	 Click anywhere within the HowMuch procedure and press F5 to run it.
Because the values stored in the variables num1 and num2 are not whole

numbers, you may want to assign the Integer type to the result of the function
to ensure that the result of the multiplication is a whole number. If you don’t
assign the data type to the MultiplyIt function’s result, the HowMuch proce-
dure will display the result in the data type specified in the declaration line of
the result variable. Instead of 872, the result of the multiplication will be
872.1492.

To make the MultiplyIt function more useful, instead of hard-coding the
values to be used in the multiplication, you can pass different values each time
you run the procedure by using the InputBox function.

5.	 Take a few minutes to modify the HowMuch procedure on your own, follow-
ing the example of the EnterText subroutine that was created in Hands-On
4.3.

6.	 To pass a specific value from a function to a subroutine, assign the value to the
function name. For example, the NumOfDays function shown here passes the
value of 7 to the subroutine DaysInAWeek.

Function NumOfDays()
 NumOfDays = 7
End Function

Sub DaysInAWeek()
 MsgBox "There are " & NumOfDays & " days in a week."
End Sub

Access VBA Built-In and Custom Functions •  77

SideBar  Subroutines or Functions: Which Should You Use?

Create a subroutine when you:

QQ Want to perform some actions
QQ Want to get input from the user
QQ Want to display a message on the screen

Create a function when you:

QQ Want to perform a simple calculation more than once
QQ Must perform complex computations
QQ Must call the same block of instructions more than once
QQ Want to check whether a certain expression is true or false

Passing Arguments to By Reference and By Value

In some procedures, when you pass arguments as variables, Visual Basic
can suddenly change the value of the variables. To ensure that the called func-
tion procedure does not alter the value of the passed arguments, you should
precede the name of the argument in the function’s declaration line with the
ByVal keyword. Let’s practice this in the following example.

 Hands-On 4.5. Passing Arguments to Subroutines and Functions

1.	 In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2.	 In the Code window, type the following ThreeNumbers subroutine and the
MyAverage function procedure:

Sub ThreeNumbers()
 Dim num1 As Integer, num2 As Integer, num3 As Integer
 num1 = 10
 num2 = 20
 num3 = 30

 MsgBox MyAverage(num1, num2, num3)
 MsgBox num1
 MsgBox num2
 MsgBox num3
End Sub

Function MyAverage(ByVal num1, ByVal num2, ByVal num3)
 num1 = num1 + 1
 MyAverage = (num1 + num2 + num3) / 3
End Function

3.	 Click anywhere within the ThreeNumbers procedure and press F5 to run it.
The ThreeNumbers procedure assigns values to three variables, and then calls

the MyAverage function to calculate and return the average of the numbers stored

Sidebar

78  •   Microsoft Access 2016 Programming Pocket Primer

in these variables. The function’s arguments are the names of the variables: num1,
num2, and num3. Notice that all variable names are preceded with the ByVal
keyword. Also, notice that prior to the calculation of the average, the MyAverage
function changes the value of the num1 variable. Inside the function procedure,
the num1 variable equals 11 (10 + 1). Therefore, when the function passes the
calculated average to the ThreeNumbers procedure, the MsgBox function
displays the result as 20.3333333333333 and not 20, as expected. The next three
functions show the contents of each of the variables. The values stored in these
variables are the same as the original values assigned to them: 10, 20, and 30.

What will happen if you omit the ByVal keyword in front of the num11
argument in the MyAverage function’s declaration line? The function’s result
will still be the same, but the content of the num1 variable displayed by the
MsgBox num1 is now 11. The MyAverage function has not only returned an
unexpected result (20.3333333333333 instead of 20), but also modified the
original data stored in the num1 variable. To prevent Visual Basic from perma-
nently changing the values supplied to the function, use the ByVal keyword.

Sidebar  Know Your Keywords: ByRef and ByVal

Because any of the variables passed to a function procedure (or a
subroutine) can be changed by the receiving procedure, it is impor-
tant to know how to protect the original value of a variable. Visual
Basic has two keywords that give or deny the permission to change the
contents of a variable: ByRef and ByVal.

By default, Visual Basic passes information to a function pro-
cedure (or a subroutine) by reference (ByRef keyword), referring
to the original data specified in the function’s argument at the time
the function is called. So, if the function alters the value of the argu-
ment, the original value is changed. You will get this result if you omit
the ByVal keyword in front of the num1 argument in the MyAver-
age function’s declaration line. If you want the function procedure
to change the original value, you don’t need to explicitly insert the
ByRef keyword because passed variables default to ByRef.

When you use the ByVal keyword in front of an argument name,
Visual Basic passes the argument by value, which means that Visual
Basic makes a copy of the original data. This copy is then passed to a
function. If the function changes the value of an argument passed by
value, the original data does not change—only the copy changes. That’s
why when the MyAverage function changed the value of the num1
argument, the original value of the num1 variable remained the same.

Using Optional Arguments

At times, you may want to supply an additional value to a function. Let’s say
you have a function that calculates the price of a meal per person. Sometimes,

Sidebar

Access VBA Built-In and Custom Functions •  79

however, you’d like the function to perform the same calculation for a group
of two or more people. To indicate that a procedure argument isn’t always
required, precede the name of the argument with the Optional keyword.
Arguments that are optional come at the end of the argument list, following
the names of all the required arguments. Optional arguments must always be
the Variant data type. This means that you can’t specify the optional argument’s
type by using the As keyword.

In the preceding section, you created a function to calculate the average of
three numbers. Suppose that sometimes you would like to use this function to
calculate the average of two numbers. You could define the third argument of the
MyAverage function as optional. To preserve the original MyAverage function,
let’s create the Avg function to calculate the average for two or three numbers.

 Hands-On 4.6. Using Optional Arguments

1.	 In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2.	 Type the following Avg function procedure in the Code window:

Function Avg(num1, num2, Optional num3)
 Dim totalNums As Integer

 totalNums = 3
 If IsMissing(num3) Then
 num3 = 0
 totalNums = totalNums - 1
 End If
 Avg = (num1 + num2 + num3) / totalNums
End Function

3.	 Call this function from the Immediate window by entering the following
instruction and pressing Enter:

?Avg(2, 3)

As soon as you press Enter, Visual Basic displays the result: 2.5.
4.	 Now, type the following instruction and press Enter:

?Avg(2, 3, 5)

This time the result is: 3.3333333333333.
As you’ve seen, the Avg function is used to calculate the average of two or

three numbers. You decide what values and how many values (two or three)
you want to average. When you start typing the values for the function’s argu-
ments in the Immediate window, Visual Basic displays the name of the optional
argument enclosed in square brackets.

Let’s take a few minutes to analyze the Avg function. This function can take
up to three arguments. Arguments num1 and num2 are required. Argument
num3 is optional. Notice that the name of the optional argument is preceded
by the Optional keyword. The optional argument is listed at the end of the

80  •   Microsoft Access 2016 Programming Pocket Primer

argument list. Because the types of the num1, num2, and num3 arguments are
not declared, Visual Basic treats all three arguments as Variants.

Inside the function procedure, the totalNums variable is declared as an
Integer and then assigned a beginning value of 3. Because the function has
to be capable of calculating an average of two or three numbers, the handy
built-in function IsMissing checks for the number of supplied arguments.
If the third (optional) argument is not supplied, the IsMissing function
puts the value of zero (0) in its place, and deducts the value of 1 from the
value stored in the totalNums variable. Hence, if the optional argument is
missing, totalNums is 2. The next statement calculates the average based on
the supplied data, and the result is assigned to the name of the function.

Using the IsMissing Function

The IsMissing function called from within Hands-On 4.6 allows you to
determine whether the optional argument was supplied. This function returns
the logical value of True if the third argument is not supplied, and returns False
when the third argument is given. The IsMissing function is used here with
the decision-making statement If…Then (discussed in Chapter 5). If the num3
argument is missing (IsMissing), then Visual Basic supplies a zero (0) for the
value of the third argument (num3 = 0), and reduces the value stored in the
argument totalNums by 1 (totalNums = totalNums – 1).

Using VBA Built-In Functions for User Interaction

VBA comes with numerous built-in functions that can be looked up in the
Visual Basic online help. To access an alphabetical listing of all VBA functions,
choose Help | Microsoft Visual Basic for Applications Help in the Visual Basic
Editor window. In the Table of Contents, choose Visual Basic for Applications
Language Reference | Visual Basic Language Reference | Functions. Each func-
tion is described in detail, and is often illustrated with a code fragment or a
complete function procedure that shows how to use it in a specific context. After
completing this chapter, be sure to launch the VBA help, and browse through the
built-in functions to familiarize yourself with their names and usage. You can also
search for the function name in your favorite browser to get more information.

�If you are working with Access via the Office 365 subscription service,
you will need an active Internet connection to access the Visual Basic
for Applications language reference for Microsoft Office 2013 and
later. You will find the list of all VBA functions under this link:
http://msdn.microsoft.com/en-us/library/office/jj692811.aspx
The following link will bring up the Office VBA language reference:
http://msdn.microsoft.com/en-us/library/office/gg264383.aspx

One of the features of a good program is its interaction with the user.
When you work with Microsoft Access, you interact with the application

NOTE

Access VBA Built-In and Custom Functions •  81

by using various dialog boxes, such as message boxes and input boxes.
When you write your own procedures, you can use the MsgBox function
to inform users about an unexpected error or the result of a specific calcu-
lation. So far you have seen a simple implementation of this function. In
the next section, you will find out how to control the appearance of your
message. Then you will learn how to get information from the user with the
InputBox function.

Using the MsgBox Function

The MsgBox function you have used thus far was limited to displaying
a message to the user in a simple, one-button dialog box. You closed the
message box by clicking the OK button or pressing the Enter key. You can
create a simple message box by following the MsgBox function name with
the text of the message enclosed in quotation marks. In other words, to
display the message “The procedure is complete.” you use the following
statement:

MsgBox "The procedure is complete."

You can try this instruction by entering it in the Immediate window. When
you type this instruction and press Enter, Visual Basic displays the message box
shown in Figure 4.1.

FIGURE 4.1. To display a message to the user, place the text as the argument of the MsgBox
function.

The MsgBox function allows you to use other arguments that make it possible
to determine the number of buttons that should be available in the message box
or to change the title of the message box from the default. You can also assign
your own help topic. The syntax of the MsgBox function is shown here.

MsgBox (prompt [, buttons] [, title], [, helpfile, context])

Notice that while the MsgBox function has five arguments, only the first
one, prompt, is required. The arguments listed in square brackets are optional.

When you enter a long text string for the prompt argument, Visual
Basic decides how to break the text so it fits the message box. Let’s do

82  •   Microsoft Access 2016 Programming Pocket Primer

some exercises in the Immediate window to learn various text formatting
techniques.

 Hands-On 4.7. Formatting the Message Box

1.	 In the Visual Basic Editor window, activate the Immediate window and enter
the following instruction. Be sure to enter the entire text string on one line,
and then press Enter.

MsgBox "All done. Now open ""Test.doc"" and place an empty CD
or DVD in your computer’s CD/DVD drive. The following procedure
will copy this file to the disc."

As soon as you press Enter, Visual Basic shows the resulting dialog
box (see Figure 4.2). If you get a compile error, click OK. Then make
sure that the name of the file is surrounded by double quotation marks
(""Test.doc"").

FIGURE 4.2. This long message will look more appealing to the user when you take the text
formatting into your own hands.

When the text of your message is particularly long, you can break it into
several lines using the VBA Chr function. The Chr function’s argument is a
number from 0 to 255, which returns a character represented by this number.
For example, Chr(13) returns a carriage return character (this is the same
as pressing the Enter key), and Chr(10) returns a linefeed character (this is
useful for adding spacing between the text lines).

2.	 Modify the instruction entered in the previous step in the following way and
make sure it stays on the same line in the Immediate window:

MsgBox "All done." & Chr(13) & "Now open ""Test.doc"" and place
an empty" & Chr(13) & "CD or DVD in your computer’s CD/DVD
drive." & Chr(13) & "The following procedure will copy this
file to the disc."

Your result should look like Figure 4.3.

Access VBA Built-In and Custom Functions •  83

FIGURE 4.3. You can break a long text string into several lines by using the Chr(13) function.

You must surround each text fragment with quotation marks. Quoted
text embedded in a text string requires an additional set of quotation
marks, as in ""Test.doc"". The Chr(13) function indicates a place
where you’d like to start a new line. The concatenate character (&) is used
to combine the strings. When you enter exceptionally long text messages
on one line, it’s easy to make a mistake. An underscore (_) is a special
line continuation character in VBA that allows you to break a long VBA
statement into several lines. Unfortunately, the line continuation character
cannot be used in the Immediate window. A better place to try out various
formatting of your long strings for the MsgBox function is within a VBA
procedure.

3.	 Add a new module by choosing Insert | Module.
4.	 In the Code window, enter the following MyMessage subroutine. Be sure to

precede each line continuation character (_) with a space.

Sub MyMessage()
 MsgBox "All done." & Chr(13) _
 & "Now open ""Test.doc"" and place an empty" & Chr(13) _
 & "CD or DVD in your computer’s CD/DVD drive." & Chr(13) _
 & "The following procedure will copy this file to the disc."
End Sub

5.	 Position the insertion point within the code of the MyMessage procedure and
press F5 to run it.

When you run the MyMessage procedure, Visual Basic displays the same
message as the one illustrated earlier in Figure 4.3.

As you can see, the text entered on several lines is more readable, and the
code is easier to maintain. To improve the readability of your message, you may
want to add more spacing between the text lines by including blank lines. To do
this, use two Chr(13) functions, as shown in the following step.

6.	 Enter the following MyMessage2 procedure:

84  •   Microsoft Access 2016 Programming Pocket Primer

Sub MyMessage2()
 MsgBox "All done." & Chr(13) & Chr(13) _
 & "Now open ""Test.doc"" and place an empty" & Chr(13) _
 & "CD or DVD in your computer’s CD/DVD drive." & Chr(13) _
 & Chr(13) & "The following procedure will copy this " & _
 "file to the disc."
End Sub

7.	 Position the insertion point within the code of the MyMessage2 procedure and
press F5 to run it. The result should look like Figure 4.4.

FIGURE 4.4. You can increase the readability of your message by increasing spacing between
selected text lines.

Now that you have mastered the text formatting techniques, let’s take a
closer look at the next argument of the MsgBox function. Although the
buttons argument is optional, it is frequently used. The buttons argu-
ment specifies how many and what types of buttons you want to appear in the
message box. This argument can be a constant or a number (see Table 4.1).
If you omit this argument, the resulting message box contains only the OK
button, as you’ve seen in the preceding examples.

Table 4.1. The MsgBox buttons argument settings.

Constant Value Description

Button settings

vbOKOnly 0 Displays only an OK button. This is
the default.

vbOKCancel 1 OK and Cancel buttons

vbAbortRetryIgnore 2 Abort, Retry, and Ignore buttons

Access VBA Built-In and Custom Functions •  85

Constant Value Description

vbYesNoCancel 3 Yes, No, and Cancel buttons

vbYesNo 4 Yes and No buttons

vbRetryCancel 5 Retry and Cancel buttons

Icon settings

vbCritical 16 Displays the Critical Message icon

vbQuestion 32 Displays the Question Message icon

vbExclamation 48 Displays the Warning Message icon

vbInformation 64 Displays the Information Message
icon

Default button settings

vbDefaultButton1 0 The first button is default.

vbDefaultButton2 256 The second button is default.

vbDefaultButton3 512 The third button is default.

vbDefaultButton4 768 The fourth button is default.

Message box modality

vbApplicationModal 0 The user must respond to the
message before continuing to work
in the current application.

vbSystemModal 4096 On Win16 systems, this constant is
used to prevent the user from inter-
acting with any other window until
he or she dismisses the message box.
On Win32 systems, this constant
works like the vbApplication-
Modal constant with the following
exception: The message box
always remains on top of any other
programs you may have running.

Other MsgBox display settings

vbMsgBoxHelpButton 16384 Adds the Help button to the
message box

vbMsgBoxSetForeground 65536 Specifies the message box window
as the foreground window

vbMsgBoxRight 524288 Text is right-aligned.

vbMsgBoxRtlReading 1048576 Text appears as right-to-left reading
on Hebrew and Arabic systems.

When should you use the buttons argument? Suppose you want the user
of your procedure to respond to a question with Yes or No. Your message box
will then require two buttons. If a message box includes more than one button,

86  •   Microsoft Access 2016 Programming Pocket Primer

one of them is considered a default button. When the user presses Enter, the
default button is selected automatically.

Because you can display various types of messages (critical, warning,
information), you can visually indicate the importance of the message
by including the graphical representation (icon). In addition to the type
of message, the buttons argument can include a setting to determine
whether the message box must be closed before the user switches to
another application. It’s quite possible that the user may want to switch
to another program or perform another task before he responds to the
question posed in your message box. If the message box is application
modal (vbApplicationModal), then the user must close the message
box before continuing to use your application.

For example, consider the following message box:

MsgBox "How are you?", vbOKOnly + vbApplicationModal, "Please
Close Me"

If you type the preceding statement in the Immediate window and press
Enter, a message box will pop up and you won’t be able to work with your
currently open Microsoft Access application until you respond to the message
box.

On the other hand, if you want to keep the message box visible while the user
works with other open applications, you must include the vbSystemModal
setting in the buttons argument, like this:

MsgBox "How are you?", vbOKOnly + vbSystemModal, "System Modal"

Use the vbSystemModal constant when you want to ensure
that your message box is always visible (not hidden behind other
windows).

The buttons argument settings are divided into five groups: button
settings, icon settings, default button settings, message box modality, and
other MsgBox display settings (see Table 4.1). Only one setting from each
group can be included in the buttons argument. To create a buttons
argument, you can add up the values for each setting you want to include.
For example, to display a message box with two buttons (Yes and No), the
question mark icon, and the No button as the default button, look up the
corresponding values in Table 4.1, and add them up. You should arrive at 292
(4 + 32 + 256).

To see the message box using the calculated message box argument, enter
the following statement in the Immediate window:

MsgBox "Do you want to proceed?", 292

The resulting message box is shown in Figure 4.5.

NOTE

Access VBA Built-In and Custom Functions •  87

FIGURE 4.5. You can specify the number of buttons to include, their text, and an icon in the
message box by using the optional buttons argument.

When you derive the buttons argument by adding up the constant
values, your procedure becomes less readable. There’s no reference table
where you can check the hidden meaning of 292. To improve the readability of
your MsgBox function, it’s better to use the constants instead of their values.
For example, enter the following revised statement in the Immediate window:

MsgBox "Do you want to proceed?", vbYesNo + vbQuestion +
vbDefaultButton2

The preceding statement produces the result shown in Figure 4.5. The
following example shows how to use the buttons argument inside a Visual
Basic procedure.

 Hands-On 4.8. Using the MsgBox Function with Arguments

1.	 In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2.	 In the Code window, enter the MsgYesNo subroutine shown here:

Sub MsgYesNo()
 Dim question As String
 Dim myButtons As Integer

 question = "Do you want to open a new report?"
 myButtons = vbYesNo + vbQuestion + vbDefaultButton2
 MsgBox question, myButtons
End Sub

3.	 Run the MsgYesNo procedure by pressing F5.

In this subroutine, the question variable stores the text of your message.
The settings for the buttons argument are placed in the myButtons vari-
able. Instead of using the names of constants, you can use their values, as in
the following:

myButtons = 4 + 32 + 256

88  •   Microsoft Access 2016 Programming Pocket Primer

The question and myButtons variables are used as arguments for the
MsgBox function. When you run the procedure, you see a result similar to the
one shown in Figure 4.5. Note that the No button is selected, indicating that it’s
the default button for this dialog box. If you press Enter, Visual Basic removes
the message box from the screen. Nothing happens because your procedure
does not have any instructions following the MsgBox function. To change the
default button, use the vbDefaultButton1 setting instead.

The third argument of the MsgBox function is title. While this is also
an optional argument, it’s very handy because it allows you to create proce-
dures that don’t provide visual clues to the fact that you programmed them
with Microsoft Access. Using this argument, you can set the titlebar of your
message box to any text you want.

Suppose you want the MsgYesNo procedure to display the text “New
report” in its title. The following MsgYesNo2 procedure demonstrates the use
of the title argument.

Sub MsgYesNo2()
 Dim question As String
 Dim myButtons As Integer
 Dim myTitle As String

 question = "Do you want to open a new report?"
 myButtons = vbYesNo + vbQuestion + vbDefaultButton2
 myTitle = "New report"
 MsgBox question, myButtons, myTitle
End Sub

The text for the title argument is stored in the myTitle variable. If
you don’t specify the value for the title argument, Visual Basic displays the
default text “Microsoft Access.” Notice that the arguments are listed in the
order determined by the MsgBox function.

If you would like to list the arguments in any order, you must precede the
value of each argument with its name, as shown here:

MsgBox title:=myTitle, prompt:=question, buttons:=myButtons

The last two MsgBox arguments, helpfile and context, are used by
more advanced programmers who are experienced with using help files in the
Windows environment. The helpfile argument indicates the name of a
special help file that contains additional information you may want to display to
your VBA application user. When you specify this argument, the Help button
will be added to your message box. When you use the helpfile argument,
you must also use the context argument. This argument indicates which help
subject in the specified help file you want to display. Suppose HelpX.hlp is the
help file you created and 55 is the context topic you want to use. To include this
information in your MsgBox function, you would use the following instruction:

MsgBox title:=myTitle, _
 prompt:=question, _
 buttons:=myButtons, _

Access VBA Built-In and Custom Functions •  89

 helpfile:= "HelpX.hlp", _
 context:=55

The preceding is a single VBA statement broken down into several lines
using the line continuation character.

Returning Values from the MsgBox Function

When you display a simple message box dialog with one button, clicking the
OK button or pressing the Enter key removes the message box from the screen.
However, when the message box has more than one button, your procedure
should detect which button was pressed. To do this, you must save the result of
the message box in a variable. Table 4.2 lists values that the MsgBox function
returns.

Table 4.2. Values returned by the MsgBox function.

Button Selected Constant Value
OK vbOK 1

Cancel vbCancel 2

Abort vbAbort 3

Retry vbRetry 4

Ignore vbIgnore 5

Yes vbYes 6

No vbNo 7

The MsgYesNo3 procedure in Hands-On 4.9 is a revised version of
MsgYesNo2. It demonstrates how to store the user’s response in a variable.

 Hands-On 4.9. Returning Values from the MsgBox Function

1.	 In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2.	 In the Code window, enter the following code of the MsgYesNo3 procedure:

Sub MsgYesNo3()
 Dim question As String
 Dim myButtons As Integer
 Dim myTitle As String
 Dim myChoice As Integer

 question = "Do you want to open a new report?"
 myButtons = vbYesNo + vbQuestion + vbDefaultButton2
 myTitle = "New report"
 myChoice = MsgBox(question, myButtons, myTitle)
 MsgBox myChoice
End Sub

3.	 Position the insertion point within the MsgYesNo3 procedure and press F5 to
run it.

90  •   Microsoft Access 2016 Programming Pocket Primer

In this procedure, you assigned the result of the MsgBox function to the
variable myChoice. Notice that the arguments of the MsgBox function are
now listed in parentheses:

myChoice = MsgBox(question, myButtons, myTitle)

When you run the MsgYesNo3 procedure, a two-button message box is
displayed. By clicking on the Yes button, the statement MsgBox myChoice
displays the number 6. When you click the No button, the number 7 is
displayed.

Sidebar  MsgBox Function—With or without Parentheses?

Use parentheses around the MsgBox function argument list when
you want to use the result returned by the function. By listing the
function’s arguments without parentheses, you tell Visual Basic that
you want to ignore the function’s result. Most likely, you will want to
use the function’s result when the message box contains more than
one button.

Using the InputBox Function

The InputBox function displays a dialog box with a message that prompts
the user to enter data. This dialog box has two buttons: OK and Cancel. When
you click OK, the InputBox function returns the information entered in the
text box. When you select Cancel, the function returns the empty string (“”).
The syntax of the InputBox function is as follows:

InputBox(prompt [, title] [, default] [, xpos] [, ypos]
 [, helpfile, context])

The first argument, prompt, is the text message you want to display in
the dialog box. Long text strings can be entered on several lines by using the
Chr(13) or Chr(10) functions. (See examples of using the MsgBox function
earlier in this chapter.) All the remaining InputBox arguments are optional.

The second argument, title, allows you to change the default title of the
dialog box. The default value is “Microsoft Access.”

The third argument of the InputBox function, default, allows the
display of a default value in the text box. If you omit this argument, the empty
text box is displayed.

The following two arguments, xpos and ypos, let you specify the exact
position where the dialog box should appear on the screen. If you omit these
arguments, the input box appears in the middle of the current window. The
xpos argument determines the horizontal position of the dialog box from the
left edge of the screen. When omitted, the dialog box is centered horizontally.
The ypos argument determines the vertical position from the top of the screen.
If you omit this argument, the dialog box is positioned vertically approximately
one-third of the way down the screen. Both xpos and ypos are measured in

Sidebar

Access VBA Built-In and Custom Functions •  91

special units called twips. One twip is the equivalent of approximately 0.0007
inches.

The last two arguments, helpfile and context, are used in the same
way as the corresponding arguments of the MsgBox function discussed earlier
in this chapter.

Now that you know the meaning of the InputBox arguments, let’s see
some examples of using this function.

 Hands-On 4.10. Using the InputBox Function

1.	 In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2.	 In the Code window, type the following Informant subroutine:

Sub Informant()
 InputBox prompt:="Enter your place of birth:" & Chr(13) _
 & " (e.g., Boston, Great Falls, etc.) "
End Sub

3.	 Position the insertion point within the Informant procedure and press F5 to
run it.

This procedure displays a dialog box with two buttons. The input prompt is
displayed on two lines (see Figure 4.6). Similar to using the MsgBox function,
if you plan on using the data entered by the user in the dialog box, you should
store the result of the InputBox function in a variable.

FIGURE 4.6. A dialog box generated by the Informant procedure.

4.	 Now, in the same module, enter the following code of the Informant2 procedure:

Sub Informant2()
 Dim myPrompt As String
 Dim town As String

 Const myTitle = "Enter data"
 myPrompt = "Enter your place of birth:" & Chr(13) _
 & "(e.g., Boston, Great Falls, etc.)"
 town = InputBox(myPrompt, myTitle)

 MsgBox "You were born in " & town & ".", , "Your response"
End Sub

92  •   Microsoft Access 2016 Programming Pocket Primer

5.	 Position the insertion point within the Informant2 procedure and press F5 to
run it.

Notice that the Informant2 procedure assigns the result of the InputBox
function to the town variable.

This time, the arguments of the InputBox function are listed in paren-
theses. Parentheses are required if you want to use the result of the InputBox
function later in your procedure. The Informant2 subroutine uses a constant to
specify the text to appear in the titlebar of the dialog box. Because the constant
value remains the same throughout the execution of your procedure, you can
declare the input box title as a constant. However, if you’d rather use a variable,
you still can.

When you run a procedure using the InputBox function, the dialog box
generated by this function always appears in the same area of the screen. To
change the location of the dialog box, you must supply the xpos and ypos
arguments, which were explained earlier.

6.	 To display the dialog box in the top left-hand corner of the screen, modify the
InputBox function in the Informant2 procedure as follows:

town = InputBox(myPrompt, myTitle, , 1, 200)

Notice that the argument myTitle is followed by two commas. The
second comma marks the position of the omitted default argument. The
next two arguments determine the horizontal and vertical position of the dialog
box. If you omit the second comma after the myTitle argument, Visual
Basic will use the number 1 as the value of the default argument. If you
precede the values of arguments by their names (e.g., prompt:=myPrompt,
title:=myTitle, xpos:=1, ypos:=200), you won’t have to remember
to insert a comma in the place of each omitted argument.

What will happen if, instead of the name of a town, you enter a number?
Because users often supply incorrect data in the input box, your procedure must
verify that the data the user entered can be used in further data manipulations.
The InputBox function itself does not provide a facility for data validation. To
validate user input, you must use other VBA instructions, which are discussed in
Chapter 5.

Converting Data Types

The result of the InputBox function is always a string. So if a user enters
a number, its string value must be converted to a numeric value before your
procedure can use the number in mathematical computations. Visual Basic is
able to automatically convert many values from one data type to another.

 Hands-On 4.11. Converting Data Types

1.	 In the Visual Basic Editor window, choose Insert | Module to add a new
module.

Access VBA Built-In and Custom Functions •  93

2.	 In the Code window, enter the following AddTwoNums procedure:

Sub AddTwoNums()
 Dim myPrompt As String
 Dim value1 As String
 Dim mySum As Single

 Const myTitle = "Enter data"

 myPrompt = "Enter a number:"
 value1 = InputBox(myPrompt, myTitle, 0)
 mySum = value1 + 2

 MsgBox mySum & " (" & value1 & " + 2)"
End Sub

3.	 Place the cursor anywhere inside the code of the AddTwoNums procedure and
press F5 to run it.

This procedure displays the dialog box shown in Figure 4.7. Notice that this
dialog box has two special features that are obtained by using the InputBox
function’s optional arguments: title and default. Instead of the default
title “Microsoft Access,” the dialog box displays a text string as defined by the
contents of the myTitle constant. The zero (0) entered as the default value
in the edit box suggests that the user enter a number instead of text. Once
the user provides the data and clicks OK, the input is assigned to the variable
value1.

value1 = InputBox(myPrompt, myTitle, 0)

FIGURE 4.7. To suggest that the user enter a specific type of data, you may want to provide a
default value in the edit box.

The data type of the variable value1 is String. You can check the data type
easily if you follow the preceding instruction with this statement:

MsgBox varType(value1)

When Visual Basic runs this line, it will display a message box with the
number 8. Recall that this number represents the String data type. The next
line,

mySum = value1 + 2

94  •   Microsoft Access 2016 Programming Pocket Primer

adds 2 to the user’s input and assigns the result of the calculation to the
variable mySum. Because the value1 variable’s data type is String, Visual
Basic goes to work behind the scenes to perform the data type conversion.
Visual Basic has the brains to understand the need for conversion. Without
it, the two incompatible data types (text and number) would generate a Type
Mismatch error.

The procedure ends with the MsgBox function displaying the result of the
calculation and showing the user how the total was derived.

SideBar  Define a Constant

To ensure that all the titlebars in a particular VBA procedure dis-
play the same text, assign the title text to a constant. By doing so, you
will save yourself the time of typing the title text in more than one
place.

Summary

In this chapter, you learned the difference between subroutine procedures
that perform actions and function procedures that return values. You saw
examples of function procedures called from another Visual Basic procedure.
You learned how to pass arguments to functions and how to determine the data
type of a function’s result. You increased your repertoire of VBA keywords with
the ByVal, ByRef, and Optional keywords.

After working through this chapter, you should be able to create some
custom functions of your own that are suited to your specific needs. You should
also be able to interact easily with your users by employing the MsgBox and
InputBox functions.

In the next chapter you learn how to make decisions in your VBA programs.

Sidebar

chapter 5
Adding Decisions to Your
Access VBA Programs

Visual Basic for Applications offers special statements called conditional
statements, or “control structures,” which allow you to include deci-
sion points in your procedures. In a conditional expression, a relational

operator (see Table 5.1), a logical operator (see Table 5.2), or a combination
of both evaluates the expression to determine whether it is true or false. If the
answer is true, the procedure executes a specified block of instructions. If the
answer is false, the procedure either executes a different block of instructions
or simply doesn’t do anything. In this chapter, you will learn how to use these
VBA conditional statements to alter the flow of your program.

Relational and Logical Operators

You can make decisions in your VBA procedures by using conditional
expressions inside the special control structures. A conditional expression is an
expression that uses a relational operator (see Table 5.1), a logical operator (see
Table 5.2), or a combination of both. When Visual Basic encounters a condi-
tional expression in your program, it evaluates the expression to determine
whether it is true or false.

Table 5.1. Relational operators in VBA.

Operator Description

= Equal to

<> Not equal to

> Greater than

< Less than

96  •  Microsoft Access 2016 Programming Pocket Primer

Operator Description

>= Greater than or equal to

<= Less than or equal to

Table 5.2. Logical operators in VBA.

Operator Description

AND All conditions must be true before an action can be taken.

OR At least one of the conditions must be true before an action
can be taken.

NOT If a condition is true, NOT makes it false. If a condition is
false, NOT makes it true.

Sidebar  Boolean Expressions

Conditional expressions and logical operators are also known as
Boolean. George Boole was a nineteenth-century British mathematician
who made significant contributions to the evolution of computer pro-
gramming. Boolean expressions can be evaluated as true or false.

For example:

One meter equals 10 inches. False

Two is less than three. True

If…Then Statement

The simplest way to get some decision making into your VBA procedure
is by using the If…Then statement. Suppose you want to choose an action
depending on a condition. You can use the following structure:

If condition Then statement

For example, a quiz procedure might ask the user to guess the number of
weeks in a year. If the user’s response is other than 52, the procedure should
display the message “Try Again.”

	 �Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 5.1. Using the If…Then Statement

1.	 Start Microsoft Access and create a new database named Chap05.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2.	 Once your new database is opened, press Alt+F11 to switch to the Visual Basic
Editor window.

3.	 Choose Insert | Module to add a new standard module.
In the Module1 Code window, enter the following Simple If Then procedure:

Sidebar

O

N THE CD

Adding Decisions to Your Access VBA Programs   •  97

Sub SimpleIfThen()
 Dim weeks As String

 weeks = InputBox("How many weeks are in a year:", "Quiz")
 If weeks<>52 Then MsgBox "Try Again"
End Sub

The SimpleIfThen procedure stores the user’s answer in the weeks vari-
able. The variable’s value is then compared with the number 52. If the result
of the comparison is true (i.e., if the value stored in the variable weeks is not
equal to 52), Visual Basic will display the message “Try Again.”

4.	 Run the SimpleIfThen procedure and enter a number other than 52.
5.	 Rerun the SimpleIfThen procedure and enter the number 52. When you

enter the correct number of weeks, Visual Basic does nothing. The procedure
ends. It would be nice to also display a message when the user guesses right.

6.	 Enter the following instruction on a separate line before the End Sub key-
words:

If weeks = 52 Then MsgBox "Congratulations!"

7.	 Run the SimpleIfThen procedure again and enter the number 52. When you
enter the correct answer, Visual Basic does not execute the “Try Again” state-
ment. When the procedure is executed, the statement to the right of the Then
keyword is ignored if the result from evaluating the supplied condition is false.
As you recall, a VBA procedure can call another procedure. Let’s see if it can
also call itself.

8.	 Modify the first If statement in the SimpleIfThen procedure as follows:

If weeks <> 52 Then MsgBox "Try Again" : SimpleIfThen

We added a colon and the name of the SimpleIfThen procedure to the end
of the existing If…Then statement. If you enter the incorrect answer, you’ll
see a message. After clicking the OK button in the message box, you’ll get
another chance to supply the correct answer. You’ll be able to keep on guessing
for a long time. In fact, you won’t be able to exit the procedure gracefully until
you’ve supplied the correct answer. After clicking Cancel, you’ll have to deal
with the unfriendly “Type Mismatch” error message. For now (until you learn
other ways of handling errors in VBA), let’s revise your SimpleIfThen proce-
dure as follows:

Sub SimpleIfThen()
 Dim weeks As String

 On Error GoTo VeryEnd

 weeks = InputBox("How many weeks are in a year:", "Quiz")
 If weeks <> 52 Then MsgBox "Try Again" : SimpleIfThen
 If weeks = 52 Then MsgBox "Congratulations!"

 VeryEnd:
End Sub

98  •  Microsoft Access 2016 Programming Pocket Primer

If Visual Basic encounters an error, it will jump to the VeryEnd
label placed at the end of the procedure. The statements placed between
On Error GoTo VeryEnd and the VeryEnd labels are ignored. Later
in this chapter you will find other examples of trapping errors in your VBA
procedures.

9.	 Run your revised SimpleIfThen procedure a few times by supplying incorrect
answers. The error trap that you added to your procedure will allow you to quit
guessing without having to deal with the ugly error message.

Multiline If…Then Statement

Sometimes you may want to perform several actions when the condition is
true. Although you could add other statements on the same line by separating
them with colons, your code will look clearer if you use the multiline version of
the If…Then statement, as shown here:

If condition Then
 statement1
 statement2
 statementN
End If

For example, let’s modify the SimpleIfThen procedure to include addi-
tional statements.

 Hands-On 5.2. Using the Multiline If…Then Statement

1.	 Insert a new module and enter the following SimpleIfThen2 procedure:

Sub SimpleIfThen2()
 Dim weeks As String
 Dim response As String

 On Error GoTo VeryEnd
 weeks = InputBox("How many weeks are in a year?", "Quiz")
 If weeks <> 52 Then
 response = MsgBox("This is incorrect. Would you like " _
& " to try again?", vbYesNo + vbInformation _
 + vbDefaultButton1, _
 "Continue Quiz?")
 If response = vbYes Then
 Call SimpleIfThen2
 End If
 End If
 VeryEnd:
End Sub

2.	 Run the SimpleIfThen2 procedure and enter any number other than 52.

In this example, the statements between the first Then and the first End
If keywords don’t get executed if the variable weeks is equal to 52. Notice

Adding Decisions to Your Access VBA Programs   •  99

that the multiline If…Then statement must end with the keywords End If.
How does Visual Basic make a decision? Simply put, it evaluates the condition
it finds between the If…Then keywords.

Sidebar  Two Formats of the If…Then Statement

The If…Then statement has two formats: a single-line format and a
multiline format. The short format is good for statements that fit on one
line, like:

If secretCode <> "01W01" Then MsgBox "Access denied"

Or

If secretCode = "01W01" Then alpha = True : beta = False

In these examples, secretCode, alpha, and beta are the names of variables.
In the first example, Visual Basic displays the message “Access denied” if the
value of the secretCode variable is not equal to 01W01. In the second example,
Visual Basic will set the value of the variable alpha to True and the value of the
variable beta to False when the secretCode value is equal to 01W01. Notice
that the second statement to be executed is separated from the first one by a
colon. The multiline If…Then statement is more clear when there are more
statements to be executed when the condition is true, or when the statement
to be executed is extremely long.

Decisions Based on More than One Condition

The SimpleIfThen procedure you worked with earlier evaluated only a
single condition in the If…Then statement. This statement, however, can take
more than one condition. To specify multiple conditions in an If…Then state-
ment, you use the logical operators AND and OR (see Table 5.2 at the begin-
ning of the chapter). Here is the syntax of the If…Then statement with the
AND operator:

If condition1 AND condition2 Then statement

In this syntax, both condition1 and condition2 must be true for Visual
Basic to execute the statement to the right of the Then keyword—for example:

If sales = 10000 AND salary < 45000 Then SlsCom = sales * 0.07

In this example, condition1 is sales = 10000, and condition2 is
salary < 45000.

When AND is used in the conditional expression, both conditions must be
true before Visual Basic can calculate the sales commission (SlsCom). If any
of these conditions is false or both are false, Visual Basic ignores the statement

Sidebar

100  •  Microsoft Access 2016 Programming Pocket Primer

after Then. When it’s good enough to meet only one of the conditions, you
should use the OR operator. Here is the syntax:

If condition1 OR condition2 Then statement

The OR operator is more flexible. Only one of the conditions must be true
before Visual Basic can execute the statement following the Then keyword.
Let’s look at this example:

If dept = "S" OR dept = "M" Then bonus = 500

In this example, if at least one condition is true, Visual Basic assigns 500 to
the bonus variable. If both conditions are false, Visual Basic ignores the rest
of the line.

Now, let’s look at a complete procedure example. Suppose you can get
a 10% discount if you purchase 50 units of a product priced at $7.00. The
IfThenAnd procedure demonstrates the use of the AND operator.

 Hands-On 5.3. Using the If…Then…AND Statement

1.	 Insert a new module and enter the following IfThen And procedure in the
module’s Code window:

Sub IfThenAnd()
 Dim price As Single
 Dim units As Integer
 Dim rebate As Single

 Const strMsg1 = "To get a rebate, buy an additional "
 Const strMsg2 = "Price must equal $7.00"

 units = 234
 price = 7

 If price = 7 And units >= 50 Then
 rebate = (price * units) * 0.1
 MsgBox "The rebate is: $" & rebate
 End If

 If price = 7 And units < 50 Then
 MsgBox strMsg1 & "50 - units."
 End If

 If price <> 7 And units >= 50 Then
 MsgBox strMsg2
 End If

 If price <> 7 And units < 50 Then
 MsgBox "You didn't meet the criteria."
 End If
End Sub

2.	 Run the IfThenAnd procedure.

The IfThenAnd procedure has four If…Then statements that are used to
evaluate the contents of two variables: price and units. The AND operator

Adding Decisions to Your Access VBA Programs   •  101

between the keywords If…Then allows more than one condition to be tested.
With the AND operator, all conditions must be true for Visual Basic to run the
statements between the Then…End If keywords.

SideBar  Indenting If Block Instructions

To make the If blocks easier to read and understand, use indenta-
tion. Compare the following:

If condition Then
action
End If

If condition Then
action
End If

Looking at the block statement on the right side, you can easily see where
the block begins and where it ends.

If…Then…Else Statement

Now you know how to display a message or take an action when one or
more conditions are true or false. What should you do, however, if your proce-
dure needs to take one action when the condition is true and another action
when the condition is false? By adding the Else clause to the simple If…
Then statement, you can direct your procedure to the appropriate statement
depending on the result of the test.

The If…Then…Else statement has two formats: single-line and multiline.
The single-line format is as follows:

If condition Then statement1 Else statement2

The statement following the Then keyword is executed if the condition is
true, and the statement following the Else clause is executed if the condition
is false—for example:

If sales > 5000 Then Bonus = sales * 0.05 Else MsgBox "No Bonus"

If the value stored in the variable sales is greater than 5000, Visual
Basic will calculate the bonus using the following formula: sales * 0.05.
However, if the variable sales is not greater than 5000, Visual Basic will
display the message “No Bonus.”

The If…Then…Else statement should be used to decide which of two
actions to perform. When you need to execute more statements when the
condition is true or false, it’s better to use the multiline format of the If…
Then…Else statement:

If condition Then
 statements to be executed if condition is True
Else
 statements to be executed if condition is False
End If

Sidebar

102  •  Microsoft Access 2016 Programming Pocket Primer

Notice that the multiline (block) If…Then…Else statement ends with the
End If keywords. Use the indentation as shown to make this block structure
easier to read.

If Me.Dirty Then
 Me!btnUndo.Enabled = True
Else
 Me!btnUndo.Enabled = False
End If

In this example, if the condition (Me.Dirty) is true, Visual Basic will
execute the statements between Then and Else, and will ignore the statement
between Else and End If. If the condition is false, Visual Basic will omit the
statements between Then and Else, and will execute the statement between
Else and End If. The purpose of this procedure fragment is to enable the
Undo button when the data on the form has changed and keep the Undo button
disabled if the data has not changed. Let’s look at a procedure example.

 Hands-On 5.4. Using the If…Then…Else Statement

1.	 Insert a new module and enter the following WhatTypeOf Day procedure in
the module’s Code window:

Sub WhatTypeOfDay()
 Dim response As String
 Dim question As String
 Dim strMsg1 As String, strMsg2 As String
 Dim myDate As Date

 question = "Enter any date in the format mm/dd/yyyy:" _
& Chr(13) & " (e.g., 07/06/2015)"
 strMsg1 = "weekday"
 strMsg2 = "weekend"
 response = InputBox(question)
 myDate = Weekday(CDate(response))

 If myDate >= 2 And myDate <= 6 Then
 MsgBox strMsg1
 Else
 MsgBox strMsg2
 End If
End Sub

2.	 Run the WhatTypeOfDay procedure.
This procedure asks the user to enter any date. The user-supplied string is

then converted to the Date data type with the built-in CDate function. Finally,
the Weekday function converts the date into an integer that indicates the day
of the week (see Table 5.3). The integer is stored in the variable myDate.
The conditional test is performed to check whether the value of the variable
myDate is greater than or equal to 2 (>=2) and less than or equal to 6 (<=6).
If the result of the test is true, the user is told that the supplied date is a
weekday; otherwise, the program announces that it’s a weekend.

Adding Decisions to Your Access VBA Programs   •  103

3.	 Run the procedure a few more times, each time supplying a different date.
Check the Visual Basic answers against your desktop or wall calendar.

Table 5.3. The Weekday function values.

Constant Value
vbSunday 1

vbMonday 2

vbTuesday 3

vbWednesday 4

vbThursday 5

vbFriday 6

vbSaturday 7

If…Then…ElseIf Statement

Quite often you will need to check the results of several different condi-
tions. To join a set of If conditions together, you can use the ElseIf clause.
Using the If…Then…ElseIf statement, you can evaluate more conditions
than is possible with the If…Then…Else statement that was the subject of
the preceding section. Here is the syntax of the If…Then…ElseIf statement:

If condition1 Then
 statements to be executedifcondition1 is True
ElseIf condition2 Then
 statements to be executedifcondition2 is True
ElseIf condition3 Then
 statements to be executedifcondition3 is True
ElseIf conditionN Then
 statements to be executedifconditionN is True
Else
 statements to be executedifall conditions are False
End If

The Else clause is optional; you can omit it if there are no actions to be
executed when all conditions are false.

Sidebar  ElseIf Clause

Your procedure can include any number of ElseIf statements and
conditions. The ElseIf clause always comes before the Else clause.
The statements in the ElseIf clause are executed only if the condition
in this clause is true.

Let’s look at the following procedure fragment:

If myNumber = 0 Then
 MsgBox "You entered zero."
ElseIf myNumber > 0 Then
 MsgBox "You entered a positive number."
ElseIf myNumber < 0 Then

Sidebar

104  •  Microsoft Access 2016 Programming Pocket Primer

 MsgBox "You entered a negative number."
End If

This example checks the value of the number entered by the user and stored
in the variable myNumber. Depending on the number entered, an appropriate
message (zero, positive, negative) is displayed. Notice that the Else clause
is not used. If the result of the first condition (myNumber = 0) is false,
Visual Basic jumps to the next ElseIf statement and evaluates its condition
(myNumber > 0). If the value is not greater than zero, Visual Basic skips to
the next ElseIf and the condition myNumber < 0 is evaluated.

Nested If…Then Statements

You can make more complex decisions in your VBA procedures by placing
an If…Then or If…Then…Else statement inside another If…Then or If…
Then…Else statement. Structures in which an If statement is contained
inside another If block are referred to as nestedIf statements. To understand
how nested If…Then statements work, it’s time for another hands-on exercise.

 Hands-On 5.5. Using Nested If…Then Statements

1.	 In the database Chap05.accdb, create a blank form by choosing Blank form
in the Forms section of the Create tab (Microsoft Access 2016window). When
Access opens the new form in Layout view, switch to Design view.

2.	 Use the text box control in the Controls section of the Design tab to add two
text boxes to the form (see Figure 5.1).

FIGURE 5.1. Placing text box controls on an Access form for Hands-On 5.5.

3.	 Click the Property Sheet button in the Tools section of the Design tab.

Adding Decisions to Your Access VBA Programs   •  105

4.	 In the property sheet, change the Caption property for the label in front of
the first text box to User and the Caption property for the label in front of the
second text box to Password.

5.	 Click the Unbound text box to the right of the User label. In the property sheet
on the Other tab, set the Name property of this control to txtUser. Click the
Unbound text box to the right of the Password label. In the property sheet on
the Other tab, set the Name property of this text box to txtPwd(see Figure
5.2).

6.	 In the property sheet on the Data tab, type Password next to the Input Mask
property of the txtPwd text box control.

7.	 Click the Button (Form Control) in the Controls section of the Design tab,
and add a button to the form. When the Command Button Wizard dialog box
appears, click Cancel. With the Command button selected, set the Caption
and Name properties of this button by typing the following values in the prop-
erty sheet next to the shown property name (see Figure 5.3):

Name property: cmdOK
Caption property: OK

8.	 Right-click the OK button and choose Build Event from the shortcut menu.
In the Choose Builder dialog box, select Code Builder and click OK.

9.	 Enter the following code for the cmdOK_Click event procedure. To make
the procedure easier to understand, the conditional statements are shown with
different formatting (bold and underlined).

Private Sub cmdOK_Click()
If txtPwd = "FOX" Then
 MsgBox "You're not authorized to run this report."
ElseIf txtPwd = "DOG” Then
If txtUser = "John" Then
 MsgBox "You're logged on with restricted privileges."
ElseIf txtUser = "Mark" Then
 MsgBox "Contact the Admin now."
ElseIf txtUser = "Anne" Then
 MsgBox "Go home."
Else
 MsgBox "Incorrect user name."
End If
Else
 MsgBox "Incorrect password or user name"
End If
 Me.txtUser.SetFocus
End Sub

FIGURE 5.2. Setting the Name property of the text box control for Hands-On 5.5.

106  •  Microsoft Access 2016 Programming Pocket Primer

FIGURE 5.3. Setting the Command button properties for Hands-On 5.5.

10.	 Choose File | Close and Return to Microsoft Access. Save your form as
frmTestNesting. When prompted to save standard modules you created in
earlier exercises, save these objects with default names.

11.	 Switch to Form view. Enter any data in the User and Password text boxes, and
then click OK.

The procedure first checks if the txtPwd text box on the form holds the
text string “FOX.” If this is true, the message is displayed, and Visual Basic
skips over the ElseIf and Else clauses until it finds the matching End If
(see the bolded conditional statement).

If the txtPwd text box holds the string “DOG,” we use a nested If…Then…
Else statement (underlined) to check if the content of the txtUser text box
is set to John, Mark, or Anne, and then display the appropriate message. If the
user name is not one of the specified names, then the condition is false and
we jump to the underlined Else to display a message stating that the user
entered an incorrect user name.

The first If block (in bold) is called the outer if statement. This outer
statement contains one inner if statement (underlined).

Sidebar  Nesting Statements

Nesting means placing one type of control structure inside another
control structure. You will see more nesting examples with the looping
structures discussed in Chapter 6, “Adding Repeating Actions to Your
Access VBA Programs.”

Select Case Statement

To avoid complex nested If statements that are difficult to follow, you can
use the Select Case statement instead. The syntax of this statement is as
follows:

Select Case testExpression
 Case expressionList1
 statements to be executed
if expressionList1 matches testExpression
 Case expressionList2
 statements to be executed

Sidebar

Adding Decisions to Your Access VBA Programs   •  107

if expressionList2 matches testExpression
 Case expressionListN
 statements to be executed
if expressionListN matches testExpression
 Case Else
 statements to be executed
if no values match testExpression
End Select

You can place any number of cases to test between the keywords Select
Case and End Select. The Case Else clause is optional. Use it when
you expect that there may be conditional expressions that return False. In the
Select Case statement, Visual Basic compares each expressionList
with the value of testExpression.

Here’s the logic behind the Select Case statement. When Visual
Basic encounters the Select Case clause, it makes note of the value of
testExpression. Then it proceeds to test the expression following the
first Case clause. If the value of this expression (expressionList1)
matches the value stored in testExpression, Visual Basic executes the
statements until another Case clause is encountered, and then jumps to the
End Select statement. If, however, the expression tested in the first Case
clause does not match testExpression, Visual Basic checks the value of
each Case clause until it finds a match. If none of the Case clauses contain
the expression that matches the value stored in testExpression, Visual
Basic jumps to the Case Else clause and executes the statements until
it encounters the End Select keywords. Notice that the Case Else
clause is optional. If your procedure does not use Case Else, and none of
the Case clauses contain a value matching the value of testExpression,
Visual Basic jumps to the statements following End Select and continues
executing your procedure.

Let’s look at an example of a procedure that uses the Select Case
statement. As you already know, the MsgBox function allows you to display
a message with one or more buttons. You also know that the result of the
MsgBox function can be assigned to a variable. Using the Select Case
statement, you can decide which action to take based on the button the user
pressed in the message box.

 Hands-On 5.6. Using the Select Case Statement

1.	 Press Alt+F11 to switch from the Microsoft Access application window to the
Visual Basic Editor window.

2.	 Insert a new module and enter the following TestButtons procedure in the
module’s Code window:

Sub TestButtons()
 Dim question As String
 Dim bts As Integer
 Dim myTitle As String
 Dim myButton As Integer

108  •  Microsoft Access 2016 Programming Pocket Primer

 question = "Do you want to preview the report now?"
 bts = vbYesNoCancel + vbQuestion + vbDefaultButton1
 myTitle = "Report"
 myButton = MsgBox(prompt:=question, buttons:=bts, _
 Title:=myTitle)

 Select Case myButton
 Case 6
 DoCmd.OpenReport "Sales by Year", acPreview
 Case 7
 MsgBox "You can review the report later."
 Case Else
 MsgBox "You pressed Cancel."
 End Select
End Sub

3.	 Run the TestButtons procedure three times, each time selecting a different
button. (Because there is no Sales by Year report in the current database, an
error message will pop up when you select Yes. Click End to exit the error
message.)

The first part of the TestButtons procedure displays a message with three
buttons: Yes, No, and Cancel. The value of the button selected by the user is
assigned to the variable myButton.

If the user clicks Yes, the variable myButton is assigned the vbYes constant
or its corresponding value 6. If the user selects No, the variable myButton is
assigned the constant vbNo or its corresponding value 7. Lastly, if Cancel is
pressed, the content of the variable myButton equals vbCancel, or 2.

The Select Case statement checks the values supplied after the Case
clause against the value stored in the variable myButton. When there is a
match, the appropriate Case statement is executed.The TestButtons proce-
dure will work the same if you use constants instead of button values:

Select Case myButton
 Case vbYes
 DoCmd.OpenReport "Sales by Year", acPreview
 Case vbNo
 MsgBox "You can review the report later."
 Case Else
 MsgBox "You pressed Cancel."
End Select

You can omit the Else clause. Simply revise the Select Case statement
as follows:

Select Case myButton
 Case vbYes
 DoCmd.OpenReport "Sales by Year", acPreview
 Case vbNo
 MsgBox "You can review the report later."
 Case vbCancel
 MsgBox "You pressed Cancel."
End Select

Adding Decisions to Your Access VBA Programs   •  109

Sidebar  Capture Errors with Case Else

Although using Case Else in the Select Case statement isn’t
required, it’s always a good idea to include one just in case the variable
you are testing has an unexpected value. The Case Else clause is a
good place to put an error message.

Using Is with the Case Clause

Sometimes a decision is made based on whether the test expression uses
the greater than, less than, equal to, or some other relational operator (see
Table 5.1). The Is keyword lets you use a conditional expression in a Case
clause. The syntax for the Select Case clause using the Is keyword is as
follows:

Select Case testExpression
 Case Is condition1
 statements if condition1 is true
 Case Is condition2
 statements if condition2 is true
 Case Is conditionN
 statements if conditionN is true
End Select

Let’s look at an example:

Select Case myNumber
 Case Is <= 10
 MsgBox "The number is less than or equal to 10."
 Case 11
 MsgBox "You entered 11."
 Case Is >= 100
 MsgBox "The number is greater than or equal to 100."
 Case Else
 MsgBox "The number is between 12 and 99."
End Select

Assuming that the variable myNumber holds 120, the third Case clause is
true, and the only statement executed is the one between Case Is >= 100
and the Case Else clause.

Specifying a Range of Values in a Case Clause

In the preceding example, you saw a simple Select Case statement
that uses one expression in each Case clause. Many times, however, you may
want to specify a range of values in a Case clause. You do this by using the To
keyword between the values of expressions, as in the following example:

Select Case unitsSold
 Case 1 To 100
 Discount = 0.05
 Case Is <= 500
 Discount = 0.1

Sidebar

110  •  Microsoft Access 2016 Programming Pocket Primer

 Case 501 To 1000
 Discount = 0.15
 Case Is >1000
 Discount = 0.2
End Select

Let’s analyze this Select Case block with the assumption that the vari-
able unitsSold currently has a value of 99. Visual Basic compares the value
of the variable unitsSold with the conditional expression in the Case
clauses. The first and third Case clauses illustrate how to use a range of values
in a conditional expression by using the To keyword.

Because unitsSold equals 99, the condition in the first Case clause is
true; thus, Visual Basic assigns the value 0.05 to the variable Discount. Well,
how about the second Case clause, which is also true? Although it’s obvious
that 99 is less than or equal to 500, Visual Basic does not execute the associ-
ated statement Discount = 0.1. The reason for this is that once Visual
Basic locates a Case clause with a true condition, it doesn’t bother to look at
the remaining Case clauses. It jumps over them and continues to execute the
procedure with the instructions that may follow the End Select statement.

For more practice with the Select Case statement, let’s use it in a function
procedure. As you recall from Chapter 4, function procedures allow you to
return a result to a subroutine. Suppose a subroutine has to display a discount
based on the number of units sold. You can get the number of units from the
user and then run a function to figure out which discount applies.

 Hands-On 5.7. Using the Select Case Statement in a Function

1.	 Insert a new module and enter the following DisplayDiscount procedure in
the Code window:

Sub DisplayDiscount()
 Dim unitsSold As Integer
 Dim myDiscount As Single

 unitsSold = InputBox("Units Sold:")
 myDiscount = GetDiscount(unitsSold)
 MsgBox myDiscount
End Sub

2.	 In the same module, enter the following GetDiscount function procedure:

Function GetDiscount(unitsSold As Integer)
 Select Case unitsSold
 Case 1 To 200
 GetDiscount = 0.05
 Case 201 To 500
 GetDiscount = 0.1
 Case 501 To 1000
 GetDiscount = 0.15
 Case Is > 1000
 GetDiscount = 0.2
 End Select
End Function

Adding Decisions to Your Access VBA Programs   •  111

3.	 Place the insertion point anywhere within the code of the DisplayDiscount
procedure and press F5 to run it.

The DisplayDiscount procedure passes the value stored in the variable units-
Sold to the GetDiscount function. When Visual Basic encounters the Select
Case statement, it checks whether the value of the first Case clause expression
matches the value stored in the unitsSold parameter. If there is a match, Visual
Basic assigns a 5% discount (0.05) to the function name, and then jumps to the
End Select keywords. Because there are no more statements to execute inside
the function procedure, Visual Basic returns to the calling procedure, DisplayDis-
count. Here it assigns the function’s result to the variable myDiscount. The last
statement displays the value of the retrieved discount in a message box.

4.	 Choose File | Save Chap05 and click OK when prompted to save the changes
to the modules you created during the hands-on exercises.

5.	 Choose File | Close and Return to Microsoft Access.
6.	 Close the Chap05.accdb database and exit Microsoft Access.

Specifying Multiple Expressions in a Case Clause

You may specify multiple conditions within a single Case clause by sepa-
rating each condition with a comma:

Select Case myMonth
 Case "January", "February", "March"
 Debug.Print myMonth & ": 1st Qtr."
 Case "April", "May", "June"
 Debug.Print myMonth & ": 2nd Qtr."
 Case "July", "August", "September"
 Debug.Print myMonth & ": 3rd Qtr."
 Case "October", "November", "December"
 Debug.Print myMonth & ": 4th Qtr."
End Select

Multiple Conditions within a Case Clause

The commas used to separate conditions within a Case clause have the
same meaning as the OR operator used in the If statement. The Case
clause is true if at least one of the conditions is true.

Summary

Conditional statements, introduced in this chapter, let you control the flow
of your VBA procedure. By testing the truth of a condition, you can decide
which statements should be run and which should be skipped over. In other
words, instead of running your procedure from top to bottom, line by line, you
can execute only certain lines. Here are a few guidelines to help you determine
which conditional statement you should use:

QQ If you want to supply only one condition, the simple If…Then statement
is the best choice.

NOTE

112  •  Microsoft Access 2016 Programming Pocket Primer

QQ If you need to decide which of two actions to perform, use the
If…Then…Else statement.

QQ If your procedure requires two or more conditions, use the
If…Then…ElseIf or Select Case statements.

QQ If your procedure has many conditions, use the Select Case state-
ment. This statement is more flexible and easier to comprehend than the
If…Then…ElseIf statement.

Sometimes decisions have to be repeated. The next chapter teaches you
how your procedures can perform the same actions over and over again.

Chapter 6
Adding Repeating Actions
to Your Access
VBA Programs

Now that you’ve learned how conditional statements can give your
VBA procedures decision-making capabilities, it’s time to get more
involved. Not all decisions are easy. Sometimes you will need to per-

form a number of statements several times to arrive at a certain condition. On
other occasions, however, after you’ve reached the decision, you may need to
run the specified statements as long as a condition is true or until a condition
becomes true. In programming, performing repetitive tasks is called looping.
VBA has various looping structures that allow you to repeat a sequence of
statements a number of times. In this chapter, you learn how to loop through
your code.

SideBar  What Is a Loop?

A loop is a programming structure that causes a section of program
code to execute repeatedly. VBA provides several structures to imple-
ment loops in your procedures: Do…While, Do…Until, For…Next,
and For Each…Next.

Using the Do…While Statement

Visual Basic has two types of Do loop statements that repeat a sequence of
statements either as long as or until a certain condition is true: Do…While and
Do…Until.

The Do…While statement lets you repeat an action as long as a condition
is true. This statement has the following syntax:

Do While condition
 statement1
 statement2
 statementN
Loop

Sidebar

114  •   Microsoft Access 2016 Programming Pocket Primer

When Visual Basic encounters this loop, it first checks the truth value of
the condition. If the condition is false, the statements inside the loop are not
executed, and Visual Basic will continue to execute the program with the first
statement after the Loop keyword or will exit the program if there are no more
statements to execute. If the condition is true, the statements inside the loop
are run one by one until the Loop statement is encountered. The Loop state-
ment tells Visual Basic to repeat the entire process again as long as the testing
of the condition in the Do…While statement is true.

Let’s see how you can put the Do…While loop to good use in Microsoft
Access. You will find out how to continuously display an input box until the user
enters the correct password. The following hands-on exercise demonstrates this.

O

N THE CD 	Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 6.1. Using the Do…While Statement

1.	 Start Microsoft Access and create a new database named Chap06.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2.	 Once your new database is opened, press Alt+F11 to switch to the Visual Basic
Editor window.

3.	 Choose Insert | Module to add a new standard module.
4.	 In the Module1 Code window, enter the following AskForPassword proce-

dure:

Sub AskForPassword()
 Dim pWord As String

 pWord = ""
 Do While pWord <> "DADA"
 pWord = InputBox("What is the report password?")
 Loop
 MsgBox "You entered the correct report password."
End Sub

5.	 Run the AskForPassword procedure.

In this procedure, the statement inside the Do…While loop is executed as
long as the variable pWord is not equal to the string “DADA.” If the user enters
the correct password (“DADA”), Visual Basic leaves the loop and executes the
MsgBox statement after the Loop keyword.

To allow the user to exit the procedure gracefully and cancel out of the
input box if he does not know the correct password, add the following state-
ment on an empty line before the Loop keyword:

If pWord = "" Then Exit Do

The Exit Do statement tells Visual Basic to exit the Do loop if the variable
pWord does not hold any value (please see the section titled “Exiting Loops
Early” later in this chapter). Therefore, when the input box appears, the user
can leave the text field empty and click OK or Cancel to stop the procedure.

Adding Repeating Actions to Your Access VBA Programs   •  115

Without the Exit Do statement, the procedure will keep on asking the user
to enter the password until the correct value is supplied.

To forgo displaying the informational message when the user has not
provided the correct password, you may want to use the conditional state-
ment If…Then that you learned in the previous chapter. Here is the revised
AskForPassword procedure:

Sub AskForPassword() ' revised procedure
 Dim pWord As String

 pWord = ""
 Do While pWord <> "DADA"
 pWord = InputBox("What is the report password?")
 If pWord = "" Then
 MsgBox "You did not enter a password."
 Exit Do
 End If
 Loop
 If pWord <> "" Then
 MsgBox "You entered the correct report password."
 End If
End Sub

Another Approach to the Do…While Statement

The Do…While statement has another syntax that lets you test the condi-
tion at the bottom of the loop:

Do
 statement1
 statement2
 statementN
Loop While condition

When you test the condition at the bottom of the loop, the statements inside
the loop are executed at least once. Let’s try this in the next hands-on exercise.

1.	 In the Visual Basic Editor window, insert a new module and enter the follow-
ing SignIn procedure:

Sub SignIn()
 Dim secretCode As String

 Do
 secretCode = InputBox("Enter your secret code:")
 If secretCode = "sp1045" Then Exit Do
 Loop While secretCode <> "sp1045"
End Sub

2.	 Run the SignIn procedure.

Notice that by the time the condition is evaluated, Visual Basic has already
executed the statements one time. In addition to placing the condition at the

 Hands-On 6.2. �Using the Do…While Statement with a Condition at
the Bottom of the Loop

116  •   Microsoft Access 2016 Programming Pocket Primer

end of the loop, the SignIn procedure shows again how to exit the loop when a
condition is reached. When the Exit Do statement is encountered, the loop
ends immediately.

To exit the loop in the SignIn procedure without entering the password,
you may revise it as follows:

Sub SignIn() 'revised procedure
 Dim secretCode As String

 Do
 secretCode = InputBox("Enter your secret code:")
 If secretCode = "sp1045" Or secretCode = "" Then
 Exit Do
 End If
 Loop While secretCode <> "sp1045"
End Sub

SideBar  Avoid Infinite Loops

If you don’t design your loop correctly, you can get an infinite
loop—a loop that never ends. You will not be able to stop the pro-
cedure by using the Esc key. The following procedure causes the
loop to execute endlessly because the programmer forgot to in-
clude the test condition:

Sub SayHello()
 Do
 MsgBox "Hello."
 Loop
End Sub

To stop the execution of the infinite loop, you must press Ctrl+Break.
When Visual Basic displays the message box “Code execution has been
interrupted,” click End to end the procedure.

Using the Do…Until Statement

Another handy loop is Do…Until, which allows you to repeat one or more
statements until a condition becomes true. In other words, Do…Until repeats
a block of code as long as something is false. Here is the syntax:

Do Until condition
 statement1
 statement2
 statementN
Loop

Using the preceding syntax, you can now rewrite the AskForPassword
procedure (written in Hands-On 6.1) as shown in the following hands-on
exercise.

Sidebar

Adding Repeating Actions to Your Access VBA Programs   •  117

 Hands-On 6.3. Using the Do…Until Statement

1.	 In the Visual Basic Editor window, insert a new module and type the
AskForPassword2 procedure:

Sub AskForPassword2()
 Dim pWord As String

 pWord = ""
 Do Until pWord = "DADA"
 pWord = InputBox("What is the report password?")
 Loop
End Sub

2.	 Run the AskForPassword2 procedure.

The first line of this procedure says: Perform the following statements until
the variable pWord holds the value “DADA.” As a result, until the correct
password is supplied, Visual Basic executes the InputBox statement inside
the loop. This process continues as long as the condition pWord = “DADA"
evaluates to false.

You could modify this procedure to allow the user to cancel the input box
without supplying the password, as follows:

Sub AskForPassword2() 'revised procedure
 Dim pWord As String

 pWord = ""
 Do Until pWord = "DADA"
 pWord = InputBox("What is the report password?")
 If pWord = "" Then Exit Do
 Loop
End Sub

SideBar  Variables and Loops

All variables that appear in a loop should be assigned default val-
ues before the loop is entered.

Another Approach to the Do…Until Statement

Similar to the Do…While statement, the Do…Until statement has a
second syntax that lets you test the condition at the bottom of the loop:

Do
 statement1
 statement2
 statementN
Loop Until condition

If you want the statements to execute at least once, no matter what the value
of the condition, place the condition on the line with the Loop statement.
Let’s try out the following example that prints 27 numbers to the Immediate
window.

Sidebar

118  •   Microsoft Access 2016 Programming Pocket Primer

1.	 In the Visual Basic Editor window, insert a new module and type the Print-
Numbers procedure shown here:

Sub PrintNumbers()
 Dim num As Integer

 num = 0
 Do
 num = num + 1
 Debug.Print num
 Loop Until num = 27
End Sub

2.	 Make sure the Immediate window is open in the Visual Basic Editor window
(choose View | Immediate Window or press Ctrl+G).

3.	 Run the PrintNumbers procedure.
The variable num is initialized at the beginning of the procedure to zero

(0). When Visual Basic enters the loop, the content of the variable num is
increased by one, and the value is written to the Immediate window with
the Debug.Print statement. Next, the condition tells Visual Basic
that it should execute the statements inside the loop until the variable
num equals 27.

4.	 Return to the Microsoft Access application window by choosing File | Close
and Return to Microsoft Access. When prompted, save the changes to all
the modules.

SideBar  Counters

A counter is a numeric variable that keeps track of the number of
items that have been processed. The preceding PrintNumbers pro-
cedure declares the variable num to keep track of numbers that were
printed. A counter variable should be initialized (assigned a value) at
the beginning of the program. This ensures that you always know the
exact value of the counter before you begin using it. A counter can be
incremented or decremented by a specified value.

Using the For…Next Statement

The For…Next statement is used when you know how many times you
want to repeat a group of statements. The syntax of a For…Next statement
looks like this:

For counter = start To end [Step increment]
 statement1
 statement2
 statementN
Next [counter]

Sidebar

 Hands-On 6.4. �Using the Do…Until Statement with a Condition
at the Bottom of the Loop

Adding Repeating Actions to Your Access VBA Programs   •  119

The code in the brackets is optional. Counter is a numeric variable that
stores the number of iterations. Start is the number at which you want to
begin counting. End indicates how many times the loop should be executed.
For example, if you want to repeat the statements inside the loop five times,
use the following For statement:

For counter = 1 To 5
 statements
Next

When Visual Basic encounters the Next statement, it will go back to the
beginning of the loop and execute the statements inside the loop again, as long
as the counter hasn’t reached the end value. As soon as the value of counter
is greater than the number entered after the To keyword, Visual Basic exits the
loop. Because the variable counter automatically changes after each execu-
tion of the loop, sooner or later the value stored in the counter exceeds the
value specified in end.

By default, every time Visual Basic executes the statements inside the loop,
the value of the variable counter is increased by one. You can change this
default setting by using the Step clause. For example, to increase the variable
counter by three, use the following statement:

For counter = 1 To 5 Step 3
 statements
Next counter

When Visual Basic encounters this statement, it executes the statements inside
the loop twice. The first time the loop runs, the counter equals 1. The second time
the loop runs, the counter equals 4 (1+3). The loop does not run a third time,
because now the counter equals 7 (4+3), causing Visual Basic to exit the loop.

Note that the Step increment is optional. Optional statements are always
shown in square brackets (see the syntax at the beginning of this section).
The Step increment isn’t specified unless it’s a value other than 1. You can
place a negative number after Step in order to decrement this value from the
counter each time it encounters the Next statement. The name of the vari-
able (counter) after the Next statement is also optional; however, it’s good
programming practice to make your Next statements explicit by including the
counter variable’s name.

How can you use the For…Next loop in Microsoft Access? Suppose you
want to retrieve the names of the text boxes located on an active form. The
procedure in the next hands-on exercise demonstrates how to determine
whether a control is a text box and how to display its name if a text box is
found.

 Hands-On 6.5. Using the For…Next Statement

1.	 Make sure you have a copy of the Northwind 2007.accdb database from the
companion CD in your VBAPrimerAccess_ByExample folder.

120  •   Microsoft Access 2016 Programming Pocket Primer

2.	 Import the Customers table from the Northwind 2007.accdb database.
To do this, click Access in the Import & Link section of the External Data
tab. In the File name text box of the Get External Data dialog box, enter
C:\VBAPrimerAccess_ByExample\Northwind 2007.accdb and click OK.
In the Import Objects dialog box, select the Customers table and click OK.
Click Close to exit the Get External Data dialog box.

3.	 Now, create a simple Customers form based on the Customers table. To do
this, select the Customers table in the navigation pane by clicking on its name.
Next, click the Form button in the Forms section of the Create tab. Access
creates a form as shown in Figure 6.1.

FIGURE 6.1. Automatic data entry form created by Microsoft Access.

4.	 Press Alt+F11 to switch to the Visual Basic Editor window and insert a new
module.

5.	 In the module’s Code window, enter the following GetTextBoxNames pro-
cedure:

Sub GetTextBoxNames()
 Dim myForm As Form
 Dim myControl As Control
 Dim c As Integer

 Set myForm = Screen.ActiveForm
 Set myControl = Screen.ActiveControl

 For c = 0 To myForm.Count - 1
 If TypeOf myForm(c) Is TextBox Then
 MsgBox myForm(c).Name
 End If
 Next c
End Sub

Adding Repeating Actions to Your Access VBA Programs   •  121

The conditional statement (If…Then) nested inside the For…Next loop
tells Visual Basic to display the name of the active control only if it is a text box.

6.	 Run the GetTextBoxNames procedure.

SideBar  Paired Statements

For and Next must be paired. If one is missing, Visual Basic gen-
erates the following error message: “For without Next.”

Using the For Each…Next Statement

When your procedure needs to loop through all of the objects of a collection
or all of the elements in an array (arrays are the subject of the next chapter),
the For Each…Next statement should be used. This loop does not require
a counter variable. Visual Basic can figure out on its own how many times the
loop should execute. The For Each…Next statement looks like this:

For Each element In Group
 statement1
 statement2
 statementN
Next [element]

Element is a variable to which all the elements of an array or collection
will be assigned. This variable must be of the Variant data type for an array and
of the Object data type for a collection. Group is the name of a collection or
an array. Let’s now see how to use the For Each…Next statement to print
the names of the controls in the Customers form to the Immediate window.

 Hands-On 6.6. Using the For Each…Next Statement

This hands-on exercise requires the completion of Steps 1 and 2 of Hands-
On 6.5.

1.	 Ensure that the Customers form you created in Hands-On 6.5 is still open in
Form view.

2.	 Switch to the Visual Basic Editor window and insert a new module.
3.	 In the Code window, enter the GetControls procedure shown here:

Sub GetControls()
 Dim myControl As Control
 Dim myForm As Form

 DoCmd.OpenForm "Customers"
 Set myForm = Screen.ActiveForm

 For Each myControl In myForm
 Debug.Print myControl.Name
 Next
End Sub

4.	 Run the GetControls procedure.

Sidebar

122  •   Microsoft Access 2016 Programming Pocket Primer

5.	 The results of the procedure you just executed will be displayed in the Immediate
window. If the window is not visible, press Ctrl+G in the Visual Basic Editor
window to open the Immediate window or choose View | Immediate Window.

Exiting Loops Early

Sometimes you might not want to wait until the loop ends on its own. It’s
possible that a user will enter the wrong data, a procedure will encounter an
error, or perhaps the task will complete and there’s no need to do additional
looping. You can leave the loop early without reaching the condition that
normally terminates it. Visual Basic has two types of Exit statements:

■■ The Exit For statement is used to end either a For…Next or a For Each…
Next loop early.

■■ The Exit Do statement immediately exits any of the VBA Do loops.

The following hands-on exercise demonstrates how to use the Exit For
statement to leave the For Each…Next loop early.

 Hands-On 6.7. Early Exit from a Loop

1.	 In the Visual Basic Editor window, choose Insert | Module.
2.	 In the module’s Code window, enter the following GetControls2 procedure:

Sub GetControls2()
 Dim myControl As Control
 Dim myForm As Form

 DoCmd.OpenForm "Customers"
 Set myForm = Screen.ActiveForm

 For Each myControl In myForm
 Debug.Print myControl.Name
 If myControl.Name = "Address" Then
 Exit For
 End If
 Next
End Sub

3.	 Run the GetControls2 procedure.
The GetControls2 procedure examines the names of the controls in the

open Customers form. If Visual Basic encounters the control named “Address,”
it exits the loop.

4.	 Return to the Microsoft Access application window by choosing File | Close
and Return to Microsoft Access.

Sidebar  Exiting Procedures

If you want to exit a subroutine earlier than normal, use the
Exit Sub statement. If the procedure is a function, use the
Exit Function statement instead.

Sidebar

Adding Repeating Actions to Your Access VBA Programs   •  123

Nested Loops

So far in this chapter you have tried out various loops. Each procedure
demonstrated the use of an individual looping structure. In programming
practice, however, one loop is often placed inside another. Visual Basic allows
you to “nest” various types of loops (For and Do loops) within the same proce-
dure. When writing nested loops, you must make sure that each inner loop
is completely contained inside the outer loop. Also, each loop must have a
unique counter variable. When you use nesting loops, you can often execute
specific tasks more effectively.

The GetFormsAndControls procedure shown in the following hands-on
exercise illustrates how one For Each…Next loop is nested within another
For Each…Next loop.

 Hands-On 6.8. Using Nested Loops

1.	 Import the Employees table from the Northwind 2007.accdb database
located in your VBAPrimerAccess_ByExample folder (see Hands-On
6.5). To do this, click Access in the Import section of the External Data
tab. In the File name text box of the Get External Data dialog box, enter
C:\VBAPrimerAccess_ByExample\Northwind 2007.accdb and click OK.
In the Import Objects dialog box, select the Employees table and click OK.
Click Close to exit the Get External Data dialog box.

2.	 Now, create a simple Employees form based on the Employees table. To do
this, select the Employees table in the navigation pane by clicking on its name.
Next, click the Form button in the Forms section of the Create tab. Access
creates a simple Employees data entry form.

3.	 Leave the Employees form in Form view and press Alt+F11 to switch to the
Visual Basic Editor window.

4.	 Choose Insert | Module to add a new module. In the module’s Code window,
enter the GetFormsAndControls procedure shown here:

Sub GetFormsAndControls()
 Dim accObj As AccessObject
 Dim myControl As Control

 For Each accObj In CurrentProject.AllForms
 Debug.Print accObj.Name & " Form"
 If Not accObj.IsLoaded Then
 DoCmd.OpenForm accObj.Name
 End If
 For Each myControl In Forms(accObj.Name).Controls
 Debug.Print Chr(9) & myControl.Name
 Next
 DoCmd.Close , , acSaveYes
 Next
End Sub

5.	 Run the GetFormsAndControls procedure.

124  •   Microsoft Access 2016 Programming Pocket Primer

The GetFormsAndControls procedure uses two For Each…Next loops
to print the name of each currently open form and its controls to the Imme-
diate window. To enumerate through the form’s controls, the form must be
open. Notice the use of the Access built-in function IsLoaded. The proce-
dure will open the form only if it is not yet loaded. The control names are
indented in the Immediate window using the Chr(9) function. This is like
pressing the Tab key once. To get the same result, you can replace Chr(9)
with a VBA constant: vbTab.

After reading the names of the controls, the form is closed and the next
form is processed in the same manner. The procedure ends when no more
forms are found in the AllForms collection of CurrentProject.

6.	 Choose File | Save Chap06 to save changes to the modules.
7.	 Choose File | Close and Return to Microsoft Access.
8.	 Close the Chap06.accdb database and click Yes when prompted to save

changes. You do not need to save Table1 that Access automatically created for
you when you chose to create a blank desktop database.

9.	 Exit Microsoft Access.

Summary

In this chapter, you learned how to repeat certain groups of statements in
VBA procedures by using loops. While working with several types of loops, you
saw how each loop performs repetitions in a slightly different way. As you gain
experience, you’ll find it easier to choose the appropriate flow control structure
for your task.

The next chapter shows you how to write procedures that require a large
number of variables.

Chapter 7
Keeping Track of Multiple
Values Using Arrays

In previous chapters, you worked with many VBA procedures that used
variables to hold specific information about an object, property, or value.
For each single value you wanted your procedure to manipulate, you de-

clared a variable. But what if you have a series of values? If you had to write a
VBA procedure to deal with larger amounts of data, you would have to create
enough variables to handle all of the data. Can you imagine the nightmare of
storing currency exchange rates for all the countries in the world in your pro-
gram? To create a table to hold the necessary data, you’d need at least three
variables for each country: country name, currency name, and exchange rate.
Fortunately, Visual Basic has a way to get around this problem. By cluster-
ing the related variables together, your VBA procedures can manage a large
amount of data with ease. In this chapter, you’ll learn how to manipulate lists
and tables of data with arrays.

Understanding Arrays

In Visual Basic, an array is a special type of variable that represents a group
of similar values that are of the same data type (String, Integer, Currency,
Date, etc.). The two most common types of arrays are one-dimensional arrays
(lists) and two-dimensional arrays (tables).

A one-dimensional array is sometimes referred to as a list. A shopping
list, a list of the days of the week, and an employee list are examples of one-
dimensional arrays or, simply, numbered lists. Each element in the list has
an index value that allows you to access that element. For example, in the
following illustration we have a one-dimensional array of six elements indexed
from 0 to You can access the third element of this array by specifying index (2).
By default, the first element of an array is indexed zero (0). You can change

126  •   Microsoft Access 2016 Programming Pocket Primer

this behavior by using the Option Base 1 statement or by explicitly coding the
lower bound of your array as explained later in this chapter.

(0) (1) (2) (3) (4) (5)

All elements of the array should be of the same data type. In other words, if
you declare an array to hold textual data you cannot store in it both strings and
integers. If you want to store values of different data types in the same array,
you must declare the array as Variant as discussed later. Following are two
examples of one-dimensional arrays: an array named cities that is popu-
lated with text (String data type—$) and an array named lotto that contains
six lottery numbers stored as integers (Integer data type—%).

A one-dimensional array: cities$ A one-dimensional array:
lotto%

cities(0) Baltimore lotto(0) 25

cities(1) Atlanta lotto(1) 4

cities(2) Boston lotto(2) 31

cities(3) Washington lotto(3) 22

cities(4) New York lotto(4) 11

cities(5) Trenton lotto(5) 5

As you can see, the contents assigned to each array element match the array
type. Storing values of different data types in the same array requires that you
declare the array as Variant. You will learn how to declare arrays in the
next section.

A two-dimensional array may be thought of as a table or matrix. The posi-
tion of each element in a table is determined by its row and column numbers.
For example, an array that holds the yearly sales data for each product your
company sells has two dimensions: the product name and the year. The
following is a diagram of an empty two-dimensional array.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

You can access the first element in the second row of this two-dimensional
array by specifying indices (1, 0). Following are two examples of two-dimen-
sional arrays: an array named yearlyProductSales that stores yearly
product sales using the Currency data type (@) and an array named exchange

Keeping Track of Multiple Values Using Arrays   •  127

(of Variant data type) that stores the name of the country, its currency, and the
U.S. dollar exchange rate.

A two-dimensional array: yearlyProductSales@

Walking Cane
(0,0)

$25,023
(0,1)

Pill Crusher
(1,0)

$64,085
(1,1)

Electric Wheelchair
(2,0)

$345,016
(2,1)

Folding Walker
(3,0)

$85,244
(3,1)

A two-dimensional array: exchange (not actual rates)

Japan
(0,0)

Japanese Yen
(0,1)

122.856
(0,2)

Australia
(1,0)

Australian Dollar
(1,1)

1,38220
(1,2)

Canada
(2,0)

Canadian Dollar
(2,1)

1.33512
(2,2)

Norway
(3,0)

Norwegian Krone
(3,1)

8.63744
(3,2)

Europe
(4,0)

Euro
(4,1)

0.939350
(4,2)

In these examples, the yearlyProductSales array can hold a maximum
of 8 elements (4 rows × 2 columns = 8) and the exchange array will allow a
maximum of 15 elements (5 rows × 3 columns = 15).

Although VBA arrays can have up to 60 dimensions, most people find it diffi-
cult to picture dimensions beyond 3D. A three-dimensional array is an array of
two-dimensional arrays (tables) where each table has the same number of rows
and columns. A three-dimensional array is identified by three indices: table, row,
and column. The first element of a three-dimensional array is indexed (0, 0, 0).

Declaring Arrays

Because an array is a variable, you must declare it in a similar way that you
declare other variables (by using the keywords Dim, Private, or Public).
For fixed-length arrays, the array bounds are listed in parentheses following
the variable name. The bounds of an array are its lowest and highest indices.
If a variable-length, or dynamic, array is being declared, the variable name is
followed by an empty pair of parentheses.

The last part of the array declaration is the definition of the data type that
the array will hold. An array can hold any of the following data types: Integer,

128  •   Microsoft Access 2016 Programming Pocket Primer

Long, Single, Double, Variant, Currency, String, Boolean, Byte, or Date. Let’s
look at some examples:

Array Declaration (one-dimen-
sional)

Description

Dim cities(5) as String Declares a 6-element array, indexed 0
to 5

Dim lotto(1 To 6) as String Declares a 6-element array, indexed 1
to 6

Dim supplies(2 To 11) Declares a 10-element array, indexed
2 to 11

Dim myIntegers(-3 To 6) Declares a 10-element array, indexed
–3 to 6

Dim dynArray() as Integer Declares a variable-length array whose
bounds will be determined at runtime
(see examples later in this chapter)

Array Declaration (two-dimen-
sional)

Description

Dim exchange(4,2) as Variant Declares a two-dimensional array (five
rows by three columns)

Dim yearlyProductSales(3, 1)
as Currency

Declares a two-dimensional array (four
rows by two columns)

Dim my2Darray(1 To 3, 1 To
7) as Single

Declares a two-dimensional array (three
rows indexed 1 to 3 by seven columns
indexed 1 to 7)

When you declare an array, Visual Basic automatically reserves enough
memory space for it. The amount of memory allocated depends on the array’s
size and data type. For a one-dimensional array with six elements, Visual Basic
sets aside 12 bytes—2 bytes for each element of the array (recall that the size
of the Integer data type is 2 bytes—hence 2 × 6 = 12). The larger the array, the
more memory space is required to store the data. Because arrays can eat up
a lot of memory and impact your computer’s performance, it’s recommended
that you declare arrays with only as many elements as you think you’ll use.

SideBar  What Is an Array Variable?

An array is a group of variables that have a common name. While
a typical variable can hold only one value, an array variable can store a
large number of individual values. You refer to a specific value in the
array by using the array name and an index number.

Sidebar

Keeping Track of Multiple Values Using Arrays   •  129

SideBar  Subscripted Variables

The numbers inside the parentheses of the array variables are
called subscripts, and each individual variable is called a subscripted
variable or element. For example, cities(5) is the sixth sub-
scripted variable (element) of the array cities().

Array Upper and Lower Bounds

By default VBA assigns zero (0) to the first element of the array. Therefore,
number 1 represents the second element of the array, number 2 represents
the third, and so on. With numeric indexing starting at 0, the one-dimensional
array cities(5) contains six elements numbered from 0 to 5. If you’d rather
start counting your array’s elements at 1, you can explicitly specify a lower
bound of the array by using an Option Base 1 statement. This instruction
must be placed in the declaration section at the top of a VBA module before
any Sub statements. If you don’t specify Option Base 1 in a procedure
that uses arrays, VBA assumes that the statement Option Base 0 is to be
used and begins indexing your array’s elements at 0. If you’d rather not use the
Option Base 1 statement and still have the array indexing start at a number
other than 0, you must specify the bounds of an array when declaring the array
variable. As mentioned in the previous section, the bounds of an array are its
lowest and highest indices. Let’s take a look at the following example:

 Dim cities(3 To 6) As Integer

This statement declares a one-dimensional array with four elements. The
numbers enclosed in parentheses after the array name specify the lower (3)
and upper (6) bounds of the array. The index of the first element of this array is
3, the second 4, the third 5, and the fourth 6. Notice the keyword To between
the lower and upper indices.

Initializing and Filling an Array

After you declare an array, you must assign values to its elements. This is
often referred to as “initializing an array,” “filling an array,” or “populating an
array.” The three methods you can use to load data into an array are discussed
in this section.

Filling an Array Using Individual Assignment Statements

Assume you want to store the names of your six favorite cities in a one-
dimensional array named cities. After declaring the array with the Dim
statement:

Dim cities(5) as String

or

Dim cities$(5)

Sidebar

130  •   Microsoft Access 2016 Programming Pocket Primer

you can assign values to the array variable like this:

cities(0) = "Baltimore"
cities(1) = "Atlanta"
cities(2) = "Boston"
cities(3) = "San Diego"
cities(4) = "New York"
cities(5) = "Denver"

Filling an Array Using the Array Function

VBA’s built-in Array function returns an array of Variants. Because Variant
is the default data type, the As Variant clause is optional in the array vari-
able declaration:

Dim cities() as Variant

or

Dim cities()

Notice that you don’t specify the number of elements between the paren-
theses.

Next, use the Array function as shown here to assign values to your
cities array:

 cities = Array("Baltimore", "Atlanta", "Boston", _
 "San Diego", "New York", "Denver")

When using the Array function to populate a six-element array like
cities, the lower bound of the array is 0 or 1 and the upper bound is 5 or
6, depending on the setting of Option Base (see the previous section titled
“Array Upper and Lower Bounds”).

Filling an Array Using the For…Next Loop

The easiest way to learn how to use loops to populate an array is by writing
a procedure that fills an array with a specific number of integer values. Let’s
look at the following example procedure:

Sub LoadArrayWithIntegers()
 Dim myIntArray(1 To 10) As Integer
 Dim i As Integer

 ' Initialize random number generator
 Randomize

 ' Fill the array with 10 random numbers between 1 and 100
 For i = 1 To 10
 myIntArray(i) = Int((100 * Rnd) + 1)
 Next

 ' Print array values to the Immediate window
 For i = 1 To 10
 Debug.Print myIntArray(i)
 Next
End Sub

Keeping Track of Multiple Values Using Arrays   •  131

This procedure uses a For…Next loop to fill myIntArray with 10
random numbers between 1 and 100. The second loop is used to print out
the values from the array. Notice that the procedure uses the Rnd function
to generate a random number. This function returns a value less than 1 but
greater than or equal to 0. You can try it out in the Immediate window by
entering:

x=rnd
?x

Before calling the Rnd function, the LoadArrayWithIntegers
procedure uses the Randomize statement to initialize the random number
generator. To become more familiar with the Randomize statement and
Rnd function, be sure to follow up with the Access online help. For an
additional example of using loops, Randomize, and Rnd, see Hands-On
7.4.

Using a One-Dimensional Array

Having learned the basics of array variables, let’s write a couple of VBA
procedures to make arrays a part of your new skill set. The procedure in
Hands-On 7.1 uses a one-dimensional array to programmatically display a list
of six North American cities.

O

N THE CD 	Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 7.1. Using a One-Dimensional Array

1.	 Start Microsoft Access and create a new database named Chap07.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2.	 Once your new database is opened, press Alt+F11 to switch to the Visual Basic
Editor window.

3.	 Choose Insert | Module to add a new standard module.
4.	 In the Module1 Code window, enter the following FavoriteCities proce-

dure. Be sure to enter the Option Base 1 statement at the top of the
module.

Option Base 1

Sub FavoriteCities()
 ' declare the array
 Dim cities(6) As String

 ' assign the values to array elements
 cities(1) = "Baltimore"
 cities(2) = "Atlanta"
 cities(3) = "Boston"
 cities(4) = "San Diego"
 cities(5) = "New York"
 cities(6) = "Denver"

132  •   Microsoft Access 2016 Programming Pocket Primer

 ' display the list of cities
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities(5) & Chr(13) & cities(6)
End Sub

5.	 Choose Run | Run Sub/UserForm to execute the FavoriteCities proce-
dure.

Before the FavoriteCities procedure begins, the default indexing for an array
is changed. Notice the Option Base 1 statement at the top of the module
window before the Sub statement. This statement tells Visual Basic to assign
the number 1 instead of the default 0 to the first element of the array. The array
cities() is declared with six elements of the String data type. Each element
of the array is then assigned a value. The last statement in this procedure uses
the MsgBox function to display the list of cities in a message box. When you
run this procedure, each city name will appear on a separate line (see Figure
7.1). You can change the order of the displayed data by switching the index
values.

FIGURE 7.1. You can display the elements of a one-dimensional array with the MsgBox
function.

6.	 Click OK to close the message box.
7.	 On your own, modify the FavoriteCities procedure so that it displays the names

of the cities in reverse order (from 6 to 1).

SideBar  The Range of the Array

The spread of the elements specified by the Dim statement is
called the range of the array—for example: Dim mktgCodes(5 To
15).

Sidebar

Keeping Track of Multiple Values Using Arrays   •  133

Arrays and Looping Statements

Several of the looping statements you learned about in Chapter 6
(For…Next and For Each…Next) will come in handy now that you’re ready
to perform such tasks as populating an array and displaying the elements of an
array. It’s time to combine the skills you’ve learned so far.

How can you rewrite the FavoriteCities procedure so each city name
is shown in a separate message box? To answer this question, notice how
in the FavoriteCities2 procedure in Hands-On 7.2 we are replacing the
last statement of the original procedure with the For Each…Next
loop.

 �Hands-On 7.2. Using the For Each…Next Statement to List the Array Elements

1.	 In the Visual Basic Editor window, insert a new module.
2.	 Enter the FavoriteCities2 procedure in the Code window. Be sure to enter

the Option Base 1 statement at the top of the module.

Option Base 1

Sub FavoriteCities2()
 ' declare the array
 Dim cities(6) As String
 Dim city As Variant

 ' assign the values to array elements
 cities(1) = "Baltimore"
 cities(2) = "Atlanta"
 cities(3) = "Boston"
 cities(4) = "San Diego"
 cities(5) = "New York"
 cities(6) = "Denver"

 ' display the list of cities in separate messages
 For Each city In cities
 MsgBox city
 Next
End Sub

3.	 Choose Run | Run Sub/UserForm to execute the FavoriteCities2 proce-
dure.

Notice that the For Each…Next loop uses the variable city of the
Variant data type. As you recall from the previous chapter, the For Each…
Next loop allows you to loop through all of the objects in a collection or all
of the elements of an array and perform the same action on each object or
element. When you run the FavoriteCities2 procedure, the loop will execute
as many times as there are elements in the array.

In Chapter 4, you practiced passing arguments as variables to subroutines
and functions. The CityOperator procedure in Hands-On 7.3 demonstrates
how you can pass elements of an array to another procedure.

134  •   Microsoft Access 2016 Programming Pocket Primer

 Hands-On 7.3. Passing Elements of an Array to Another Procedure

1.	 In the Visual Basic Editor window, insert a new module.
2.	 Enter the following two procedures (CityOperator and Hello) in the mod-

ule’s Code window. Be sure to enter the Option Base 1 statement at the
top of the module.

Option Base 1

Sub CityOperator()
 ' declare the array
 Dim cities(6) As String

 ' assign the values to array elements
 cities(1) = "Baltimore"
 cities(2) = "Atlanta"
 cities(3) = "Boston"
 cities(4) = "San Diego"
 cities(5) = "New York"
 cities(6) = "Denver"

 ' call another procedure and pass
 ' the array as argument
 Hello cities()
End Sub

Sub Hello(cities() As String)
 Dim counter As Integer

 For counter = 1 To 6
 MsgBox "Hello, " & cities(counter) & "!"
 Next
End Sub

Notice that the last statement in the CityOperator procedure calls
the Hello procedure and passes to it the array cities() that holds the
names of our favorite cities. Also notice that the declaration of the Hello
procedure includes an array type argument—cities()—passed to
this procedure as String. In order to iterate through the elements of an
array, you need to know how many elements are included in the passed
array. You can easily retrieve this information via two array functions—
LBound and UBound. These functions are discussed later in this chapter.
In this procedure example, LBound(cities()) will return 1 as the first
element of the array, and UBound(cities()) will return 6 as the last
element of the cities() array. Therefore, the statement For counter
= LBound(cities()) To UBound(cities()) will boil down to
For counter = 1 To 6.

3.	 Execute the CityOperator procedure (choose Run | Run Sub/UserForm).
Passing array elements from a subroutine to a subroutine or function proce-

dure allows you to reuse the same array in many procedures without unneces-
sary duplication of the program code.

Keeping Track of Multiple Values Using Arrays   •  135

Here’s how you can put to work your newly acquired knowledge about
arrays and loops in real life. If you’re an avid lotto player who is getting tired of
picking your own lucky numbers, have Visual Basic do the picking. The Lotto
procedure in Hands-On 7.4 populates an array with six numbers from 1 to 54.
You can adjust this procedure to pick numbers from any range.

 Hands-On 7.4. Using Arrays and Loops in Real Life

1.	 In the Visual Basic Editor window, insert a new module.
2.	 Enter the following Lotto procedure in the module’s Code window:

Sub Lotto()
 Const spins = 6
 Const minNum = 1
 Const maxNum = 54
 Dim t As Integer ' looping variable in outer loop
 Dim i As Integer ' looping variable in inner loop
 Dim myNumbers As String ' string to hold all picks
 Dim lucky(spins) As String ' array to hold generated picks

 myNumbers = ""
 For t = 1 To spins
 Randomize
 lucky(t) = Int((maxNum - minNum + 1) * Rnd) + minNum

 ' check if this number was picked before
 For i = 1 To (t - 1)
 If lucky(t) = lucky(i) Then
 lucky(t) = Int((maxNum - minNum + 1) * Rnd) + minNum
 i = 0
 End If
 Next i
 MsgBox "Lucky number is " & lucky(t), , "Lucky number " & t
 myNumbers = myNumbers & " -" & lucky(t)
 Next t
 MsgBox "Lucky numbers are " & myNumbers, , "6 Lucky Numbers"
End Sub

The Randomize statement initializes the random number generator.
The instruction Int((maxNum – minNum + 1) * Rnd + minNum)
uses the Rnd function to generate a random value from the specified
minNum to maxNum. The Int function converts the resulting random
number to an integer. Instead of assigning constant values for minNum and
maxNum, you can use the InputBox function to get these values from the
user.

The inner For…Next loop ensures that each picked number is unique—it
may not be any one of the previously picked numbers. If you omit the inner
loop and run this procedure multiple times, you’ll likely see some occurrences
of duplicate numbers.

3.	 Execute the Lotto procedure (choose Run | Run Sub/UserForm) to get the
computer-generated lottery numbers.

136  •   Microsoft Access 2016 Programming Pocket Primer

SideBar  Initial Value of an Array Element

Until a value is assigned to an element of an array, the element
retains its default value. Numeric variables have a default value of
zero (0), and string variables have a default value of empty string (“”).

SideBar  Passing Arrays between Procedures

When an array is declared in a procedure, it is local to this proce-
dure and unknown to other procedures. However, you can pass the
local array to another procedure by using the array’s name followed by
an empty set of parentheses as an argument in the calling statement.
For example, the statement Hello cities() calls the procedure
named Hello and passes to it the array cities.

Using a Two-Dimensional Array

Now that you know how to programmatically produce a list (a one-dimen-
sional array), it’s time to take a closer look at how you can work with tables of
data. The following procedure creates a two-dimensional array that will hold
country name, currency name, and exchange rate for three countries.

 Hands-On 7.5. Using a Two-Dimensional Array

1.	 In the Visual Basic Editor window, insert a new module.
2.	 Enter the Exchange procedure in the module’s Code window:

Sub Exchange()
 Dim t As String
 Dim r As String
 Dim Ex(3, 3) As Variant

 t = Chr(9) & Chr(9) ' 2 Tabs
 r = Chr(13) ' Enter

 Ex(1, 1) = "Japan"
 Ex(1, 2) = "Yen"
 Ex(1, 3) = 122.856
 Ex(2, 1) = "Europe"
 Ex(2, 2) = "Euro"
 Ex(2, 3) = 0.939350
 Ex(3, 1) = "Canada"
 Ex(3, 2) = "Dollar"
 Ex(3, 3) = 1.33512

 MsgBox "Country " & t & "Currency" & t & _
 "1 USD" & r & r _
 & Ex(1, 1) & t & Ex(1, 2) & t & Ex(1, 3) & r _
 & Ex(2, 1) & t & Ex(2, 2) & t & Ex(2, 3) & r _
 & Ex(3, 1) & t & Ex(3, 2) & t & Ex(3, 3), , _
 "Exchange Rates"
End Sub

Sidebar

Sidebar

Keeping Track of Multiple Values Using Arrays   •  137

3.	 Execute the Exchange procedure (choose Run | Run Sub/UserForm).
When you run the Exchange procedure, you will see a message box with

the information presented in three columns, as shown in Figure 7.2.

FIGURE 7.2. The text displayed in the message box can be custom formatted. (Note that
these are fictitious exchange rates for demonstration only.)

4.	 Click OK to close the message box.

Static and Dynamic Arrays

The arrays introduced thus far are static. A static array is an array of
a specific size. You use a static array when you know in advance how big
the array should be. The size of the static array is specified in the array’s
declaration statement. For example, the statement Dim Fruits(10)
As String declares a static array called Fruits that is made up of 10
elements.

But what if you’re not sure how many elements your array will contain? If
your procedure depends on user input, the number of user-supplied elements
might vary every time the procedure is executed. How can you ensure that the
array you declare is not wasting memory?

You may recall that after you declare an array, VBA sets aside enough memory
to accommodate the array. If you declare an array to hold more elements than
what you need, you’ll end up wasting valuable computer resources. The solu-
tion to this problem is making your arrays dynamic. A dynamic array is an
array whose size can change. You use a dynamic array when the array size will
be determined each time the procedure is run.

SideBar  Fixed-Dimension Arrays

A static array contains a fixed number of elements. The number of
elements in a static array will not change once it has been declared.

Sidebar

138  •   Microsoft Access 2016 Programming Pocket Primer

A dynamic array is declared by placing empty parentheses after the array
name—for example:

Dim Fruits() As String

Before you use a dynamic array in your procedure, you must use the ReDim
statement to dynamically set the lower and upper bounds of the array.

The ReDim statement redimensions arrays as the procedure code executes.
The ReDim statement informs Visual Basic about the new size of the array.
This statement can be used several times in the same procedure. Now let’s
write a procedure that demonstrates the use of a dynamic array.

 Hands-On 7.6. Using a Dynamic Array

1.	 Insert a new module and enter the following DynArray procedure in the
module’s Code window:

Sub DynArray()
 Dim counter As Integer
 Dim myArray() As Integer ' declare a dynamic array
 ReDim myArray(5) ' specify the initial size of the array
 Dim myValues As String

 ' populate myArray with values
 For counter = 1 To 5
 myArray(counter) = counter + 1
 myValues = myValues & myArray(counter) & Chr(13)
 Next

 ' change the size of myArray to hold 10 elements
 ReDim Preserve myArray(10)

 ' add new values to myArray
 For counter = 6 To 10
 myArray(counter) = counter * counter
 myValues = myValues & myArray(counter) & Chr(13)
 Next counter

 MsgBox myValues
 For counter = 1 To 10
 Debug.Print myArray(counter)
 Next counter
End Sub

In the DynArray procedure, the statement Dim myArray()
As Integer declares a dynamic array called myArray. Although this
statement declares the array, it does not allocate any memory to the
array. The first ReDim statement specifies the initial size of myArray
and reserves for it 10 bytes of memory to hold its five elements. As you
know, every Integer value requires 2 bytes of memory. The For…Next
loop populates myArray with data and writes the array’s elements to the
variable myValues. The value of the variable counter equals 1 at the
beginning of the loop.

Keeping Track of Multiple Values Using Arrays   •  139

The first statement in the loop (myArray(counter) = counter +1)
assigns the value 2 to the first element of myArray. The second statement
(myValues = myValues & myArray(counter) & Chr(13)) enters the
current value of myArray’s element followed by a carriage return (Chr(13))
into the variable myValues. The statements inside the loop are executed
five times. Visual Basic places each new value in the variable myValues and
proceeds to the next statement: ReDim Preserve myArray(10).

Normally, when you change the size of the array, you lose all the values
that were in that array. When used alone, the ReDim statement reinitializes
the array. However, you can append new elements to an existing array by
following the ReDim statement with the Preserve keyword. In other words,
the Preserve keyword guarantees that the redimensioned array will not lose
its existing data.

The second For…Next loop assigns values to the 6th through 10th elements
of myArray. This time the values of the array’s elements are obtained by
multiplication: counter * counter.

2.	 Execute the DynArray procedure (choose Run | Run Sub/UserForm).

SideBar  Dimensioning Arrays

You can’t assign a value to an array element until you have declared
the array with the Dim or ReDim statement. (An exception to this is if
you use the Array function discussed in the next section.)

Array Functions

You can manipulate arrays with five built-in VBA functions: Array,
IsArray, Erase, LBound, and UBound. The following sections demon-
strate the use of each of these functions in VBA procedures.

The Array Function

The Array function allows you to create an array during code execution
without having to first dimension it. This function always returns an array of
Variants. You can quickly place a series of values in a list by using the Array
function.

The CarInfo procedure in the following hands-on exercise creates a fixed-
size, one-dimensional, three-element array called auto.

 Hands-On 7.7. Using the Array Function

1.	 Insert a new module and enter the following CarInfo procedure in the mod-
ule’s Code window:

Option Base 1

Sub CarInfo()
 Dim auto As Variant

Sidebar

140  •   Microsoft Access 2016 Programming Pocket Primer

 auto = Array("Ford", "Black", "2015")
 MsgBox auto(2) & " " & auto(1) & ", " & auto(3)

 auto(2) = "4-door"
 MsgBox auto(2) & " " & auto(1) & ", " & auto(3)
End Sub

2.	 Run the CarInfo procedure and examine the results.
When you run this procedure, you get two message boxes. The first one

displays the following text: “Black Ford, 2015.” After changing the value of
the second array element, the second message box will say: “4-door Ford,
2015.”

Be sure to enter Option Base 1 at the top of the module before run-
ning the CarInfo procedure. If this statement is missing in your module,
Visual Basic will display runtime error 9—“Subscript out of range.”

The IsArray Function

The IsArray function lets you test whether a variable is an array. The
IsArray function returns True if the variable is an array or False if it is not an
array. Let’s do another hands-on exercise.

 Hands-On 7.8. Using the IsArray Function

1.	 Insert a new module and enter the code of the IsThisArray procedure in the
module’s Code window:

Sub IsThisArray()
 ' declare a dynamic array
 Dim tblNames() As String
 Dim totalTables As Integer
 Dim counter As Integer
 Dim db As Database

 Set db = CurrentDb

 ' count the tables in the open database
 totalTables = db.TableDefs.Count

 ' specify the size of the array
 ReDim tblNames(1 To totalTables)

 ' enter and show the names of tables
 For counter = 1 To totalTables - 1
 tblNames(counter) = db.TableDefs(counter).Name
 Debug.Print tblNames(counter)
 Next counter

 ' check if this is indeed an array
 If IsArray(tblNames) Then
 MsgBox "The tblNames is an array."
 End If
End Sub

NOTE

Keeping Track of Multiple Values Using Arrays   •  141

2.	 Run the IsThisArray procedure to examine its results.
When you run this procedure, the list of tables in the current database

is written to the Immediate window. A message box displays whether the
tblNames array is indeed an array.

The Erase Function

When you want to remove the data from an array, you should use the
Erase function. This function deletes all the data held by static or dynamic
arrays. In addition, the Erase function reallocates all of the memory
assigned to a dynamic array. If a procedure has to use the dynamic array
again, you must use the ReDim statement to specify the size of the array.
The next hands-on exercise demonstrates how to erase the data from the
array cities.

 Hands-On 7.9. Removing Data from an Array

1.	 Insert a new module and enter the code of the FunCities procedure in the
module’s Code window:

' start indexing array elements at 1
Option Base 1

Sub FunCities()
 ' declare the array
 Dim cities(1 To 5) As String

 ' assign the values to array elements
 cities(1) = "Las Vegas"
 cities(2) = "Orlando"
 cities(3) = "Atlantic City"
 cities(4) = "New York"
 cities(5) = "San Francisco"

 ' display the list of cities
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities(5)

 Erase cities

 ' show all that was erased
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities(5)
End Sub

2.	 Run the FunCities procedure to examine its results.
3.	 Click OK to close the message box.

Visual Basic should now display an empty message box because all values
were deleted from the array by the Erase function.

4.	 Click OK to close the empty message box.

142  •   Microsoft Access 2016 Programming Pocket Primer

The LBound and UBound Functions

The LBound and UBound functions return whole numbers that indicate
the lower bound and upper bound indices of an array.

 Hands-On 7.10. Finding the Lower and Upper Bounds of an Array

1.	 Insert a new module and enter the code of the FunCities2 procedure in the
module’s Code window:

Sub FunCities2()
 ' declare the array
 Dim cities(1 To 5) As String

 ' assign the values to array elements
 cities(1) = "Las Vegas"
 cities(2) = "Orlando"
 cities(3) = "Atlantic City"
 cities(4) = "New York"
 cities(5) = "San Francisco"

 ' display the list of cities
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities(5)

 ' display the array bounds
 MsgBox "The lower bound: " & LBound(cities) & Chr(13) _
 & "The upper bound: " & UBound(cities)
End Sub

2.	 Run the FunCities2 procedure.
3.	 Click OK to close the message box that displays the favorite cities.
4.	 Click OK to close the message box that displays the lower and upper bound

indices.
To determine the upper and lower indices in a two-dimensional array,

you may want to add the following statements at the end of the Exchange
procedure that was prepared in Hands-On 7.5 (add these lines just before the
End Sub keywords):

MsgBox "The lower bound (first dimension) is " & LBound(Ex, 1) & "."
MsgBox "The upper bound (first dimension) is " & UBound(Ex, 1) & "."
MsgBox "The lower bound (second dimension) is " & LBound(Ex, 2) & "."
MsgBox "The upper bound (second dimension) is " & UBound(Ex, 2) & "."

When determining the lower and upper bound indices of a two-dimen-
sional array, you must specify the dimension number: 1 for the first di-
mension and 2 for the second dimension.

Errors in Arrays

When working with arrays, it’s easy to make a mistake. If you try to
assign more values than there are elements in the declared array, Visual

NOTE

Keeping Track of Multiple Values Using Arrays   •  143

Basic will display the error message “Subscript out of range” (see Figure
7.3).

FIGURE 7.3. This error was caused by an attempt to access a nonexistent array element.

Suppose you declared a one-dimensional array that consists of three
elements, and you are trying to assign a value to the fourth element. When
you run the procedure, Visual Basic can’t find the fourth element, so it
displays the error message shown in Figure 7.3. If you click the Debug
button, Visual Basic will highlight the line of code that caused the error (see
Figure 7.4).

FIGURE 7.4. The statement that triggered the error shown in Figure 7.3. is highlighted.

The error Subscript out of range is often triggered in procedures using
loops. The procedure Zoo1 shown in Hands-On 7.11 serves as an example of
such a situation.

144  •   Microsoft Access 2016 Programming Pocket Primer

 Hands-On 7.11. Understanding Errors in Arrays

1.	 Insert a new module and enter the following Zoo1 and Zoo2 procedures in
the module’s Code window:

Sub Zoo1()
 ' this procedure triggers an error
 ' "Subscript out of range"
 Dim zoo(3) As String
 Dim i As Integer
 Dim response As String

 i = 0
 Do
 i = i + 1
 response = InputBox("Enter a name of animal:")
 zoo(i) = response
 Loop Until response = ""
End Sub

Sub Zoo2()
 ' this procedure avoids the error
 ' "Subscript out of range"
 Dim zoo(3) As String
 Dim i As Integer
 Dim response As String

 i = 1
 Do While i >= LBound(zoo) And i <= UBound(zoo)
 response = InputBox("Enter a name of animal:")
 If response = "" Then Exit Sub
 zoo(i) = response
 Debug.Print zoo(i)
 i = i + 1
 Loop
End Sub

2.	 Run the Zoo1 procedure and enter your favorite animal names when prompted.
Do not cancel the procedure until you see the error.

While executing this procedure, when the variable i equals 4, Visual Basic
will not be able to find the fourth element in a three-element array, so the error
message will appear.

3.	 Click the Debug button in the error message.
Visual Basic will highlight the code that caused the error.

4.	 Position the cursor over the variable i in the highlighted line of code to view
the variable’s value.

Visual Basic displays: i=4
Notice that at the top of the Zoo1 procedure zoo has been declared as an

array containing only three elements:

Dim zoo(3) As String

Because Visual Basic could not find the fourth element, it displayed the
“Subscript out of range” error.

Keeping Track of Multiple Values Using Arrays   •  145

The Zoo2 procedure demonstrates how, by using the LBound and UBound
functions introduced in the preceding section, you can avoid errors caused by
an attempt to access a nonexistent array element.

5.	 Choose Run | Reset to terminate the debugging session and exit the proce-
dure. You will learn more about debugging procedures in Chapter 9.

Another frequent error you may encounter while working with arrays is
a Type Mismatch error. To avoid this error, keep in mind that each element
of an array must be of the same data type. Therefore, if you attempt to
assign to an element of an array a value that conflicts with the data type of
the array, you will get a Type Mismatch error during the code execution. If
you need to hold values of different data types in an array, declare the array
as Variant.

Parameter Arrays

In Chapter 4, you learned that values can be passed between subroutines
or functions as either required or optional arguments. If the passed argument
is not absolutely required for the procedure to execute, the argument’s name is
preceded by the keyword Optional. Sometimes, however, you don’t know in
advance how many arguments you want to pass. A classic example is addition.
One time you may want to add 2 numbers together, another time you may want
to add 3, 10, or 15 numbers.

Using the keyword ParamArray, you can pass an array consisting of any
number of elements to your subroutines and functions. The following hands-
on exercise uses the AddMultipleArgs function to add as many numbers as you
may require. This function begins with the declaration of an array myNum-
bers. Notice the use of the ParamArray keyword.

The array must be declared as type Variant, and it must be the last argu-
ment in the procedure definition.

 Hands-On 7.12. Working with Parameter Arrays

1.	 Insert a new module and enter the following AddMultipleArgs function pro-
cedure in the module’s Code window:

Function AddMultipleArgs(ParamArray myNumbers() As Variant)
 Dim mySum As Single
 Dim myValue As Variant

 For Each myValue In myNumbers
 mySum = mySum + myValue
 Next
 AddMultipleArgs = mySum
End Function

2.	 Choose View | Immediate Window and type the following instruction, and
then press Enter to execute it:

146  •   Microsoft Access 2016 Programming Pocket Primer

AddMultipleArgs(1, 23.24, 3, 24, 8, 34)

you press Enter, Visual Basic returns the total of all the numbers in the
parentheses: 93.24. You can supply an unlimited number of arguments. To add
more values, enter additional values in the parentheses after the function name
in the Immediate window, and then press Enter. Notice that each function
argument must be separated by a comma.

Passing Arrays to Function Procedures

You can pass an array to a function procedure and return an array from a
function. For example, let’s assume you have a list of countries. You want to
convert the country names stored in your array to uppercase and keep the
original array intact. You can delegate the conversion process to a function
procedure. When the array is passed using the ByVal keyword, the function
will work with the copy of the original array. Any modifications performed
within the function will affect only the copy. Therefore, the array in the calling
procedure will not be modified.

 Hands-On 7.13. Passing an Array to a Function Procedure

1.	 Insert a new module and enter the following procedure and function in the
module’s Code window:

Sub ManipulateArray()
 Dim countries(1 To 6) As Variant
 Dim countriesUCase As Variant
 Dim i As Integer

' assign the values to array elements
 countries(1) = “Bulgaria”
 countries(2) = "Argentina”
 countries(3) = “Brazil”
 countries(4) = “Sweden”
 countries(5) = “New Zealand”
 countries(6) = “Denmark”

 countriesUCase = ArrayToUCase(countries)

 For i = 1 To 6
 Debug.Print countriesUCase(i)
 Debug.Print countries(i) & “ (Original Entry)”
 Next i
End Sub

Public Function ArrayToUCase(ByVal myValues _
 As Variant) As String()
 Dim i As Integer
 Dim Temp() As String
 If IsArray(myValues) Then
 ReDim Temp(LBound(myValues) To UBound(myValues))
 For i = LBound(myValues) To UBound(myValues)
 Temp(i) = CStr(UCase(myValues(i)))

Keeping Track of Multiple Values Using Arrays   •  147

 Next i
 ArrayToUCase = Temp
 End If
End Function

2.	 Run the ManipulateArray procedure and check its results in the Immediate
window.

Sorting an Array

We all find it easier to work with sorted data. Some operations on arrays,
like finding maximum and minimum values, require that the array is sorted.
Once it is sorted, you can find the maximum value by assigning the upper
bound index to the sorted array, as in the following:

y = myIntArray(UBound(myIntArray))

The minimum value can be obtained by reading the first value of the sorted
array:

x = myIntArray(1)	

So how can you sort an array? Hands-On 7.14 demonstrates how to dele-
gate the sorting task to a classic bubble sort routine. A bubble sort is a compar-
ison sort. To create a sorted set, you step through the list to be sorted, compare
each pair of adjacent items, and swap them if they are in the wrong order. As
a result of this sorting algorithm, the smaller values “bubble” to the top of the
list. In the next procedure, we will sort the list of countries alphabetically in
ascending order.

 Hands-On 7.14. Sorting an Array

This hands-on exercise requires prior completion of Hands-On 7.13.

1.	 In the same module where you entered the ArrayToUCase function proce-
dure, enter the following BubbleSort function procedure:

Sub BubbleSort(myArray As Variant)
 Dim i As Integer
 Dim j As Integer
 Dim uBnd As Integer
 Dim Temp As Variant
 uBnd = UBound(myArray)
 For i = LBound(myArray) To uBnd - 1
 For j = i + 1 To uBnd
 If UCase(myArray(i)) > UCase(myArray(j)) Then
 Temp = myArray(j)
 myArray(j) = myArray(i)
 myArray(i) = Temp
 End If
 Next j
 Next i
End Sub

148  •   Microsoft Access 2016 Programming Pocket Primer

2.	 Add the following statements to the ManipulateArray procedure, placing them
just above the For…Next statement block (see Figure 7.5):

' call function to sort the array
 BubbleSort countriesUCase

FIGURE 7.5. Calling the BubbleSort function procedure from the ManipulateArray procedure.

3.	 Run the ManipulateArray procedure and check its results in the Immediate
window. Notice that the countries that appear in uppercase letters are shown
in alphabetic order.

4.	 Choose File | Save Chap07 and save changes to the modules when prompted.
5.	 Choose File | Close and Return to Microsoft Access.
6.	 Close the Chap07.accdb database and exit Microsoft Access.

Summary

In this chapter, you learned how, by creating an array, you can write proce-
dures that require a large number of variables. You worked with examples of
procedures that demonstrated how to declare and use a one-dimensional array
(list) and a two-dimensional array (table). You learned the difference between
static and dynamic arrays. This chapter introduced you to five built-in VBA
functions that are frequently used with arrays (Array, IsArray, Erase,
LBound, and UBound), as well as the ParamArray keyword. You also
learned how to pass one array and return another array from a function proce-
dure. Finally, you saw how to sort an array. You now know all the VBA control
structures that can make your code more intelligent: conditional statements,
loops, and arrays.

In the next chapter, you will learn how to use collections instead of arrays
to manipulate large amounts of data.

chapter 8
Keeping Track of Multiple
Values Using Object
Collections

Microsoft Access offers a large number of built-in objects that you can
access from your VBA procedures to automate many aspects of your
databases. You are not limited to using these built-in objects, how-

ever. VBA allows you to create your own objects and collections of objects,
complete with their own methods and properties. While writing your own VBA
procedures, you may come across a situation where there’s no built-in collec-
tion to handle the task at hand. The solution is to create a custom collection
object. You already know from the previous chapter how to work with multi-
ple items of data by using static and dynamic arrays. Because collections have
built-in properties and methods that allow you to add, remove, and count their
elements, they make working with multiple data items much easier. In this
chapter, you learn how to work with collections, including how to declare a
custom Collection object. Using class modules to create user-defined objects
will also be discussed. Before diving into theory and this chapter’s hands-on
examples, let’s review the following terms:

Collection—An object that contains a set of related objects.
Class—A definition of an object that includes its name, properties, meth-

ods, and events. The class acts as a sort of object template from which
an instance of an object is created at runtime.

Class module—A module that contains the definition of a class, including
its property and method definitions.

Event—An action recognized by an object, such as a mouseclick or a key-
press, for which you can define a response. Events can be triggered by
a user action, a VBA statement, or the system.

Event procedure—A procedure that is automatically executed in
response to an event triggered by the user, program code, or the
system.

150  •   Microsoft Access 2016 Programming Pocket Primer

Form module—A module that contains the VBA code for all event
procedures triggered by events occurring in a user form or its controls.
A form module is a type of class module.

Instance—A specific object that belongs to a class is referred to as an in-
stance of the class. When you create an instance, you create a new ob-
ject that has the properties and methods defined by the class.

Module—A structure containing subroutine and function procedures that
are available to other VBA procedures and are not related to any object
in particular.

Working with Collections of Objects

Collections are objects that contain other similar objects. For example,
a Microsoft Access database has a collection of Tables, and each table has
a collection of Fields and Indexes. In Microsoft Excel, all open workbooks
belong to the Workbooks collection, and all the sheets in a particular workbook
are members of the Worksheets collection. In Microsoft Word, all open docu-
ments belong to the Documents collection, and each paragraph in a document
is a member of the Paragraphs collection.

No matter what collection you want to work with, you can do the following:

QQ Insert new items into the collection by using the Add method.
The following example uses the Immediate window to create a collection

named myTestCollection and adds three items to the collection. To try out
these examples, type the statements in the Immediate window, and then press
Enter after each line:

set myTestCollection = New Collection
myTestCollection.Add "first member"
myTestCollection.Add "second member"
myTestCollection.Add "third member"	

QQ Determine the number of items in the collection by using the Count prop-
erty.
For example, when you type this statement in the Immediate window, and

then press Enter:

?myTestCollection.Count

it returns the total number of items stored in the myTestCollection
object variable.

QQ Refer to a specific object in a collection by using an index value.
For example, to find out the names of the collection members, you can

type the following statement in the Immediate window, and then press Enter:

?myTestCollection.Item(1)

Because the Item method is a default method of the collection, you may
omit it from the statement, as shown here:

Keeping Track of Multiple Values Using Object Collections   •  151

?myTestCollection(1)

QQ Remove an object from a collection by using the Remove method.
For example, to remove the first object from the myTestCollection

object variable, enter the following statement, and then press Enter:

myTestCollection.Remove 1

QQ Cycle through every object in the collection by using the For Each…
Next loop.

For example, to remove all objects from the myTestCollection object
variable, type the following looping structure in the Immediate window, and
then press Enter:

For Each m in myTestCollection : myTestCollection.Remove 1 : Next

Note that a colon is used to separate one statement from the next. You
can write two or more statements on a single line by separating them with
a colon (:). This is very convenient when testing statements in the Imme-
diate window. Because collections are reindexed, the preceding statement
will remove the first member of the collection on each iteration. When you
press Enter, myTestCollection should have zero objects. However, to
be sure, type the following statement in the Immediate window, and then
press Enter:

?myTestCollection.Count

Now that you have learned the basics of working with built-in collections,
let’s move on to declaring and using custom collections.

Declaring a Custom Collection

To create a user-defined collection, you should begin by declaring an object
variable of the Collection type. This variable is declared with the New keyword
in the Dim statement:

Dim collection Fruits As New Collection

Adding Objects to a Custom Collection

After you’ve declared the Collection object, you can insert new items into
the collection by using the Add method. The objects with which you populate
your collection do not have to be of the same data type. The Add method looks
as follows:

object.Add item[, key, before, after]

For example, the following statement adds a new item to the previously
declared Fruits collection:

Fruits.Add "apples"

152  •   Microsoft Access 2016 Programming Pocket Primer

You are required only to specify object and item. object is the
collection name, such as Fruits. This is the same name that was used in the
declaration of the Collection object. The Item, such as “apples,” is the object
you want to add to the collection (Fruits).

Although the other arguments are optional, they are quite useful. It’s impor-
tant to understand that the items in a collection are automatically assigned
numbers starting with 1. However, they can also be assigned a unique key
value. Instead of accessing a specific item with an index (1, 2, 3, and so on) at
the time an object is added to a collection, you can assign a key for that object.
For instance, to identify an individual in a collection of students or employees,
you could use Social Security numbers as a key. If you want to specify the
position of the object in the collection, you should use either the before or
after argument (but not both). The before argument is the object before
which the new object is added. The after argument is the object after which
the new object is added.

The NewEmployees procedure in the following hands-on exercise declares
the custom Collection object called colEmployees.

	� Please note files for the Hands-On project may be found on the companion
CD-ROM.

 Hands-On 8.1. Creating a Custom Collection

1.	 Start Microsoft Access and create a new database named Chap08.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2.	 Once your new database is opened, press Alt+F11 to switch to the Visual Basic
Editor window.

3.	 Choose Insert | Module to add a new standard module.
4.	 In the Module1 Code window, enter the following NewEmployees procedure.

Be sure to enter the Option Base 1 statement before this procedure.

Option Base 1		 ' ensure that there is only one
 		 ' Option Base 1 statement
 			 ' at the top of the module
Sub NewEmployees()
 ' declare the employees collection
 Dim colEmployees As New Collection
 ' declare a variable to hold each element of a collection
 Dim emp As Variant
 ' Add 3 new employees to the collection
 With colEmployees
 .Add Item:="John Collins", Key:="128634456"
 .Add Item:="Mary Poppins", Key:="223998765"
 .Add Item:="Karen Loza", Key:="120228876", Before:=2
 End With
 ' list the members of the collection
 For Each emp In colEmployees
 Debug.Print emp
 Next

O

N THE CD

Keeping Track of Multiple Values Using Object Collections   •  153

 MsgBox "There are " & colEmployees.Count & " employees."
End Sub

Note that the control variable used in the For Each…Next loop must be
declared as Variant or Object. When you run this procedure, you will notice
that the order of employee names stored in the colEmployees collection (as
displayed in the Immediate window) may be different from the order in which
these employees were entered in the program code. This is the result of using
the optional before argument with Karen Loza’s entry. This argument’s value
tells Visual Basic to place Karen before the second item in the collection.

5.	 Choose Run | Run Sub/UserForm to execute the NewEmployees proce-
dure.

Removing Objects from a Custom Collection

Removing an item from a custom collection is as easy as adding an item. To
remove an item, use the Remove method in the following format:

object.Remove index

object is the name of the custom collection that contains the object you
want to remove. index is an expression specifying the position of the object
in the collection.

To demonstrate the process of removing an item from a collection, let’s
work with the following hands-on exercise that modifies the NewEmployees
procedure that you prepared in Hands-On 8.1.

 Hands-On 8.2. Removing Objects from a Collection

This hands-on exercise requires the prior completion of Hands-On 8.1.

1.	 Add the following lines to the NewEmployees procedure just before the
End Sub keywords:

' remove the third item from the collection
colEmployees.Remove 3
MsgBox colEmployees.Count & " employees remain."

2.	 Rerun the NewEmployees procedure.

sidebar  Reindexing Collections

Collections are reindexed automatically when an item is removed.
Therefore, to remove all items from a custom collection you can use 1
for the Index argument, as in the following example:

Do While myCollection.Count > 0
 myCollection.Remove Index:=1
Loop

Sidebar

154  •   Microsoft Access 2016 Programming Pocket Primer

Creating Custom Objects in Class Modules

There are two module commands available in the Visual Basic Editor’s
Insert menu: Module and Class Module. So far you’ve used a standard module
to create subprocedures and function procedures. You’ll use the class module
for the first time in this chapter to create a custom object and define its proper-
ties and methods.

Creating a new VBA object involves inserting a class module into your
project and adding code to that module. However, before you do so you need
a basic understanding of what a class is.

If you refer back to the list of terms at the beginning of this chapter, you
will find out that the class is a sort of object template. A frequently used
analogy is comparing an object class to a cookie cutter. Just like a cookie
cutter defines what a particular cookie will look like, the definition of the
class determines how a particular object should look and how it should
behave. Before you can actually use an object class, you must first create
a new instance of that class. Object instances are the cookies. Each object
instance has the characteristics (properties and methods) defined by its
class. Just as you can cut out many cookies using the same cookie cutter,
you can create multiple instances of a class. You can change the properties
of each instance of a class independently of any other instance of the same
class.

A class module lets you define your own custom classes, complete with
custom properties and methods. A property is an attribute of an object that
defines one of its characteristics, such as shape, position, color, title, and so
forth. A method is an action that the object can perform. You can create the
properties for your custom objects by writing property procedures in a class
module. The object methods are also created in a class module by writing
subprocedures or function procedures.

After building your object in the class module, you can use it in the same
way you use other built-in objects. You can also export the object class outside
the VBA project to other VBA-capable applications.

Creating a Class

The following sections of this chapter walk you through the process of
creating and working with a custom object called CEmployee. This object
will represent an employee. It will have properties such as ID, FirstName,
LastName, and Salary. It will also have a method to modify the current salary.

 Custom Project 8.1. (Step 1) Creating a Class Module

1.	 In the Visual Basic Editor window, choose Insert | Class Module.
2.	 In the Project Explorer window, highlight the Class1 module and use the

Properties window to rename the class module CEmployee (see Figure
8.1).

Keeping Track of Multiple Values Using Object Collections   •  155

Sidebar  Naming a Class Module

Every time you create a new class module, give it a meaningful name.
Set the name of the class module to the name you want to use in your VBA
procedures using the class. The name you choose for your class should be
easily understood and should identify the “thing” the object class repre-
sents. As a rule, the object class name is prefaced with an uppercase “C.”

Figure 8.1. Use the Name property in the Properties window to rename the Class module.

Variable Declarations

After adding and renaming the class module, the next step is to declare
the variables that will hold the data you want to store in the custom
CEmployee object. Each item of data you want to store in an object should
be assigned a variable. Class variables are called data members and are
declared with the Private keyword. Using the Private keyword in a
class module hides the data members and prevents other parts of the appli-
cation from referencing them. Only the procedures within the class module
in which the private variables were defined can modify the value of these
variables.

Because the name of a variable also serves as a property name, use mean-
ingful names for your object’s data members. It’s traditional to preface the class
variable names with “m_”to indicate that they are data members of a class.

Sidebar

156  •   Microsoft Access 2016 Programming Pocket Primer

 Custom Project 8.1. (Step 2) Declaring Class Members

1.	 Type the following declaration lines at the top of the CEmployee class
module’s code window:

Option Explicit
' declarations
Private m_LastName As String
Private m_FirstName As String
Private m_Salary As Currency
Private m_ID As String

Notice that the name of each data member variable begins with the
prefix “m_.”

Defining the Properties for the Class

Declaring the variables with the Private keyword ensures that they
cannot be directly accessed from outside the object. This means that the
VBA procedures outside the class module will not be able to set or read data
stored in those variables. To enable other parts of your VBA application to set
or retrieve the employee data, you must add special property procedures to
the CEmployee class module. There are three types of property procedures:

QQ Property Let—This type of procedure allows other parts of the applica-
tion to set the value of a property.

QQ Property Get—This type of procedure allows other parts of the applica-
tion to get or read the value of a property.

QQ Property Set—This type of procedure is used instead of Property Let
when setting the reference to an object.

Property procedures are executed when an object property needs to be
set or retrieved. The Property Get procedure can have the same name as the
Property Let procedure. You should create property procedures for each prop-
erty of the object that can be accessed by another part of your VBA application.

The easiest of the three types of property statements to understand
is the Property Get procedure. Let’s examine the syntax of the property
procedures by taking a close look at the Property Get LastName procedure.

Property procedures contain the following parts:

QQ A procedure declaration line
QQ An assignment statement
QQ The End Property keywords

A procedure declaration line specifies the name of the property and the
data type:

Property Get LastName() As String

LastName is the name of the property and As String determines the
data type of the property’s return value.

Keeping Track of Multiple Values Using Object Collections   •  157

An assignment statement is similar to the one used in a function procedure:

LastName = m_LastName

LastName is the name of the property and m_LastName is the data
member variable that holds the value of the property you want to retrieve or
set. The m_LastName variable should be defined with the Private keyword
at the top of the class module. Here’s the complete Property Get procedure:

Property Get LastName() As String
 LastName = m_LastName
End Property

The Property Get procedure can return a result from a calculation, like
this:

Property Get Royalty()
 Royalty = (Sales * Percent) - Advance
End Property

The End Property keywords specify the end of the property procedure.

Sidebar  Immediate Exit from Property Procedures

Just as the Exit Sub and Exit Function keywords allow you to
exit early from a subroutine or a function procedure, the Exit Property
keywords give you a way to immediately exit from a property procedure.
Program execution will continue with the statements following the state-
ment that called the Property Get, Property Let, or Property Set procedure.

Creating the Property Get Procedures

The CEmployee class object has four properties that need to be exposed to
VBA procedures that we will write later in a standard module named EmpOp-
erations. When working with the CEmployee object, you would certainly like
to get information about the employee ID, first and last name, and current
salary.

 Custom Project 8.1. (Step 3) Writing Property Get Procedures

1.	 Type the following Property Get procedures in the CEmployee class module,
just below the declaration section that you entered in step 2 of this custom
project:

Property Get ID() As String
 ID = m_ID
End Property
Property Get LastName() As String
 LastName = m_LastName
End Property
Property Get FirstName() As String
 FirstName = m_FirstName
End Property

Sidebar

158  •   Microsoft Access 2016 Programming Pocket Primer

Property Get Salary() As Currency
 Salary = m_Salary
End Property

Notice that each employee information type requires a separate Property Get
procedure. Each of the preceding Property Get procedures returns the current
value of the property. Notice also how a Property Get procedure is similar to
a function procedure. Similar to function procedures, the Property Get proce-
dures contain an assignment statement. As you recall from Chapter 4, to return
a value from a function procedure, you must assign it to the function’s name.

Creating the Property Let Procedures

In addition to retrieving values stored in data members (private variables)
with Property Get procedures, you must prepare corresponding Property Let
procedures to allow other procedures to change the values of these variables as
needed. The only time you don’t define a Property Let procedure is when the
value stored in a private variable is meant to be read-only.

Suppose you don’t want the user to change the employee ID. To make the
ID read-only, you simply don’t write a Property Let procedure for it. Hence,
the CEmployee class will have only three properties (LastName, FirstName,
and Salary). Each of these properties will require a separate Property Let
procedure. The employee ID will be assigned automatically with a return
value from a function procedure.

Let’s continue with our project and write the required Property Let proce-
dures for our custom CEmployee object.

 Custom Project 8.1. (Step 4) Writing Property Let Procedures

1.	 Type the following Property Let procedures in the CEmployee class module
below the Property Get procedures:

Property Let LastName(L As String)
 m_LastName = L
End Property

Property Let FirstName(F As String)
 m_FirstName = F
End Property

Property Let Salary(ByVal dollar As Currency)
 m_Salary = dollar
End Property

The Property Let procedures require at least one parameter that specifies
the value you want to assign to the property. This parameter can be passed by
value (note the ByVal keyword in the preceding Property Let Salary proce-
dure) or by reference (ByRef is the default). If you need a refresher on the
meaning of these keywords, see the section titled “Passing Arguments by
Reference and by Value” in Chapter 4.

Keeping Track of Multiple Values Using Object Collections   •  159

The data type of the parameter passed to the Property Let procedure must
be exactly the same data type as the value returned from the Property Get
or Set procedure with the same name. Notice that the Property Let proce-
dures have the same names as the Property Get procedures prepared in the
preceding section. By skipping the Property Letprocedure for the ID prop-
erty, you created a read-only ID property that can be retrieved but not set.

Sidebar  Defining the Scope of Property Procedures

You can place the Public, Private, or Static keyword before
the name of a property procedure to define its scope. To indicate that the
Property Get procedure is accessible to procedures in all modules, use
the following statement format:

Public Property Get FirstName() As String

To make the Property Get procedure accessible only to other pro-
cedures in the module where it is declared, use the following state-
ment format:

Private Property Get FirstName() As String

To preserve the Property Get procedure’s local variables between pro-
cedure calls, use the following statement format:

Static Property Get FirstName() As String

If not explicitly specified using either Public or Private, property
procedures are public by default. Also, if the Static keyword is not used,
the values of local variables are not preserved between procedure calls.

Creating the Class Methods

Apart from properties, objects usually have one or more methods. A
method is an action that the object can perform. Methods allow you to manip-
ulate the data stored in a class object. Methods are created with subrou-
tines or function procedures. To make a method available outside the class
module, use the Public keyword in front of the sub or function definition.
The CEmployee object that you create in this chapter has one method that
allows you to calculate the new salary. Assume that the employee salary can
be increased or decreased by a specific percentage or amount.

Let’s continue with our project by writing a class method that calculates the
employee salary.

 Custom Project 8.1. (Step 5) Writing Class Methods

1.	 Type the following CalcNewSalary function procedure in the CEmployee
class module:

Public Function CalcNewSalary(choice As Integer, _

Sidebar

160  •   Microsoft Access 2016 Programming Pocket Primer

 curSalary As Currency, amount As Long) As Currency
 Select Case choice
 Case 1 ' by percent
 CalcNewSalary = curSalary + ((curSalary * amount) / 100)
 Case 2 ' by amount
 CalcNewSalary = curSalary + amount
 End Select
End Function

The CalcNewSalary function defined with the Public keyword in a class
module serves as a method for the CEmployee class. To calculate a new salary,
a VBA procedure from outside the class module must pass three arguments:
choice, CurSalary, and amount. The choice argument specifies the
type of the calculation. Suppose you want to increase the employee salary
by 5% or by $5.00. The first option will increase the salary by the speci-
fied percentage, and the second option will add the specified amount to the
current salary. The curSalary argument is the current salary figure for an
employee, and amount determines the value by which the salary should be
changed.

Sidebar  About Class Methods

QQ Only those methods that will be accessed from outside of the class should
be declared as Public. All others should be declared as Private.

QQ Methods perform some operation on the data contained within the class.
QQ If a method needs to return a value, write a function procedure. Otherwise,

create a subprocedure.

Creating an Instance of a Class

After typing all the necessary Property Get, Property Let, sub, or function
procedures for your VBA application in the class module, you are ready to
create a new instance of a class, which is called an object. Before an object can
be created, an object variable must be declared in a standard module to store
the reference to the object. If the name of the class module is CEmployee,
then a new instance of this class can be created with the following statement:

Dim emp As New CEmployee

The emp variable will represent a reference to an object of the CEmployee
class. When you declare the object variable with the New keyword, VBA creates
the object and allocates memory for it. However, the object isn’t instanced
until you refer to it in your procedure code by assigning a value to its property
or by running one of its methods.

You can also create an instance of the object by declaring an object variable
with the data type defined to be the class of the object, as in the following:

Dim emp As CEmployee
Set emp = New CEmployee

Sidebar

Keeping Track of Multiple Values Using Object Collections   •  161

If you don’t use the New keyword with the Dim statement, VBA does not
allocate memory for your custom object until your procedure actually needs it.

 Custom Project 8.1. (Step 6) Creating an Instance of a Class

1.	 Activate the Visual Basic Editor window and choose Insert | Module to add a
standard module to your application.

2.	 Use the Name property in the Properties window to change the name of the
new module to EmpOperations.

3.	 Type the following declarations at the top of the EmpOperations module:

Dim emp As New CEmployee
Dim CEmployee As New Collection

The first declaration statement (Dim) declares the variable emp as a new
instance of the CEmployee class. The second statement declares a custom
collection. The CEmployee collection will be used to store all employee data.

Event Procedures in the Class Module

An event is basically an action recognized by an object. Custom classes
recognize only two events: Initialize and Terminate. These events are
triggered when an instance of the class is created and destroyed, respec-
tively. The Initialize event is generated when an object is created from a
class (see the preceding section on creating an instance of a class).In the
CEmployee class example, the Initializeevent will also fire the first time
that you use the empvariable in code. Because the statements included
inside the Initializeevent are the first ones to be executed for the object
before any properties are set or any methods are executed, the Initiali-
zeevent is a good place to perform initialization of the objects created
from the class. As you recall, we made the ID read-only in the CEmployee
class. You can use the Initializeevent to assign a unique five-digit number
to the m_IDvariable.

The Class_Initialize procedure uses the following syntax:

Private Sub Class_Initialize()
 [code to perform tasks as the object is created goes here]
End Sub

The Terminate event occurs when all references to an object have been
released. This is a good place to perform any necessary cleanup tasks. The
Class_Terminate procedure uses the following syntax:

Private Sub Class_Terminate()
 [cleanup code goes here]
End Sub

To release an object variable from an object, use the following syntax:

Set objectVariable = Nothing

162  •   Microsoft Access 2016 Programming Pocket Primer

When you set the object variable to Nothing, the Terminate event is
generated. Any code in this event is executed then.

Creating the User Interface

Implementing our custom CEmployee object requires that you design a
form to enter and manipulate employee data.

 Custom Project 8.1. (Step 7) Designing a User Form

1.	 Choose File | Close and Return to Microsoft Access.
2.	 Click the Blank form in the Forms section of the Create tab. Access will dis-

play a blank form in the Form view.
3.	 Switch to the form’s Design view by choosing Design View from the Views

section.
4.	 Save the form as frmEmployeeSalaries.
5.	 Use the tools in the Controls section of the Design tab to place controls on the

form as shown in Figure 8.2.

Figure 8.2. This form demonstrates the use of the CEmployee custom object.

6.	 Activate the property sheet and set the following properties for the form con-
trols. To set the specified property, first click the control on the form to select
it. Then, in the property sheet type the information shown in the Setting col-
umn next to the property indicated in the Property column.

Keeping Track of Multiple Values Using Object Collections   •  163

Object Property Setting

Label1 Caption Last Name

Text box next to the Last Name label Name txtLastName

Label2 Caption First Name

Text box next to the First Name label Name txtFirstName

Label3 Caption Salary

Text box next to the Salary label Name txtSalary

Option group 1 Name
Caption

frSalaryMod
Salary Modifica-
tion

Text box in the option group titled
“Salary Modification”

Name txtRaise

Option button 1 Name
Caption

optPercent
Percent

Option button 2 Name
Caption

optAmount
Amount

Option group 2 Name
Caption

frSalaryFor

Salary Change for

Option button 3 Name
Caption

optSelected
Selected
Employee

Option button 4 Name
Caption

optAll
All Employees

Listbox Name
Row Source Type
Column Count
Column Widths

lboxPeople
Value List
4
0.5”;0.9”;0.7”;0.5”

Command Button 1 Name
Caption

cmdAdd
Add

Command Button 2 Name
Caption

cmdClose
Close

Command Button 3 Name
Caption

cmdUpdate
Update Salary

Command Button 4 Name
Caption

cmdDelete
Delete Employee

Now that the form is ready, you need to write a few event procedures
to handle various events, such as clicking a command button or loading the
form.

164  •   Microsoft Access 2016 Programming Pocket Primer

 Custom Project 8.1. (Step 8) Writing Event Procedures

1.	 Activate the Code window behind the form by choosing the View Code
button in the Tools section of the Design tab.

2.	 Enter the following variable declarations at the top of the form’s Code window:

' variable declarations
Dim choice As Integer
Dim amount As Long

Please ensure that the Option Explicit statement appears at the top
of the module, above the variable declaration statements.

3.	 Type the following UserForm_Initialize procedure to enable or disable con-
trols on the form:

Private Sub UserForm_Initialize()
 txtLastName.SetFocus
 cmdUpdate.Enabled = False
 cmdDelete.Enabled = False
 lboxPeople.Enabled = False
 frSalaryFor.Enabled = False
 frSalaryFor.Value = 0
 frSalaryMod.Enabled = False
 frSalaryMod.Value = 0
 txtRaise.Enabled = False
 txtRaise.Value = ""
End Sub

4.	 Type the following Form_Load event procedure:

Private Sub Form_Load()
 Call UserForm_Initialize
End Sub

When the form loads, the UserForm_Initialize procedure will run.
5.	 Enter the following cmdAdd_Click procedure to add the employee to the

collection:

Private Sub cmdAdd_Click()
 Dim strLast As String
 Dim strFirst As String
 Dim curSalary As Currency

 ' Validate data entry
 If IsNull(txtLastName.Value) Or txtLastName.Value = "" _
 Or IsNull(txtFirstName.Value) Or txtFirstName.Value = "" _
 Or IsNull(txtSalary.Value) Or txtSalary.Value = "" Then
 MsgBox "Enter Last Name, First Name and Salary."
 txtLastName.SetFocus
 Exit Sub
 End If
 If Not IsNumeric(txtSalary) Then
 MsgBox "You must enter a value for the Salary."

NOTE

Keeping Track of Multiple Values Using Object Collections   •  165

 txtSalary.SetFocus
 Exit Sub
 End If
 If txtSalary < 0 Then
 MsgBox "Salary cannot be a negative number."
 Exit Sub
 End If

 ' assign text box values to variables
 strLast = txtLastName
 strFirst = txtFirstName
 curSalary = txtSalary

 ' enable buttons and other controls
 cmdUpdate.Enabled = True
 cmdDelete.Enabled = True
 lboxPeople.Enabled = True
 frSalaryFor.Enabled = True
 frSalaryMod.Enabled = True
 txtRaise.Enabled = True
 txtRaise.Value = ""
 lboxPeople.Visible = True

 ' enter data into the CEmployees collection
 EmpOperations.AddEmployee strLast, strFirst, curSalary

 ' update listbox
 lboxPeople.RowSource = GetValues

 ' delete data from text boxes
 txtLastName = ""
 txtFirstName = ""
 txtSalary = ""
 txtLastName.SetFocus
End Sub

The cmdAdd_Click procedure starts off by validating the user’s input
in the Last Name, First Name, and Salary text boxes. If the user entered
correct data, the text box values are assigned to the variables strLast,
strFirst, and curSalary. Next, a number of statements enable
buttons and other controls on the form so that the user can work with the
employee data. The following statement calls the AddEmployee procedure
in the EmpOperations standard module and passes the required param-
eters to it:

EmpOperations.AddEmployee strLast, strFirst, curSalary

Once the employee is entered into the collection, the employee data is
added to the listbox (see Figure 8.3) with the following statement:

lboxPeople.RowSource = GetValues

GetValues is the name of a function procedure in the EmpOperations
module (see step 12 further on). This function cycles through the CEmployee
collection to create a string of values for the listbox row source.

166  •   Microsoft Access 2016 Programming Pocket Primer

The cmdAdd_Click procedure ends by clearing the text boxes, and then
setting the focus to the Last Name text box so the user can enter new employee
data.

6.	 Enter the following cmdClose_Click procedure to close the form:

Private Sub cmdClose_Click()
 DoCmd.Close
End Sub

Figure 8.3. The listbox control displays employee data as entered in the custom collection
CEmployee.

7.	 Write the following Click procedure for the cmdUpdate button:

Private Sub cmdUpdate_Click()
 Dim numOfPeople As Integer
 Dim colItem As Integer

 'validate user selections
 If frSalaryFor.Value = 0 Or frSalaryMod.Value = 0 Then
 MsgBox "Please choose appropriate option button in " & _
 vbCr & "the 'Salary Modification' and " & _
 "'Change the Salary for' areas.", vbOKOnly, _
 "Insufficient selection"
 Exit Sub
 ElseIf Not IsNumeric(txtRaise) Or txtRaise = "" Then
 MsgBox "You must enter a number."

Keeping Track of Multiple Values Using Object Collections   •  167

 txtRaise.SetFocus
 Exit Sub
 ElseIf frSalaryMod.Value = 1 And _
 lboxPeople.ListIndex = -1 Then
 MsgBox "Click the employee name.", , _
 "Missing selection in the List box"
 Exit Sub
 End If

 If frSalaryMod.Value = 1 And lboxPeople.ListIndex = -1 Then
 MsgBox "Enter data or select an option."
 Exit Sub
 End If
 'get down to calculations
 amount = txtRaise
 colItem = lboxPeople.ListIndex + 1
 If frSalaryFor.Value = 1 And frSalaryMod.Value = 1 Then
 'by percent, one employee
 choice = 1
 numOfPeople = 1
 ElseIf frSalaryFor.Value = 2 And frSalaryMod.Value = 1 Then
 'by amount, one employee
 choice = 2
 numOfPeople = 1
 ElseIf frSalaryFor.Value = 1 And frSalaryMod.Value = 2 Then
 'by percent, all employees
 choice = 1
 numOfPeople = 2
 ElseIf frSalaryFor.Value = 2 And frSalaryMod.Value = 2 Then
 'by amount, all employees
 choice = 2
 numOfPeople = 2
 End If
 UpdateSalary choice, amount, numOfPeople, colItem
 lboxPeople.RowSource = GetValues
End Sub

When the Update Salary button is clicked, the procedure checks to see
whether the user selected the appropriate option buttons and entered the
adjusted figure in the text box. The update can be done for the selected
employee or for all the employees listed in the listbox control and collection.
You can increase the salary by the specified percentage or amount (see
Figure 8.4). Depending on which options are specified, values are assigned
to the variables choice, amount, numOfpeople, and colItem. These
variables serve as parameters for the UpdateSalary procedure located in
the EmpOperations module (see step 13 further on). The last statement in
the cmdUpdate_Click procedure sets the row source property of the listbox
control to the result obtained from the GetValues function, which is located in
the EmpOperations standard module.

168  •   Microsoft Access 2016 Programming Pocket Primer

Figure 8.4. The employee salary can be increased or decreased by the specified percentage
or amount.

8.	 Enter the following cmdDelete_Click procedure:

Private Sub cmdDelete_Click()
 ' make sure an employee row is highlighted
 ' in the listbox control
 If lboxPeople.ListIndex > -1 Then
 DeleteEmployee lboxPeople.ListIndex + 1
 If lboxPeople.ListCount = 1 Then
 lboxPeople.RowSource = GetValues
 UserForm_Initialize
 Else
 lboxPeople.RowSource = GetValues
 End If
 Else
 MsgBox "Click the item you want to remove."
 End If
End Sub

The cmdDelete_Click procedure lets you remove an employee from the
custom collection CEmployee. If you click an item in the listbox and then click
the Delete Employee button, the DeleteEmployee procedure is called. This
procedure requires an argument that specifies the index number of the item
selected in the listbox. After the employee is removed from the collection, the
row source of the listbox control is reset to display the remaining employees.
When the last employee is removed from the collection, the UserForm_

Keeping Track of Multiple Values Using Object Collections   •  169

Initialize procedure is called to tackle the task of disabling controls that cannot
be used until at least one employee is entered into the CEmployee collection.

9.	 To activate the EmpOperations module that you created earlier, double-click
its name in the Project Explorer window. The top of the module should contain
the following declaration lines, the first two automatically added by Access:

Option Compare Database
Option Explicit

Dim emp As New CEmployee
Dim CEmployee As New Collection

10.	 In the EmpOperations standard module, enter the following AddEmployee
procedure:

Sub AddEmployee(empLast As String, empFirst As String, _
 empSalary As Currency)
 With emp
 .ID = SetEmpId
 .LastName = empLast
 .FirstName = empFirst
 .Salary = CCur(empSalary)
 If .Salary = 0 Then Exit Sub
 CEmployee.Add emp
 End With
End Sub

The AddEmployee procedure is called from the cmdAdd_Click procedure
attached to the form’s Add button. This procedure takes three arguments. When
Visual Basic for Applications reaches the With emp construct, a new instance
of the CEmployee class is created. The LastName, FirstName, and Salary prop-
erties are set with the values passed from the cmdAdd_Click procedure. The
ID property is set with the number generated by the result of the SetEmpId
function (see the following step). Each time VBA sees the reference to the
instanced emp object, it will call upon the appropriate Property Let procedure
located in the class module. (The next section of this chapter demonstrates how
to walk through this procedure step by step to see exactly when the Property
procedures are executed.) The last statement inside the With emp construct
adds the user-defined object emp to the custom collection called CEmployee.

11.	 In the EmpOperations standard module, enter the following SetEmpID
function procedure:

Function SetEmpID() As String
 Dim ref As String

 Randomize
 ref = Int((99999 - 10000) * Rnd + 10000)
 SetEmpId = ref
End Function

This function will assign a unique five-digit number to each new
employee. To generate a random integer between two given integers where

170  •   Microsoft Access 2016 Programming Pocket Primer

ending_number = 99999 and beginning_number = 10000, the
following formula is used:

= Int((ending_number - beginning_number) * Rnd + beginning_number)

The SetEmpId function procedure also uses the Randomize statement to
reinitialize the random number generator. For more information on using the
Rnd and Integer functions, as well as the Randomize statement, refer to
the online help.

12.	 Enter the following GetValues function procedure. This function, which
is called from the cmdAdd_Click, cmdUpdate_Click, and cmdDelete_Click
procedures, provides the values for the listbox control to synchronize it with
the current values in the CEmployee collection.

Function GetValues()
 Dim myList As String

 myList = ""
 For Each emp In CEmployee
 myList = myList & emp.ID & ";" & _
 emp.LastName & ";" & _
 emp.FirstName & "; $" & _
 Format(emp.Salary, "0.00") & ";"
 Next emp
 GetValues = myList
End Function

13.	 Enter the following UpdateSalary procedure:

Sub UpdateSalary(choice As Integer, myValue As Long, _
 peopleCount As Integer, colItem As Integer)
 Set emp = New CEmployee

 If choice = 1 And peopleCount = 1 Then
 CEmployee.Item(colItem).Salary = _
 emp.CalcNewSalary(1, CEmployee.Item(_ colItem).Salary,
myValue)
 ElseIf choice = 1 And peopleCount = 2 Then
 For Each emp In CEmployee
 emp.Salary = emp.Salary + ((emp.Salary * myValue) _ / 100)
 Next emp
 ElseIf choice = 2 And peopleCount = 1 Then
 CEmployee.Item(colItem).Salary = _
 CEmployee.Item(colItem).Salary + myValue
 ElseIf choice = 2 And peopleCount = 2 Then
 For Each emp In CEmployee
 emp.Salary = emp.Salary + myValue
 Next emp
 Else
 MsgBox "Enter data or select an option."
 End If
End Sub

The UpdateSalary procedure is called from the cmdUpdate_Click proce-
dure, which is assigned to the Update Salary button on the form. The click
procedure passes four parameters that the UpdateSalary procedure uses for

Keeping Track of Multiple Values Using Object Collections   •  171

the salary calculations. When a salary for the selected employee needs to be
updated by a percentage or amount, the CalcNewSalary method residing in the
class module is called. For modification of salary figures for all the employees,
we iterate over the CEmployee collection to obtain the value of the Salary
property of each emp object, and then perform the required calculation by
using a formula. By entering a negative number in the form’s txtRaise text box,
you can decrease the salary by the specified percentage or amount.

14.	 Enter the DeleteEmployee procedure:

Sub DeleteEmployee(colItem As Integer)
 Dim getcount As Integer

 CEmployee.Remove colItem
End Sub

The DeleteEmployee procedure uses the Remove method to delete the
selected employee from the CEmployee custom collection. Recall that the
Remove method requires one argument, which is the position of the item in
the collection. The value of this argument is obtained from the cmdDelete_
Click procedure. The class module procedures were called from the standard
module named EmpOperations. This was done to avoid creating a new instance
of a user-defined class every time we needed to call it.

Running the Custom Application

Now that you have finished writing the necessary VBA code, let’s load
frmEmployeeSalaries to enter and modify employee information.

 Custom Project 8.1. (Step 9) Running the Custom Project

1.	 Choose File | Save Chap08 to save all the objects in the VBA project.
2.	 Switch to the Microsoft Office Access window and activate frmEmployeSala-

ries in the Form view.
3.	 Enter the employee last and first name and salary, and click the Add button.

The employee information now appears in the listbox. Notice that an
employee ID is automatically entered in the first column. All the disabled form
controls are now enabled.

4.	 Enter data for another employee, and then click the Add button.
5.	 Enter information for at least three more people.
6.	 Increase the salary of the third employee in the listbox by 10%. To do this, click

the employee name in the listbox, click the Percent option button, and type
10 in the text box in the Salary Modification section of the form. In the Change
the Salary for section of the form, click the Selected Employee option but-
ton. Finally, click the Update Salary button to perform the update operation.

7.	 Now increase the salary of all the employees by $5.
8.	 Remove the fourth employee from the listbox. To do this, select the employee

in the listbox and click the Delete Employee button.
9.	 Close frmEmployeeSalaries by clicking the Close button.

172  •   Microsoft Access 2016 Programming Pocket Primer

Watching the Execution of Your VBA Procedures

To help you understand what’s going on when your code runs and how
the custom object works, let’s walk through the cmdAdd_Click procedure.
Treat this exercise as a brief introduction to the debugging techniques that are
covered in detail in the next chapter.

 Custom Project 8.1. (Step 10) Custom Project Code Walkthrough

1.	 Open frmEmployeeSalaries in Design view and click View Code in
theToolssection of theDesigntab.

2.	 Select cmdAdd from the combo box at the top left of the Code window.
3.	 Set a breakpoint by clicking in the left margin next to the following line of

code, as shown in Figure 8.5:

If IsNull(txtLastName.Value) Or txtLastName.Value = "" _
 Or IsNull(txtFirstName.Value) Or txtFirstName.Value = "" _
 Or IsNull(txtSalary.Value) Or txtSalary.Value = "" Then

Figure 8.5. A red circle in the margin indicates a breakpoint. The statement with a
breakpoint is displayed as white text on a red background.

4.	 Press Alt+F11 to return to the form frmEmployeeSalaries, and then switch
to the Form view.

5.	 Enter data in the Last Name, First Name, and Salary text boxes, and then click
the form’s Add button. Visual Basic should now switch to the Code window
because it came across the breakpoint in the first line of the cmdAdd_Click
procedure (see Figure 8.6).

6.	 Step through the code one statement at a time by pressing F8. Visual Basic
runs the current statement, then automatically advances to the next state-
ment and suspends execution. The current statement is indicated by a yellow
arrow in the margin and a yellow background. Keep pressing F8 to execute
the procedure step by step. After Visual Basic switches to the EmpOperations

Keeping Track of Multiple Values Using Object Collections   •  173

module to run the AddEmployee procedure and encounters the With emp
statement, it will run the function to set the employee ID and will go out to
execute the Property Let procedures in the CEmployee class module (see
Figure 8.7).

Figure 8.6. When Visual Basic encounters a breakpoint while running a procedure, it
switches to the Code window and displays a yellow arrow in the margin to the left of the
statement at which the procedure is suspended.

Figure 8.7. Setting the properties of your custom object is accomplished through the
Property Let procedures.

174  •   Microsoft Access 2016 Programming Pocket Primer

7.	 Using the F8 key, continue executing the cmdAdd_Click procedure code to
the end. When VBA encounters the end of the procedure (End Sub), the
yellow highlighter will be turned off. At this time, press F5 to finish execu-
tion of the remaining code. Next, switch back to the active form by pressing
Alt+F11.

To activate the form, you may need to first click the Table1 tab and then
reselect the Employee Operations tab (see Figure 8.3).

8.	 Enter data for a new employee, and then click the Add button. When Visual
Basic displays the Code window, choose Debug | Clear All Breakpoints.
Now press F5 to run the remaining code without stepping through it.

9.	 In the Visual Basic Editor window, choose File | Save Chap08, and then save
changes to the modules when prompted.

10.	 Choose File | Close and Return to Microsoft Access.

11.	 Close the Chap08.accdb database and exit Microsoft Access.

Sidebar  VBA Debugging Tools

Visual Basic provides a number of debugging tools to help you ana-
lyze how your application operates, as well as to locate the source of
errors in your procedures. See the next chapter for details on working
with these tools.

Summary

In this chapter, you learned how to create and use your own objects and
collections in VBA procedures. You used a class module to create a user-
defined (custom) object. You saw how to define your custom object’s proper-
ties using the Property Get and Property Let procedures. You also learned
how to write a method for your custom object and saw how to make the class
module available to the user with a custom form. Finally, you learned how to
analyze your VBA application by stepping through its code.

As your procedures become more complex, you will need to start using
special tools for tracing errors, which are covered in the next chapter.

Sidebar

NOTE

Chapter 9
Getting to Know Built-In
Tools for Testing and
Debugging

In the course of writing or editing VBA procedures, no matter how careful
you are, you’re likely to make some mistakes. For example, you may mis-
spell a word, misplace a comma or quotation mark, or forget a period or

ending parenthesis. These kinds of mistakes are known as syntax errors. For-
tunately, Visual Basic for Applications is quite helpful in spotting these kinds
of errors. To have VBA automatically check for correct syntax after you enter
a line of code, choose Tools | Options in the VBE window. Make sure the Auto
Syntax Check setting is selected on the Editor tab, as shown in Figure 9.1.

FIGURE 9.1. The Auto Syntax Check setting on the Editor tab of the Options dialog box helps
you find typos in your VBA procedures.

When VBA finds a syntax error, it displays an error message box and changes
the color of the incorrect line of code to red, or another color as indicated on
the Editor Format tab in the Options dialog box.

176  •   Microsoft Access 2016 Programming Pocket Primer

If the explanation of the error in the error message isn’t clear, you can click the
Help button for more help. If Visual Basic for Applications cannot point you in
the right direction, you must return to your procedure and carefully examine the
offending instruction for missed letters, quotation marks, periods, colons, equal
signs, and beginning and ending parentheses. Finding syntax errors can be aggra-
vating and time-consuming. Certain syntax errors can be caught only during the
execution of the procedure. While attempting to run your procedure, VBA can
find errors that were caused by using invalid arguments or omitting instructions
that are used in pairs, such as If…End statements and looping structures.

You’ve probably heard that computer programs are “full of bugs.” In
programming, errors are called bugs, and debugging is a process of eliminating
errors from your programs. Visual Basic for Applications provides a myriad
of tools for tracking down and eliminating bugs. The first step in debugging
a procedure is to correct all syntax errors. In addition to syntax errors, there
are two other types of errors: runtime and logic. Runtime errors, which occur
while the procedure is running, are often caused by unexpected situations
the programmer did not think of while writing the code. For example, the
program may be trying to access a drive or a file that does not exist on the user’s
computer. Or it may be trying to copy a file to a CD-ROM disc without first
determining whether the user had inserted a CD.

The third type of error, a logic error, often does not generate a specific
error message. Even though the procedure has no flaws in its syntax and runs
without errors, it produces incorrect results. Logic errors happen when your
procedure simply does not do what you want it to do. Logic errors are usually
very difficult to locate. Those that happen intermittently are sometimes so well
concealed that you can spend long hours—even days—trying to locate the
source of the error.

Stopping a Procedure

VBA offers four methods of stopping your procedure and entering into a
so-called break mode:

QQ Pressing Ctrl+Break
QQ Setting one or more breakpoints
QQ Inserting the Stop statement
QQ Adding a watch expression

A break occurs when execution of your VBA procedure is temporarily
suspended. Visual Basic remembers the values of all variables and the state-
ment from which the execution of the procedure should resume when you
decide to continue.

You can resume a suspended procedure in one of the following ways:

QQ Click the Run Sub/UserForm button on the toolbar
QQ Choose Run | Run Sub/UserForm from the menu bar
QQ Click the Continue button in the error message box (see Figure 9.2)

Getting to Know Built-In Tools for Testing and Debugging   •  177

FIGURE 9.2. This message appears when you press Ctrl+Break while your VBA procedure is
running.

TABLE 9.1. Error message box buttons.

Button Name Description

Continue Click this button to resume code execution. This
button will be grayed out if an error was encoun-
tered.

End Click this button if you do not want to troubleshoot
the procedure at this time. VBA will stop code
execution.

Debug Click this button to enter break mode. The Code
window will appear, and VBA will highlight the line
at which the procedure execution was suspended.
You can examine, debug, or step through the code.

Help Click this button to view the online help that
explains the cause of this error message.

Using Breakpoints

If you know more or less where there may be a problem in your procedure
code, you should suspend code execution at that location (on a given line). Set
a breakpoint by pressing F9 when the cursor is on the desired line of code.
When VBA gets to that line while running your procedure, it will display the
Code window immediately. At this point you can step through the procedure
code line by line by pressing F8 or choosing Debug | Step Into.

To see how this works, let’s look at the following scenario. Assume that
during the execution of the ListEndDates function procedure (see Custom
Project 9.1) the following line of code could get you into trouble:

ListEndDates = Format(((Now() + intOffset) - 35) + 7 * row, _
 "MM/DD/YYYY")

178  •   Microsoft Access 2016 Programming Pocket Primer
O

N THE CD 	Please note files for the Hands-On project may be found on the companion
CD-ROM.

 Custom Project 9.1. Debugging a Function Procedure

1.	 Start Microsoft Access and create a new database named Chap09.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2.	 Create the form shown in Figure 9.3.

FIGURE 9.3. The combo box control shown on this form will be filled with the result of the
ListEndDates function.

3.	 Use the property sheet to set the following control properties:

Control Name Property Name Property Setting

combo box Name
Row Source Type
Column Count

cboEndDate
ListEndDates
1

text box controls Name txt1
txt2
txt3
txt4
txt5
txt6
txt7

4.	 Save the form as frmTimeSheet.
5.	 In the property sheet, select Form from the drop-down listbox. Click the

Event tab. Choose [Event Procedure] from the drop-down list next to

Getting to Know Built-In Tools for Testing and Debugging   •  179

the On Load property, and then click the Build button (…). Complete the
following Form_Load procedure when the Code window appears:

Private Sub Form_Load()
 With Me.cboEndDate
 .SetFocus
 .ListIndex = 5 ' Select current end date
 End With
End Sub

6.	 Select the combo box control (cboEndDate) on the form. In the property
sheet, click the Event tab. Choose [Event Procedure] from the drop-down
list next to the On Change property, and then click the Build button (…).
Enter the following code:

Private Sub cboEndDate_Change()
 Dim endDate As Date

 endDate = Me.cboEndDate.Value
 With Me
 .txt1 = Format(endDate - 6, "mm/dd")
 .txt2 = Format(endDate - 5, "mm/dd")
 .txt3 = Format(endDate - 4, "mm/dd")
 .txt4 = Format(endDate - 3, "mm/dd")
 .txt5 = Format(endDate - 2, "mm/dd")
 .txt6 = Format(endDate - 1, "mm/dd")
 .txt7 = Format(endDate - 0, "mm/dd")
 End With
End Sub

7.	 In the Visual Basic Editor window, choose Insert | Module to add a new
standard module.

8.	 In the Properties window, change the Name property of Module1 to
TimeSheetProc.

9.	 Enter the ListEndDates function procedure in the TimeSheetProc module:

Function ListEndDates(fld As Control, id As Variant, _
 row As Variant, col As Variant, _
 code As Variant) As Variant

 Dim intOffset As Integer

 Select Case code
 Case acLBInitialize
 ListEndDates = True
 Case acLBOpen
 ListEndDates = Timer
 Case acLBGetRowCount
 ListEndDates = 11
 Case acLBGetColumnCount
 ListEndDates = 1
 Case acLBGetColumnWidth
 ListEndDates = -1
 Case acLBGetValue
 ' days till end date
 intOffset = Abs((8 - Weekday(Now)) Mod 7)

180  •   Microsoft Access 2016 Programming Pocket Primer

 ' start 5 weeks prior to current week end date
 ' (7 days * 5 weeks = 35 days before next end date)
 ' and show 11 dates

 ListEndDates = Format(((Now() + intOffset) - 35) _
 + 7 * row, "MM/DD/YYYY")
 End Select
End Function

10.	 In the ListEndDates function procedure, click anywhere on the line contain-
ing the following statement:

ListEndDates = Format(((Now() + intOffset) - 35) _
 + 7 * row, "MM/DD/YYYY")

11.	 Press F9 (or choose Debug | Toggle Breakpoint) to set a breakpoint on the
line where the cursor is located.

When you set the breakpoint, Visual Basic displays a red dot in the margin.
At the same time, the line that has the breakpoint will change to white text on
a red background (see Figure 9.4). The color of the breakpoint can be changed
on the Editor Format tab in the Options dialog box (choose Tools | Options).

 Another way of setting a breakpoint is to click in the margin indicator to
the left of the line on which you want to stop the procedure.

FIGURE 9.4. The line of code where the breakpoint is set is displayed in the color specified on
the Editor Format tab in the Options dialog box.

Getting to Know Built-In Tools for Testing and Debugging   •  181

12.	 Press Alt+F11 to switch to the Microsoft Access application window and open
the form frmTimeSheet in the Form view.

When the form is opened, Visual Basic for Applications will call the
ListEndDates function to fill the combo box, executing all the statements until
it encounters the breakpoint you set in steps 10–11. Once the breakpoint is
reached, the code is suspended and the screen displays the Code window in
break mode (notice the word “break” surrounded by square brackets in the
Code window’s titlebar), as shown in Figure 9.5. VBA displays a yellow arrow in
the margin to the left of the statement at which the procedure was suspended.
At the same time, the statement appears inside a box with a yellow background.
The arrow and the box indicate the current statement, or the statement that
is about to be executed. If the current statement also contains a breakpoint,
the margin displays both indicators overlapping one another (the circle and the
arrow).

FIGURE 9.5. Code window in break mode. A yellow arrow appears in the margin to the left
of the statement at which the procedure was suspended. Because the current statement
also contains a breakpoint (indicated by a red circle), the margin displays both indicators
overlapping one another (the circle and the arrow).

13.	 Finish running the ListEndDates function procedure by pressing F5 to con-
tinue without stopping, or press F8 to execute the procedure line by line.

When you step through your procedure code line by line by pressing F8,
you can use the Immediate window to further test your procedure (see the
section titled “Using the Immediate Window in Break Mode”). To learn more

182  •   Microsoft Access 2016 Programming Pocket Primer

about stepping through a procedure, refer to the section titled “Stepping
through VBA Procedures” later in this chapter.

You can set any number of breakpoints in a procedure. This way you can
suspend and continue the execution of your procedure as you please. Press
F5 to quickly move between the breakpoints. You can analyze the code of
your procedure and check the values of variables while code execution is
suspended. You can also perform various tests by typing statements in the
Immediate window. Consider setting a breakpoint if you suspect that your
procedure never executes a certain block of code.

Removing Breakpoints

When you finish running the procedure in which you had set break-
points, VBA does not automatically remove them. To remove the break-
point, choose Debug | Clear All Breakpoints or press Ctrl+Shift+F9. All
the breakpoints are removed. If you had set several breakpoints in a given
procedure and would like to remove only some of them, click on the line
containing the breakpoint you want to remove and press F9 (or choose
Debug | Clear Breakpoint). You should clear the breakpoints when they are
no longer needed. The breakpoints are automatically removed when you
exit Microsoft Access.

Remove the breakpoint you set in Custom Project 9.1.

Using the Immediate Window in Break Mode

When the procedure execution is suspended, the Code window appears in
break mode. This is a good time to activate the Immediate window and type
VBA instructions to find out, for instance, the name of the open form or the
value of a certain control. You can also use the Immediate window to change
the contents of variables in order to correct values that may be causing errors.
By now, you should be an expert when it comes to working in the Immediate
window. Figure 9.6 shows the suspended ListEndDates function procedure
and the Immediate window with the questions that were asked of Visual Basic
for Applications while in break mode.

In break mode, you can also hold the mouse pointer over any variable in a
running procedure to see the variable’s value. For example, in the ListEndDates
function procedure shown in Figure 9.7, the breakpoint has been set on the
statement just before the End Select keywords. When Visual Basic for Appli-
cations encounters this statement, the Code window appears in break mode.
Because the statement that stores the value of the variable intOffset has
already been executed, you can quickly find out the value of this variable by
resting the mouse pointer over its name. The name of the variable and its current
value appear in a floating frame. To show the values of several variables used in
a procedure, you should use the Locals window, which is discussed later in this
chapter.

NOTE

Getting to Know Built-In Tools for Testing and Debugging   •  183

FIGURE 9.6. When code execution is suspended, you can check current values of variables
and expressions by entering appropriate statements in the Immediate window.

FIGURE 9.7. In break mode, you can find out the value of a variable by resting the mouse
pointer on that variable.

SideBar  Working in a Code Window in Break Mode

While in break mode, you can change code, add new statements,
execute the procedure one line at a time, skip lines, set the next state-
ment, use the Immediate window, and more. When the procedure is in

Sidebar

184  •   Microsoft Access 2016 Programming Pocket Primer

break mode, all of the options on the Debug menu are available. You can
enter break mode by pressing Ctrl+Break or F8 or by setting a break-
point. In break mode, if you change a certain line of code, VBA will
prompt you to reset the project by displaying the message “This action
will reset your project, proceed anyway?” Click OK to stop the program’s
execution and proceed editing your code, or click Cancel to delete the
new changes and continue running the code from the point where it was
suspended. For example, change the variable declaration. As you press
F5 to resume code execution, you’ll be prompted to reset your project.

Using the Stop Statement

Sometimes you won’t be able to test your procedure right away. If you set
up your breakpoints and then close the database file, the breakpoints will be
removed; next time, when you are ready to test your procedure, you’ll have to
begin by setting up your breakpoints again. If you need to postpone the task of
testing your procedure until later, you can take a different approach by inserting
a Stop statement into your code wherever you want to halt a procedure.

Figure 9.8 shows the Stop statement before the With…End With construct.
VBA will suspend the execution of the cboEndDate_Change event procedure
when it encounters the Stop statement, and the screen will display the Code
window in break mode. Although the Stop statement has exactly the same effect
as setting a breakpoint, it does have one disadvantage: All Stop statements stay
in the procedure until you remove them. When you no longer need to stop your
procedure, you must locate and remove all the Stop statements.

FIGURE 9.8. You can insert a Stop statement anywhere in your VBA procedure code. The
procedure will halt when it gets to the Stop statement, and the Code window will appear with
the code line highlighted.

Getting to Know Built-In Tools for Testing and Debugging   •  185

Using the Assert Statement

A very powerful and easy-to-apply debugging technique is utilizing
Debug.Assert statements. Assertions allow you to write code that checks
itself while running. By including assertions in your programming code you
can verify that a particular condition or assumption is true. Assertions give
you immediate feedback when an error occurs. They are great for detecting
logic errors early in the development phase instead of hearing about them
later from your end users. Just because your procedure ran on your system
without generating an error does not mean that there are no bugs in that
procedure. Don’t assume anything—always test for validity of expressions
and variables in your code. The Debug.Assert statement takes any
expression that evaluates to True or False and activates the break mode
when that expression evaluates to False. The syntax for Debug.Assert is
as follows:

Debug.Assert condition

where condition is a VBA code or expression that returns True or False.
If condition evaluates to False or 0 (zero), VBA will enter break mode.
For example, when running the following looping structure, the code will stop
executing when the variable i equals 50:

Sub TestDebugAssert()
 Dim i As Integer
 For i = 1 To 100
 Debug.Assert i <> 50
 Next
End Sub

Keep in mind that Debug.Assert does nothing if the condition is
False or zero (0). The execution simply stops on that line of code and the VBE
screen opens with the line containing the false statement highlighted so that
you can start debugging your code. You may need to write an error handler
to handle the identified error. Error-handling procedures are covered later in
this chapter. While you can stop the code execution by using the Stop state-
ment (see the previous section), Debug.Assert differs from the Stop
statement in its conditional aspect; it will stop your code only under specific
conditions. Conditional breakpoints can also be set by using the Watches
window (see the next section). After you have debugged and tested your
code, comment out or remove the Debug.Assert statements from your
final code. The easiest way to do this is to use Edit | Replace in the VBE editor
screen. To comment out the statements, in the Find What box, enter Debug.
Assert. In the Replace With box, enter an apostrophe followed by Debug.
Assert.

To remove the Debug.Assert statements from your code, enter Debug.
Assert in the Find What box. Leave the Replace With box empty, but be
sure to mark the Use Pattern Matching checkbox.

NOTE

186  •   Microsoft Access 2016 Programming Pocket Primer

Using the Add Watch Window

Many errors in procedures are caused by variables that assume
unexpected values. If a procedure uses a variable whose value changes
in various locations, you may want to stop the procedure and check the
current value of that variable. VBA offers a special Watches window that
allows you to keep an eye on variables or expressions while your procedure
is running. To add a watch expression to your procedure, select the variable
whose value you want to monitor in the Code window, and then choose
Debug | Add Watch. The screen will display the Add Watch dialog box, as
shown in Figure 9.9.

FIGURE 9.9. The Add Watch dialog box allows you to define conditions you want to monitor
while a VBA procedure is running.

The Add Watch dialog box contains three sections, which are described in
Table 9.2.

TABLE 9.2. Add Watch dialog box sections.

Section Description

Expression Displays the name of a variable you have highlighted in your
procedure. If you opened the Add Watch dialog box without
selecting a variable name, type the name of the variable you
want to monitor in the Expression text box.

Context In this section, indicate the name of the procedure that
contains the variable and the name of the module where this
procedure is located.

Getting to Know Built-In Tools for Testing and Debugging   •  187

Section Description

Watch Type Specifies how to monitor the variable. If you choose:

QQ The Watch Expression option button, you can read the
value of the variable in the Add Watch window while
in break mode.

QQ Break When Value Is True, Visual Basic will automati-
cally stop the procedure when the variable evaluates to
True (nonzero).

QQ Break When Value Changes, Visual Basic will auto-
matically stop the procedure each time the value of the
variable or expression changes.

You can add a watch expression before running a procedure or after
suspending the execution of your procedure.

The difference between a breakpoint and a watch expression is that the
breakpoint always stops a procedure in a specified location, but the watch stops
the procedure only when the specified condition (Break When Value Is True
or Break When Value Changes) is met. Watches are extremely useful when you
are not sure where the variable is being changed. Instead of stepping through
many lines of code to find the location where the variable assumes the speci-
fied value, you can put a watch breakpoint on the variable and run your proce-
dure as normal. Let’s see how this works.

 Hands-On 9.1. Watching the Values of VBA Expressions

1.	 In the Visual Basic Editor window, choose Insert | Module to insert a new
standard module.

2.	 Use the Properties window to change the name of the module to Breaks.
3.	 In the Breaks Code window, type the following WhatDate procedure:

Sub WhatDate()
 Dim curDate As Date
 Dim newDate As Date
 Dim x As Integer

 curDate = Date
 For x = 1 To 365
 newDate = Date + x
 Next x
End Sub

The WhatDate procedure uses the For…Next loop to calculate the date
that is x days in the future. You won’t see any result when you run this proce-
dure unless you insert the following instruction in the procedure code just
before the End Sub keywords:

MsgBox "In " & x & " days, it will be " & NewDate

188  •   Microsoft Access 2016 Programming Pocket Primer

However, you don’t want to display the individual dates, day after day.
Suppose that you want to stop the program when the value of the variable x
reaches 211. In other words, you want to know what date will be 211 days from
now. To get the answer, you could insert the following statement into your
procedure before the Next x statement:

If x = 211 Then MsgBox "In " & x & " days it will be " & _
 NewDate

But this time, you want to get the answer without introducing any new
statements into your procedure. If you add watch expressions to the proce-
dure, Visual Basic for Applications will stop the For…Next loop when the
specified condition is met, and you’ll be able to check the values of the desired
variables.

4.	 Choose Debug | Add Watch.
5.	 In the Expression text box, enter the following expression: x = 211.
6.	 In the Context section, choose WhatDate from the Procedure combo box and

Breaks from the Module combo box.
7.	 In the Watch Type section, select the Break When Value Is True option button.
8.	 Click OK to close the Add Watch dialog box. You have now added your first

watch expression.
9.	 In the Code window, position the insertion point anywhere within the name of

the curDate variable.
10.	 Choose Debug | Add Watch and click OK to set up the default watch type

with the Watch Expression option.
11.	 In the Code window, position the insertion point anywhere within the name of

the newDate variable.
12.	 Choose Debug | Add Watch and click OK to set up the default watch type

with the Watch Expression option.
After performing these steps, the WhatDate procedure contains the

following three watches:
x = 211	 Break When Value Is True
curDate	 Watch Expression
newDate	 Watch Expression

13.	 Position the cursor anywhere inside the code of the WhatDate procedure and
press F5.

Visual Basic stops the procedure when x = 211 (see Figure 9.10). Notice
that the value of the variable x in the Watches window is the same as the value
you specified in the Add Watch dialog box.

In addition, the Watches window shows the value of the variables curDate
and newDate. The procedure is in break mode. You can press F5 to continue,
or you can ask another question: What date will be in 277 days? The next step
shows how to do this.

Getting to Know Built-In Tools for Testing and Debugging   •  189

FIGURE 9.10. Using the Watches window.

14.	 Choose Debug | Edit Watch and enter the following expression: x = 277.
You can also display the Edit Watch dialog box by double-clicking the

expression in the Watches window.
15.	 Click OK to close the Edit Watch dialog box. Notice that the Watches window

now displays a new value of the expression. x is now false.
16.	 Press F5. The procedure stops again when the value of x = 277. The value

of curDate is the same; however, the newDate variable now contains a
new value—a date that is 277 days from now. You can change the value of the
expression again or finish the procedure.

17.	 Press F5 to finish the procedure without stopping.
When your procedure is running and a watch expression has a value, the

Watches window displays the value of the Watch expression. If you open the
Watches window after the procedure has finished, you will see the error “<out
of context>” instead of the variable values. In other words, when the watch
expression is out of context, it does not have a value.

Removing Watch Expressions

To remove a watch expression, click on the expression you want to remove
from the Watches window and press Delete. Remove all the watch expressions
you defined in the preceding exercise.

190  •   Microsoft Access 2016 Programming Pocket Primer

Using Quick Watch

To check the value of an expression not defined in the Watches window,
you can use Quick Watch (see Figure 9.11).

To access the Quick Watch dialog box while in break mode, position the
insertion point anywhere inside a variable name or an expression you want to
watch and choose Debug | Quick Watch, or press Shift+F9.

FIGURE 9.11. The Quick Watch dialog box shows the value of the selected expression in a
VBA procedure.

The Quick Watch dialog box contains an Add button that allows you to
add the expression to the Watches window. Let’s see how to take advantage of
Quick Watch.

 Hands-On 9.2. Using the Quick Watch Dialog Box

Note: Remove all the watch expressions you defined in Hands-On 9.1. See
the preceding section on how to remove a watch expression from the Watches
window.

1.	 In the WhatDate procedure, position the insertion point on the name of the
variable x.

2.	 Choose Debug | Add Watch.
3.	 Enter the expression x = 50.
4.	 Choose the Break When Value Is True option button, and click OK.
5.	 Run the WhatDate procedure.

Visual Basic will suspend procedure execution when x = 50. Notice that
the Watches window does not contain either the newDate or the curDate
variables. To check the values of these variables, you can position the mouse
pointer over the appropriate variable name in the Code window, or you can
invoke the Quick Watch dialog box.

6.	 In the Code window, position the mouse inside the newDate variable and
press Shift+F9, or choose Debug | Quick Watch.

The Quick Watch dialog box shows the name of the expression and its
current value.

7.	 Click Cancel to return to the Code window.

Getting to Know Built-In Tools for Testing and Debugging   •  191

8.	 In the Code window, position the mouse inside the curDate variable and
press Shift+F9, or choose Debug | Quick Watch.

9.	 The Quick Watch dialog box now shows the value of the variable curDate.
10.	 Click Cancel to return to the Code window.
11.	 Press F5 to continue running the procedure.

Using the Locals Window

If you need to keep an eye on all the declared variables and their current
values during the execution of a VBA procedure, choose View | Locals Window
before you run your procedure. While in break mode, VBA will display a list of
variables and their corresponding values in the Locals window (see Figure 9.12).

The Locals window contains three columns: Expression, Value, and Type.
The Expression column displays the names of variables that are declared in

the current procedure. The first row displays the name of the module preceded
by the plus sign. When you click the plus sign, you can check if any variables
have been declared at the module level. Here the class module will show the
system variable Me. In the Locals window, global variables and variables used
by other projects aren’t displayed.

The second column, Value, shows the current variable values. In this
column, you can change the value of a variable by clicking on it and typing
the new value. After changing the value, press Enter to register the change.
You can also press Tab, Shift+Tab, or the up or down arrows, or click
anywhere within the Locals window after you’ve changed the variable value.

Type, the third column, displays the type of each declared variable.

FIGURE 9.12. The Locals window displays the current values of all the declared variables in
the current VBA procedure.

192  •   Microsoft Access 2016 Programming Pocket Primer

To observe the variable values in the Locals window, let’s proceed to the
following hands-on exercise.

 Hands-On 9.3. Using the Locals Window

1.	 Choose View | Locals Window.
2.	 Click anywhere inside the WhatDate procedure and press F8.

Pressing F8 places the procedure in break mode. The Locals window
displays the name of the current module, the local variables, and their begin-
ning values.

3.	 Press F8 a few more times while keeping an eye on the Locals window.
4.	 Press F5 to continue running the procedure.

Using the Call Stack Dialog Box

The Locals window (see Figure 9.12) contains a button with an ellipsis
(…). This button opens the Call Stack dialog box (see Figure 9.13), which
displays a list of all active procedure calls. An active procedure call is a proce-
dure that is started but not completed. You can also activate the Call Stack
dialog box by choosing View | Call Stack. This option is available only in break
mode.

The Call Stack dialog box is especially helpful for tracing nested proce-
dures. Recall that a nested procedure is a procedure that is being called from
within another procedure (see Hands-On 9.5). If a procedure calls another,
the name of the called procedure is automatically added to the Calls list in the
Call Stack dialog box. When VBA has finished executing the statements of the
called procedure, the procedure name is automatically removed from the Call
Stack dialog box. You can use the Show button in the Call Stack dialog box
to display the statement that calls the next procedure listed in the Call Stack
dialog box.

FIGURE 9.13. The Call Stack dialog box displays a list of procedures that are started but not
completed.

Getting to Know Built-In Tools for Testing and Debugging   •  193

Stepping Through VBA Procedures

Stepping through the code means running one statement at a time. This
allows you to check every line in every procedure that is encountered. To
start stepping through the procedure from the beginning, place the cursor
anywhere inside the code of your procedure and choose Debug | Step Into, or
press F8. The Debug menu contains several options that allow you to execute
a procedure in step mode (see Figure 9.14).

FIGURE 9.14. The Debug menu offers many commands for stepping through VBA
procedures. Certain commands on this menu are available only in break mode.

When you run a procedure one statement at a time, VBA executes each
statement until it encounters the End Sub keywords. If you don’t want to step
through every statement, you can press F5 at any time to run the remaining
code of the procedure without stepping through it.

 Hands-On 9.4. Stepping Through a Procedure

1.	 Place the cursor anywhere inside the procedure you want to trace.
2.	 Press F8 or choose Debug | Step Into.

Visual Basic for Applications executes the current statement, then auto-
matically advances to the next statement and suspends execution. While in
break mode, you can activate the Immediate window, the Watches window,
or the Locals window to see the effect of a particular statement on the values
of variables and expressions. And if the procedure you are stepping through

194  •   Microsoft Access 2016 Programming Pocket Primer

calls other procedures, you can activate the Call Stack dialog box to see which
procedures are currently active.

3.	 Press F8 again to execute the selected statement. After executing this state-
ment, VBA will select the next statement, and again the procedure execution
will be halted.

4.	 Continue stepping through the procedure by pressing F8, or press F5 to con-
tinue running the code without stopping.

5.	 You can also choose Run | Reset to stop the procedure at the current state-
ment without executing the remaining statements.

When you step over procedures (Shift+F8), VBA executes each proce-
dure as if it were a single statement. This option is quite handy if a procedure
contains calls to other procedures you don’t want to step into because they
have already been tested and debugged, or because you want to concentrate
only on the new code that has not been debugged yet.

Stepping Over a Procedure

Suppose that the current statement in MyProcedure calls the SpecialMsg
procedure. If you choose Debug | Step Over (Shift+F8) instead of Debug
| Step Into (F8), VBA will quickly execute all the statements inside the
SpecialMsg procedure and select the next statement in the calling procedure,
MyProcedure. While the SpecialMsg procedure is being executed, VBA
continues to display the current procedure in the Code window.

 Hands-On 9.5. Stepping Over a Procedure

This hands-on exercise refers to the Access form named frmTimeSheet that
you created in Custom Project 9.1 at the beginning of this chapter.

1.	 In the Visual Basic Editor window, choose Insert | Module to add a new
standard module.

2.	 In the module’s Code window, enter the MyProcedure and SpecialMsg pro-
cedures as shown here:

Sub MyProcedure()
 Dim myName As String

 myName = Forms!frmTimeSheet.Controls(1).Name

 ' choose Step Over to avoid stepping through the
 ' lines of code in the called procedure - SpecialMsg
 SpecialMsg myName
End Sub

Sub SpecialMsg(n As String)
 If n = "Label1" Then
 MsgBox "You must change the name."
 End If
End Sub

3.	 Add a breakpoint within MyProcedure at the following statement:

SpecialMsg myName

Getting to Know Built-In Tools for Testing and Debugging   •  195

4.	 Place the insertion point anywhere within the code of MyProcedure and
press F5 to run it.

Visual Basic halts execution when it reaches the breakpoint.
5.	 Press Shift+F8 or choose Debug | Step Over.

Visual Basic runs the SpecialMsg procedure, and then execution advances
to the statement immediately after the call to the SpecialMsg procedure.

6.	 Press F5 to finish running the procedure without stepping through its code.
Now suppose you want to execute MyProcedure to the line that calls the

SpecialMsg procedure.
7.	 Click anywhere inside the statement SpecialMsg myName.
8.	 Choose Debug | Run to Cursor.

Visual Basic will stop the procedure when it reaches the specified line.
9.	 Press Shift+F8 to step over the SpecialMsg procedure.

10.	 Press F5 to execute the rest of the procedure without single stepping.
Stepping over a procedure is useful when you don’t want to analyze indi-

vidual statements inside the called procedure (SpecialMsg).

Stepping Out of a Procedure

Another command on the Debug menu, Step Out (Ctrl+Shift+F8), is used
when you step into a procedure and then decide that you don’t want to step all
the way through it. When you choose this option, Visual Basic will execute the
remaining statements in this procedure in one step and proceed to activate the
next statement in the calling procedure.

In the process of stepping through a procedure, you can switch between
the Step Into, Step Over, and Step Out options. The option you select depends
on which code fragment you wish to analyze at a given moment.

Running a Procedure to Cursor

The Debug menu Run To Cursor command (Ctrl+F8) lets you run your
procedure until the line you have selected is encountered. This command is
really useful if you want to stop the execution before a large loop or you intend
to step over a called procedure.

Setting the Next Statement

At times, you may want to rerun previous lines of code in the procedure
or skip over a section of code that is causing trouble. In each of these situa-
tions, you can use the Set Next Statement option on the Debug menu. When
you halt execution of a procedure, you can resume the procedure from any
statement you want. VBA will skip execution of the statements between the
selected statement and the statement where execution was suspended.

SideBar  Skipping Lines of Code

Although skipping lines of code can be very useful in the process of
debugging your VBA procedures, it should be done with care. When

Sidebar

196  •   Microsoft Access 2016 Programming Pocket Primer

you use the Next Statement option, you tell Visual Basic for Applica-
tions that this is the line you want to execute next. All lines in between
are ignored. This means that certain things you may have expected to
occur don’t happen, which can lead to unexpected errors.

Showing the Next Statement

If you are not sure where procedure execution will resume, you can choose
Debug | Show Next Statement, and VBA will place the cursor on the line that
will run next. This is particularly useful when you have been looking at other
procedures and are not sure where execution will resume. The Show Next
Statement option is available only in break mode.

Navigating with Bookmarks

In the process of analyzing or reviewing your VBA procedures, you will
often find yourself jumping to certain areas of code. Using the built-in book-
mark feature, you can easily mark the spots you want to navigate between.

To set up a bookmark:

1.	 Click anywhere in the statement you want to define as a bookmark.
2.	 Choose Edit | Bookmarks | Toggle Bookmark (or click the Toggle

Bookmark button on the Edit toolbar).

Visual Basic will place a blue, rounded rectangle in the left margin beside
the statement, as shown in Figure 9.15.

FIGURE 9.15. Using bookmarks, you can quickly jump between often-used sections of your
procedures.

Getting to Know Built-In Tools for Testing and Debugging   •  197

Once you’ve set up two or more bookmarks, you can jump between the
marked locations of your code by choosing Edit | Bookmarks | Next Bookmark
or simply clicking the Next Bookmark button on the Edit toolbar. You may
also right-click anywhere in the Code window and select Next Bookmark from
the shortcut menu. To go to the previous bookmark, select Previous Book-
mark. You can remove bookmarks at any time by choosing Edit | Bookmarks |
Clear All or by clicking the Clear All Bookmarks button on the Edit toolbar. To
remove a single bookmark, click anywhere in the bookmarked statement and
choose Edit | Bookmarks | Toggle Bookmark, or click the Toggle Bookmark
button on the Edit toolbar.

Stopping and Resetting VBA Procedures

At any time while stepping through the code of a procedure in the
Code window, you can press F5 to execute the remaining instructions
without stepping through them, or choose Run | Reset to finish the proce-
dure without executing the remaining statements. When you reset your
procedure, all the variables lose their current values. Numeric variables
assume the initial value of zero(0), variable-length strings are initialized
to a zero-length string (“”), and fixed-length strings are filled with the
character represented by the ASCII character code 0, or Chr(0). Variant
variables are initialized to Empty, and the value of Object variables is set
to Nothing.

Trapping Errors

No one writes bug-free programs the first time. For this reason, when you
create VBA procedures you have to determine how your program will respond
to errors. Many unexpected errors happen at runtime. For example, your
procedure may try to give a new file the same name as an open file.

Runtime errors are often discovered not by a programmer but by the user
who attempts to do something that the programmer has not anticipated. If
an error occurs when the procedure is running, Visual Basic displays an error
message and the procedure is stopped. The error message that VBA displays
to the user is often quite cryptic.

You can keep users from seeing many runtime errors by including error-
handling code in your VBA procedures. This way, when Visual Basic encoun-
ters an error, instead of displaying a default error message, it will show a much
friendlier, more comprehensive error message, perhaps advising the user how
to correct the error.

How do you implement error handling in your VBA procedure? The first
step is to place the On Error statement in your procedure. This statement
tells VBA what to do if an error happens while your program is running. In
other words, VBA uses the On Error statement to activate an error-handling
procedure that will trap runtime errors. Depending on the type of procedure,

198  •   Microsoft Access 2016 Programming Pocket Primer

you can exit the error trap by using one of the following statements: Exit
Sub, Exit Function, Exit Property, End Sub, End Function, or
End Property.

You should write an error-handling routine for each procedure. Table 9.3
shows how the On Error statement can be used.

TABLE 9.3. On Error statement options.

On Error Statement Description
On Error GoTo Label Specifies a label to jump to when an error

occurs. This label marks the beginning of the
error-handling routine. An error handler is a
routine for trapping and responding to errors
in your application. The label must appear in
the same procedure as the On Error GoTo
statement.

On Error Resume Next When a runtime error occurs, Visual Basic
ignores the line that caused the error and
continues the procedure with the next line.
An error message is not displayed.

On Error GoTo 0 Turns off error trapping in a procedure.
When VBA runs this statement, errors are
detected but not trapped within the proce-
dure.

SideBar  Is This an Error or a Mistake?

In programming, mistakes and errors are not the same thing. A mis-
take—such as a misspelled or missing statement, a misplaced quotation
mark or comma, or an assignment of a value of one type to a variable of a
different (and incompatible) type—can be removed from your program
through proper testing and debugging. But even though your code may
be free of mistakes, errors can still occur. An error is a result of an event
or operation that doesn’t work as expected. For example, if your VBA
procedure accesses a certain file on disk and someone deleted this file
or moved it to another location, you’ll get an error no matter what. An
error prevents the procedure from carrying out a specific task.

Using the Err Object

Your error-handling code can utilize various properties and methods of
the Err object. For example, to check which error occurred, check the value
of Err.Number. The Number property of the Err object will tell you the
value of the last error that occurred, and the Description property will return
a description of the error. You can also find the name of the application that
caused the error by using the Source property of the Err object (this is very
helpful when your procedure launches other applications). After handling the

Sidebar

Getting to Know Built-In Tools for Testing and Debugging   •  199

error, use the Err.Clear statement to reset the error number. This will set
Err.Number back to zero.

To test your error-handling code you can use the Raise method of the
Err object. For example, to raise the “Disk not ready” error, use the following
statement:

Err.Raise 71

The following OpenToRead procedure demonstrates the use of the
On Error statement and the Err object.

 Hands-On 9.6. Error-Trapping Techniques

1.	 Copy the Vacation.txt file from the companion CD to your VBAPrimerAc-
cess_ByExample folder.

2.	 In the Visual Basic Editor window, insert a new module and rename it Error-
Traps.

3.	 In the Code window, enter the following OpenToRead procedure:

Sub OpenToRead()
 Dim strFile As String
 Dim strChar As String
 Dim strText As String
 Dim FileExists As Boolean

 FileExists = True

 On Error GoTo ErrorHandler

 strFile = InputBox("Enter the name of file to open:")
 Open strFile For Input As #1

 If FileExists Then
 Do While Not EOF(1) ' loop until the end of file
 strChar = Input(1, #1) ' get one character
 strText = strText + strChar
 Loop
 Debug.Print strText
 ' Close the file
 Close #1
 End If
 Exit Sub

ErrorHandler:
 FileExists = False
 Select Case Err.Number
 Case 71
 MsgBox "The CD/DVD drive is empty."
 Case 53
 MsgBox "This file can't be found on the specified drive."
 Case 76
 MsgBox "File Path was not found."
 Case Else
 MsgBox "Error " & Err.Number & " :" & Err.Description

200  •   Microsoft Access 2016 Programming Pocket Primer

 Exit Sub
 End Select
 Resume Next
End Sub

Before continuing with this hands-on, let’s examine the code of the Open-
ToRead procedure. The purpose of the OpenToRead procedure is to read the
contents of the user-supplied text file character by character. When the user
enters a filename, various errors can occur. For example, the filename may
be wrong, the user may attempt to open a file from a CD-ROM or DVD disc
without actually placing the disc in the drive, or he may try to open a file that
is already open. To trap these errors, the error-handling routine at the end of
the OpenToRead procedure uses the Number property of the Err object. The
Err object contains information about runtime errors. If an error occurs while
the procedure is running, the statement Err.Number will return the error
number.

If errors 71, 53, or 76 occur, Visual Basic will display the user-friendly
messages given inside the Select Case block and then proceed to the
Resume Next statement, which will send it to the line of code following
the one that had caused the error. If another (unexpected) error occurs,
Visual Basic will return its error code (Err.Number) and error description
(Err.Description).

At the beginning of the procedure, the variable FileExists is set to
True. If the program doesn’t encounter an error, all the instructions inside the
If FileExists Then block will be executed. However, if VBA encounters
an error, the value of the FileExists variable will be set to False (see the
first statement in the error-handling routine just below the ErrorHandler
label).

If you comment the Close #1 instruction, Visual Basic will encounter
the error on the next attempt to open the same file. Notice the Exit Sub
statement before the ErrorHandler block. Put the Exit Sub statement
just above the error-handling routine. You don’t want Visual Basic to carry out
the error handling if there are no errors.

How does this procedure accomplish the read operation? The Input
function allows you to return any character from a sequential file. Sequen-
tial access files are files where data is retrieved in the same order as it is
stored, such as files stored in the CSV format (comma-delimited text), TXT
format (text separated by tabs), or PRN format (text separated by spaces).
Configuration files, error logs, HTML files, and all sorts of plain text files
are all sequential files. These files are stored on disk as a sequence of
characters. The beginning of a new text line is indicated by two special
characters: the carriage return and the linefeed. When you work with
sequential files, start at the beginning of the file and move forward char-
acter by character, line by line, until you encounter the end of the file.
Sequential access files can be easily opened and manipulated by just about
any text editor.

Getting to Know Built-In Tools for Testing and Debugging   •  201

If you use the VBA function named LOF (length of file) as the first
argument of the Input function, you can quickly read the contents of the
sequential file without having to loop through the entire file.

For example, instead of the following Do…While loop statement block:

Do While Not EOF(1) ' loop until the end of file
 strChar = Input(1, #1) ' get one character
 strText = strText + strChar
Loop

you can simply write the following statement to get the contents of the file
at once:

strText = Input(LOF(1), #1)

The LOF function returns the number of bytes in a file. Each byte corre-
sponds to one character in a text file.

To read data from a file, you must first open the file with the Open state-
ment using the following syntax:

Open pathname For mode[Access access][lock] As [#]filenumber _
[Len=reclength]

The Open statement has three required arguments: pathname, mode,
and filenumber. Pathname is the name of the file you want to open. The
filename may include the name of a drive and folder.

Mode is a keyword that determines how the file was opened. Sequen-
tial files can be opened in one of the following modes: Input, Output, or
Append. Use Input to read the file, Output to write to a file and overwrite
any existing file, and Append to write to a file by adding to any existing infor-
mation.

Filenumber is a number from 1 to 511. This number is used to refer to
the file in subsequent operations. You can obtain a unique file number using
the VBA built-in FreeFile function.

The optional Access clause can be used to specify permissions for the
file (Read, Write, or Read Write). The optional lock argument determines
which file operations are allowed for other processes. For example, if a file
is open in a network environment, lock determines how other people can
access it. The following lock keywords can be used: Shared, Lock Read,
Lock Write, or Lock Read Write. The last element of the Open state-
ment, reclength, specifies the buffer size (total number of characters) for
sequential files.

Therefore, to open a sequential file in order to read its data, the example
procedure uses the following instruction:

Open strFile For Input As #1

And to close the sequential file, the following statement is used:

Close #1

202  •   Microsoft Access 2016 Programming Pocket Primer

4.	 Click anywhere within the OpenToRead procedure and press F5 to
run it. When prompted for the file to open, type C:\VBAPrimerAc-
cess_ByExample\Vacation.txt in the input dialog box and click OK. The
procedure reads the contents of the Vacation.txt file into the Immediate
window.

5.	 Run the OpenToRead procedure again. When prompted for the file to open,
type P:\VBAPrimerAccess_ByExample\Vacation.txt in the input dialog
box and click OK. This time Visual Basic cannot find the specified file, so it
displays the message “File Path was not found.”

6.	 Run the OpenToRead procedure again. This time, when prompted for the
filename, enter the name of any file that references your CD/DVD drive
(when the drive slot is empty). This should trigger error 71 and result in the
message “The CD/DVD drive is empty.”

7.	 Comment the Close #1 statement and run OpenToRead. When prompted
for the file, enter C:\VBAPrimerAccess_ByExample\Vacation.txt as the
filename. Run the same procedure again, supplying the same filename. The
second run will cause the statements within the Case Else block to run.
You should get an error 55 “File already open” message because the text file
will still be open in memory. To remove the file from memory, type Close
#1 in the Immediate window and press Enter. Next, uncomment the Close
1 statement in the OpenToRead procedure to return it to the original
state.

Procedure Testing

You are responsible for the code you write. Before you give your procedure
to others to test, you should test it yourself. After all, you understand best how
it is supposed to work. Some programmers think testing their own code is some
sort of degrading activity, especially when they work in an organization that has
a team devoted to testing. Don’t make this mistake. The testing process at the
programmer level is as important as the code development itself. After you’ve
tested the procedure yourself, you should give it to the users to test. Users will
provide you with answers to questions such as: Does the procedure produce
the expected results? Is it easy and fun to use? Does it follow the standard
conventions? Also, it is a good idea to give the entire application to someone
who knows the least about using this type of application, and ask them to play
around with it and try to break it.

You can test the ways your program responds to runtime errors by causing
them on purpose:

QQ Generate any built-in error by entering the following syntax:

Error error_number

For example, to display the error that occurs on an attempt to divide by
zero (0), type the following statement in the Immediate window:

Error 11

Getting to Know Built-In Tools for Testing and Debugging   •  203

When you press Enter, Visual Basic will display the error message saying,
“Run-time error 11. Division by zero.”

QQ To check the meaning of the generated error, use the following syntax:

Error(error_number)

For example, to find out what error number 7 means, type the following in
the Immediate window:

?Error(7)

When you press Enter, Visual Basic returns the error description:

"Out of memory"

To generate the same error at runtime in the form of a message box like the
one in Figure 9.16, enter the following in the Immediate window or in your
procedure code:

Err.Raise 7

When you finish debugging your VBA procedures, make sure you remove
all statements that raise errors.

FIGURE 9.16. To test your error-handling code, use the Raise method of the Err object. This
will generate a runtime error during the execution of your procedure.

When testing your VBA procedure, use the following guidelines:

QQ If you want to analyze your procedure, step through your code one line at a
time by pressing F8 or by choosing Debug | Step Into.

QQ If you suspect that an error may occur in a specific place in your procedure,
use a breakpoint.

QQ If you want to monitor the value of a variable or expression used by your
procedure, add a watch expression.

QQ If you are tired of scrolling through a long procedure to get to sections of code
that interest you, set up a bookmark to quickly jump to the desired location.

204  •   Microsoft Access 2016 Programming Pocket Primer

Setting Error-Trapping Options

You can specify the error-handling settings for your current Visual Basic project
by choosing Tools | Options and selecting the General tab (shown in Figure 9.17).
The Error Trapping area located on the General tab determines how errors are
handled in the Visual Basic environment. The following options are available:

QQ Break on All Errors
QQ This setting will cause Visual Basic to enter the break mode on any error, no

matter whether an error handler is active or whether the code is in a class
module (class modules were covered in Chapter 8).

QQ Break in Class Module
QQ This setting will trap any unhandled error in a class module. Visual Basic

will activate the break mode when an error occurs and will highlight the
line of code in the class module that produced this error.

QQ Break on Unhandled Errors

This setting will trap errors for which you have not written an error handler.
The error will cause Visual Basic to activate the break mode. If the error occurs
in a class module, the error will cause Visual Basic to enter break mode on the
line of code that called the offending procedure of the class.

Figure 9.17. Setting the error-trapping options in the Options dialog box will affect all
instances of Visual Basic started after you change the setting.

Summary

In this chapter, you learned how to test your VBA procedures to make
sure they perform as planned. You debugged your code by stepping through it

Getting to Know Built-In Tools for Testing and Debugging   •  205

using breakpoints and watches. You learned how to work with the Immediate
window in break mode; you found out how the Locals window can help you
monitor the values of variables; and you learned how the Call Stack dialog box
can be helpful in keeping track of where you are in a complex program. You
also learned how to mark your code with bookmarks so you can easily navi-
gate between sections of your procedure. Additionally, this chapter showed
you how to trap errors by including an error-handling routine inside your VBA
procedure and how to use the VBA Err object.

By using the built-in debugging tools, you can quickly pinpoint the
problem spots in your Access VBA procedures. Try to spend more time getting
acquainted with the Debug menu options and debugging tools discussed in
this chapter. Mastering the art of debugging can save you hours of trial and
error.

INDEX

.
(?), 9, 39, 42
.accdb, 4
.mdb, 66
Alt+F11, 23
ampersand (&), 2
colon (:), 151
Ctrl+Break, 116, 176
Ctrl+F8, 195
Ctrl+G, 40
Ctrl+I, 34
Ctrl+Shift+F2, 68
Ctrl+Shift+F8, 195
Ctrl+Shift+F9, 182
Ctrl+Shift+J, 34
Ctrl-J, 32
Ctrl-R, 24
Ctrl-Shift-I, 33
F5, 181–182
F8, 177
F9, 177
underscore (_), 16, 46, 83

A
Access constants, 70–72
Access Library, 37–39, 70
Add method, 150
Add Watch Window, 186
Adding decisions, 95
ampersand (&), 2
As keyword, 75
Assert Statement, 185

Arrays, 125
Array variable, 128
array functions, 139

Array Function, 130
Erase, 141
IsArray, 140
LBound and UBound, 142

declaring arrays, 127–128
dimensioning, 139
errors in arrays, 142, 144–145
filling arrays, 129
Initial Value, 136
initializing arrays, 129
one-dimensional arrays, 126, 131–

132
parameter arrays, 145
passing arrays, 136, 146
Passing elements, 134
sorting arrays, 147
static and dynamic arrays, 137 - 138
three-dimensional arrays, 127
two-dimensional arrays, 126
Upper Bounds, 129
with looping statements, 133

Arguments, 2–3, 32–33, 64, 74–75, 78,
80–81

Context argument, 88
MsgBox arguments, 84–87
optional arguments, 78–79
passing arguments, 77
Subscripted, 129

Auto Syntax Check, 175

208  •   Microsoft Access 2016 Programming Pocket Primer

B
Boolean Expressions, 96
Break mode, 55, 176
Breakpoints, 177, 182
Bubble sort, 147
ByRef keyword, 78
ByVal keyword, 77–78

C
Call Statement, 8
Carriage Return, 74
Case Clause, 109

multiple Expressions in, 111
range of values, 109
Case Else, 109

Class, 149
class members, 156
class methods, 159–160
creating, 154, 159
Instance of class, 160–161
class modules, 9
report modules, 10

Call Stack Dialog Box, 192
Chr(10) function, 74
Chr(13) function, 74
Chr(9) function, 74, 124
Close #1 statement, 202
Code Builder, 15, 18, 72, 105
Code window, 16, 24, 27–29, 31, 183
Collection, 149
Colon (:), 151
Comment Block, 36
Compiling, 19
Complete Word, 34
Concatenation, 49
Conditional Expression, 95
Const statement, 69
Constants, 69, 94
Context argument, 88
Continuation character (_), 83, 89
Converting Data Types, 92
Counters, 118
CSV format (comma-delimited text), 200
Custom Application, 164–169, 171

Intrinsic Constants, 70, 72
Custom Objects, 154

declaring members of, 156
defining properties of, 156
and event procedures, 161
and form modules, 10
naming rules, 155

Custom Collection, 151

D
data types, 44, 75, 92
database tools, 5
database, 4
Debug statement, 40, 49
Debugging, 175–204

Add Watch Window, 186
Assert Statement, 180, 185
Call Stack Dialog Box, 192
Debugging Tools, 174
Immediate Window, 182
Locals Window, 191
Quick Watch, 190
skipping code, 195
stepping techniques, 193–195
using Breakpoints, 177, 182
using Err Object, 198
using Next statement, 195–196
using Stop Statement, 184
working in Break Mode

Dim statement, 3
Do…Until, 116–117
Do…While, 113–115

E
Edit toolbar, 31
ElseIf Clause, 103
End Function keyword, 3
End Property, 156
End Sub keyword, 2
EOF function, 201
Erase function, 139
Error

message box buttons, 177
Runtime errors, 176
Syntax errors, 175–176
Type Mismatch error, 145
On Error statement options, 198
Division by zero, 203

Error Vs Mistake, 198
Error-Trapping, 197–198
Event, 149

event procedure, 149
event trap, 11

Even-driven application, 11
Exit Do, 122
Exit For, 122
Exit Function, 122
Exit Sub, 122
Exiting Loops Early, 122
Exiting Procedures, 122
Explicit variable, 46

Index   •  209

F
Filenumber, 201
Fixed-Dimension Arrays, 137
For Each…Next, 121
For…Next, 118–119
Form module, 150
Form_Load, 179
Function (keyword), 3
Function Procedure, 178–180

IsMissing function, 80

G
George Boole, 96
Global variable, 60
GotFocus, 15–16, 18

H
Has Module property, 10
help files, 88

I
IF...THEN Statement

Multiline, 98
Nested, 104–106

IF…THEN …AND, 100
IF…THEN …ELSE, 101–102
IF…THEN …ELSEIF, 103
Immediate Exit, 157
Immediate Window, 8–9, 40–42, 49, 62, 74

82–83, 86–87, 122, 131, 141, 147,
150–151, 153, 181, 183, 193, 202, 205

Implicit (informal) variables, 47–48
Indent/Outdent, 35–36
Infinite Loops, 116
Input, 201
InputBox function, 90–92
Instance, 150
IntelliSense, 31
Intrinsic Constants, 70, 72
IsMissing (function), 80
Item method, 150

K
keywords, 2, 16, 35

L
lightweight forms, 10
Linefeed, 74
List Constants, 33
List Properties/Methods, 31
Local variables, 57

LOF function, 201
Logical operators, 95–96
Lower Bounds, 129
Loop, 113

loop with conditions, 115, 118
For Each…Next, 121
For…Next, 118–119
Do…Until, 116–117
Do…While, 113–115

M
Methods

Add, 150
Remove, 151
adding, 62
Item, 150
MkDir, 39
OpenForm, 33
removing, 63
RmDir, 39
Raise, 199, 203

module, 1, 5
standard modules, 4
renaming, 30

MsgBox (and arguments), 81, 87, 90

N
Nested Loops, 123
Nesting Statements, 106
New keyword, 160

O
Object Browser, 36–39
Objects

custom objects, 151–152
adding objects, 151
reindexing objects, 153
removing objects, 153

On Change property, 178
On Error GoTo 0, 198
On Error GoTo label, 198
On Error Resume Next, 198
Option Base statement, 126, 132–134,

139–141, 152
Option Compare Binary, 6
Option Compare Database, 6
Option Explicit statement, 6, 54–56,

58, 60, 164, 169
Option Private Module statement, 60
Optional keyword, 79
Options dialog box, 29, 35

210  •   Microsoft Access 2016 Programming Pocket Primer

P
Paired Statements, 121
Parameter Info, 32
ParamArray keyword, 145
Passing Arguments to functions, 77
Preserve keyword, 139
Private keyword, 16, 159
PRN format, 200
procedure (s), 1

calling procedures, 76
executing procedures, 7
stopping and resetting procedures,

196–197
procedure arguments, 73,
Returning Values, 89
function procedures, 1, 3, 6, 8–10, 22,

73–74, 77–80, 94
event procedures, 3, 10–11, 13, 16, 18,

22–23, 61
property procedures, 1, 4, 22

Project Explorer, 9, 23–27, 30–31, 36, 48,
73, 154, 169

Project-level variables, 59–60
Properties window, 25–26, 30–31, 155, 161,

179
Property Get, 4
Property Let, 4, 158
Property Name, 4, 25, 105, 155, 178
Property procedures, 1, 4, 22
Property Set, 4
Property sheet, 10–13, 17–18, 26, 63, 72,

105, 162, 178–179
Property type, 4
Public keyword, 159
Public variables, 60

Q
Quick Info button, 34
Question mark (?), 9, 37, 42

R
Raise method, 199, 203
ReDim statement, 139
References dialog box, 37
Reindex collection, 153
Relational operators, 95–96
Remove method, 151
Report modules, 11
Reserved words, 46
RGB function, 16

Run menu, 7
Runtime errors, 176

S
Statement, 2

Assert statement, 185
Call statement, 7
Close #1 statement, 202
Const statement, 69
Debug statement, 40, 49
Dim statement, 3
Exit statements, 122
Option Base statement, 126, 132–134,

139–141, 152
Option Compare Binary, 6
Option Explicit statement, 6,

54–56, 58, 60, 164, 169
ReDim statement, 139
Select Case statement, 106–112
Stop statement, 184

Scope, 56, 159
Search Text, 37–39, 71
Security Warning message, 14
Select Case, 106–112
Split bar, 28
Standard module, 4–6, 9
Standard toolbar, 24–25
Static keyword, 159
Step clause, 119
Step increment, 119
Sub (keyword), 2
Subroutine procedures, 1–3, 6, 22, 74–78,

83, 87, 91–92, 94
Syntax (and programming), 31
Syntax errors, 175–176

T
Tab, 74
TempVars, 62
Testing, 202

navigating with Bookmarks, 196
procedure Testing, 202
stopping and resetting procedures,

196–197
Toggle Breakpoint, 180
Toggle Folders, 24, 26
Trust Center, 19–21
Trusted location, 19, 21–22
Two-Dimensional Array, 136
TXT format, 200

Index   •  211

Type Conversion Functions, 65
Type declaration characters, 51
Type Mismatch, 145

U
User Interface, 162–163

V
Variables, 3, 46

advantages of, 67
assigning value to, 52
creating variables, 62
Data Type, 50, 68
declaring, 46, 54
disposing of, 67
explicit variable, 46
finding definition, 67
Global variable, 63
implicit variable, 47–48
initialization, 53–54
lifetime, 61
local variables, 56
Module Level variables, 57–58

Object variables, 65
Project Level variables, 59
Public variables, 60
Scope of variables, 56
Static variables, 64
Temporary variables, 61
TempVars, 62
working with, 66

Variable Type, 49
VarType function, 68–69
VBA Functions, 39
VBA macros, 14
VBA Object Library, 39
VBA Project, 30, 38
VBE, 23
vbTab, 124
View Code, 24, 27, 164, 172
View Object, 24, 26

W
Weekday function, 103
With...End With, 184

	Cover
	Half title
	License, Disclaimer of Liability, and Limited Warranty
	Title
	Copyright
	Contents
	Acknowledgments
	Introduction
	1. Getting Started with Access VBA
	Understanding VBA Modules and Procedure Types
	Writing Procedures in a Standard Module
	Hands-On 1.1. Working in a Standard Module

	Executing Your Procedures.
	Hands-On 1.2. Running Procedures and Functions

	Understanding Class Modules
	Events, Event Properties, and Event Procedures
	Why Use Events?
	Walking Through an Event Procedure
	Hands-On 1.3. Writing an Event Procedure

	Compiling Your Procedures
	Placing a Database in a Trusted Location
	Hands-On 1.4. Placing an Access Database in a Trusted Location

	Summary

	2. Getting to Know Visual Basic Editor (VBE)
	Understanding the Project Explorer Window
	Understanding the Properties Window
	Hands-On 2.1. Using the Properties Window to View Control Properties

	Understanding the Code Window
	Other Windows in the VBE
	Assigning a Name to the VBA Project
	Renaming the Module
	Syntax and Programming Assistance
	List Properties/Methods.
	Parameter Info
	List Constants
	Quick Info
	Complete Word
	Indent/Outdent
	Hands-On 2.2. Using the Indent/Outdent Feature
	Comment Block/Uncomment Block

	Using the Object Browser
	Hands-On 2.3. Using the Object Browser

	Using the VBA Object Library
	Hands-On 2.4. Using Built-In VBA Functions

	Using the Immediate Window
	Hands-On 2.5. Experiments in the Immediate Window
	Hands-On 2.6. Asking Questions in the Immediate Window

	Summary

	3. Access VBA Fundamentals
	Introduction to Data Types
	Understanding and Using Variables
	Declaring Variables
	Hands-On 3.1. Using Variables
	Specifying the Data Type of a Variable
	Hands-On 3.2. Understanding the Data Type of a Variable
	Using Type Declaration Characters
	Hands-On 3.3. Using Type Declaration Characters in Variable Names

	Assigning Values to Variables
	Hands-On 3.4. Assigning Values to Variables
	Forcing Declaration of Variables
	Hands-On 3.5. Forcing Declaration of Variables.
	Understanding the Scope of Variables
	Procedure-Level (Local) Variables
	Module-Level Variables
	Hands-On 3.6. Understanding Module-Level Variables
	Project-Level Variables.

	Understanding the Lifetime of Variables
	Using Temporary Variables
	Creating a Temporary Variable with a TempVars Collection Object
	Retrieving Names and Values of TempVar Objects
	Using Temporary Global Variables in Expressions
	Removing a Temporary Variable from a TempVars Collection Object

	Using Static Variables
	Hands-On 3.7. Using Static Variables
	Using Object Variables
	Hands-On 3.8. Working with Object Variables
	Disposing of Object Variables

	Finding a Variable Definition
	Hands-On 3.9. Finding a Variable Definition
	Determining the Data Type of a Variable
	Hands-On 3.10. Asking Questions about the Variable Type

	Using Constants in VBA Procedures
	Intrinsic Constants
	Hands-On 3.11. Exploring Access’s Constants
	Hands-On 3.12. Using Intrinsic Constants in a VBA Procedure

	Summary

	4. Access VBA Built-In and Custom Functions
	Writing Function Procedures
	Hands-On 4.1. Writing a Function Procedure with Arguments
	Various Methods of Running Function Procedures
	Hands-On 4.2. Executing a Function Procedure from theImmediate Window
	Hands-On 4.3. Executing a Function Procedure from a Subroutine
	Specifying the Data Type for a Function’s Result
	Hands-On 4.4. Calling a Function from a Procedure
	Passing Arguments to By Reference and By Value
	Hands-On 4.5. Passing Arguments to Subroutines and Functions
	Using Optional Arguments
	Hands-On 4.6. Using Optional Arguments
	Using the IsMissing Function
	Using VBA Built-In Functions for User Interaction
	Using the MsgBox Function
	Hands-On 4.7. Formatting the Message Box
	Hands-On 4.8. Using the MsgBox Function with Arguments
	Returning Values from the MsgBox Function
	Hands-On 4.9. Returning Values from the MsgBox Function

	Using the InputBox Function
	Hands-On 4.10. Using the InputBox Function

	Converting Data Types
	Hands-On 4.11. Converting Data Types
	Summary

	5. Adding Decisions to Your Access VBA Programs
	Relational and Logical Operators
	If...Then Statement
	Hands-On 5.1. Using the If…Then Statement
	Multiline If…Then Statement
	Hands-On 5.2. Using the Multiline If…Then Statement

	Decisions Based on More Than One Condition
	Hands-On 5.3. Using the If…Then…AND Statement
	If…Then…Else Statement
	Hands-On 5.4. Using the If…Then…Else Statement
	If...Then...ElseIf Statement
	Nested If…Then Statements
	Hands-On 5.5. Using Nested If…Then Statements
	Select Case Statement.
	Hands-On 5.6. Using the Select Case Statement
	Using Is with the Case Clause
	Specifying a Range of Values in a Case Clause
	Hands-On 5.7. Using the Select Case Statement in a Function
	Specifying Multiple Expressions in a Case Clause

	Summary

	6. Adding Repeating Actions to Your AccessVBA Programs
	Using the Do…While Statement
	Hands-On 6.1. Using the Do…While Statement
	Another Approach to the Do…While Statement
	Hands-On 6.2. Using the Do…While Statement with a Conditionat the Bottom of the Loop

	Using the Do…Until Statement
	Hands-On 6.3. Using the Do…Until Statement
	Another Approach to the Do…Until Statement
	Hands-On 6.4. Using the Do…Until Statement with a Conditionat the Bottom of the Loop

	Using the For…Next Statement.
	Hands-On 6.5. Using the For…Next Statement
	Using the For Each…Next Statement
	Hands-On 6.6. Using the For Each…Next Statement
	Exiting Loops Early
	Hands-On 6.7. Early Exit from a Loop
	Nested Loops
	Hands-On 6.8. Using Nested Loops
	Summary

	7. Keeping Track of Multiple Values Using Arrays
	Understanding Arrays
	Declaring Arrays
	Array Upper and Lower Bounds
	Initializing and Filling an Array
	Filling an Array Using Individual Assignment Statements
	Filling an Array Using the Array Function
	Filling an Array Using For…Next Loop

	Using a One-Dimensional Array
	Hands-On 7.1. Using a One-Dimensional Array
	Arrays and Looping Statements
	Hands-On 7.2. Using the For Each…Next Statement to List the Array Elements
	Hands-On 7.3. Passing Elements of an Array to Another Procedure
	Hands-On 7.4. Using Arrays and Loops in Real Life
	Using a Two-Dimensional Array
	Hands-On 7.5. Using a Two-Dimensional Array
	Static and Dynamic Arrays
	Hands-On 7.6. Using a Dynamic Array
	Array Functions
	The Array Function
	Hands-On 7.7. Using the Array Function
	The IsArray Function
	Hands-On 7.8. Using the IsArray Function
	The Erase Function
	Hands-On 7.9. Removing Data from an Array
	The LBound and UBound Functions
	Hands-On 7.10. Finding the Lower and Upper Bounds of an Array

	Errors in Arrays
	Hands-On 7.11. Understanding Errors in Arrays
	Parameter Arrays
	Hands-On 7.12. Working with Parameter Arrays
	Passing Arrays to Function Procedures
	Hands-On 7.13. Passing an Array to a Function Procedure
	Sorting an Array
	Hands-On 7.14. Sorting an Array
	Summary

	8. Keeping Track of Multiple Values Using ObjectCollections
	Working with Collections of Objects
	Declaring a Custom Collection
	Adding Objects to a Custom Collection
	Hands-On 8.1. Creating a Custom Collection
	Removing Objects from a Custom Collection
	Hands-On 8.2. Removing Objects from a Collection

	Creating Custom Objects in Class Modules
	Creating a Class
	Custom Project 8.1. (Step 1) Creating a Class Module
	Variable Declarations
	Custom Project 8.1. (Step 2) Declaring Class Members
	Defining the Properties for the Class
	Creating the Property Get Procedures
	Custom Project 8.1. (Step 3) Writing Property Get Procedures
	Creating the Property Let Procedures
	Custom Project 8.1. (Step 4) Writing Property Let Procedures

	Creating the Class Methods
	Custom Project 8.1. (Step 5) Writing Class Methods
	Creating an Instance of a Class
	Custom Project 8.1. (Step 6) Creating an Instance of a Class
	Event Procedures in the Class Module

	Creating the User Interface
	Custom Project 8.1. (Step 7) Designing a User Form
	Custom Project 8.1. (Step 8) Writing Event Procedures
	Running the Custom Application
	Custom Project 8.1. (Step 9) Running the Custom Project
	Watching the Execution of Your VBA Procedures
	Custom Project 8.1. (Step 10) Custom Project Code Walkthrough
	Summary

	9. Getting to Know Built-In Tools for Testing andDebugging
	Stopping a Procedure
	Using Breakpoints
	Custom Project 9.1. Debugging a Function Procedure
	Removing Breakpoints

	Using the Immediate Window in Break Mode
	Using the Stop Statement
	Using the Assert Statement
	Using the Add Watch Window
	Hands-On 9.1. Watching the Values of VBA Expressions
	Removing Watch Expressions

	Using Quick Watch
	Hands-On 9.2. Using the Quick Watch Dialog Box
	Using the Locals Window
	Hands-On 9.3. Using the Locals Window
	Using the Call Stack Dialog Box
	Stepping Through VBA Procedures
	Hands-On 9.4. Stepping Through a Procedure
	Stepping Over a Procedure
	Hands-On 9.5. Stepping Over a Procedure
	Stepping Out of a Procedure
	Running a Procedure to Cursor
	Setting the Next Statement
	Showing the Next Statement

	Navigating with Bookmarks
	Stopping and Resetting VBA Procedures
	Trapping Errors
	Using the Err Object
	Hands-On 9.6. Error Trapping Techniques
	Procedure Testing
	Setting Error Trapping Options

	Summary

	Index

