

[image: cover-image]

About This E-Book

EPUB is an open, industry-standard format for e-books. However, support for EPUB and its many features varies across reading devices and applications. Use your device or app settings to customize the presentation to your liking. Settings that you can customize often include font, font size, single or double column, landscape or portrait mode, and figures that you can click or tap to enlarge. For additional information about the settings and features on your reading device or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the e-book in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

Vulkan™ Programming Guide

The Official Guide to Learning Vulkan

Graham Sellers
With contributions from John Kessenich

[image: Image]

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsalespearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016948832

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

Vulkan and the Vulkan logo are trademarks of the Khronos Group Inc.

ISBN-13: 978-0-13-446454-1
ISBN-10: 0-13-446454-0
Text printed in the United States.
1 16

[image: Image]

For you, the reader.
—Graham Sellers

Contents

Figures

Tables

Listings

About This Book

About the Sample Code

Errata

Acknowledgments

About the Author

1 Overview of Vulkan

Introduction

Instances, Devices, and Queues

The Vulkan Instance

Vulkan Physical Devices

Physical Device Memory

Device Queues

Creating a Logical Device

Object Types and Function Conventions

Managing Memory

Multithreading in Vulkan

Mathematical Concepts

Vectors and Matrices

Coordinate Systems

Enhancing Vulkan

Layers

Extensions

Shutting Down Cleanly

Summary

2 Memory and Resources

Host Memory Management

Resources

Buffers

Formats and Support

Images

Resource Views

Destroying Resources

Device Memory Management

Allocating Device Memory

Host Access to Device Memory

Binding Memory to Resources

Sparse Resources

Summary

3 Queues and Commands

Device Queues

Creating Command Buffers

Recording Commands

Recycling Command Buffers

Submission of Commands

Summary

4 Moving Data

Managing Resource State

Pipeline Barriers

Global Memory Barriers

Buffer Memory Barriers

Image Memory Barriers

Clearing and Filling Buffers

Clearing and Filling Images

Copying Image Data

Copying Compressed Image Data

Stretching Images

Summary

5 Presentation

Presentation Extension

Presentation Surfaces

Presentation on Microsoft Windows

Presentation on Xlib-Based Platforms

Presentation with Xcb

Swap Chains

Full-Screen Surfaces

Performing Presentation

Cleaning Up

Summary

6 Shaders and Pipelines

An Overview of GLSL

An Overview of SPIR-V

Representation of SPIR-V

Handing SPIR-V to Vulkan

Pipelines

Compute Pipelines

Creating Pipelines

Specialization Constants

Accelerating Pipeline Creation

Binding Pipelines

Executing Work

Resource Access in Shaders

Descriptor Sets

Binding Resources to Descriptor Sets

Binding Descriptor Sets

Uniform, Texel, and Storage Buffers

Push Constants

Sampled Images

Summary

7 Graphics Pipelines

The Logical Graphics Pipeline

Renderpasses

The Framebuffer

Creating a Simple Graphics Pipeline

Graphics Shader Stages

Vertex Input State

Input Assembly

Tessellation State

Viewport State

Rasterization State

Multisample State

Depth and Stencil State

Color Blend State

Dynamic State

Summary

8 Drawing

Getting Ready to Draw

Vertex Data

Indexed Draws

Index-Only Rendering

Reset Indices

Instancing

Indirect Draws

Summary

9 Geometry Processing

Tessellation

Tessellation Configuration

Tessellation Variables

Tessellation Example: Displacement Mapping

Geometry Shaders

Cutting Primitives

Geometry Shader Instancing

Programmable Point Size

Line Width and Rasterization

User Clipping and Culling

The Viewport Transformation

Summary

10 Fragment Processing

Scissor Testing

Depth and Stencil Operations

Depth Testing

Stencil Testing

Early Fragment Tests

Multisample Rendering

Sample Rate Shading

Multisample Resolves

Logic Operations

Fragment Shader Outputs

Color Blending

Summary

11 Synchronization

Fences

Events

Semaphores

Summary

12 Getting Data Back

Queries

Executing Queries

Timing Queries

Reading Data with the Host

Summary

13 Multipass Rendering

Input Attachments

Attachment Contents

Attachment Initialization

Render Areas

Preserving Attachment Content

Secondary Command Buffers

Summary

Appendix: Vulkan Functions

Glossary

Index

Figures

Figure 1.1 Vulkan Hierarchy of Instance, Device, and Queue

Figure 2.1 Mipmap Image Layout

Figure 2.2 Memory Layout of LINEAR Tiled Images

Figure 2.3 Gamma Curves for sRGB (Top) and Simple Powers (Bottom)

Figure 2.4 Cube Map Construction

Figure 2.5 Host and Device Memory

Figure 4.1 Data Layout of Images Stored in Buffers

Figure 6.1 Descriptor Sets and Pipeline Sets

Figure 6.2 Linear Sampling

Figure 6.3 Effect of Sampling Modes

Figure 7.1 The Full Vulkan Graphics Pipeline

Figure 7.2 Strip (Left) and Fan (Right) Topologies

Figure 7.3 Triangles with Adjacency Topology

Figure 7.4 Triangle Strip with Adjacency Topology

Figure 8.1 Index Data Flow

Figure 8.2 The Effect of Primitive Restart on Triangle Strips

Figure 8.3 Many Instanced Cubes

Figure 9.1 Quad Tessellation

Figure 9.2 Triangle Tessellation

Figure 9.3 Isoline Tessellation

Figure 9.4 Tessellation Spacing Modes

Figure 9.5 Result of Tessellated Displacement Mapping

Figure 9.6 Rasterization of Strict Lines

Figure 9.7 Rasterization of Nonstrict Lines

Figure 9.8 Clipping Against a Viewport

Figure 10.1 Standard Sample Locations

Figure 13.1 Data Flow for a Simple Deferred Renderer

Figure 13.2 Serial Dependency of Translucent on Opaque Geometry

Figure 13.3 Parallel Rendering of Translucent and Opaque Geometry

Tables

Table 2.1 Sparse Texture Block Sizes

Table 6.1 Pipeline Resource Limits

Table 6.2 Texture Comparison Functions

Table 7.1 Dynamic and Static State Validity

Table 9.1 GLSL and SPIR-V Tessellation Modes

Table 9.2 GLSL and SPIR-V Tessellation Winding Order

Table 10.1 Depth Comparison Functions

Table 10.2 Stencil Operations

Table 10.3 Logic Operations

Table 10.4 Blend Equations

Table 10.5 Blend Factors

Listings

Listing 1.1 Creating a Vulkan Instance

Listing 1.2 Querying Physical Device Properties

Listing 1.3 Creating a Logical Device

Listing 1.4 Querying Instance Layers

Listing 1.5 Querying Instance Extensions

Listing 2.1 Declaration of a Memory Allocator Class

Listing 2.2 Implementation of a Memory Allocator Class

Listing 2.3 Creating a Buffer Object

Listing 2.4 Creating an Image Object

Listing 2.5 Choosing a Memory Type for an Image

Listing 3.1 Example of Using vkCmdCopyBuffer()

Listing 4.1 Image Memory Barrier

Listing 4.2 Filling a Buffer with Floating-Point Data

Listing 5.1 Creating a Swap Chain

Listing 5.2 Transitioning an Image to Present Source

Listing 6.1 Simplest Possible GLSL Shader

Listing 6.2 Simplest SPIR-V

Listing 6.3 Local Size Declaration in a Compute Shader (GLSL)

Listing 6.4 Local Size Declaration in a Compute Shader (SPIR-V)

Listing 6.5 Specialization Constants in GLSL

Listing 6.6 Specialization Constants in SPIR-V

Listing 6.7 Saving Pipeline Cache Data to a File

Listing 6.8 Declaring Resources in GLSL

Listing 6.9 Declaring Resources in SPIR-V

Listing 6.10 Creating a Pipeline Layout

Listing 6.11 Declaring Uniform and Shader Blocks in GLSL

Listing 6.12 Declaring Uniform and Shader Blocks in SPIR-V

Listing 6.13 Declaring Texel Buffers in GLSL

Listing 6.14 Declaring Texel Buffers in SPIR-V

Listing 6.15 Declaring Push Constants in GLSL

Listing 6.16 Declaring Push Constants in SPIR-V

Listing 7.1 Creating a Simple Renderpass

Listing 7.2 Creating a Simple Graphics Pipeline

Listing 7.3 Describing Vertex Input Data

Listing 7.4 Declaring Inputs to a Vertex Shader (GLSL)

Listing 7.5 Declaring Inputs to a Vertex Shader (SPIR-V)

Listing 8.1 Separate Vertex Attribute Setup

Listing 8.2 Indexed Cube Data

Listing 8.3 Using the Vertex Index in a Shader

Listing 8.4 Using the Instance Index in a Shader

Listing 8.5 Draw Index Used in a Shader

Listing 9.1 Trivial Tessellation Control Shader (GLSL)

Listing 9.2 Trivial Tessellation Control Shader (SPIR-V)

Listing 9.3 Declaring Outputs in Tessellation Control Shaders (GLSL)

Listing 9.4 Declaring Outputs in Tessellation Control Shaders (SPIR-V)

Listing 9.5 Accessing gl_TessCoord in Evaluation Shader (GLSL)

Listing 9.6 Accessing gl_TessCoord in Evaluation Shader (SPIR-V)

Listing 9.7 Descriptor Setup for Displacement Mapping

Listing 9.8 Vertex Shader for Displacement Mapping

Listing 9.9 Tessellation Control Shader for Displacement Mapping

Listing 9.10 Tessellation Evaluation Shader for Displacement Mapping

Listing 9.11 Tessellation State Creation Information

Listing 9.12 Minimal Geometry Shader (GLSL)

Listing 9.13 Minimal Geometry Shader (SPIR-V)

Listing 9.14 Declaring gl_PerVertex in a GLSL Geometry Shader

Listing 9.15 Reading gl_PerVertex in a SPIR-V Geometry Shader

Listing 9.16 Declaring an Output Block in GLSL

Listing 9.17 Pass-Through GLSL Geometry Shader

Listing 9.18 Pass-Through SPIR-V Geometry Shader

Listing 9.19 Cutting Strips in a Geometry Shader

Listing 9.20 Instanced GLSL Geometry Shader

Listing 9.21 Use of gl_PointSize in GLSL

Listing 9.22 Decorating an Output with PointSize

Listing 9.23 Use of gl_ClipDistance in GLSL

Listing 9.24 Decorating Outputs with ClipDistance

Listing 9.25 Use of gl_CullDistance in GLSL

Listing 9.26 Decorating Outputs with CullDistance

Listing 9.27 Using Multiple Viewports in a Geometry Shader (GLSL)

Listing 10.1 Declaring an Output in a Fragment Shader (GLSL)

Listing 10.2 Declaring an Output in a Fragment Shader (SPIR-V)

Listing 10.3 Several Outputs in a Fragment Shader (GLSL)

Listing 10.4 Several Outputs in a Fragment Shader (SPIR-V)

Listing 11.1 Setup for Four-Fence Synchronization

Listing 11.2 Loop Waiting on Fences for Synchronization

Listing 11.3 Cross-Queue Submission with Semaphores

Listing 12.1 C Structure for All Pipeline Statistics

Listing 12.2 Moving a Buffer to Host-Readable State

Listing 13.1 Deferred Shading Renderpass Setup

Listing 13.2 Translucency and Deferred Shading Setup

About This Book

This book is about Vulkan. Vulkan is an application programming interface (API) for controlling devices such as graphics processing units (GPUs). Although Vulkan is a logical successor to OpenGL, it is quite different from OpenGL in form. One of the things that experienced practitioners will notice about Vulkan is that it is very verbose. You need to write a lot of application code to get Vulkan to do anything useful, let alone anything remarkable. Many of the things that an OpenGL driver would do are now the responsibility of the Vulkan application writer. These things include synchronization, scheduling, memory management, and so on. As such, you will find a good deal of this book dedicated to such topics, even though they are general topics applicable to more than just Vulkan.

The intended audience for this book is experienced programmers who are already familiar with other graphics and compute APIs. As such, many graphics-related topics are discussed without deep introduction, there are some forward references, and code samples are incomplete or illustrative in scope rather than being complete programs that you can type in. The sample code available from the book’s website is complete and tested, however, and should serve as a good reference to follow along with.

Vulkan is intended to be used as the interface between large, complex graphics and compute applications and graphics hardware. Many of the features and responsibilities previously assumed by drivers implementing APIs such as OpenGL now fall to the application. Complex game engines, large rendering packages, and commercial middleware are well-suited to this task; they have more information about their specific behavior than any driver could hope to have. Vulkan is not well-suited to simple test applications; neither is it a suitable aid for teaching graphics concepts.

In the first chapters of this book, we introduce Vulkan and some of the fundamental concepts that frame the API. As we progress through the Vulkan system, we cover more advanced topics, eventually producing a more complex rendering system that shows off some of the unique aspects of Vulkan and demonstrates its capabilities.

In Chapter 1, “Overview of Vulkan,” we provide a brief introduction to Vulkan and the concepts that form its foundation. We cover the basics of creating Vulkan objects and show the basics of getting started with the Vulkan system.

In Chapter 2, “Memory and Resources,” we introduce the memory system of Vulkan, perhaps the most fundamental part of the interface. We show how to allocate memory used by the Vulkan device and by Vulkan drivers and system components running inside your application.

In Chapter 3, “Queues and Commands,” we cover command buffers and introduce the queues to which they are submitted. We show how Vulkan processes work and how your application can build packets of commands to be sent to the device for execution.

In Chapter 4, “Moving Data,” we introduce our first few Vulkan commands, all of which are focused on moving data. We use the concepts first discussed in Chapter 3 to build command buffers that can copy and format data stored in the resources and memory introduced in Chapter 2.

In Chapter 5, “Presentation,” we show how to get images produced by your application onto the screen. Presentation is the term used for interacting with a window system, which is platform-specific, so this chapter delves into some platform-specific topics.

In Chapter 6, “Shaders and Pipelines,” we introduce SPIR-V, the binary shading language used by Vulkan. We also introduce the pipeline object; show how one is constructed using SPIR-V shaders; and then introduce compute pipelines, which can be used to do computation work with Vulkan.

In Chapter 7, “Graphics Pipelines,” we build upon what we covered in Chapter 6 and introduce the graphics pipeline, which includes all of the configuration necessary to render graphical primitives with Vulkan.

In Chapter 8, “Drawing,” we discuss the various drawing commands available in Vulkan, including indexed and nonindexed draws, instancing, and indirect commands. We show how to get data into the graphics pipeline and how to draw more complex geometries than were introduced in Chapter 7.

In Chapter 9, “Geometry Processing,” we dig deeper into the first half of the Vulkan graphics pipeline and take another look at the tessellation and geometry shader stages. We show some of the more advanced things that these stages can do and cover the pipeline up to the rasterization stage.

In Chapter 10, “Fragment Processing,” we pick up where Chapter 9 left off and cover everything that happens during and after rasterization in order to turn your geometry into a stream of pixels that can be displayed to the user.

In Chapter 11, “Synchronization,” we cover the various synchronization primitives available to the Vulkan application, including fences, events, and semaphores. Together, these form the foundation of any application that makes efficient use of the parallel nature of Vulkan.

In Chapter 12, “Getting Data Back,” we reverse the direction of communication used in previous chapters and discuss the issues involved in reading data from Vulkan into your application. We show how to time operations executed by a Vulkan device, how to gather statistics about the operation of Vulkan devices, and how to get data produced by Vulkan back into your application.

Finally, in Chapter 13, “Multipass Rendering,” we revisit a number of topics covered earlier, tying things together to produce a more advanced application—a deferred rendering application using complex multipass architecture and multiple queues for processing.

The appendix to this book contains a table of the command buffer building functions available to Vulkan applications, providing a quick reference to determine their attributes.

Vulkan is a large, complex, and new system. It is extremely difficult to cover every corner of the API in a book of this scope. The reader is encouraged to thoroughly read the Vulkan specification in addition to this book, as well as to read other books on using heterogeneous compute systems and computer graphics with other APIs. Such material will provide a good foundation in the mathematics and other concepts assumed by this book.

About the Sample Code

The sample code that accompanies this book is available from our website (http://www.vulkanprogrammingguide.com). One thing that seasoned users of other graphics APIs will notice is that Vulkan is very verbose. This is primarily because many of the responsibilities historically assumed by drivers have been delegated to your application. In many cases, however, simple boilerplate code will do the job just fine. Therefore, we have created a simple application framework that deals with much of the functionality that will be common to all samples and real-world applications. This does not mean that this book is a tutorial on how to use our framework. This is simply a practical matter of keeping code samples concise.

Of course, as we discuss specific Vulkan functionality throughout the book, we will include snippets of code, many of which may actually come from the book’s sample framework rather than from any particular example. Some features discussed in the book may not have examples in the code package. This is particularly true of some advanced features that are relevant primarily to large-scale applications. There is no such thing as a short, simple Vulkan example. In many cases, a single example program demonstrates the use of many features. The features that each example uses are listed in that example’s read-me file. Again, there is not a 1:1 correspondence between examples and listings in this book and specific examples in the sample code. It shall be assumed that anyone that files a bug asking for a 1:1 list of which samples go with which chapter has not read this paragraph. Such bugs will be summarily closed, quoting this very sentence.

The sample code is designed to link against the latest official Vulkan SDK from LunarG, which is available from http://lunarg.com/vulkan-sdk/. At the time of writing, the latest SDK version is 1.0.22. Newer versions of the SDK are designed to be backward-compatible with older versions, so we recommend that users obtain the latest available version of the SDK before attempting to compile and run the sample applications. The SDK also comes with some samples of its own, and we suggest running those to verify that the SDK and drivers are installed correctly.

In addition to the Vulkan SDK, you will need a working installation of CMake in order to create the build environment for the samples. You will also need an up-to-date compiler. The code samples make use of several C++11 features and rely heavily on the C++ standard libraries for things like threading and synchronization primitives. These features are known to be problematic in early versions of various compiler runtimes, so please make sure that your compilers are up to date. We have tested with Microsoft Visual Studio 2015 on Windows and with GCC 5.3 on Linux. The samples have been tested on 64-bit Windows 7, Windows 10, and Ubuntu 16.10 with recent drivers from AMD, Intel, and NVIDIA.

It should be noted that Vulkan is a cross-platform, cross-vendor, and cross-device system. Many of these samples should work on Android and other mobile platforms. We hope to port the samples to as many of these platforms as possible in the future and would very much appreciate help and contributions from you, the reader.

Errata

Vulkan is a new technology. At the time of writing, the specification has been available for only a matter of weeks. Although the author and contributor had a hand in creating the Vulkan specification, it’s large and complex and had many contributors. Some of the code in the book is not fully tested, and although it is believed to be correct, it may contain errors. As we were putting the samples together, available Vulkan implementations still had bugs, the validation layers didn’t catch as many errors as they could, and the specification itself had gaps and unclear sections. Like the readers, we are still learning Vulkan, so although this text was edited for technical accuracy, we depend on readers to view any updates by visiting this book’s website:

http://www.vulkanprogrammingguide.com

Register your copy of VulkanTM Programming Guide at informit.com for convenient access to downloads, updates, and corrections as they become available. To start the registration process, go to informit.com/register and log in or create an account. Enter the product ISBN (9780134464541) and click Submit. Once the process is complete, you will find any available bonus content under “Registered Products.”

Acknowledgments

First and foremost, I’d like to acknowledge the members of the Vulkan working group. Through a tireless and extremely long process, we produced what I believe to be a very solid foundation for computer graphics and compute acceleration in the years to come. I would especially like to recognize the contributions of my peers at AMD who developed the original Mantle specification, from which Vulkan was derived.

I would like to thank our reviewers, Dan Ginsburg and Chris “Xenon” Hanson. Thank you for your valuable feedback, without which this book would certainly contain more errors and omissions than it does. I would also like to thank my colleague Mais Alnasser, who provided excellent feedback and contributed to the quality of this book. Further thanks are due to the rest of the Vulkan team at AMD, whose work allowed me to test much of the sample code before access to Vulkan was available to the wider public.

The cover image was produced by Dominic Agoro-Ombaka of Agoro Design (http://agorodesign.com/) on short notice. Thanks to him for delivering on a tight schedule.

A huge thank you goes to my editor, Laura Lewin, and the rest of the team at Addison-Wesley for allowing me to repeatedly slip the schedule, make late edits, deliver work in an ad-hoc manner, and generally be a pain to work with. I appreciate your trust in me with this project.

Finally, I need to thank my family—my wife, Chris, and my children, Jeremy and Emily. “Dad, are you still writing your book?” has become a regular chant in our house. I appreciate your patience, love, and support as I’ve crunched out a whole new book over the last few months.

—Graham Sellers

About the Author

Graham Sellers is a software architect at AMD who oversees the development of the OpenGL and Vulkan drivers for AMD’s Radeon and FirePro products. His passion for computers and technology began at a young age with a BBC Micro, followed by a long line of 8- and 16-bit home computers that he still enjoys working with. He earned his master’s in engineering from the University of Southampton, England, and now lives in Orlando, Florida, with his wife and two children.

Chapter 1. Overview of Vulkan

What You’ll Learn in This Chapter

• What Vulkan is and the fundamentals behind it

• How to create a minimal Vulkan application

• The terminology and concepts used in the remainder of this book

In this chapter, we introduce Vulkan and explain what it is. We introduce some of the fundamental concepts behind the API, including initialization, object lifetimes, the Vulkan instance, and logical and physical devices. By the end of the chapter, we produce a simple Vulkan application that can initialize the Vulkan system, discover available Vulkan devices and show their properties and capabilities, and finally shut down cleanly.

Introduction

Vulkan is a programming interface for graphics and compute devices. A Vulkan device typically consists of a processor and a number of fixed-function hardware blocks to accelerate operations used in graphics and compute. The processor in the device is usually a very wide multithreaded processor and so the computational model in Vulkan is heavily based on parallel computing. The Vulkan device also has access to memory that may or may not be shared with the main processor upon which your application is running. Vulkan also exposes this memory to you.

Vulkan is an explicit API. That is, almost everything is your responsibility. A driver is a piece of software that takes the commands and data forming the API and translates them into something that hardware can understand. In older APIs such as OpenGL, drivers would track the state of a lot of objects, manage memory and synchronization for you, and check for errors in your application as it ran. This is great for developers but burns valuable CPU time once your application is debugged and running correctly. Vulkan addresses this by placing almost all state tracking, synchronization, and memory management into the hands of the application developer and by delegating correctness checks to layers that must be enabled. They do not participate in the execution of your application under normal circumstances.

For these reasons, Vulkan is both very verbose and somewhat fragile. You need to do an awful lot of work to get Vulkan running well, and incorrect usage of the API can often lead to graphical corruption or even program crashes where in older APIs you would have received a helpful error message. In exchange for this, Vulkan provides more control over the device, a clean threading model, and much higher performance than the APIs that it supersedes.

Further, Vulkan has been designed to be more than a graphics API. It can be used for heterogeneous devices such as graphics processing units (GPUs), digital signal processors (DSPs), and fixed-function hardware. Functionality is divided into coarse-grained, broadly overlapping categories. The current edition of Vulkan defines the transfer category, which is used for copying data around; the compute category, which is used for running shaders over compute workloads; and the graphics category, which includes rasterization, primitive assembly, blending, depth and stencil tests, and other functionality that will be familiar to graphics programmers.

To the extent that support for each category is optional, it’s possible to have a Vulkan device that doesn’t support graphics at all. As a consequence, even the APIs to put pictures onto a display device (which is called presentation) are not only optional, but are provided as extensions to Vulkan rather than being part of the core API.

Instances, Devices, and Queues

Vulkan includes a hierarchy of functionality, starting at the top level with the instance, which aggregates all Vulkan-capable devices together. Each device then exposes one or more queues. It is the queues that perform the work that your application requests.

The Vulkan instance is a software construct that logically separates the state of your application from other applications or libraries running within the context of your application. The physical devices in the sytem are presented as members of the instance, each of which has certain capabilities, including a selection of available queues.

A physical device usually represents a single piece of hardware or a collection of hardware that is interconnected. There is a fixed, finite number of physical devices in any system unless that system supports reconfiguration such as hot-plug. A logical device, which is created by the instance, is the software construct around a physical device and represents a reservation of resources associated with a particular physical device. This includes a possible subset of the available queues on the physical device. It is possible to create multiple logical devices representing a single physical device, and it is the logical device that your application will spend most of its time interacting with.

Figure 1.1 illustrates this hierarchy. In the figure, the application has created two Vulkan instances. There are three physical devices in the system that are available to both instances. After enumeration, the application creates one logical device on the first physical device, two logical devices for the second device, and another for the third. Each logical device enables a different subset of its corresponding physical device’s queues. In practice, most Vulkan applications won’t be nearly this complex and will simply create a single logical device for one of the physical devices in the system, using a single instance. Figure 1.1 only serves to demonstrate the flexibility of the Vulkan system.

[image: Image]

Figure 1.1: Vulkan Hierarchy of Instance, Device, and Queue

The following subsections discuss how to create the Vulkan instance, query the physical devices in the system, attach a logical device corresponding to one of them, and finally retrieve handles to the queues exposed by the device.

The Vulkan Instance

Vulkan can be seen as a subsystem of your application. Once you link your application to the Vulkan libraries and initialize it, it tracks some state. Because Vulkan doesn’t introduce any global state into your application, all tracked state must be stored in an object that you provide. This is the instance object and is represented by a VkInstance object. To construct one, we’ll call our first Vulkan function, vkCreateInstance(), the prototype of which is

Click here to view code image

VkResult vkCreateInstance (

 const VkInstanceCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkInstance* pInstance);

This declaration is typical of a Vulkan function. Where more than a handful of parameters are to be passed to Vulkan, functions often take pointers to structures. Here, pCreateInfo is a pointer to an instance of the VkInstanceCreateInfo structure that contains the parameters describing the new Vulkan instance. The definition of VkInstanceCreateInfo is

Click here to view code image

typedef struct VkInstanceCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkInstanceCreateFlags flags;

 const VkApplicationInfo* pApplicationInfo;

 uint32_t enabledLayerCount;

 const char* const* ppEnabledLayerNames;

 uint32_t enabledExtensionCount;

 const char* const* ppEnabledExtensionNames;

} VkInstanceCreateInfo;

The first member in almost every Vulkan structure that is used to pass parameters to the API is the sType field, which tells Vulkan what type of structure this is. Each structure in the core API and in any extension has an assigned structure tag. By inspecting this tag, Vulkan tools, layers, and drivers can determine the type of the structure for validation purposes and for use in extensions. Further, the pNext field allows a linked list of structures to be passed to the function. This allows the set of parameters to be extended without needing to replace the core structure wholesale in an extension. Because we are using the core instance creation structure here, we pass VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO in the sType field and simply set pNext to nullptr.

The flags field of VkInstanceCreateInfo is reserved for future use and should be set to zero. The next field, pApplicationInfo, is an optional pointer to another structure describing your application. You can set this to nullptr, but a well-behaved application should fill this in with something useful. pApplicationInfo points to an instance of the VkApplicationInfo structure, the definition of which is

Click here to view code image

typedef struct VkApplicationInfo {

 VkStructureType sType;

 const void* pNext;

 const char* pApplicationName;

 uint32_t applicationVersion;

 const char* pEngineName;

 uint32_t engineVersion;

 uint32_t apiVersion;

} VkApplicationInfo;

Again, we see the sType and pNext fields in this structure. sType should be set to VK_STRUCTURE_TYPE_APPLICATION_INFO, and we can leave pNext as nullptr. pApplicationName is a pointer to a nul-terminated1 string containing the name of your application, and applicationVersion is the version of the application. This allows tools and drivers to make decisions about how to treat your application without needing to guess2 which application is running. Likewise, pEngineName and engineVersion contain the name and version, respectively, of the engine or middleware that your application is based on.

1. Yes, really, nul. The ASCII character whose literal value is zero is officially called NUL. Now, stop telling me to change it to NULL. That’s a pointer, not a name of a character.

2. What’s best for one application might be different from what’s best for another. Also, applications are written by humans, and humans write code with bugs. To optimize fully or work around application bugs, drivers would sometimes use executable names or even application behavior to guess at which application was running and alter behavior appropriately. While not ideal, this new mechanism at least removes the guesswork.

Finally, apiVersion contains the version of the Vulkan API that your application is expecting to run on. This should be set to the absolute minimum version of Vulkan that your application requires to run—not just to the version of the header that you happen to have installed. This allows the widest possible assortment of devices and platforms to run your application, even if updates to their Vulkan implementations might not be available.

Returning to the VkInstanceCreateInfo structure, we see the enabledLayerCount and ppEnabledLayerNames fields. These are the count of the number of instance layers that you wish to enable and their names, respectively. Layers are used to intercept the Vulkan API and provide logging, profiling, debugging, or other additional features. If no layers are needed, simply set enabledLayerCount to zero and leave ppEnabledLayerNames as nullptr. Likewise, enabledExtensionCount is the count of the number of extensions you wish to enable,3 and ppEnabledExtensionNames is a list of their names. Again, if we’re not using any extensions, we can set these fields to zero and nullptr, respectively.

3. As with OpenGL, Vulkan supports extensions as a central part of the API. However, in OpenGL, we would create a context, query the supported extensions, and then start using them. This meant that drivers would need to assume that your application might suddenly start using an extension at any time and be ready for it. Further, it couldn’t tell which extensions you were looking for, which made the process even more difficult. In Vulkan, applications are required to opt in to extensions and explicitly enable them. This allows drivers to disable extensions that aren’t in use and makes it harder for applications to accidentally start using functionality that’s part of an extension they weren’t intending to enable.

Finally, returning to the vkCreateInstance() function, the pAllocator parameter is a pointer to a host memory allocator that your application can supply in order to manage the host memory that the Vulkan system uses. Setting this to nullptr causes the Vulkan system to use its own internal allocator, which is what we will do here. Application-managed host memory will be covered in Chapter 2, “Memory and Resources.”

Assuming the vkCreateInstance() function succeeds, it will return VK_SUCCESS and place a handle to the new instance in the variable pointed to by the pInstance parameter. A handle is the value by which objects are referenced. Vulkan handles are always 64 bits wide, regardless of the bitness of the host system. Once we have a handle to our Vulkan instance, we can use it to call other instance functions.

Vulkan Physical Devices

Once we have an instance, we can use it to discover Vulkan-compatible devices installed in the system. Vulkan has two types of devices: physical and logical. Physical devices are normally parts of the system—a graphics card, accelerator, DSP, or other component. There are a fixed number of physical devices in a system, and each has a fixed set of capabilities. A logical device is a software abstraction of a physical device, configured in a way that is specified by the application. The logical device is the one that your application will spend most of its time dealing with, but before we can create a logical device, we must discover the connected physical devices. To do this, we call the vkEnumeratePhysicalDevices() function, the prototype of which is

Click here to view code image

VkResult vkEnumeratePhysicalDevices (

 VkInstance instance,

 uint32_t* pPhysicalDeviceCount,

 VkPhysicalDevice* pPhysicalDevices);

The first parameter to the vkEnumeratePhysicalDevices() function, instance, is the instance we created earlier. Next, the pPhysicalDeviceCount parameter is a pointer to an unsigned integer variable that is both an input and an output. As an output, Vulkan writes the number of physical devices in the system into it. As an input, it should be preinitialized with the maximum number of devices your application can handle. The pPhysicalDevices parameter is a pointer to an array of this number of VkPhysicalDevice handles.

If you just want to know how many devices there are in the system, set pPhysicalDevices to nullptr, and Vulkan will ignore the initial value of pPhysicalDeviceCount, simply overwriting it with the number of supported devices. You can dynamically adjust the size of your VkPhysicalDevice array by calling vkEnumeratePhysicalDevices() twice, the first time with only pPhysicalDevices set to nullptr (although pPhysicalDeviceCount must still be a valid pointer) and the second time with pPhysicalDevices set to an array that has been appropriately sized for the number of physical devices reported by the first call.

Assuming there are no problems, vkEnumeratePhysicalDevices() returns VK_SUCCESS and deposits the number of recognized physical devices in pPhysicalDeviceCount along with their handles in pPhysicalDevices. Listing 1.1 shows an example of constructing the VkApplicationInfo and VkInstanceCreateInfo structures, creating the Vulkan instance, querying it for the number of supported devices, and finally querying the physical device handles themselves. This is a slightly simplified version of vkapp::init from the example framework.

Listing 1.1: Creating a Vulkan Instance

Click here to view code image

VkResult vkapp::init()

{

 VkResult result = VK_SUCCESS;

 VkApplicationInfo appInfo = { };

 VkInstanceCreateInfo instanceCreateInfo = { };

 // A generic application info structure

 appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;

 appInfo.pApplicationName = "Application";

 appInfo.applicationVersion = 1;

 appInfo.apiVersion = VK_MAKE_VERSION(1, 0, 0);

 // Create the instance.

 instanceCreateInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;

 instanceCreateInfo.pApplicationInfo = &appInfo;

 result = vkCreateInstance(&instanceCreateInfo, nullptr, &m_instance);

 if (result == VK_SUCCESS)

 {

 // First figure out how many devices are in the system.

 uint32_t physicalDeviceCount = 0;

 vkEnumeratePhysicalDevices(m_instance, &physicalDeviceCount, nullptr);

 if (result == VK_SUCCESS)

 {

 // Size the device array appropriately and get the physical

 // device handles.

 m_physicalDevices.resize(physicalDeviceCount);

 vkEnumeratePhysicalDevices(m_instance,

 &physicalDeviceCount,

 &m_physicalDevices[0]);

 }

 }

 return result;

}

The physical device handle is used to query the device for its capabilities and ultimately to create the logical device. The first query we’ll perform is vkGetPhysicalDeviceProperties(), which fills in a structure describing all the properties of the physical device. Its prototype is

Click here to view code image

void vkGetPhysicalDeviceProperties (

 VkPhysicalDevice physicalDevice,

 VkPhysicalDeviceProperties* pProperties);

When you call vkGetPhysicalDeviceProperties(), pass one of the handles returned from vkEnumeratePhysicalDevices() in the physicalDevice parameter, and in pProperties, pass a pointer to an instance of the VkPhysicalDeviceProperties structure. This is a large structure that contains a large number of fields describing the properties of the physical device. Its definition is

Click here to view code image

typedef struct VkPhysicalDeviceProperties {

 uint32_t apiVersion;

 uint32_t driverVersion;

 uint32_t vendorID;

 uint32_t deviceID;

 VkPhysicalDeviceType deviceType;

 char deviceName

 [VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];

 uint8_t pipelineCacheUUID[VK_UUID_SIZE];

 VkPhysicalDeviceLimits limits;

 VkPhysicalDeviceSparseProperties sparseProperties;

 } VkPhysicalDeviceProperties;

The apiVersion field contains the highest version of Vulkan supported by the device, and the driverVersion field contains the version of the driver used to control the device. This is vendor-specific, so it doesn’t make sense to compare driver versions across vendors. The vendorID and deviceID fields identify the vendor and the device, and are usually PCI vendor and device identifiers.4

4. There is no official central repository of PCI vendor or device identifiers. The PCI SIG (http://pcisig.com/) assigns vendor identifiers to its members, and those members assign device identifiers to their products. A fairly comprehensive list in both human- and machine-readable forms is available from http://pcidatabase.com/.

The deviceName field will contain a human-readable string naming the device. The pipelineCacheUUID field is used for pipeline caching, which we will cover in Chapter 6, “Shaders and Pipelines.”

In addition to the properties just listed, the VkPhysicalDeviceProperties structure embeds VkPhysicalDeviceLimits and VkPhysicalDeviceSparseProperties, which contain the minimum and maximum limits for the physical device and properties related to sparse textures. There’s a lot of information in these structures, and we’ll cover the fields separately as the related features are discussed rather than enumerating them all here.

In addition to core features, some of which have optionally higher limits or bounds, Vulkan has a number of optional features that may be supported by a physical device. If a device advertises support for a feature, it must still be enabled (much like an extension), but once enabled, that feature becomes a first-class citizen of the API just like any core feature. To determine which features a physical device supports, call vkGetPhysicalDeviceFeatures(), the prototype of which is

Click here to view code image

void vkGetPhysicalDeviceFeatures (

 VkPhysicalDevice physicalDevice,

 VkPhysicalDeviceFeatures* pFeatures);

Again, the VkPhysicalDeviceFeatures structure is very large and has a Boolean field for each optional feature supported by Vulkan. There are too many fields to list and describe individually here, but the sample application presented at the end of this chapter reads the feature set and prints its content.

Physical Device Memory

In many cases, a Vulkan device is either a separate physical piece of hardware to the main host processor or works sufficiently differently that it will access memory in specialized ways. Device memory in Vulkan refers to memory that is accessible to the device and usable as a backing store for textures and other data. Memory is classified into types, each of which has a set of properties, such as caching flags and coherency behavior between host and device. Each type of memory is then backed by one of the device’s heaps, of which there may be several.

To query the configuration of heaps and the memory types supported by the device, call

Click here to view code image

void vkGetPhysicalDeviceMemoryProperties (

 VkPhysicalDevice physicalDevice,

 VkPhysicalDeviceMemoryProperties* pMemoryProperties);

The resulting memory organization is written into the VkPhysicalDeviceMemoryProperties structure, the address of which is passed in pMemoryProperties. The VkPhysicalDeviceMemoryProperties structure contains the properties of both the device’s heaps and its supported memory types. The definition of this structure is

Click here to view code image

typedef struct VkPhysicalDeviceMemoryProperties {

 uint32_t memoryTypeCount;

 VkMemoryType memoryTypes[VK_MAX_MEMORY_TYPES];

 uint32_t memoryHeapCount;

 VkMemoryHeap memoryHeaps[VK_MAX_MEMORY_HEAPS];

} VkPhysicalDeviceMemoryProperties;

The number of memory types is reported in the memoryTypeCount field. The maximum number of memory types that might be reported is the value of VK_MAX_MEMORY_TYPES, which is defined to be 32. The memoryTypes array contains memoryTypeCount VkMemoryType structures describing each of the memory types. The definition of VkMemoryType is

Click here to view code image

typedef struct VkMemoryType {

 VkMemoryPropertyFlags propertyFlags;

 uint32_t heapIndex;

} VkMemoryType;

This is a simple structure containing only a set of flags and the memory type’s heap index. The flags field describes the type of memory and is made up of a combination of the VkMemoryPropertyFlagBits flags. The meanings of the flags are as follows:

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT means that the memory is local to (that is, physically connected to) the device. If this bit is not set, then the memory can be assumed to be local to the host.

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT means that memory allocations made with this type can be mapped and read or written by the host. If this bit is not set then memory of this type cannot be directly accessed by the host and is rather for exclusive use by the device.

• VK_MEMORY_PROPERTY_HOST_COHERENT_BIT means that when this type of memory is concurrently accessed by both the host and device, those accesses will be coherent between the two clients. If this bit is not set, then the device or host may not see the results of writes performed by each until caches are explicitly flushed.

• VK_MEMORY_PROPERTY_HOST_CACHED_BIT means that data in this type of memory is cached by the host. Read accesses to this type of memory are typically faster than they would be if this bit were not set. However, access by the device may have slightly higher latency, especially if the memory is also coherent.

• VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT means that memory allocated with this type doesn’t necessarily consume space from the associated heap immediately and that a driver might defer physical memory allocation until the memory object is used to back a resource.

Each memory type reports the heap from which it consumes space in the heapIndex field of the VkMemoryType structure. This is an index into the memoryHeaps array returned in the VkPhysicalDeviceMemoryProperties structure from the call to vkGetPhysicalDeviceMemoryProperties(). Each element of the memoryHeaps array describes one of the device’s memory heaps. The definition of this structure is

Click here to view code image

typedef struct VkMemoryHeap {

 VkDeviceSize size;

 VkMemoryHeapFlags flags;

} VkMemoryHeap;

Again, this is a simple structure. It contains only the size, in bytes, of the heap and some flags describing the heap. In Vulkan 1.0, the only defined flag is VK_MEMORY_HEAP_DEVICE_LOCAL_BIT. If this bit is set, then the heap is local to the device. This corresponds to the similarly named flag describing memory types.

Device Queues

Vulkan devices execute work that is submitted to queues. Each device will have one or more queues, and each of those queues will belong to one of the device’s queue families. A queue family is a group of queues that have identical capabilities but are able to run in parallel. The number of queue families, the capabilities of each family, and the number of queues belonging to each family are all properties of the physical device. To query the device for its queue families, call vkGetPhysicalDeviceQueueFamilyProperties(), the prototype of which is

Click here to view code image

void vkGetPhysicalDeviceQueueFamilyProperties (

 VkPhysicalDevice physicalDevice,

 uint32_t* pQueueFamilyPropertyCount,

 VkQueueFamilyProperties* pQueueFamilyProperties);

vkGetPhysicalDeviceQueueFamilyProperties() works somewhat like vkEnumeratePhysicalDevices() in that it is expected that you call it twice. The first time, you pass nullptr as pQueueFamilyProperties, and in pQueueFamilyPropertyCount, you pass a pointer to a variable that will be overwritten with the number of queue families supported by the device. You can use this number to appropriately size an array of VkQueueFamilyProperties. Then, on the second call, pass this array in pQueueFamilyProperties, and Vulkan will fill it with the properties of the queues. The definition of VkQueueFamilyProperties is

Click here to view code image

typedef struct VkQueueFamilyProperties {

 VkQueueFlags queueFlags;

 uint32_t queueCount;

 uint32_t timestampValidBits;

 VkExtent3D minImageTransferGranularity;

} VkQueueFamilyProperties;

The first field in this structure, queueFlags, describes the overall capabilities of the queue. This field is made up of a combination of the VkQueueFlagBits bits, the meanings of which are as follows:

• If VK_QUEUE_GRAPHICS_BIT is set, then queues in this family support graphics operations such as drawing points, lines, and triangles.

• If VK_QUEUE_COMPUTE_BIT is set, then queues in this family support compute operations such as dispatching compute shaders.

• If VK_QUEUE_TRANSFER_BIT is set, then queues in this family support transfer operations such as copying buffer and image contents.

• If VK_QUEUE_SPARSE_BINDING_BIT is set, then queues in this family support memory binding operations used to update sparse resources.

The queueCount field indicates the number of queues in the family. This might be set to 1, or it could be substantially higher if the device supports multiple queues with the same basic functionality.

The timestampValidBits field indicates how many bits are valid when timestamps are taken from the queue. If this value is zero, then the queue doesn’t support timestamps. If it’s nonzero, then it’s guaranteed to be at least 36 bits. Furthermore, if the timestampComputeAndGraphics field of the device’s VkPhysicalDeviceLimits structure is VK_TRUE, then all queues supporting either VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT are guaranteed to support timestamps with at least 36 bits of resolution. In this case, there’s no need to check each queue individually.

Finally, the minImageTimestampGranularity field specifies the units with which the queue supports image transfers (if at all).

Note that it might be the case that a device reports more than one queue family with apparently identical properties. Queues within a family are essentially identical. Queues in different families may have different internal capabilities that can’t be expressed easily in the Vulkan API. For this reason, an implementation might choose to report similar queues as members of different families. This places additional restrictions on how resources are shared between those queues, which might allow the implementation to accommodate those differences.

Listing 1.2 illustrates how to query the physical device’s memory properties and queue family properties. You will need to retrieve the queue family properties before creating the logical device, as discussed in the next section.

Listing 1.2: Querying Physical Device Properties

Click here to view code image

uint32_t queueFamilyPropertyCount;

std::vector<VkQueueFamilyProperties> queueFamilyProperties;

VkPhysicalDeviceMemoryProperties physicalDeviceMemoryProperties;

// Get the memory properties of the physical device.

vkGetPhysicalDeviceMemoryProperties(m_physicalDevices[deviceIndex],

 &physicalDeviceMemoryProperties);

// First determine the number of queue families supported by the physical

// device.

vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevices[0],

 &queueFamilyPropertyCount,

 nullptr);

// Allocate enough space for the queue property structures.

queueFamilyProperties.resize(queueFamilyPropertyCount);

// Now query the actual properties of the queue families.

vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevices[0],

 &queueFamilyPropertyCount,

 queueFamilyProperties.data());

Creating a Logical Device

After enumerating all of the physical devices in the system, your application should choose a device and create a logical device corresponding to it. The logical device represents the device in an initialized state. During creation of the logical device, you get to opt in to optional features, turn on extensions you need, and so on. Creating the logical device is performed by calling vkCreateDevice(), the prototype of which is

Click here to view code image

VkResult vkCreateDevice (

 VkPhysicalDevice physicalDevice,

 const VkDeviceCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkDevice* pDevice);

The physical device to which the new logical device corresponds is passed in physicalDevice. The information about the new logical device is passed in an instance of the VkDeviceCreateInfo structure through the pCreateInfo structure. The definition of VkDeviceCreateInfo is

Click here to view code image

typedef struct VkDeviceCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDeviceCreateFlags flags;

 uint32_t queueCreateInfoCount;

 const VkDeviceQueueCreateInfo* pQueueCreateInfos;

 uint32_t enabledLayerCount;

 const char* const* ppEnabledLayerNames;

 uint32_t enabledExtensionCount;

 const char* const* ppEnabledExtensionNames;

 const VkPhysicalDeviceFeatures* pEnabledFeatures;

} VkDeviceCreateInfo;

The sType field of the VkDeviceCreateInfo structure should be set to VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO. As usual, unless you’re using extensions, pNext should be set to nullptr. In the current version of Vulkan, no bits are defined for the flags field of the structure, so set this to zero too.

Next comes the queue creation information. pQueueCreateInfos is a pointer to an array of one or more VkDeviceQueueCreateInfo structures, each of which allows the specification of one or more queues. The number of structures in the array is given in queueCreateInfoCount. The definition of VkDeviceQueueCreateInfo is

Click here to view code image

typedef struct VkDeviceQueueCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDeviceQueueCreateFlags flags;

 uint32_t queueFamilyIndex;

 uint32_t queueCount;

 const float* pQueuePriorities;

} VkDeviceQueueCreateInfo;

The sType field for VkDeviceQueueCreateInfo is VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO. There are currently no flags defined for use in the flags field, so it should be set to zero. The queueFamilyIndex field specifies the family of the queues you want to create. This is an index into the array of queue families returned from vkGetPhysicalDeviceQueueFamilyProperties(). To create queues in this family, set queueCount to the number of queues you want to use. Of course, the device must support at least this many queues in the family you choose.

The pQueuePriorities field is an optional pointer to an array of floating point values representing the relative priority of work submitted to each of the queues. These numbers are normalized numbers in the range of 0.0 to 1.0. Queues with higher priority may be allocated more processing resources or scheduled more aggressively than queues with lower priority. Setting pQueuePriorities to nullptr has the effect of leaving the queues at the same, default priority.

The requested queues are sorted in order of priority and then assigned device-dependent relative priorities. The number of discrete priorities that a queue may take on is a device-specific parameter. You can determine this by checking the discreteQueuePriorities field of the VkPhysicalDeviceLimits structure returned from a call to vkGetPhysicalDeviceProperties(). For example, if a device supports only low- and high-priority workloads, this field will be 2. All devices support at least two discrete priority levels. However, if a device supports arbitrary priorities, then this field could be much higher. Regardless of the value of discreteQueuePriorities, the relative priorities of the queue are still expressed as floating-point values.

Returning to the VkDeviceCreateInfo structure, the enabledLayerCount, ppEnabledLayerNames, enabledExtensionCount, and ppEnabledExtensionNames fields are for enabling layers and extensions. We will cover both of these topics later in this chapter. For now, we’ll set both enabledLayerCount and enabledExtensionCount to zero and both ppEnabledLayerNames and ppEnabedExtensionNames to nullptr.

The final field of VkDeviceCreateInfo, pEnabledFeatures, is a pointer to an instance of the VkPhysicalDeviceFeatures structure that specifies which of the optional features that your application wishes to use. If you don’t want to use any optional features, you can simply set this to nullptr. However, Vulkan in this form is relatively limited, and much of its interesting functionality will be disabled.

To determine which of the optional features the device supports, call vkGetPhysicalDeviceFeatures() as discussed earlier. vkGetPhysicalDeviceFeatures() writes the set of features supported by the device into an instance of the VkPhysicalDeviceFeatures structure that you pass in. By simply querying the phyiscal device’s features and then passing the very same VkPhysicalDeviceFeatures structure back to vkCreateDevice(), you enable every optional feature that the device supports and do not request features that the device does not support.

Simply enabling every supported feature, however, may come with some performance impact. For some features, a Vulkan implementation may need to allocate extra memory, track additional state, configure hardware slightly differently, or perform some other operation that otherwise costs your application. It’s not a good idea to enable features that won’t be used. In an optimized application, you should query the supported features from the device; then, from the supported features, enable the specific features that your application requires.

Listing 1.3 shows a simple example of querying the device for its supported features, setting up a list of features that the application requires. Support for tessellation and geometry shaders is absolutely required, and support for multidraw indirect is enabled if it is supported by the device. The code then creates a device using a single instance of its first queue.

Listing 1.3: Creating a Logical Device

Click here to view code image

VkResult result;

VkPhysicalDeviceFeatures supportedFeatures;

VkPhysicalDeviceFeatures requiredFeatures = {};

vkGetPhysicalDeviceFeatures(m_physicalDevices[0],

 &supportedFeatures);

requiredFeatures.multiDrawIndirect = supportedFeatures.multiDrawIndirect;

requiredFeatures.tessellationShader = VK_TRUE;

requiredFeatures.geometryShader = VK_TRUE;

const VkDeviceQueueCreateInfo deviceQueueCreateInfo =

{

 VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, // sType

 nullptr, // pNext

 0, // flags

 0, // queueFamilyIndex

 1, // queueCount

 nullptr // pQueuePriorities

};

const VkDeviceCreateInfo deviceCreateInfo =

{

 VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, // sType

 nullptr, // pNext

 0, // flags

 1, // queueCreateInfoCount

 &deviceQueueCreateInfo, // pQueueCreateInfos

 0, // enabledLayerCount

 nullptr, // ppEnabledLayerNames

 0, // enabledExtensionCount

 nullptr, // ppEnabledExtensionNames

 &requiredFeatures // pEnabledFeatures

};

result = vkCreateDevice(m_physicalDevices[0],

 &deviceCreateInfo,

 nullptr,

 &m_logicalDevice);

After the code in Listing 1.3 has run and successfully created the logical device, the set of enabled features is stored in the requiredFeatures variable. This may be kept for later so that code that can optionally use a feature can check whether it was successfully enabled and fall back gracefully.

Object Types and Function Conventions

Virtually everything in Vulkan is represented as an object that is referred to by a handle. Handles are divided into two broad categories: dispatchable objects and nondispatchable objects. For the most part, this is not relevant to applications and affects only how the API is structured and how system-level components such as the Vulkan loader and layers interoperate with those objects.

Dispatchable objects are objects that internally contain a dispatch table. This is the table of functions used by various components to determine which parts of code to execute when your application makes calls to Vulkan. These types of objects are generally heavier-weight constructs and currently consist of the instance (VkInstance), physical device (VkPhysicalDevice), logical device (VkDevice), command buffer (VkCommandBuffer), and queue (VkQueue). All other objects are considered nondispatchable.

The first argument to any Vulkan function is always a dispatchable object. The only exceptions to this rule are the functions related to creating and initializing the instance.

Managing Memory

Vulkan provides two types of memory: host memory and device memory. Objects created by the Vulkan API generally require some amount of host memory. This is where the Vulkan implementation will store the state of the object and any data it needs to implement the Vulkan API. Resource objects such as buffers and images require some amount of device memory. This is the memory where the data stored in the resource is kept.

It is possible for your application to manage host memory for the Vulkan implementation, and it is required that your application manage device memory. To do this, you will need to create a device memory management subsystem. Each resource that you create can be queried for the amount and type of memory it requires for it to be backed. It will be up to your application to allocate the correct amount of memory and attach it to the resource object before it can be used.

In higher-level APIs such as OpenGL, this “magic” is performed by drivers on behalf of your application. However, some applications require a very large number of small resources, and other applications require a smaller number of very large resources. Some applications create and destroy resources over the course of their execution, whereas other applications create all of their resources at startup and do not free them until they are terminated.

The allocation strategies used in these cases might be quite different. There is no one-size-fits-all strategy. An OpenGL driver has no idea how your application will behave and so must adapt allocation strategies to attempt to fit your usage patterns. On the other hand, you, the application developer, know exactly how your application will behave. You can partition resources into long-lived and transient groups. You can bucket resources that will be used together into a small number of pooled allocations. You are in the best position to decide the allocation strategies used by your application.

It is important to note that each “live” memory allocation places some cost on the system. Therefore, it is important to keep the number of allocation objects to a minimum. It is recommended that device memory allocators allocate memory in large chunks. Many small resources can be placed inside a much smaller number of device memory blocks. An example of a device memory allocator is discussed in Chapter 2, “Memory and Resources,” which discusses memory allocation in much more detail.

Multithreading in Vulkan

Support for multithreaded applications is an integral part of the design of Vulkan. Vulkan generally assumes that the application will ensure that no two threads are mutating the same object at the same time. This is known as external synchronization. The vast majority of Vulkan commands in the performance-critical portions of Vulkan (such as building command buffers) provide no synchronization at all.

In order to concretely define the threading requirements of various Vulkan commands, each parameter that must be protected from concurrent access by the host is marked as externally synchronized. In some cases, handles to objects or other data are embdedd in data structures, included in arrays, or otherwise passed to commands through some indirect means. Those paramters must also be externally synchronized.

The intention of this is that a Vulkan implementation never needs to take a mutex or use other synchronization primitives internally to protect data structures. This means that multithreaded programs rarely stall or block across threads.

In addition to requiring the host to synchronize access to shared objects when they are used across threads, Vulkan includes a number of higher-level features that are designed specifically to allow threads to perform work without blocking one another. These include the following:

• Host memory allocations can be handled through a host memory allocation structure passed to object creation functions. By using an allocator per thread, the data structures in that allocator don’t need to be protected. Host memory allocators are covered in Chapter 2, “Memory and Resources.”

• Command buffers are allocated from pools, and access to the pool is externally synchronized. If an application uses a separate command pool per thread, command buffers can be allocated from those pools without blocking against one another. Command buffers and pools are covered in Chapter 3, “Queues and Commands.”

• Descriptors are allocated in sets from descriptor pools. Descriptors are the representation of resources as used by shaders running on the device. They are covered in detail in Chapter 6, “Shaders and Pipelines.” If a separate pool is used for each thread, then descriptor sets can be allocated from those pools without the threads blocking one another.

• Second-level command buffers allow the contents of a large renderpass (which must be contained in a single command buffer) to be generated in parallel and then grouped as they’re called from the primary command buffer. Secondary command buffers are covered in detail in Chapter 13, “Multipass Rendering.”

When you are building a very simple, single-threaded application, the requirement to create pools from which to allocate objects may seem like a lot of unnecessary indirection. However, as applications scale in number of threads, these objects are indispensible to achieving high performance.

Throughout the remainder of this book, any special requirements with respect to threading will be noted as the commands are introduced.

Mathematical Concepts

Computer graphics and most heterogeneous compute applications are fairly heavily math-based. Most Vulkan devices are based on extremely powerful computational processors. At the time of writing, even modest mobile processors are capable of providing many gigaflops of processing power, while higher-end desktop and workstation processors deliver many teraflops of number-crunching ability. As a consequence, really interesting applications will build on math-heavy shaders. Further, several fixed-function sections of Vulkan’s processing pipeline are built upon mathematical concepts that are hard-wired into the device and specification.

Vectors and Matrices

One of the fundamental building blocks of any graphics application is the vector. Whether they’re the representations of a position, a direction, a color, or some other quantity, vectors are used throughout the graphics literature. One common form of vector is the homogeneous vector, which is a vector in a space one dimension higher than the quantity it’s representing. These vectors are used to store projective coordinates. Multiplying a homogeneous vector by any scalar produces a new vector representing the same projective coordinate. To project a point vector, divide through by its last component, producing a vector of the form x, y, z, 1.0 (for a four-component vector).

To transform a vector from one coordinate space to another, multiply the vector by a matrix. Just as a point in 3D space is represented as a four-component homogeneous vector, a transformation matrix operating on a 3D homogeneous vector is a 4 × 4 matrix.

A point in 3D space is typically represented as a homogeneous vector of four components conventionally called x, y, z, and w. For a point, the w component generally begins as 1.0 and changes as the vector is transformed through projective matrices. After division through by the w component, the point is projected through whichever transforms it’s been subjected to. If none of the transforms is a projective transform, then w remains 1.0, and division by 1.0 has no effect on the vector. If the vector was subjected to a projective transform, then w will not be equal to 1.0, but dividing through by it will project the point and return w to 1.0.

Meanwhile, a direction in 3D space is also represented as a homogeneous vector whose w component is 0.0. Multiplying a direction vector by a properly constructed 4 × 4 projective matrix will leave the w component at 0.0, and it will have no effect on any of the other components. By simply discarding the additional component, you can put a 3D direction vector through the same transformations as a 4D homogeneous 3D point vector and make it undergo rotations, scales, and other transforms consistently.

Coordinate Systems

Vulkan deals with graphics primitives such as lines and triangles by representing their endpoints or corners as points in 3D space. These primitives are known as vertices. The inputs to the Vulkan system are vertex coordinates in a 3D coordinate space (represented as homogenous vectors with w components of 1.0) relative to the origin of the object of which they are part. This coordinate space is known as object space or sometimes model space.

Typically, the first shaders in the pipeline will transform this vertex into view space, which is a position relative to the viewer. This transformation is performed by multiplying the vertex’s position vector by a transformation matrix. This is often called the object-to-view matrix or the model-view matrix.

Sometimes, absolute coordinates of a vertex are required, such as when finding the coordinate of a vertex relative to some other object. This global space is known as world space and is the position of vertices relative to a global origin.

From view space, the positions of vertices are transformed into clip space. This is the final space used by the geometry-processing part of Vulkan and is the space into which vertices are typically transformed when pushing them into the projective space used by typical 3D applications. Clip space is so called because it is the coordinate space in which most implementations perform clipping, which removes sections of primitives that lie outside the visible region being rendered.

From clip space, vertex positions are normalized by dividing through by their w components. This yields a coordinate space called normalized device coordinates, or NDC, and the process is often called the perspective divide. In this space, the visible part of the coordinate system is from −1.0 to 1.0 in the x and y directions and from 0.0 to 1.0 in the z direction. Anything outside this region will be clipped away prior to perspective division.

Finally, a vertex’s normalized device coordinate is transformed by the viewport, which describes how NDC maps into a window or image into which the picture is being rendered.

Enhancing Vulkan

Although the core API specification of Vulkan is quite extensive, it’s by no means all-encompassing. Some functionality is optional, while yet more is available in the form of layers (which modify or enhance existing behavior) and extensions (which add new functionality to Vulkan). Both enhancement mechanisms are described in the following sections.

Layers

Layers are features of Vulkan that allow its behavior to be modified. Layers generally intercept all or part of Vulkan and add functionality such as logging, tracing, providing diagnostics, profiling, and so on. A layer can be added at the instance level, in which case it affects the whole Vulkan instance and possibly every device created by it. Alternatively, the layer can be added at the device level, in which case it affects only the device for which it is enabled.

To discover the layers available to an instance on a system, call vkEnumerateInstanceLayerProperties(), the prototype of which is

Click here to view code image

VkResult vkEnumerateInstanceLayerProperties (

 uint32_t* pPropertyCount,

 VkLayerProperties* pProperties);

If pProperties is nullptr, then pPropertyCount should point to a variable that will be overwritten with the count of the number of layers available to Vulkan. If pProperties is not nullptr, then it should point to an array of VkLayerProperties structures that will be filled with information about the layers registered with the system. In this case, the initial value of the variable pointed to by pPropertyCount is the length of the array pointed to by pProperties, and this variable will be overwritten with the number of entries in the array overwritten by the command.

Each element of the pProperties array is an instance of the VkLayerProperties structure, the definition of which is

Click here to view code image

typedef struct VkLayerProperties {

 char layerName[VK_MAX_EXTENSION_NAME_SIZE];

 uint32_t specVersion;

 uint32_t implementationVersion;

 char description[VK_MAX_DESCRIPTION_SIZE];

} VkLayerProperties;

Each layer has a formal name that is stored in the layerName member of the VkLayerProperties structure. As the specification for each layer might be improved, clarified, or appended to over time, the version of the layer implementation is reported in specVersion.

As specifications are improved over time, so too are implementations of those specifications. The implementation version is stored in the implementationVersion field of the VkLayerProperties structure. This allows implementations to improve performance, fix bugs, implement a wider set of optional features, and so on. An application writer may recognize a particular implementation of a layer and choose to use it only if the version of that implementation is past a certain version where, for example, a critical bug was known to be fixed.

Finally, a human-readable string describing the layer is stored in description. The only purpose of this field is for logging or display in a user interface, and it is for informational purposes only.

Listing 1.4 illustrates how to query the instance layers supported by the Vulkan system.

Listing 1.4: Querying Instance Layers

Click here to view code image

uint32_t numInstanceLayers = 0;

std::vector<VkLayerProperties> instanceLayerProperties;

// Query the instance layers.

vkEnumerateInstanceLayerProperties(&numInstanceExtensions,

 nullptr);

// If there are any layers, query their properties.

if (numInstanceLayers != 0)

{

 instanceLayerProperties.resize(numInstanceLayers);

 vkEnumerateInstanceLayerProperties(nullptr,

 &numInstanceLayers,

 instanceLayerProperties.data());

}

As mentioned, it is not only at the instance level that layers can be injected. Layers can also be applied at the device level. To determine which layers are available to devices, call vkEnumerateDeviceLayerProperties(), the prototype of which is

Click here to view code image

VkResult vkEnumerateDeviceLayerProperties (

 VkPhysicalDevice physicalDevice,

 uint32_t* pPropertyCount,

 VkLayerProperties* pProperties);

The layers available to each physical device in a system may be different, so each physical device can report a different set of layers. The physical device whose layers to query is passed in physicalDevice. The pPropertyCount and pProperties parameters to vkEnumerateDeviceLayerProperties() behave similarly to the identically named parameters to vkEnumerateInstanceLayerProperties(). Device layers are also described by instances of the VkLayerProperties structure.

To enable a layer at the instance level, include its name in the ppEnabledLayerNames field of the VkInstanceCreateInfo structure used to create the instance. Likewise, to enable a layer when creating a logical device corresponding to a physical device in the system, include the layer name in the ppEnabledLayerNames member of the VkDeviceCreateInfo used to create the device.

Several layers are included in the offical SDK, most of which are related to debugging, parameter validation, and logging. These include the following:

• VK_LAYER_LUNARG_api_dump prints Vulkan calls and their parameters and values to the console.

• VK_LAYER_LUNARG_core_validation performs validation on parameters and state used in descriptor sets, pipeline state, and dynamic state; validates the interfaces between SPIR-V modules and the graphics pipeline; and tracks and validates usage of GPU memory used to back objects.

• VK_LAYER_LUNARG_device_limits ensures that values passed to Vulkan commands as arguments or data structure members fall within the device’s supported feature set limits.

• VK_LAYER_LUNARG_image validates that image usage is consistent with supported formats.

• VK_LAYER_LUNARG_object_tracker performs tracking on Vulkan objects, attempting to catch leaks, use-after-free errors, and other invalid object usage.

• VK_LAYER_LUNARG_parameter_validation confirms that all parameter values passed to Vulkan functions are valid.

• VK_LAYER_LUNARG_swapchain performs validation on functionality provided by the WSI (Window System Integration) extensions described in Chapter 5, “Presentation.”

• VK_LAYER_GOOGLE_threading ensures valid usage of Vulkan commands with respect to threading, ensuring that no two threads access the same object at the same time when they shouldn’t.

• VK_LAYER_GOOGLE_unique_objects ensures that every object will have a unique handle for easier tracking by the application, avoiding cases where an implementation might de-duplicate handles that represent objects with the same parameters.

In addition to this, a large number of separate layers are grouped into a larger, single layer called VK_LAYER_LUNARG_standard_validation, making it easy to turn on. The book’s application framework enables this layer when built in debug mode, leaving all layers disabled when built in release mode.

Extensions

Extensions are fundamental to any cross-platform, open API such as Vulkan. They allow implementers to experiment, innovate, and ultimately push technology forward. Eventually, useful features originally introduced as extensions make their way into future versions of the API after having been proved in the field. However, extensions are not without cost. Some may require implementations to track additional state, make additional checks during command buffer build, or come with some performance penalty even when the extension is not in direct use. Therefore, extensions must be explicitly enabled by an application before they can be used. This means that applications that don’t use an extension don’t pay for it in terms of performance or complexity and that it’s almost impossible to accidentally use features from an extension, which improves portability.

Extensions are divided into two categories: instance extensions and device extensions. An instance extension is one that generally enhances the entire Vulkan system on a platform. This type of extension is either supplied via a device-independent layer or is simply an extension that is exposed by every device on the system and promoted into an instance. Device extensions are extensions that extend the capabilities of one or more devices in the sytem but aren’t necessarily available on every device.

Each extension can define new functions, new types, structures, enumerations, and so on. Once enabled, an extension can be considered part of the API that is available to the application. Instance extensions must be enabled when the Vulkan instance is created, and device extensions must be enabled when the device is created. These leaves us with a chicken-and-egg situation: How do we know which extensions are supported before initializing a Vulkan instance?

Querying the supported instance extensions is one of the few pieces of Vulkan functionality that may be used before a Vulkan instance is created. This is performed using the vkEnumerateInstanceExtensionProperties() function, the prototype of which is

Click here to view code image

VkResult vkEnumerateInstanceExtensionProperties (

 const char* pLayerName,

 uint32_t* pPropertyCount,

 VkExtensionProperties* pProperties);

pLayerName is the name of a layer that might provide extensions. For now, set this to nullptr. pPropertyCount is a pointer to a variable containing the count of the number of instance extensions to query Vulkan about, and pProperties is a pointer to an array of VkExtensionProperties structures that will be filled with information about the supported extensions. If pProperties is nullptr, then the initial value of the variable pointed to by pPropertyCount is ignored and is overwritten with the number of instance extensions supported.

If pProperties is not nullptr, then the number of entries in the array is assumed to be in the variable pointed to by pPropertyCount, and up to this many entries of the array are populated with information about the supported extensions. The variable pointed to by pPropertyCount is then overwritten with the number of entries actually written to pProperties.

To correctly query all of the supported instance extensions, call vkEnumerateInstanceExtensionProperties() twice. The first time, call it with pProperties set to nullptr to retrieve the number of supported instance extensions. Then appropriately size an array to receive the extension properties and call vkEnumerateInstanceExtensionProperties() again, this time passing the address of the array in pProperties. Listing 1.5 demonstrates how to do this.

Listing 1.5: Querying Instance Extensions

Click here to view code image

uint32_t numInstanceExtensions = 0;

std::vector<VkExtensionProperties> instanceExtensionProperties;

// Query the instance extensions.

vkEnumerateInstanceExtensionProperties(nullptr,

 &numInstanceExtensions,

 nullptr);

// If there are any extensions, query their properties.

if (numInstanceExtensions != 0)

{

 instanceExtensionProperties.resize(numInstanceExtensions);

 vkEnumerateInstanceExtensionProperties(nullptr,

 &numInstanceExtensions,

 instanceExtensionProperties.data());

 }

After the code in Listing 1.5 has completed execution, instanceExtensionProperties will contain a list of the extensions supported by the instance. Each element of the array of VkExtensionProperties describes one extension. The definition of VkExtensionProperties is

Click here to view code image

typedef struct VkExtensionProperties {

 char extensionName[VK_MAX_EXTENSION_NAME_SIZE];

 uint32_t specVersion;

} VkExtensionProperties;

The VkExtensionProperties structure simply contains the name of the extension and the version of that extension. Extensions may add functionality over time as new revisions of the extension are produced. The specVersion field allows updates to extensions without the need to create an entirely new extension in order to add minor functionality. The name of the extension is stored in extensionName.

As you saw earlier, when creating the Vulkan instance, the VkInstanceCreateInfo structure has a member called ppEnabledExtensionNames, which is a pointer to an array of strings naming the extensions to enable. If the Vulkan system on a platform supports an extension, that extension will be included in the array returned from vkEnumerateInstanceExtensionProperties(), and its name can be passed to vkCreateInstance() via the ppEnabledExtensionNames field of the VkInstanceCreateInfo structure.

Querying the support for device extensions is a similar process. To do this, call vkEnumerateDeviceExtensionProperties(), whose prototype is

Click here to view code image

VkResult vkEnumerateDeviceExtensionProperties (

 VkPhysicalDevice physicalDevice,

 const char* pLayerName,

 uint32_t* pPropertyCount,

 VkExtensionProperties* pProperties);

The prototype of vkEnumerateDeviceExtensionProperties() is almost identical to that of vkEnumerateInstanceExtensionProperties(), with the addition of a physicalDevice parameter. The physicalDevice parameter is the handle to the device whose extensions to query. As with vkEnumerateInstanceExtensionProperties(), vkEnumerateDeviceExtensionProperties() overwrites pPropertyCount with the number of supported extensions if pProperties is nullptr, and if pProprties is not nullptr, it fills that array with information about the supported extensions. The same VkExtensionProperties structure is used for device extensions and for instance extensions.

When you are creating the physical device, the ppEnabledExtensionNames field of the VkDeviceCreateInfo structure may contain a pointer to one of the strings returned from vkEnumerateDeviceExtensionProperties().

Some extensions provide new functionality in the form of additional entry points that you can call. These are exposed as function pointers, the values of which you must query either from the instance or from the device after enabling the extension. Instance functions are functions that are valid for the entire instance. If an extension extends instance-level functionality, you should use an instance-level function pointer to access the new features.

To retrieve an instance-level function pointer, call vkGetInstanceProcAddr(), the prototype of which is

Click here to view code image

PFN_vkVoidFunction vkGetInstanceProcAddr (

 VkInstance instance,

 const char* pName);

The instance parameter is the handle to the instance for which to retrieve a new function pointer. If your application does use more than one Vulkan instance, then the function pointer returned from this command is valid only for objects owned by the referenced instance. The name of the function is passed in pName, which is a nul-terminated UTF-8 string. If the function name is recognized and the extension is enabled, the return value from vkGetInstanceProcAddr() is a function pointer that you can call from your application.

The PFN_vkVoidFunction is a type definition for a pointer to a function of the following declaration:

Click here to view code image

VKAPI_ATTR void VKAPI_CALL vkVoidFunction(void);

There are no functions in Vulkan that have this particular signature, and it is unlikely that an extension would introduce such a function. In all likelihood, you will need to cast the resulting function pointer to a pointer of the appropriate signature before you can call it.

Instance-level function pointers are valid for any object owned by the instance, assuming the device that created the object (or the device itself, if the function dispatches on the device) supports the extension and the extension is enabled for that device. Because each device might be implemented inside a different Vulkan driver, instance function pointers must dispatch though a layer of indirection to land in the correct module. Managing this indirection may incur some overhead; to avoid this, you can get a device-specific function pointer that goes directly to the appropriate driver.

To get a device-level function pointer, call vkGetDeviceProcAddr(), the prototype of which is

Click here to view code image

PFN_vkVoidFunction vkGetDeviceProcAddr (

 VkDevice device,

 const char* pName);

The device with which the function pointer will be used is passed in device. Again, the name of the function you are querying is passed as a nul-terminated UTF-8 string in pName. The resulting function pointer is valid only with the device specified in device. device must refer to a device that supports the extension that provides the new function and for which the extension has been enabled.

The function pointer produced by vkGetDeviceProcAddr() is specific to device. Even if the same physical device is used to create two or more logical devices with the exact same parameters, you must use the resulting function pointers only with the devices from which they were queried.

Shutting Down Cleanly

Before your program exits, you should clean up after yourself. In many cases, an operating system will clean up resources that you’ve allocated when your application terminates. However, it will not always be the case that the end of your code is the end of the application. If you are writing a component of a larger application, for example, that application may terminate rendering or compute operations using Vulkan without actually exiting.

When cleaning up, it is generally good practice to do the following:

• Complete or otherwise terminate all work that your application is doing both on the host and the device, in all threads related to Vulkan.

• Destroy objects in the reverse order from the order in which they were created.

The logical device is likely to be the last object (aside from objects used at runtime) that you created during initialization of your application. Before destroying the device, you should ensure that it is not executing any work on behalf of your application. To do this, call vkDeviceWaitIdle(), the prototype of which is

Click here to view code image

VkResult vkDeviceWaitIdle (

 VkDevice device);

The handle to the device is passed in device. When vkDeviceWaitIdle() returns, all work submitted to the device on behalf of your application is guaranteed to have completed—unless, of course, you submit more work to the device in the meantime. You should ensure that any other threads that might be submitting work to the device have been terminated.

Once you have ensured that the device is idle, you can safely destroy it. To do this, call vkDestroyDevice(), the prototype of which is

Click here to view code image

void vkDestroyDevice (

 VkDevice device,

 const VkAllocationCallbacks* pAllocator);

The handle to the device to destroy is passed in the device parameter, access to which must be externally synchronized. Note that access to a device does not need to be externally synchronized with respect to any other command. The application should ensure, however, that a device is not destroyed while any other command accessing it is still executing in another thread.

pAllocator should point to an allocation structure that is compatible with the one used to create the device. Once the device object has been destroyed, no more commands can be submitted to it. Further, it is no longer possible to use the device handle as an argument to any function, including other object-destruction functions that take a device handle as their first argument. This is another reason why you should destroy objects in reverse order from the order in which they were created.

Once all devices associated with a Vulkan instance have been destroyed, it is safe to destroy the instance. This is accomplished by calling the vkDestroyInstance() function, whose prototype is

Click here to view code image

void vkDestroyInstance (

 VkInstance instance,

 const VkAllocationCallbacks* pAllocator);

The handle to the instance to destroy is passed in instance and, as with vkDestroyDevice(), a pointer to an allocation structure compatible with the one with which the instance was allocated should be passed in pAllocator. If the pAllocator parameter to vkCreateInstance() was nullptr, then the pAllocator parameter to vkDestroyInstance() should be too.

Note that it’s not necessary to destroy the physical devices. Physical devices are not created with a dedicated creation function as logical devices are. Rather, physical devices are returned from a call to vkEnumeratePhysicalDevices() and are considered to be owned by the instance. Therefore, when the instance is destroyed, that instance’s resources associated with each physical device are freed as well.

Summary

This chapter introduced you to Vulkan. You have seen how the entirety of Vulkan state is contained within an instance. The instance provides access to physical devices, and each physical device exposes a number of queues that can be used to do work. You have seen how to create a logical device corresponding to the physical device. You have seen how Vulkan can be extended, how to determine the extensions available to the instance and to a device, and how to enable those extensions. You have seen how to cleanly shut down the Vulkan system by waiting for a device to complete work submitted by your application, destroying the device handles, and finally destroying the instance handle.

Chapter 2. Memory and Resources

What You’ll Learn in This Chapter

• How Vulkan manages host and device memory

• How to manage memory effectively in your application

• How Vulkan uses images and buffers to consume and produce data

Memory is fundamental to the operation of virtually all computing systems, including Vulkan. In Vulkan, there are two fundamental types of memory: host memory and device memory. All resources upon which Vulkan operates must be backed by device memory, and it is the application’s responsibility to manage this memory. Further, memory is used to store data structures on the host. Vulkan provides the opportunity for your application to manage this memory too. In this chapter, you’ll learn about the mechanisms through which you can manage memory used by Vulkan.

Host Memory Management

Whenever Vulkan creates new objects, it might need memory to store data related to them. For this, it uses host memory, which is regular memory accessible to the CPU that might be returned from a call to malloc or new, for example. However, beyond a normal allocator, Vulkan has particular requirements for some allocations. Most notably, it expects allocations to be aligned correctly. This is because some high-performance CPU instructions work best (or only) on aligned memory addresses. By assuming that allocations storing CPU-side data structures are aligned, Vulkan can use these high-performance instructions unconditionally, providing substantial performance advantages.

Because of these requirements, Vulkan implementations will use advanced allocators to satisfy them. However, it also provides the opportunity for your application to replace the allocators for certain, or even all, operations. This is performed through the pAllocator parameter available in most device creation functions. For example, let’s revisit the vkCreateInstance() function, which is one of the first that your application might call. Its prototype is

Click here to view code image

VkResult vkCreateInstance (

 const VkInstanceCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkInstance* pInstance);

The pAllocator parameter is a pointer to a VkAllocationCallbacks structure. Until now, we’ve been setting pAllocator to nullptr, which tells Vulkan to use its own internal allocator rather than rely on our application. The VkAllocationCallbacks structure encapsulates a custom memory allocator that we can provide. The definition of the structure is

Click here to view code image

typedef struct VkAllocationCallbacks {

 void* pUserData;

 PFN_vkAllocationFunction pfnAllocation;

 PFN_vkReallocationFunction pfnReallocation;

 PFN_vkFreeFunction pfnFree;

 PFN_vkInternalAllocationNotification pfnInternalAllocation;

 PFN_vkInternalFreeNotification pfnInternalFree;

} VkAllocationCallbacks;

You can see from the definition of VkAllocationCallbacks that the structure is essentially a set of function pointers and an additional void pointer, pUserData. The pointer is for your application’s use. It can point anywhere; Vulkan will not dereference it. In fact, it doesn’t even need to be a pointer. You can put anything in there, so long as it fits into a pointer-size blob. The only thing that Vulkan will do with pUserData is pass it back to the callback functions to which the remaining members of VkAllocationCallbacks point.

pfnAllocation, pfnReallocation, and pfnFree are used for normal, object-level memory management. They are defined as pointers to functions that match the following declarations:

Click here to view code image

void* VKAPI_CALL Allocation(

 void* pUserData,

 size_t size,

 size_t alignment,

 VkSystemAllocationScope allocationScope);

void* VKAPI_CALL Reallocation(

 void* pUserData,

 void* pOriginal

 size_t size,

 size_t alignment,

 VkSystemAllocationScope allocationScope);

void VKAPI_CALL Free(

 void* pUserData,

 void* pMemory);

Notice that all three functions take a pUserData parameter as their first argument. This is the same pUserData pointer that’s part of the VkAllocationCallbacks structure. If your application uses data structures to manage memory, this is a good place to put their addresses. One logical thing to do with this is to implement your memory allocator as a C++ class (assuming you’re writing in C++) and then put the class’s this pointer in pUserData.

The Allocation function is responsible for making new allocations. The size parameter gives the size of the allocation, in bytes. The alignment parameter gives the required alignment of the allocation, also in bytes. This is an often-overlooked parameter. It is very tempting to simply hook this function up to a naïve allocator such as malloc. If you do this, you will find that it works for a while but that certain functions might mysteriously crash later. If you provide your own allocator, it must honor the alignment parameter.

The final parameter, allocationScope, tells your application what the scope, or lifetime, of the allocation is going to be. It is one of the VkSystemAllocationScope values, which have the following meanings:

• VK_SYSTEM_ALLOCATION_SCOPE_COMMAND means that the allocation will be live only for the duration of the command that provoked the allocation. Vulkan will likely use this for very short-lived temporary allocations, as it works on a single command.

• VK_SYSTEM_ALLOCATION_SCOPE_OBJECT means that the allocation is directly associated with a particular Vulkan object. This allocation will live at least until the object is destroyed. This type of allocation will only ever be made as part of executing a creation command (one beginning with vkCreate).

• VK_SYSTEM_ALLOCATION_SCOPE_CACHE means that the allocation is associated with some form of internal cache or a VkPipelineCache object.

• VK_SYSTEM_ALLOCATION_SCOPE_DEVICE means that the allocation is scoped to the device. This type of allocation is made when the Vulkan implementation needs memory associated with the device that is not tied to a single object. For example, if the implementation allocates objects in blocks, this type of allocation might be made in response to a request to create a new object, but because many objects might live in the same block, the allocation can’t be tied directly to any specific object.

• VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE means that the allocation is scoped to the instance. This is similar to VK_SYSTEM_ALLOCATION_SCOPE_DEVICE. This type of allocation is typically made by layers or during early parts of Vulkan startup, such as by vkCreateInstance() and vkEnumeratePhysicalDevices().

The pfnInternalAllocation and pfnInternalFree function pointers point to alternate allocator functions that are used when Vulkan makes memory allocations using its own allocators. These callbacks have the same signatures as pfnAllocation and pfnFree, except that pfnInternalAllocation doesn’t return a value and pfnInternalFree shouldn’t actually free the memory. These functions are used only for notification so that your application can keep track of how much memory Vulkan is using. The prototypes of these functions should be

Click here to view code image

void VKAPI_CALL InternalAllocationNotification(

 void* pUserData,

 size_t size,

 VkInternalAllocationType allocationType,

 VkSystemAllocationScope allocationScope);

void VKAPI_CALL InternalFreeNotification(

 void* pUserData,

 size_t size,

 VkInternalAllocationType allocationType,

 VkSystemAllocationScope allocationScope);

There’s not much you can do with the information provided through pfnInternalAllocation and pfnInternalFree besides log it and keep track of the total memory usage made by the application. Specifying these function pointers is optional, but if you supply one, you must supply both. If you don’t want to use them, set them both to nullptr.

Listing 2.1 shows an example of how to declare a C++ class that can be used as an allocator that maps the Vulkan allocation callback functions. Because the callback functions used by Vulkan are naked C function pointers, the callback functions themselves are declared as static member functions of the class, whereas the actual implementations of those functions are declared as regular nonstatic member functions.

Listing 2.1: Declaration of a Memory Allocator Class

Click here to view code image

class allocator

{

public:

 // Operator that allows an instance of this class to be used as a

 // VkAllocationCallbacks structure

 inline operator VkAllocationCallbacks() const

 {

 VkAllocationCallbacks result;

 result.pUserData = (void*)this;

 result.pfnAllocation = &Allocation;

 result.pfnReallocation = &Reallocation;

 result.pfnFree = &Free;

 result.pfnInternalAllocation = nullptr;

 result.pfnInternalFree = nullptr;

 return result;

 };

private:

 // Declare the allocator callbacks as static member functions.

 static void* VKAPI_CALL Allocation(

 void* pUserData,

 size_t size,

 size_t alignment,

 VkSystemAllocationScope allocationScope);

 static void* VKAPI_CALL Reallocation(

 void* pUserData,

 void* pOriginal,

 size_t size,

 size_t alignment,

 VkSystemAllocationScope allocationScope);

 static void VKAPI_CALL Free(

 void* pUserData,

 void* pMemory);

 // Now declare the nonstatic member functions that will actually perform

 // the allocations.

 void* Allocation(

 size_t size,

 size_t alignment,

 VkSystemAllocationScope allocationScope);

 void* Reallocation(

 void* pOriginal,

 size_t size,

 size_t alignment,

 VkSystemAllocationScope allocationScope);

 void Free(

 void* pMemory);

};

An example implementation of this class is shown in Listing 2.2. It maps the Vulkan allocation functions to the POSIX aligned_malloc functions. Note that this allocator is almost certainly not better than what most Vulkan implementations use internally and serves only as an example of how to hook the callback functions up to your own code.

Listing 2.2: Implementation of a Memory Allocator Class

Click here to view code image

void* allocator::Allocation(

 size_t size,

 size_t alignment,

 VkSystemAllocationScope allocationScope)

{

 return aligned_malloc(size, alignment);

}

void* VKAPI_CALL allocator::Allocation(

 void* pUserData,

 size_t size,

 size_t alignment,

 VkSystemAllocationScope allocationScope)

{

 return static_cast<allocator*>(pUserData)->Allocation(size,

 alignment,

 allocationScope);

}

void* allocator::Reallocation(

 void* pOriginal,

 size_t size,

 size_t alignment,

 VkSystemAllocationScope allocationScope)

{

 return aligned_realloc(pOriginal, size, alignment);

}

void* VKAPI_CALL allocator::Reallocation(

 void* pUserData,

 void* pOriginal,

 size_t size,

 size_t alignment,

 VkSystemAllocationScope allocationScope)

{

 return static_cast<allocator*>(pUserData)->Reallocation(pOriginal,

 size,

 alignment,

 allocationScope);

}

void allocator::Free(

 void* pMemory)

{

 aligned_free(pMemory);

}

void VKAPI_CALL allocator::Free(

 void* pUserData,

 void* pMemory)

{

 return static_cast<allocator*>(pUserData)->Free(pMemory);

}

As can be seen in Listing 2.2, the static member functions simply cast the pUserData parameters back to a class instance and call the corresponding nonstatic member function. Because the nonstatic and static member functions are located in the same compilation unit, the nonstatic member function is likely to be inlined into the static one, making the efficiency of this implementation quite high.

Resources

Vulkan operates on data. Everything else is really secondary to this. Data is stored in resources, and resources are backed by memory. There are two fundamental types of resources in Vulkan: buffers and images. A buffer is a simple, linear chunk of data that can be used for almost anything—data structures, raw arrays, and even image data, should you choose to use them that way. Images, on the other hand, are structured and have type and format information, can be multidimensional, form arrays of their own, and support advanced operations for reading and writing data from and to them.

Both types of resources are constructed in two steps: first the resource itself is created, and then the resource needs to be backed by memory. The reason for this is to allow the application to manage memory itself. Memory management is complex, and it is very difficult for a driver to get it right all the time. What works well for one application might not work well for another. Therefore, it is expected that applications can do a better job of managing memory than drivers can. For example, an application that uses a small number of very large resources and keeps them around for a long time might use one strategy in its memory allocator, while another application that continually creates and destroys small resources might implement another.

Although images are more complex structures, the procedure for creating them is similar to buffers. This section looks at buffer creation first and then moves on to discuss images.

Buffers

Buffers are the simplest type of resource but have a wide variety of uses in Vulkan. They are used to store linear structured or unstructured data, which can have a format or be raw bytes in memory. The various uses for buffer objects will be discussed as we introduce those topics. To create a new buffer object, call vkCreateBuffer(), the prototype of which is

Click here to view code image

VkResult vkCreateBuffer (

 VkDevice device,

 const VkBufferCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkBuffer* pBuffer);

As with most functions in Vulkan that consume more than a couple of parameters, those parameters are bundled up in a structure and passed to Vulkan via a pointer. Here, the pCreateInfo parameter is a pointer to an instance of the VkBufferCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkBufferCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkBufferCreateFlags flags;

 VkDeviceSize size;

 VkBufferUsageFlags usage;

 VkSharingMode sharingMode;

 uint32_t queueFamilyIndexCount;

 const uint32_t* pQueueFamilyIndices;

} VkBufferCreateInfo;

The sType for VkBufferCreateInfo should be set to VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, and the pNext member should be set to nullptr unless you’re using an extension. The flags field of the structure gives Vulkan some information about the properties of the new buffer. In the current version of Vulkan, the only bits defined for use in the flags field are related to sparse buffers, which we will cover later in this chapter. For now, flags can be set to zero.

The size field of VkBufferCreateInfo specifies the size of the buffer, in bytes. The usage field tells Vulkan how you’re going to use the buffer and is a bitfield made up of a combination of members of the VkBufferUsageFlagBits enumeration. On some architectures, the intended usage of the buffer can have an effect on how it’s created. The currently defined bits along with the sections where we’ll discuss them are as follows:

• VK_BUFFER_USAGE_TRANSFER_SRC_BIT and VK_BUFFER_USAGE_TRANSFER_DST_BIT mean that the buffer can be the source or destination, respectively, of transfer commands. Transfer operations are operations that copy data from a source to a destination. They are covered in Chapter 4, “Moving Data.”

• VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT and VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT mean that the buffer can be used to back a uniform or storage texel buffer, respectively. Texel buffers are formatted arrays of texels that can be used as the source or destination (in the case of storage buffers) of reads and writes by shaders running on the device. Texel buffers are covered in Chapter 6, “Shaders and Pipelines.”

• VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT and VK_BUFFER_USAGE_STORAGE_BUFFER_BIT mean that the buffer can be used to back uniform or storage buffers, respectively. As opposed to texel buffers, regular uniform and storage buffers have no format associated with them and can therefore be used to store arbitrary data and data structures. They are covered in Chapter 6, “Shaders and Pipelines.”

• VK_BUFFER_USAGE_INDEX_BUFFER_BIT and VK_BUFFER_USAGE_VERTEX_BUFFER_BIT mean that the buffer can be used to store index or vertex data, respectively, used in drawing commands. You’ll learn more about drawing commands, including indexed drawing commands, in Chapter 8, “Drawing.”

• VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT means that the buffer can be used to store parameters used in indirect dispatch and drawing commands, which are commands that take their parameters directly from buffers rather than from your program. These are covered in Chapter 6, “Shaders and Pipelines,” and Chapter 8, “Drawing.”

The sharingMode field of VkBufferCreateInfo indicates how the buffer will be used on the multiple command queues supported by the device. Because Vulkan can execute many operations in parallel, some implementations need to know whether the buffer will essentially be used by a single command at a time or potentially by many. Setting sharingMode to VK_SHARING_MODE_EXCLUSIVE says that the buffer will only be used on a single queue, whereas setting sharingMode to VK_SHARING_MODE_CONCURRENT indicates that you plan to use the buffer on multiple queues at the same time. Using VK_SHARING_MODE_CONCURRENT might result in lower performance on some systems, so unless you need this, set sharingMode to VK_SHARING_MODE_EXCLUSIVE.

If you do set sharingMode to VK_SHARING_MODE_CONCURRENT, you need to tell Vulkan which queues you’re going to use the buffer on. This is done using the pQueueFamilyIndices member of VkBufferCreateInfo, which is a pointer to an array of queue families that the resource will be used on. queueFamilyIndexCount contains the length of this array—the number of queue families that the buffer will be used with. When sharingMode is set to VK_SHARING_MODE_EXCLUSIVE, queueFamilyCount and pQueueFamilies are both ignored.

Listing 2.3 demonstrates how to create a buffer object that is 1MiB in size, usable as the source or destination of transfer operations, and used on only one queue family at a time.

Listing 2.3: Creating a Buffer Object

Click here to view code image

static const VkBufferCreateInfo bufferCreateInfo =

{

 VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, nullptr,

 0,

 1024 * 1024,

 VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,

 VK_SHARING_MODE_EXCLUSIVE,

 0, nullptr

};

VkBuffer buffer = VK_NULL_HANDLE;

vkCreateBuffer(device, &bufferCreateInfo, &buffer);

After the code in Listing 2.3 has run, a new VkBuffer handle is created and placed in the buffer variable. The buffer is not yet fully usable because it first needs to be backed with memory. This operation is covered in “Device Memory Management” later in this chapter.

Formats and Support

While buffers are relatively simple resources and do not have any notion of the format of the data they contain, images and buffer views (which we will introduce shortly) do include information about their content. Part of that information describes the format of the data in the resource. Some formats have special requirements or restrictions on their use in certain parts of the pipeline. For example, some formats might be readable but not writable, which is common with compressed formats.

In order to determine the properties and level of support for various formats, you can call vkGetPhysicalDeviceFormatProperties(), the prototype of which is

Click here to view code image

void vkGetPhysicalDeviceFormatProperties (

 VkPhysicalDevice physicalDevice,

 VkFormat format,

 VkFormatProperties* pFormatProperties);

Because support for particular formats is a property of a physical device rather than a logical one, the physical device handle is specified in physicalDevice. If your application absolutely required support for a particular format or set of formats, you could check for support before even creating the logical device and reject particular physical devices from consideration early in application startup, for example. The format for which to check support is specified in format. If the device recognizes the format, it will write its level of support into the instance of the VkFormatProperties structure pointed to by pFormatProperties. The definition of the VkFormatProperties structure is

Click here to view code image

typedef struct VkFormatProperties {

 VkFormatFeatureFlags linearTilingFeatures;

 VkFormatFeatureFlags optimalTilingFeatures;

 VkFormatFeatureFlags bufferFeatures;

} VkFormatProperties;

All three fields in the VkFormatProperties structure are bitfields made up from members of the VkFormatFeatureFlagBits enumeration. An image can be in one of two primary tiling modes: linear, in which image data is laid out linearly in memory, first by row, then by column, and so on; and optimal, in which image data is laid out in highly optimized patterns that make efficient use of the device’s memory subsystem. The linearTilingFeatures field indicates the level of support for a format in images in linear tiling, the optimalTilingFeatures field indicates the level of support for a format in images in optimal tiling, and the bufferFeatures field indicates the level of support for the format when used in a buffer.

The various bits that might be included in these fields are defined as follows:

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT: The format may be used in read-only images that will be sampled by shaders.

• VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT: Filter modes that include linear filtering may be used when this format is used for a sampled image.

• VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT: The format may be used in read-write images that will be read and written by shaders.

• VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT: The format may be used in read-write images that also support atomic operations performed by shaders.

• VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT: The format may be used in a read-only texel buffer that will be read from by shaders.

• VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT: The format may be used in read-write texel buffers that may be read from and written to by shaders.

• VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT: The format may be used in read-write texel buffers that also support atomic operations performed by shaders.

• VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT: The format may be used as the source of vertex data by the vertex-assembly stage of the graphics pipeline.

• VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT: The format may be used as a color attachment in the color-blend stage of the graphics pipeline.

• VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT: Images with this format may be used as color attachments when blending is enabled.

• VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT: The format may be used as a depth, stencil, or depth-stencil attachment.

• VK_FORMAT_FEATURE_BLIT_SRC_BIT: The format may be used as the source of data in an image copy operation.

• VK_FORMAT_FEATURE_BLIT_DST_BIT: The format may be used as the destination of an image copy operation.

Many formats will have a number of format support bits turned on. In fact, many formats are compulsory to support. A complete list of the mandatory formats is contained in the Vulkan specification. If a format is on the mandatory list, then it’s not strictly necessary to test for support. However, for completeness, implementations are expected to accurately report capabilities for all supported formats, even mandatory ones.

The vkGetPhysicalDeviceFormatProperties() function really returns only a coarse set of flags indicating whether a format may be used at all under particular scenarios. For images especially, there may be more complex interactions between a specific format and its effect on the level of support within an image. Therefore, to retrieve even more information about the support for a format when used in images, you can call vkGetPhysicalDeviceImageFormatProperties(), the prototype of which is

Click here to view code image

VkResult vkGetPhysicalDeviceImageFormatProperties (

 VkPhysicalDevice physicalDevice,

 VkFormat format,

 VkImageType type,

 VkImageTiling tiling,

 VkImageUsageFlags usage,

 VkImageCreateFlags flags,

 VkImageFormatProperties* pImageFormatProperties);

Like vkGetPhysicalDeviceFormatProperties(), vkGetPhysicalDeviceImageFormatProperties() takes a VkPhysicalDevice handle as its first parameter and reports support for the format for the physical device rather than for a logical one. The format you’re querying support for is passed in format.

The type of image that you want to ask about is specified in type. This should be one of the image types: VK_IMAGE_TYPE_1D, VK_IMAGE_TYPE_2D, or VK_IMAGE_TYPE_3D. Different image types might have different restrictions or enhancements. The tiling mode for the image is specified in tiling and can be either VK_IMAGE_TILING_LINEAR or VK_IMAGE_TILING_OPTIMAL, indicating linear or optimal tiling, respectively.

The intended use for the image is specified in the usage parameter. This is a bitfield indicating how the image is to be used. The various uses for an image are discussed later in this chapter. The flags field should be set to the same value that will be used when creating the image that will use the format.

If the format is recognized and supported by the Vulkan implementation, then it will write information about the level of support into the VkImageFormatProperties structure pointed to by pImageFormatProperties. The definition of VkImageFormatProperties is

Click here to view code image

typedef struct VkImageFormatProperties {

 VkExtent3D maxExtent;

 uint32_t maxMipLevels;

 uint32_t maxArrayLayers;

 VkSampleCountFlags sampleCounts;

 VkDeviceSize maxResourceSize;

} VkImageFormatProperties;

The extent member of VkImageFormatProperties reports the maximum size of an image that can be created with the specified format. For example, formats with fewer bits per pixel may support creating larger images than those with wider pixels. extent is an instance of the VkExtent3D structure, the definition of which is

Click here to view code image

typedef struct VkExtent3D {

 uint32_t width;

 uint32_t height;

 uint32_t depth;

} VkExtent3D;

The maxMipLevels field reports the maximum number of mipmap levels supported for an image of the requested format along with the other parameters passed to vkGetPhysicalDeviceImageFormatProperties(). In most cases, maxMipLevels will either report log2 (max (extent.x, extent.y, extent.z)) for the image when mipmaps are supported or 1 when mipmaps are not supported.

The maxArrayLayers field reports the maximum number of array layers supported for the image. Again, this is likely to be a fairly high number if arrays are supported or 1 if arrays are not supported.

If the image format supports multisampling, then the supported sample counts are reported through the sampleCounts field. This is a bitfield containing one bit for each supported sample count. If bit n is set, then images with 2n samples are supported in this format. If the format is supported at all, at least one bit of this field will be set. It is very unlikely that you will ever see a format that supports multisampling but does not support a single sample per pixel.

Finally, the maxResourceSize field specifies the maximum size, in bytes, that a resource of this format might be. This should not be confused with the maximum extent, which reports the maximum size in each of the dimensions that might be supported. For example, if an implementation reports that it supports images of 16,384 × 16,384 pixels × 2,048 layers with a format containing 128 bits per pixel, then creating an image of the maxium extent in every dimension would produce 8TiB of image data. It’s unlikely that an implementation really supports creating an 8TiB image. However, it might well support creating an 8 × 8 × 2,048 array or a 16,384 × 16,284 nonarray image, either of which would fit into a more moderate memory footprint.

Images

Images are more complex than buffers in that they are multidimensional; have specific layouts and format information; and can be used as the source and destination for complex operations such as filtering, blending, depth or stencil testing, and so on. Images are created using the vkCreateImage() function, the prototype of which is

Click here to view code image

VkResult vkCreateImage (

 VkDevice device,

 const VkImageCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkImage* pImage);

The device that is used to create the image is passed in the device parameter. Again, the description of the image is passed through a data structure, the address of which is passed in the pCreateInfo parameter. This is a pointer to an instance of the VkImageCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkImageCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkImageCreateFlags flags;

 VkImageType imageType;

 VkFormat format;

 VkExtent3D extent;

 uint32_t mipLevels;

 uint32_t arrayLayers;

 VkSampleCountFlagBits samples;

 VkImageTiling tiling;

 VkImageUsageFlags usage;

 VkSharingMode sharingMode;

 uint32_t queueFamilyIndexCount;

 const uint32_t* pQueueFamilyIndices;

 VkImageLayout initialLayout;

} VkImageCreateInfo;

As you can see, this is a significantly more complex structure than the VkBufferCreateInfo structure. The common fields, sType and pNext, appear at the top, as with most other Vulkan structures. The sType field should be set to VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO.

The flags field of VkImageCreateInfo contains flags describing some of the properties of the image. These are a selection of the VkImageCreateFlagBits enumeration. The first three—VK_IMAGE_CREATE_SPARSE_BINDING_BIT, VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, and VK_IMAGE_CREATE_SPARSE_ALIASED_BIT—are used for controlling sparse images, which are covered later in this chapter.

If VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT is set, then you can create views of the image with a different format from the parent. Image views are essentially a special type of image that shares data and layout with its parent but can override parameters such as format. This allows data in the image to be interpreted in multiple ways at the same time. Using image views is a way to create two different aliases for the same data. Image views are covered later in this chapter. If VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT is set, then the you will be able to create cube map views of it. Cube maps are covered later in this chapter.

The imageType field of the VkImageCreateInfo structure specifies the type of image that you want to create. The image type is essentially the dimensionality of the image and can be one of VK_IMAGE_TYPE_1D, VK_IMAGE_TYPE_2D, or VK_IMAGE_TYPE_3D for a 1D, 2D, or 3D image, respectively.

Images also have a format, which describes how texel data is stored in memory and how it is interpreted by Vulkan. The format of the image is specified by the format field of the VkImageCreateInfo structure and must be one of the image formats represented by a member of the VkFormat enumeration. Vulkan supports a large number of formats—too many to list here. We will use some of the formats in the book examples and explain how they work at that time. For the rest, refer to the Vulkan specification.

The extent of an image is its size in texels. This is specified in the extent field of the VkImageCreateInfo structure. This is an instance of the VkExtent3D structure, which has three members: width, height, and depth. These should be set to the width, height, and depth of the desired image, respectively. For 1D images, height should be set to 1, and for 1D and 2D images, depth should be set to 1. Rather than alias the next-higher dimension as an array count, Vulkan uses an explicit array size, which is set in arrayLayers.

The maximum size of an image that can be created is device-dependent. To determine the largest image size, call vkGetPhysicalDeviceFeatures() and check the maxImageDimension1D, maxImageDimension2D, and maxImageDimension3D fields of the embedded VkPhysicalDeviceLimits structure. maxImageDimension1D contains the maximum supported width for 1D images, maxImageDimension2D the maximum side length for 2D images, and maxImageDimension3D the maximum side length for 3D images. Likewise, the maximum number of layers in an array image is contained in the maxImageArrayLayers field. If the image is a cube map, then the maximum side length for the cube is stored in maxImageDimensionCube.

maxImageDimension1D, maxImageDimension2D, and maxImageDimensionCube are guaranteed to be at least 4,096 texels, and maxImageDimensionCube and maxImageArrayLayers are guaranteed to be at least 256. If the image you want to create is smaller than these dimensions, then there’s no need to check the device features. Further, it’s quite common to find Vulkan implementations that support significantly higher limits. It would be reasonable to make larger image sizes a hard requirement rather than trying to create fallback paths for lower-end devices.

The number of mipmap levels to create in the image is specified in mipLevels. Mipmapping is the process of using a set of prefiltered images of successively lower resolution in order to improve image quality when undersampling the image. The images that make up the various mipmap levels are arranged in a pyramid, as shown in Figure 2.1.

[image: Image]

Figure 2.1: Mipmap Image Layout

In a mipmapped texture, the base level is the lowest-numbered level (usually level zero) and has the resolution of the texture. Each successive level is half the size of the level above it until halving the size of the image again in one of the dimensions would result in a single texel in that direction. Sampling from mipmapped textures is covered in some detail in Chapter 6, “Shaders and Pipelines.”

Likewise, the number of samples in the image is specified in samples. This field is somewhat unlike the others. It must be a member of the VkSampleCountFlagBits enumeration, which is actually defined as bits to be used in a bitfield. However, only power-of-two sample counts are currently defined in Vulkan, which means they’re “1-hot” values, so single-bit enumerant values work just fine.

The next few fields describe how the image will be used. First is the tiling mode, specified in the tiling field. This is a member of the VkImageTiling enumeration, which contains only VK_IMAGE_TILING_LINEAR or VK_IMAGE_TILING_OPTIMAL. Linear tiling means that image data is laid out left to right, top to bottom,1 such that if you map the underlying memory and write it with the CPU, it would form a linear image. Meanwhile, optimal tiling is an opaque representation used by Vulkan to lay data out in memory to improve efficiency of the memory subsystem on the device. This is generally what you should choose unless you plan to map and manipulate the image with the CPU. Optimal tiling will likely perform significantly better than linear tiling in most operations, and linear tiling might not be supported at all for some operations or formats, depending on the Vulkan implementation.

1. Really, images don’t have a “top” or a “bottom.” They have a positive direction in their sampling coordinates. By convention, however, we call positive u “down,” making the texels at u = 1.0 the “bottom” of the image.

The usage field is a bitfield describing where the image will be used. This is similar to the usage field in the VkBufferCreateInfo structure. The usage field here is made up of members of the VkImageUsageFlags enumeration, the members of which are as follows:

• VK_IMAGE_USAGE_TRANSFER_SRC_BIT and VK_IMAGE_USAGE_TRANSFER_DST_BIT mean that the image will be the source or destination of transfer commands, respectively. Transfer commands operating on images are covered in Chapter 4, “Moving Data.”

• VK_IMAGE_USAGE_SAMPLED_BIT means that the image can be sampled from in a shader.

• VK_IMAGE_USAGE_STORAGE_BIT means that the image can be used for general-purpose storage, including writes from a shader.

• VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT means that the image can be bound as a color attachment and drawn into using graphics operations. Framebuffers and their attachments are covered in Chapter 7, “Graphics Pipelines.”

• VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT means that the image can be bound as a depth or stencil attachment and used for depth or stencil testing (or both). Depth and stencil operations are covered in Chapter 10, “Fragment Processing.”

• VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT means that the image can be used as a transient attachment, which is a special kind of image used to store intermediate results of a graphics operation. Transient attachments are covered in Chapter 13, “Multipass Rendering.”

• VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT means that the image can be used as a special input during graphics rendering. Input images differ from regular sampled or storage images in that only fragment shaders can read from them and only at their own pixel location. Input attachments are also covered in detail in Chapter 13, “Multipass Rendering.”

The sharingMode is identical in function to the similarly named field in the VkBufferCreateInfo structure described in “Buffers” earlier in this chapter. If it is set to VK_SHARING_MODE_EXCLUSIVE, the image will be used with only a single queue family at a time. If it is set to VK_SHARING_MODE_CONCURRENT, then the image may be accessed by multiple queues concurrently. Likewise, queueFamilyIndexCount and pQueueFamilyIndices provide similar function and are used when sharingMode is VK_SHARING_MODE_CONCURRENT.

Finally, images have a layout, which specifies in part how it will be used at any given moment. The initialLayout field determines which layout the image will be created in. The available layouts are the members of the VkImageLayout enumeration, which are

• VK_IMAGE_LAYOUT_UNDEFINED: The state of the image is undefined. The image must be moved into one of the other layouts before it can be used almost for anything.

• VK_IMAGE_LAYOUT_GENERAL: This is the “lowest common denominator” layout and is used where no other layout matches the intended use case. Images in VK_IMAGE_LAYOUT_GENERAL can be used almost anywhere in the pipeline.

• VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: The image is going to be rendered into using a graphics pipeline.

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: The image is going to be used as a depth or stencil buffer as part of a graphics pipeline.

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: The image is going to be used for depth testing but will not be written to by the graphics pipeline. In this special state, the image can also be read from in shaders.

• VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: The image will be bound for reading by shaders. This layout is typically used when an image is going to be used as a texture.

• VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: The image is the source of copy operations.

• VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: The image is the destination of copy operations.

• VK_IMAGE_LAYOUT_PREINITIALIZED: The image contains data placed there by an external actor, such as by mapping the underlying memory and writing into it from the host.

• VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: The image is used as the source for presentation, which is the act of showing it to the user.

Images can be moved from layout to layout, and we will cover the various layouts as we introduce the topics related to them. However, images must initially be created in either the VK_IMAGE_LAYOUT_UNDEFINED or the VK_IMAGE_LAYOUT_PREINITIALIZED layout. VK_IMAGE_LAYOUT_PREINITIALIZED should be used only when you have data in memory that you will bind to the image resource immediately. VK_IMAGE_LAYOUT_UNDEFINED should be used when you plan to move the resource to another layout before use. Images can be moved out of VK_IMAGE_LAYOUT_UNDEFINED layout at little or no cost at any time.

The mechanism for changing the layout of an image is known as a pipeline barrier, or simply a barrier. A barrier not only serves as a means to change the layout of a resource but can also synchronize access to that resource by different stages in the Vulkan pipeline and even by different queues running concurrently on the same device. As such, a pipeline barrier is fairly complex and quite difficult to get right. Pipeline barriers are discussed in some detail in Chapter 4, “Moving Data,” and are further explained in the sections of the book where they are relevant.

Listing 2.4 shows a simple example of creating an image resource.

Listing 2.4: Creating an Image Object

Click here to view code image

VkImage image = VK_NULL_HANDLE;

VkResult result = VK_SUCCESS;

static const

VkImageCreateInfo imageCreateInfo =

{

 VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType

 nullptr, // pNext

 0, // flags

 VK_IMAGE_TYPE_2D, // imageType

 VK_FORMAT_R8G8B8A8_UNORM, // format

 { 1024, 1024, 1 }, // extent

 10, // mipLevels

 1, // arrayLayers

 VK_SAMPLE_COUNT_1_BIT, // samples

 VK_IMAGE_TILING_OPTIMAL, // tiling

 VK_IMAGE_USAGE_SAMPLED_BIT, // usage

 VK_SHARING_MODE_EXCLUSIVE, // sharingMode

 0, // queueFamilyIndexCount

 nullptr, // pQueueFamilyIndices

 VK_IMAGE_LAYOUT_UNDEFINED // initialLayout

};

result = vkCreateImage(device, &imageCreateInfo, nullptr, &image);

The image created by the code in Listing 2.4 is a 1,024 × 1,024 texel 2D image with a single sample, in VK_FORMAT_R8G8B8A8_UNORM format and optimal tiling. The code creates it in the undefined layout, which means that we can move it to another layout later to place data into it. The image is to be used as a texture in one of our shaders, so we set the VK_IMAGE_USAGE_SAMPLED_BIT usage flag. In our simple applications, we use only a single queue, so we set the sharing mode to exclusive.

Linear Images

As discussed earlier, two tiling modes are available for use in image resources: VK_IMAGE_TILING_LINEAR and VK_IMAGE_TILING_OPTIMAL. The VK_IMAGE_TILING_OPTIMAL mode represents an opaque, implementation-defined layout that is intended to improve the efficiency of the memory subsystem of the device for read and write operations on the image. However, VK_IMAGE_TILING_LINEAR is a transparent layout of the data that is intended to be intuitive. Pixels in the image are laid out left to right, top to bottom. Therefore, it’s possible to map the memory used to back the resource to allow the host to read and write to it directly.

In addition to the image’s width, height, depth, and pixel format, a few pieces of information are needed to enable host access to the underlying image data. These are the row pitch of the image, which is the distance in bytes between the start of each row of the image; the array pitch, which is the distance between array layers; and the depth pitch, which is the distance between depth slices. Of course, the array pitch and depth pitch apply only to array or 3D images, respectively, and the row pitch applies only to 2D or 3D images.

An image is normally made up of several subresources. Some formats have more than one aspect, which is a component of the image such as the depth or stencil component in a depth-stencil image. Mipmap levels and array layers are also considered to be separate subresources. The layout of each subresource within an image may be different and therefore has different layout information. This information can be queried by calling vkGetImageSubresourceLayout(), the prototype of which is

Click here to view code image

void vkGetImageSubresourceLayout (

 VkDevice device,

 VkImage image,

 const VkImageSubresource* pSubresource,

 VkSubresourceLayout* pLayout);

The device that owns the image that is being queried is passed in device, and the image being queried is passed in image. A description of the subresource is passed through an instance of the VkImageSubresource structure, a pointer to which is passed in the pSubresource parameter. The definition of VkImageSubresource is

Click here to view code image

typedef struct VkImageSubresource {

 VkImageAspectFlags aspectMask;

 uint32_t mipLevel;

 uint32_t arrayLayer;

} VkImageSubresource;

The aspect or aspects of the image that you want to query the layout of is specified in aspectMask. For color images, this should be VK_IMAGE_ASPECT_COLOR_BIT, and for depth, stencil, or depth-stencil images, this should be some combination of VK_IMAGE_ASPECT_DEPTH_BIT, and VK_IMAGE_ASPECT_STENCIL_BIT. The mipmap level for which the parameters are to be returned is specified in mipLevel, and the array layer is specified in arrayLayer. You should normally set arrayLayer to zero, as the parameters of the image aren’t expected to change across layers.

When vkGetImageSubresourceLayout() returns, it will have written the layout parameters of the subresource into the VkSubresourceLayout structure pointed to by pLayout. The definition of VkSubresourceLayout is

Click here to view code image

typedef struct VkSubresourceLayout {

 VkDeviceSize offset;

 VkDeviceSize size;

 VkDeviceSize rowPitch;

 VkDeviceSize arrayPitch;

 VkDeviceSize depthPitch;

} VkSubresourceLayout;

The size of the memory region consumed by the requested subresource is returned in size, and the offset within the resource where the subresource begins is returned in offset. The rowPitch, arrayPitch, and depthPitch fields contain the row, array layer, and depth slice pitches, respectively. The unit of these fields is always bytes, regardless of the pixel format of the images. Pixels within a row are always tightly packed. Figure 2.2 illustrates how these parameters represent memory layout of an image. In the figure, the valid image data is represented by the grey grid, and padding around the image is shown as blank space.

[image: Image]

Figure 2.2: Memory Layout of LINEAR Tiled Images

Given the memory layout of an image in LINEAR tiling mode, it is possible to trivially compute the memory address for a single texel within the image. Loading image data into a LINEAR tiled image is then simply a case of loading scanlines from the image into memory at the right location. For many texel formats and image dimensions, it is highly likely that the image’s rows are tightly packed in memory—that is, the rowPitch field of the VkSubresourceLayout structure is equal to the subresource’s width. In this case, many image-loading libraries will be able to load the image directly into the mapped memory of the image.

Nonlinear Encoding

You may have noticed that some of the Vulkan image formats include SRGB in their names. This refers to sRGB color encoding, which is a nonlinear encoding that uses a gamma curve approximating that of CRTs. Although CRTs are all but obsolete now, sRGB encoding is still in widespread use for texture and image data.

Because the amount of light energy produced by a CRT is not linear with the amount of electrical energy used to produce the electron beam that excites the phosphor, an inverse mapping must be applied to color signals to make a linear rise in numeric value produce a linear increase in light output. The amount of light output by a CRT is approximately

Lout = Vinγ

The standard value of γ in NTSC television systems (common in North America, parts of South America, and parts of Asia) is 2.2. Meanwhile, the standard value of γ in SECAM and PAL systems (common in Europe, Africa, Australia, and other regions of Asia) is 2.8.

The sRGB curve attempts to compensate for this by applying gamma correction to linear data in memory. The standard sRGB transfer function is not a pure gamma curve but is made up of a short linear section followed by a curved, gamma-corrected section. The function applied to data to go from linear to sRGB space is

Click here to view code image

if (cl >= 1.0)

{

 cs = 1.0;

}

else if (cl <= 0.0)

{

 cs = 0.0;

}

else if (cl < 0.0031308)

{

 cs = 12.92 * cl;

}

else

{

 cs = 1.055 * pow(cl, 0.41666) - 0.055;

}

To go from sRGB space to linear space, the following transform is made:

Click here to view code image

if (cs >= 1.0)

{

 cl = 1.0;

}

else if (cs <= 0.0)

{

 cl = 0.0;

}

else if (cs <= 0.04045)

{

 cl = cs / 12.92;

}

else

{

 cl = pow((cs + 0.0555) / 1.055), 2.4)

}

In both code snippets, cs is the sRGB color space value, and cl is the linear value. Figure 2.3 shows a side-by-side comparison of a simple γ = 2.2 curve and the standard sRGB transfer function. As you can see in the figure, the curves for sRGB correction (shown on the top) and a simple power curve (shown on the bottom) are almost identical. While Vulkan implementations are expected to implement sRGB using the official definition, if you need to perform the transformation manually in your shaders, you may be able to get away with a simple power function without accumulating too much error.

[image: Image]

Figure 2.3: Gamma Curves for sRGB (Top) and Simple Powers (Bottom)

When rendering to an image in sRGB format, linear values produced by your shaders are transformed to sRGB encoding before being written into the image. When reading from an image in sRGB format, texels are transformed from sRGB format back to linear space before being returned to your shader.

Blending and interpolation always occurs in linear space such that data read from a framebuffer is first transformed from sRGB to linear space and then blended with the source data in linear space, and the final result is transformed back to sRGB encoding before being written into the framebuffer.

Rendering in sRGB space provides more precision in darker colors and can result in less banding artifacts and richer colors. However, for best image quality, including high-dynamic-range rendering, it’s best to choose a floating-point color format and render in a linear space, converting to sRGB as late as possible before display.

Compressed Image Formats

Image resources are likely to be the largest consumers of device memory in your application. For this reason, Vulkan provides the capability for images to be compressed. Image compression provides two significant benefits to an application:

• It reduces the total amount of memory consumed by image resources used by the application.

• It reduces the total memory bandwidth consumed while accessing those resources.

All currently defined compressed image formats in Vulkan are what are known as block compressed formats. Texels within an image are compressed in small square or rectangular blocks that can be decompressed independently of all others. All formats are lossy, and the compression ratio is not competitive with formats such as JPEG or even PNG. However, decompression is fast and cheap to implement in hardware, and random access to texels is relatively straightforward.

Support for various compressed image formats is optional, but all Vulkan implementations are required to support at least one family of formats. You can determine which family of compressed formats is supported by checking various fields of the device’s VkPhysicalDeviceFeatures structure as returned from a call to vkGetPhysicalDeviceProperties().

If textureCompressionBC is VK_TRUE, then the device supports the block compressed formats, also known as BC formats. The BC family includes

• BC1: Made up of the VK_FORMAT_BC1_RGB_UNORM_BLOCK, VK_FORMAT_BC1_RGB_SRGB_BLOCK, VK_FORMAT_BC1_RGBA_UNORM_BLOCK, and VK_FORMAT_BC1_RGBA_SRGB_BLOCK formats, BC1 encodes images in blocks of 4 × 4 texels, with each block represented as a 64-bit quantity.

• BC2: Consisting of VK_FORMAT_BC2_UNORM_BLOCK and VK_FORMAT_BC2_SRGB_BLOCK, BC2 encodes images in blocks of 4 × 4 texels, with each block represented as a 128-bit quantity. BC2 images always have an alpha channel. The encoding for the RGB channels is the same as with BC1 RGB formats, and the alpha is stored as 4 bits per texel in a second 64-bit field before the BC1 encoded RGB data.

• BC3: The VK_FORMAT_BC3_UNORM_BLOCK and VK_FORMAT_BC3_SRGB_BLOCK formats make up the BC3 family, again encoding texels in 4 × 4 blocks, with each block consuming 128 bits of storage. The first 64-bit quantity stores compressed alpha values, allowing coherent alpha data to be stored with higher precision than BC2. The second 64-bit quantity stores compressed color data in a similar form to BC1.

• BC4: VK_FORMAT_BC4_UNORM_BLOCK and VK_FORMAT_BC4_SRGB_BLOCK represent single-channel formats, again encoded as 4 × 4 blocks of texels, with each block consuming 64 bits of storage. The encoding of the single-channel data is essentially the same as that of the alpha channel of a BC3 image.

• BC5: Made up of VK_FORMAT_BC5_UNORM_BLOCK and VK_FORMAT_BC5_SRGB_BLOCK, the BC5 family is a two-channel format, with each 4 × 4 block essentially consisting of two BC4 blocks back-to-back.

• BC6: The VK_FORMAT_BC6H_SFLOAT_BLOCK and VK_FORMAT_BC6H_UFLOAT_BLOCK formats are signed and unsigned floating-point compressed formats, respectively. Each 4 × 4 block of RGB texels is stored in 128 bits of data.

• BC7: VK_FORMAT_BC7_UNORM_BLOCK and VK_FORMAT_BC7_SRGB_BLOCK are four-channel formats with each 4 × 4 block of RGBA texel data stored in a 128-bit component.

If the textureCompressionETC2 member of VkPhysicalDeviceFeatures is VK_TRUE, then the device supports the ETC formats, including ETC2 and EAC. The following formats are included in this family:

• VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK and VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: Unsigned formats where 4 × 4 blocks of RGB texels are packed into 64 bits of compressed data.

• VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK and VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: Unsigned formats where 4 × 4 blocks of RGB texels plus a one-bit alpha value per texel are packed into 64 bits of compressed data.

• VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK and VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: Each 4 × 4 block of texels is represented as a 128-bit quantity. Each texel has 4 channels.

• VK_FORMAT_EAC_R11_UNORM_BLOCK and VK_FORMAT_EAC_R11_SNORM_BLOCK: Unsigned and signed single-channel formats with each 4 × 4 block of texels represented as a 64-bit quantity.

• VK_FORMAT_EAC_R11G11_UNORM_BLOCK and VK_FORMAT_EAC_R11G11_SNORM_BLOCK: Unsigned and signed two-channel formats with each 4 × 4 block of texels represented as a 64-bit quantity.

The final family is the ASTC family. If the textureCompressionASTC_LDR member of VkPhysicalDeviceFeatures is VK_TRUE, then the device supports the ASTC formats. You may have noticed that for all of the formats in the BC and ETC families, the block size is fixed at 4 × 4 texels, but depending on format, the texel format and number of bits used to store the compressed data vary.

ASTC is different here in that the number of bits per block is always 128, and all ASTC formats have four channels. However, the block size in texels can vary. The following block sizes are supported: 4 × 4, 5 × 4, 5 × 5, 6 × 5, 6 × 6, 8 × 5, 8 × 6, 8 × 8, 10 × 5, 10 × 6, 10 × 8, 10 × 10, 12 × 10, and 12 × 12.

The format of the token name for ASTC formats is formulated as VK_FORMAT_ASTC_{N}x{M}_{encoding}_BLOCK, where {N} and {M} represent the width and height of the block, and {encoding} is either UNORM or SRGB, depending on whether the data is linear or encoded as sRGB nonlinear. For example, VK_FORMAT_ASTC_8x6_SRGB_BLOCK is an RGBA ASTC compressed format with 8 × 6 blocks and sRGB encoded data.

For all formats including SRGB, only the R, G, and B channels use nonlinear encoding. The A channel is always stored with linear encoding.

Resource Views

Buffers and images are the two primary types of resources supported in Vulkan. In addition to creating these two resource types, you can create views of existing resources in order to partition them, reinterpret their content, or use them for multiple purposes. Views of buffers, which represent a subrange of a buffer object, are known as buffer views, and views of images, which can alias formats or represent a subresource of another image, are known as image views.

Before a view of a buffer or image can be created, you need to bind memory to the parent object.

Buffer Views

A buffer view is used to interpret the data in a buffer with a specific format. Because the raw data in the buffer is then treated as a sequence of texels, this is also known as a texel buffer view. A texel buffer view can be accessed directly in shaders, and Vulkan will automatically convert the texels in the buffer into the format expected by the shader. One example use for this functionality is to directly fetch the properties of vertices in a vertex shader by reading from a texel buffer rather than using a vertex buffer. While this is more restrictive, it does allow random access to the data in the buffer.

To create a buffer view, call vkCreateBufferView(), the prototype of which is

Click here to view code image

VkResult vkCreateBufferView (

 VkDevice device,

 const VkBufferViewCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkBufferView* pView);

The device that is to create the new view is passed in device. This should be the same device that created the buffer of which you are creating a view. The remaining parameters of the new view are passed through a pointer to an instance of the VkBufferViewCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkBufferViewCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkBufferViewCreateFlags flags;

 VkBuffer buffer;

 VkFormat format;

 VkDeviceSize offset;

 VkDeviceSize range;

} VkBufferViewCreateInfo;

The sType field of VkBufferViewCreateInfo should be set to VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved and should be set to 0. The parent buffer is specified in buffer. The new view will be a “window” into the parent buffer starting at offset bytes and extending for range bytes. When bound as a texel buffer, the data in the buffer is interpreted as a sequence of texels with the format as specified in format.

The maximum number of texels that can be stored in a texel buffer is determined by inspecting the maxTexelBufferElements field of the device’s VkPhysicalDeviceLimits structure, which can be retrieved by calling vkGetPhysicalDeviceProperties(). If the buffer is to be used as a texel buffer, then range divided by the size of a texel in format must be less than or equal to this limit. maxTexelBufferElements is guaranteed to be at least 65,536, so if the view you’re creating contains fewer texels, there’s no need to query this limit.

The parent buffer must have been created with the VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT flags in the usage field of the VkBufferCreateInfo used to create the buffer. The specified format must support the VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT, VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT, or VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT as reported by vkGetPhysicalDeviceFormatProperties().

On success, vkCreateBufferView() places the handle to the newly created buffer view in the variable pointed to by pView. If pAllocator is not nullptr, then the allocation callbacks specified in the VkAllocationCallbacks structure it points to are used to allocate any host memory required by the new object.

Image Views

In many cases, the image resource cannot be used directly, as more information about it is needed than is included in the resource itself. For example, you cannot use an image resource directly as an attachment to a framebuffer or bind an image into a descriptor set in order to sample from it in a shader. To satisfy these additional requirements, you must create an image view, which is essentially a collection of properties and a reference to a parent image resource.

An image view also allows all or part of an existing image to be seen as a different format. The resulting view of the parent image must have the same dimensions as the parent, although a subset of the parent’s array layers or mip levels may be included in the view. The format of the parent and child images must also be compatible, which usually means that they have the same number of bits per pixel, even if the data formats are completely different and even if there are a different number of channels in the image.

To create a new view of an existing image, call vkCreateImageView(), the prototype of which is

Click here to view code image

VkResult vkCreateImageView (

 VkDevice device,

 const VkImageViewCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkImageView* pView);

The device that will be used to create the new view and that should own the parent image is specified in device. The remaining parameters used in the creation of the new view are passed through an instance of the VkImageViewCreateInfo structure, a pointer to which is passed in pCreateInfo. The definition of VkImageViewCreateInfo is

Click here to view code image

typedef struct VkImageViewCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkImageViewCreateFlags flags;

 VkImage image;

 VkImageViewType viewType;

 VkFormat format;

 VkComponentMapping components;

 VkImageSubresourceRange subresourceRange;

} VkImageViewCreateInfo;

The sType field of VkImageViewCreateInfo should be set to VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved for future use and should be set to 0.

The parent image of which to create a new view is specified in image. The type of view to create is specified in viewType. The view type must be compatible with the parent’s image type and is a member of the VkImageViewType enumeration, which is larger than the VkImageType enumeration used in creating the parent image. The image view types are as follows:

• VK_IMAGE_VIEW_TYPE_1D, VK_IMAGE_VIEW_TYPE_2D, and VK_IMAGE_VIEW_TYPE_3D are the “normal” 1D, 2D, and 3D image types.

• VK_IMAGE_VIEW_TYPE_CUBE and VK_IMAGE_VIEW_TYPE_CUBE_ARRAY are cube map and cube map array images.

• VK_IMAGE_VIEW_TYPE_1D_ARRAY and VK_IMAGE_VIEW_TYPE_2D_ARRAY are 1D and 2D array images.

Note that all images are essentially considered array images, even if they only have one layer. It is, however, possible to create nonarray views of parent images that refer to one of the layers of the image.

The format of the new view is specified in format. This must be a format that is compatible with that of the parent image. In general, if two formats have the same number of bits per pixel, then they are considered compatible. If either or both of the formats is a block compressed image format, then one of two things must be true:

• If both images have compressed formats, then the number of bits per block must match between those formats.

• If only one image is compressed and the other is not, then bits per block in the compressed image must be the same as the number of bits per texel in the uncompressed image.

By creating an uncompressed view of a compressed image, you give access to the raw, compressed data, making it possible to do things like write compressed data from a shader into the image or interpret the compressed data directly in your application. Note that while all block-compressed formats encode blocks either as 64-bit or 128-bit quantities, there are no uncompressed, single-channel 64-bit or 128-bit image formats. To alias a compressed image as an uncompressed format, you need to choose an uncompressed format with the same number of bits per texel and then aggregate the bits from the different image channels within your shader to extract the individual fields from the compressed data.

The component ordering in the view may be different from that in the parent. This allows, for example, an RGBA view of a BGRA format image to be created. This remapping is specified using an instance of VkComponentMapping, the definition of which is simply

Click here to view code image

typedef struct VkComponentMapping {

 VkComponentSwizzle r;

 VkComponentSwizzle g;

 VkComponentSwizzle b;

 VkComponentSwizzle a;

} VkComponentMapping;

Each member of VkComponentMapping specifies the source of data in the parent image that will be used to fill the resulting texel fetched from the child view. They are members of the VkComponentSwizzle enumeration, the members of which are as follows:

• VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, and VK_COMPONENT_SWIZZLE_A indicate that the source data should be read from the R, G, B, or A channels of the parent image, respectively.

• VK_COMPONENT_SWIZZLE_ZERO and VK_COMPONENT_SWIZZLE_ONE indicate that the data in the child image should be read as zero or one, respectively, regardless of the content of the parent image.

• VK_COMPONENT_SWIZZLE_IDENTITY indicates that the data in the child image should be read from the corresponding channel in the parent image. Note that the numeric value of VK_COMPONENT_SWIZZLE_IDENTITY is zero, so simply setting the entire VkComponentMapping structure to zero will result in an identity mapping between child and parent images.

The child image can be a subset of the parent image. This subset is specified using the embedded VkImageSubresourceRange structure in subresourceRange. The definition of VkImageSubresourceRange is

Click here to view code image

typedef struct VkImageSubresourceRange {

 VkImageAspectFlags aspectMask;

 uint32_t baseMipLevel;

 uint32_t levelCount;

 uint32_t baseArrayLayer;

 uint32_t layerCount;

} VkImageSubresourceRange;

The aspectMask field is a bitfield made up from members of the VkImageAspectFlagBits enumeration specifying which aspects of the image are affected by the barrier. Some image types have more than one logical part, even though the data itself might be interleaved or otherwise related. An example of this is depth-stencil images, which have both a depth component and a stencil component. Each of these two components may be viewable as a separate image in its own right, and these subimages are known as aspects. The flags that can be included in aspectMask are

• VK_IMAGE_ASPECT_COLOR_BIT: The color part of an image. There is usually only a color aspect in color images.

• VK_IMAGE_ASPECT_DEPTH_BIT: The depth aspect of a depth-stencil image.

• VK_IMAGE_ASPECT_STENCIL_BIT: The stencil aspect of a depth-stencil image.

• VK_IMAGE_ASPECT_METADATA_BIT: Any additional information associated with the image that might track its state and is used, for example, in various compression techniques.

When you create the new view of the parent image, that view can refer to only one aspect of the parent image. Perhaps the most common use case of this is to create a depth- or stencil-only view of a combined depth-stencil format image.

To create a new image view that corresponds only to a subset of the parent’s mip chain, use the baseMipLevel and levelCount to specify where in the mip chain the view begins and how many mip levels it will contain. If the parent image does not have mipmaps, these fields should be set to zero and one, respectively.

Likewise, to create an image view of a subset of a parent’s array layers, use the baseArrayLayer and layerCount fields to specify the starting layer and number of layers, respectively. Again, if the parent image is not an array image, then baseArrayLayer should be set to zero and layerCount should be set to one.

Image Arrays

The defined image types (VkImageType) include only VK_IMAGE_TYPE_1D, VK_IMAGE_TYPE_2D, or VK_IMAGE_TYPE_3D, which are used to create 1D, 2D, and 3D images, respectively. However, in addition to their sizes in each of the x, y, and z dimensions, all images have a layer count, contained in the arrayLayers field of their VkImageCreateInfo structure.

Images can be aggregated into arrays, and each element of an array image is known as a layer. Array images allow images to be grouped into single objects, and sampling from multiple layers of the same array image is often more performant than sampling from several loose array objects. Because all Vulkan images have a layerCount field, they are all technically array images. However, in practice, we only refer to images with a layerCount greater than 1 as an array image.

When views are created of images, the view is explicitly marked as either an array or a nonarray. A nonarray view implicitly has only one layer whereas an array view has multiple layers. Sampling from a nonarray view may perform better than sampling from a single layer of an array image, simply because the device needs to perform fewer indirections and parameter lookups.

A 1D array texture is conceptually different from a 2D texture, and a 2D array texture is different from a 3D texture. The primary difference is that linear filtering can be performed in the y direction of a 2D texture and in the z direction in a 3D texture, whereas filtering cannot be performed across multiple layers in an array image. Notice that there is no 3D array image view type included in VkImageViewType, and most Vulkan implementations will not allow you to create a 3D image with an arrayLayers field greater than 1.

In addition to image arrays, a cube map is a special type of image that allows groups of six layers of an array image to be interpreted as the sides of a cube. Imagine standing in the center of a cube-shaped room. The room has four walls, a floor, and a ceiling. To your left and right are considered the negative and positive X directions, behind and in front of you are the negative and positive Z directions, and the floor and ceiling are the negative and positive Y directions. These faces are often notated as the -X, +X, -Y, +Y, -Z, and +Z faces. These are the six faces of a cube map, and a group of six consecutive array layers can be interpreted in that order.

A cube map is sampled using a 3D coordinate. This coordinate is interpreted as a vector pointing from the center of the cube map outward, and the point sampled in the cube-map is the point where the vector meets the cube. Again, put yourself back into the cube-map room and imagine you have a laser pointer. As you point the laser in different directions, the spot on the wall or ceiling is the point from which texture data is taken when the cube map is sampled.

Figure 2.4 shows this pictorially. As you can see in the figure, the cube map is constructed from a selection of six consecutive elements from the parent texture. To create a cube-map view, first create a 2D array image with at least six faces. The imageType field of the VkImageCreateInfo structure should be set to VK_IMAGE_TYPE_2D and the arrayLayers field should be at least 6. Note that the number of layers in the parent array doesn’t have to be a multiple of 6, but it has to be at least 6.

[image: Image]

Figure 2.4: Cube Map Construction

The flags field of the parent image’s VkImageCreateInfo structure must have the VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT set, and the image must be square (because the faces of a cube are square).

Next, we create a view of the 2D array parent, but rather than creating a normal 2D (array) view of the image, we create a cube-map view. To do this, set the viewType field of the VkImageViewCreateInfo structure used to create the view to VK_IMAGE_VIEW_TYPE_CUBE. In the embedded subresourceRange field, the baseArrayLayer and layerCount fields are used to determine where in the array the cube map begins. To create a single cube, layerCount should be set to 6.

The first element of the array (at the index specified in the baseArrayLayer field) becomes the -X face, and the next five layers become the +X, -Y, +Y, -Z, and +Z faces, in that order.

Cube maps can also form arrays of their own. This is simply a concatenation of an integer multiple of six faces, with each group of six forming a separate cube. To create a cube-map array image, set the viewType field of VkImageViewCreateInfo to VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, and set the layerCount to a multiple of 6. The number of cubes in the array is therefore the layerCount for the array divided by 6. The number of layers in the parent image must be at least as many layers as are referenced by the cube-map view.

When data is placed in a cube map or cube-map array image, it is treated identically to an array image. Each array layer is laid out consecutively, and commands such as vkCmdCopyBufferToImage() (which is covered in Chapter 4, “Moving Data”) can be used to write into the image. The image can be bound as a color attachment and rendered to. Using layered rendering, you can even write to multiple faces of a cube map in a single drawing command.

Destroying Resources

When you are done with buffers, images, and other resources, it is important to destroy them cleanly. Before destroying a resource, you must make sure that it is not in use and that no work is pending that might access it. Once you are certain that this is the case, you can destroy the resource by calling the appropriate destruction function. To destroy a buffer resource, call vkDestroyBuffer(), the prototype of which is

Click here to view code image

void vkDestroyBuffer (

 VkDevice device,

 VkBuffer buffer,

 const VkAllocationCallbacks* pAllocator);

The device that owns the buffer object should be specified in device, and the handle to the buffer object should be specified in buffer. If a host memory allocator was used to create the buffer object, a compatible allocator should be specified in pAllocator; otherwise, pAllocator should be set to nullptr.

Note that destroying a buffer object for which other views exist will also invalidate those views. The view objects themselves must still be destroyed explicitly, but it is not legal to access a view of a buffer that has been destroyed. To destroy a buffer view, call vkDestroyBufferView(), the prototype of which is

Click here to view code image

void vkDestroyBufferView (

 VkDevice device,

 VkBufferView bufferView,

 const VkAllocationCallbacks* pAllocator);

Again, device is a handle to the device that owns the view, and bufferView is a handle to the view to be destroyed. pAllocator should point to a host memory allocator compatible with that used to create the view or should be set to nullptr if no allocator was used to create the view.

Destruction of images is almost identical to that of buffers. To destroy an image object, call vkDestroyImage(), the prototype of which is

Click here to view code image

void vkDestroyImage (

 VkDevice device,

 VkImage image,

 const VkAllocationCallbacks* pAllocator);

device is the device that owns the image to be destroyed, and image is the handle to that image. Again, if a host memory allocator was used to create the original image, then pAllocator should point to one compatible with it; otherwise, pAllocator should be nullptr.

As with buffers, destroying an image invalidates all views of that image. It is not legal to access a view of an image that has already been destroyed. The only thing you can do with such views is to destroy them. Destroying an image view is accomplished by calling vkDestroyImageView(), the prototype of which is

Click here to view code image

void vkDestroyImageView (

 VkDevice device,

 VkImageView imageView,

 const VkAllocationCallbacks* pAllocator);

As you might expect, device is the device that owns the view being destroyed, and imageView is the handle to that view. As with all other destruction functions mentioned so far, pAllocator is a pointer to an allocator compatible with the one used to create the view or nullptr if no allocator was used.

Device Memory Management

When the Vulkan device operates on data, the data must be stored in device memory. This is memory that is accessible to the device. In a Vulkan system there are four classes of memory. Some systems may have only a subset of these, and some may only have two. Given a host (the processor upon which your application is running) and a device (the processor that executes your Vulkan commands), there could be separate memory physically attached to each. In addition, some regions of the physical memory attached to each processor might be accessible to the other processor or processors in the system.

In some cases, the visible region of shared memory might be relatively small, and in other cases, there may actually be only one physical piece of memory, which is shared between the host and the device. Figure 2.5 demonstrates the memory map of a host and device with physically separate memories.

[image: Image]

Figure 2.5: Host and Device Memory

Any memory that is accessible to the device is known as device memory, even if that memory is physically attached to the host. In this case, it is host local device memory. This is distinct from host memory, which might also be known as system memory, which is regular memory allocated with a function such as malloc or new. Device memory may also be accessible to the host through a mapping.

A typical discrete GPU as found on an add-in card plugged into a PCI-Express slot will have an amount of dedicated memory physically attached to its circuit board. Some part of this memory may be accessible only to the device, and some part of the memory may be accessible to the host through some form of window. In addition, the GPU will have access to some or all of the host’s system memory. All of these pools of memory will appear as a heap to the host, and memory will be mapped into those heaps via the various types of memory.

On the other hand, a typical embedded GPU—such as those found in embedded systems, mobile devices, or even laptop processors—may share memory controller and subsystem with the host processor. In this case, it is likely that access to main system memory is coherent and the device will expose fewer heaps—perhaps only one. This is considered a unified memory architecture.

Allocating Device Memory

A device memory allocation is represented as a VkDeviceMemory object that is created using the vkAllocateMemory() function, the prototype of which is

Click here to view code image

VkResult vkAllocateMemory (

 VkDevice device,

 const VkMemoryAllocateInfo* pAllocateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkDeviceMemory* pMemory);

The device that will use the memory is passed in device. pAllocateInfo describes the new device memory object which, if the allocation is successful, will be placed in the variable pointed to by pMemory. pAllocateInfo points to an instance of the VkMemoryAllocateInfo structure, the definition of which is

Click here to view code image

typedef struct VkMemoryAllocateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDeviceSize allocationSize;

 uint32_t memoryTypeIndex;

} VkMemoryAllocateInfo;

This is a simple structure containing only the size and the memory type to be used for the allocation. sType should be set to VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, and pNext should be set to nullptr unless an extension is in use that requires more information about the allocation. The size of the allocation is passed in allocationSize and is measured in bytes. The memory type, passed in memoryTypeIndex, is an index into the memory type array returned from a call to vkGetPhysicalDeviceMemoryProperties(), as described in “Physical Device Memory” in Chapter 1, “Overview of Vulkan.”

Once you have allocated device memory, it can be used to back resources such as buffers and images. Vulkan may use device memory for other purposes, such as other types of device objects, internal allocations and data structures, scratch storage, and so on. These allocations are managed by the Vulkan driver, as the requirements may vary quite widely between implementations.

When you are done with a memory allocation, you need to free it. To do this, call vkFreeMemory(), the prototype of which is

Click here to view code image

void vkFreeMemory (

 VkDevice device,

 VkDeviceMemory memory,

 const VkAllocationCallbacks* pAllocator);

vkFreeMemory() takes the memory object directly in memory. It is your responsibility to ensure that there is no work queued up to a device that might use the memory object before you free it. Vulkan will not track this for you. If a device attempts to access memory after it’s been freed, the results can be unpredictable and can easily crash your application.

Further, access to memory must be externally synchronized. Attempting to free device memory with a call to vkFreeMemory() while another command is executing in another thread will produce undefined behavior and possibly crash your application.

On some platforms, there may be an upper bound to the total number of memory allocations that can exist within a single process. If you try to create more allocations than this limit, allocation could fail. This limit can be determined by calling vkGetPhysicalDeviceProperties() and inspecting the maxMemoryAllocationCount field of the returned VkPhysicalDeviceLimits structure. The limit is guaranteed to be at least 4,096 allocations, though some platforms may report a much higher limit. Although this may seem low, the intention is that you create a small number of large allocations and then suballocate from them to place many resources in the same allocation. There is no upper limit to the total number of resources can be created, memory allowing.

Normally, when you allocate memory from a heap, that memory is permanently assigned to the returned VkDeviceMemory object until that object is destroyed by calling vkFreeMemory(). In some cases, you (or even the Vulkan implementation) may not know exactly how much memory is required for certain operations, or indeed whether any memory is required at all.

In particular, this is often the case for images that are used for intermediate storage of data during rendering. When the image is created, if the VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT is included in the VkImageCreateInfo structure, then Vulkan knows that the data in the image will live for a short time, and therefore, it’s possible that it may never need to be written out to device memory.

In this case, you can ask Vulkan to be lazy with its allocation of the memory object to defer true allocation until Vulkan can determine that the physical storage for data is really needed. To do this, choose a memory type with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT set. Choosing an otherwise-appropriate memory type that does not have this bit set will still work correctly but will always allocate the memory up front, even if it never ends up being used.

If you want to know whether a memory allocation is physically backed and how much backing has actually been allocated for a memory object, call vkGetDeviceMemoryCommitment(), the prototype of which is

Click here to view code image

void vkGetDeviceMemoryCommitment (

 VkDevice device,

 VkDeviceMemory memory,

 VkDeviceSize* pCommittedMemoryInBytes);

The device that owns the memory allocation is passed in device and the memory allocation to query is passed in memory. pCommittedMemoryInBytes is a pointer to a variable that will be overwritten with the number of bytes actually allocated for the memory object. That commitment will always come from the heap associated with the memory type used to allocate the memory object.

For memory objects allocated with memory types that don’t include VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, or if the memory object ended up fully committed, vkGetDeviceMemoryCommitment() will always return the full size of the memory object. The commitment returned from vkGetDeviceMemoryCommitment() is informational at best. In many cases, the information could be out of date, and there’s not much you can do with the information anyway.

Host Access to Device Memory

As discussed earlier in this chapter, device memory is divided into multiple regions. Pure device memory is accessible only to the device. However, there are regions of memory that are accessible to both the host and the device. The host is the processor upon which your application is running, and it is possible to ask Vulkan to give you a pointer to memory allocated from host-accessible regions. This is known as mapping memory.

To map device memory into the host’s address space, the memory object to be mapped must have been allocated from a heap that has the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT flag set in its heap properties. Assuming that this is the case, mapping the memory to obtain a pointer usable by the host is achieved by calling vkMapMemory(), the prototype of which is

Click here to view code image

VkResult vkMapMemory (

 VkDevice device,

 VkDeviceMemory memory,

 VkDeviceSize offset,

 VkDeviceSize size,

 VkMemoryMapFlags flags,

 void** ppData);

The device that owns the memory object to be mapped is passed in device, and the handle to the memory object being mapped is passed in memory. Access to the memory object must be externally synchronized. To map a range of a memory object, specify the starting offset in offset and the size of the region in size. If you want to map the entire memory object, set offset to 0 and size to VK_WHOLE_SIZE. Setting offset to a nonzero value and size to VK_WHOLE_SIZE will map the memory object starting from offset to the end. offset and size are both specified in bytes. You should not attempt to map a region of the memory object that extends beyond its bounds.

The flags parameter is reserved for future use and should be set to zero.

If vkMapMemory() is successful, a pointer to the mapped region is written into the variable pointed to by ppData. This pointer can then be cast to the appropriate type in your application and dereferenced to directly read and write the device memory. Vulkan guarantees that pointers returned from vkMapMemory() are aligned to an integer multiple of the device’s minimum memory mapping alignment when offset is subtracted from them.

This value is reported in the minMemoryMapAlignment field of the VkPhysicalDeviceLimits structure returned from a call to vkGetPhysicalDeviceProperties(). It is guaranteed to be at least 64 bytes but could be any higher power of two. On some CPU architectures, much higher performance can be achieved by using memory load and store instructions that assume aligned addresses. minMemoryMapAlignment will often match a cache line size or the natural alignment of the machine’s widest register, for example, to facilitate this. Some host CPU instructions will fault if passed an unaligned address. Therefore, you can check minMemoryMapAlignment once and decide whether to use optimized functions that assume aligned addressing or fallback functions that can handle unaligned addresses at the expense of performance.

When you’re done with the pointer to the mapped memory range, it can be unmapped by calling vkUnmapMemory(), the prototype of which is

Click here to view code image

void vkUnmapMemory (

 VkDevice device,

 VkDeviceMemory memory);

The device that owns the memory object is passed in device, and the memory object to be unmapped is passed in memory. As with vkMapMemory(), access to the memory object must be externally synchronized.

It’s not possible to map the same memory object more than once at the same time. That is, you can’t call vkMapMemory() on the same memory object with different memory ranges, whether they overlap or not, without unmapping the memory object in between. The range isn’t needed when unmapping the object because Vulkan knows the range that was mapped.

As soon as the memory object is unmapped, any pointer received from a call to vkMapMemory() is invalid and should not be used. Also, if you map the same range of the same memory object over and over, you shouldn’t assume that the pointer you get back will be the same.

When device memory is mapped into host address space, there are effectively two clients of that memory, which may both perform writes into it. There is likely to be a cache hierarchy on both the host and the device sides of the mapping, and those caches may or may not be coherent. In order to ensure that both the host and the device see a coherent view of data written by the other client, it is necessary to force Vulkan to flush caches that might contain data written by the host but not yet made visible to the device or to invalidate a host cache that might hold stale data that has been overwritten by the device.

Each memory type advertised by the device has a number of properties, one of which might be VK_MEMORY_PROPERTY_HOST_COHERENT_BIT. If this is the case, and a mapping is made from a region with this property set, then Vulkan will take care of coherency between caches. In some cases, the caches are automatically coherent because they are either shared between host and device or have some form of coherency protocol to keep them in sync. In other cases, a Vulkan driver might be able to infer when caches need to be flushed or invalidated and then perform these operations behind the scenes.

If VK_MEMORY_PROPERTY_HOST_COHERENT_BIT is not set in the memory properties of a mapped memory region, then it is your responsibility to explicitly flush or invalidate caches that might be affected by the mapping. To flush host caches that might contain pending writes, call vkFlushMappedMemoryRanges(), the prototype of which is

Click here to view code image

VkResult vkFlushMappedMemoryRanges (

 VkDevice device,

 uint32_t memoryRangeCount,

 const VkMappedMemoryRange* pMemoryRanges);

The device that owns the mapped memory objects is specified in device. The number of ranges to flush is specified in memoryRangeCount, and the details of each range are passed in an instance of the VkMappedMemoryRange structure. A pointer to an array of memoryRangeCount of these structures is passed through the pMemoryRanges parameter. The definition of VkMappedMemoryRange is

Click here to view code image

typedef struct VkMappedMemoryRange {

 VkStructureType sType;

 const void* pNext;

 VkDeviceMemory memory;

 VkDeviceSize offset;

 VkDeviceSize size;

} VkMappedMemoryRange;

The sType field of VkMappedMemoryRange should be set to VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, and pNext should be set to nullptr. Each memory range refers to a mapped memory object specified in the memory field and a mapped range within that object, specified by offset and size. You don’t have to flush the entire mapped region of the memory object, so offset and size don’t need to match the parameters used in vkMapMemory(). Also, if the memory object is not mapped, or if offset and size specify a region of the object that isn’t mapped, then the flush command has no effect. To just flush any existing mapping on a memory object, set offset to zero and size to VK_WHOLE_SIZE.

A flush is necessary if the host has written to a mapped memory region and needs the device to see the effect of those writes. However, if the device writes to a mapped memory region and you need the host to see the effect of the device’s writes, you need to invalidate any caches on the host that might now hold stale data. To do this, call vkInvalidateMappedMemoryRanges(), the prototype of which is

Click here to view code image

VkResult vkInvalidateMappedMemoryRanges (

 VkDevice device,

 uint32_t memoryRangeCount,

 const VkMappedMemoryRange* pMemoryRanges);

As with vkFlushMappedMemoryRanges(), device is the device that owns the memory objects whose mapped regions are to be invalidated. The number of regions is specified in memoryRangeCount, and a pointer to an array of memoryRangeCount VkMappedMemoryRange structures is passed in pMemoryRanges. The fields of the VkMappedMemoryRange structures are interpreted exactly as they are in vkFlushMappedMemoryRanges(), except that the operation performed is an invalidation rather than a flush.

vkFlushMappedMemoryRanges() and vkInvalidateMappedMemoryRanges() affect only caches and coherency of access by the host and have no effect on the device. Regardless of whether a memory mapping is coherent or not, access by the device to memory that has been mapped must still be synchronized using barriers, which will be discussed later in this chapter.

Binding Memory to Resources

Before a resource such as a buffer or image can be used by Vulkan to store data, memory must be bound to it. Before memory is bound to a resource, you should determine what type of memory and how much of it the resource requires. There is a different function for buffers and for textures. They are vkGetBufferMemoryRequirements() and vkGetImageMemoryRequirements(), and their prototypes are

Click here to view code image

void vkGetBufferMemoryRequirements (

 VkDevice device,

 VkBuffer buffer,

 VkMemoryRequirements* pMemoryRequirements);

and

Click here to view code image

void vkGetImageMemoryRequirements (

 VkDevice device,

 VkImage image,

 VkMemoryRequirements* pMemoryRequirements);

The only difference between these two functions is that vkGetBufferMemoryRequirements() takes a handle to a buffer object and vkGetImageMemoryRequirements() takes a handle to an image object. Both functions return the memory requirements for the resource in an instance of the VkMemoryRequirements structure, the address of which is passed in the pMemoryRequirements parameter. The definition of VkMemoryRequirements is

Click here to view code image

typedef struct VkMemoryRequirements {

 VkDeviceSize size;

 VkDeviceSize alignment;

 uint32_t memoryTypeBits;

} VkMemoryRequirements;

The amount of memory needed by the resource is placed in the size field, and the alignment requirements of the object are placed in the alignment field. When you bind memory to the object (which we will get to in a moment), you need to ensure that the offset from the start of the memory object meets the alignment requirements of the resource and that there is sufficient space in the memory object to store the object.

The memoryTypeBits field is populated with all the memory types that the resource can be bound to. One bit is turned on, starting from the least significant bit, for each type that can be used with the resource. If you have no particular requirements for the memory, simply find the lowest-set bit and use its index to choose the memory type, which is then used as the memoryTypeIndex field in the allocation info passed to a call to vkAllocateMemory(). If you do have particular requirements or preferences for the memory—if you want to be able to map the memory or prefer that it be host local, for example—look for a type that includes those bits and is supported by the resource.

Listing 2.5 shows an example of an appropriate algorithm for choosing the memory type for an image resource.

Listing 2.5: Choosing a Memory Type for an Image

Click here to view code image

uint32_t application::chooseHeapFromFlags(

 const VkMemoryRequirements& memoryRequirements,

 VkMemoryPropertyFlags requiredFlags,

 VkMemoryPropertyFlags preferredFlags)

{

 VkPhysicalDeviceMemoryProperties deviceMemoryProperties;

 vkGetPhysicalDeviceMemoryProperties(m_physicalDevices[0],

 &deviceMemoryProperties);

 uint32_t selectedType = ~0u;

 uint32_t memoryType;

 for (memoryType = 0; memoryType < 32; ++memoryType)

 {

 if (memoryRequirements.memoryTypeBits & (1 << memoryType))

 {

 const VkMemoryType& type =

 deviceMemoryProperties.memoryTypes[memoryType];

 // If it exactly matches my preferred properties, grab it.

 if ((type.propertyFlags & preferredFlags) == preferredFlags)

 {

 selectedType = memoryType;

 break;

 }

 }

 }

 if (selectedType != ~0u)

 {

 for (memoryType = 0; memoryType < 32; ++memoryType)

 {

 if (memoryRequirements.memoryTypeBits & (1 << memoryType))

 {

 const VkMemoryType& type =

 deviceMemoryProperties.memoryTypes[memoryType];

 // If it has all my required properties, it'll do.

 if ((type.propertyFlags & requiredFlags) == requiredFlags)

 {

 selectedType = memoryType;

 break;

 }

 }

 }

 }

 return selectedType;

}

The algorithm shown in Listing 2.5 chooses a memory type given the memory requirements for an object, a set of hard requirements, and a set of preferred requirements. First, it iterates through the device’s supported memory types and checks each for the set of preferred flags. If there is a memory type that contains all of the flags that the caller prefers, then it immediately returns that memory type. If none of the device’s memory types exactly matches the preferred flags, then it iterates again, this time returning the first memory type that meets all of the requirements.

Once you have chosen the memory type for the resource, you can bind a piece of a memory object to that resource by calling either vkBindBufferMemory() for buffer objects or vkBindImageMemory() for image objects. Their prototypes are

Click here to view code image

VkResult vkBindBufferMemory (

 VkDevice device,

 VkBuffer buffer,

 VkDeviceMemory memory,

 VkDeviceSize memoryOffset);

and

Click here to view code image

VkResult vkBindImageMemory (

 VkDevice device,

 VkImage image,

 VkDeviceMemory memory,

 VkDeviceSize memoryOffset);

Again, these two functions are identical in declaration except that vkBindBufferMemory() takes a VkBuffer handle and vkBindImageMemory() takes a VkImage handle. In both cases, device must own both the resource and the memory object, whose handle is passed in memory. This is the handle of a memory allocation created through a call to vkAllocateMemory().

Access to buffer and image from vkBindBufferMemory() and vkBindImageMemory(), respectively, must be externally synchronized. Once memory has been bound to a resource object, the memory binding cannot be changed again. If two threads attempt to execute vkBindBufferMemory() or vkBindImageMemory() concurrently, then which thread’s binding takes effect and which one is invalid is subject to a race condition. Even resolving the race condition would not produce a legal command sequence, so this should be avoided.

The memoryOffset parameter specifies where in the memory object the resource will live. The amount of memory consumed by the object is determined from the size of the object’s requirements, as discovered with a call to vkGetBufferMemoryRequirements() or vkGetImageMemoryRequirements().

It is very strongly recommended that rather than simply creating a new memory allocation for each resource, you create a pool of a small number of relatively large memory allocations and place multiple resources in each one at different offsets. It is possible for two resources to overlap in memory. In general, aliasing data like this is not well defined, but if you can be sure that two resources are not used at the same time, this can be a good way to reduce the memory requirements of your application.

An example of a device memory allocator is included with the book’s source code.

Sparse Resources

Sparse resources are a special type of resource that can be partially backed by memory and can have their memory backing changed after they have been created and even used in the application. A sparse resource must still be bound to memory before it can be used, although that binding can be changed. Additionally, an image or buffer can support sparse residency, which allows parts of the image to not be backed by memory at all.

To create a sparse image, set the VK_IMAGE_CREATE_SPARSE_BINDING_BIT in the flags field of the VkImageCreateInfo structure used to create the image. Likewise, to create a sparse buffer, set the VK_BUFFER_CREATE_SPARSE_BINDING_BIT in the flags field of the VkBufferCreateInfo structure used to create the buffer.

If an image was created with the VK_IMAGE_CREATE_SPARSE_BINDING_BIT bit set, your application should call vkGetImageSparseMemoryRequirements() to determine the additional requirements that the image needs. The prototype of vkGetImageSparseMemoryRequirements() is

Click here to view code image

void vkGetImageSparseMemoryRequirements (

 VkDevice device,

 VkImage image,

 uint32_t* pSparseMemoryRequirementCount,

 VkSparseImageMemoryRequirements* pSparseMemoryRequirements);

The device that owns the image should be passed in device, and the image whose requirements to query should be passed in image. The pSparseMemoryRequirements parameter points to an array of VkSparseImageMemoryRequirements structures that will be filled with the requirements of the image.

If pSparseMemoryRequirements is nullptr, then the initial value of the variable pointed to by pSparseMemoryRequirementCount is ignored and is overwritten with the number of requirements of the image. If pSparseMemoryRequirements is not nullptr, then the initial value of the variable pointed to by pSparseMemoryRequirementCount is the number of elements in the pSparseMemoryRequirements array and is overwritten with the number of requirements actually written to the array.

The definition of VkSparseImageMemoryRequirements is

Click here to view code image

typedef struct VkSparseImageMemoryRequirements {

 VkSparseImageFormatProperties formatProperties;

 uint32_t imageMipTailFirstLod;

 VkDeviceSize imageMipTailSize;

 VkDeviceSize imageMipTailOffset;

 VkDeviceSize imageMipTailStride;

} VkSparseImageMemoryRequirements;

The first field of VkSparseImageMemoryRequirements is an instance of the VkSparseImageFormatProperties structure that provides general information about how the image is laid out in memory with respect to binding.

Click here to view code image

typedef struct VkSparseImageFormatProperties {

 VkImageAspectFlags aspectMask;

 VkExtent3D imageGranularity;

 VkSparseImageFormatFlags flags;

} VkSparseImageFormatProperties;

The aspectMask field of VkSparseImageFormatProperties is a bitfield indicating the image aspects to which the properties apply. This will generally be all of the aspects in the image. For color images, it will be VK_IMAGE_ASPECT_COLOR_BIT, and for depth, stencil, and depth-stencil images, it will be either or both of VK_IMAGE_ASPECT_DEPTH_BIT and VK_IMAGE_ASPECT_STENCIL_BIT.

When memory is bound to a sparse image, it is bound in blocks rather than to the whole resource at once. Memory has to be bound in implementation-specific sized blocks, and the imageGranularity field of VkSparseImageFormatProperties contains this size.

Finally, the flags field contains some addional flags describing further behavior of the image. The flags that may be included are

• VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT: If this bit is set and the image is an array, then the mip tail shares a binding shared by all array layers. If the bit is not set, then each array layer has its own mip tail that can be bound to memory independently of others.

• VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT: If this bit is set, it is an indicator that the mip tail begins with the first level that is not a multiple of the image’s binding granularity. If the bit is not set, then the tail begins at the first level that is smaller than the image’s binding granularity.

• VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT: If this bit is set, then the image’s format does support sparse binding, but not with the standard block sizes. The values reported in imageGranularity are still correct for the image but don’t necessarily match the standard block for the format.

Unless VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT is set in flags, then the values in imageGranularity match a set of standard block sizes for the format. The size, in texels, of various formats is shown in Table 2.1.

The remaining fields of VkSparseImageMemoryRequirements describe how the format used by the image behaves in the mip tail. The mip tail is the region of the mipmap chain beginning from the first level that cannot be sparsely bound to memory. This is typically the first level that is smaller than the size of the format’s granularity. As memory must be bound to sparse resources in units of the granularity, the mip tail presents an all-or-nothing binding opportunity. Once any level of the mipmap’s tail is bound to memory, all levels within the tail become bound.

[image: Image]

Table 2.1: Sparse Texture Block Sizes

The mip tail begins at the level reported in the imageMipTailFirstLod field of VkSparseImageMemoryRequirements. The size of the tail, in bytes, is contained in imageMipTailSize, and it begins at imageMipTailOffset bytes into the image’s memory binding region. If the image does not have a single mip tail binding for all array layers (as indicated by the presence of VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT in the aspectMask field of VkSparseImageFormatProperties), then imageMipTailStride is the distance, in bytes, between the start of the memory binding for each mip tail level.

The properties of a specific format can also be determined by calling vkGetPhysicalDeviceSparseImageFormatProperties(), which, given a specific format, will return a VkSparseImageFormatProperties describing that format’s sparse image requirements without the need to create an image and query it. The prototype of vkGetPhysicalDeviceSparseImageFormatProperties() is

Click here to view code image

void vkGetPhysicalDeviceSparseImageFormatProperties (

 VkPhysicalDevice physicalDevice,

 VkFormat format,

 VkImageType type,

 VkSampleCountFlagBits samples,

 VkImageUsageFlags usage,

 VkImageTiling tiling,

 uint32_t* pPropertyCount,

 VkSparseImageFormatProperties* pProperties);

As you can see, vkGetPhysicalDeviceSparseImageFormatProperties() takes as parameters many of the properties that would be used to construct an image. Sparse image properties are a function of a physical device, a handle to which should be passed in physicalDevice. The format of the image is passed in format, and the type of image (VK_IMAGE_TYPE_1D, VK_IMAGE_TYPE_2D, or VK_IMAGE_TYPE_3D) is passed in type. If multisampling is required, the number of samples (represented as one of the members of the VkSampleCountFlagBits enumeration) is passed in samples.

The intended usage for the image is passed in usage. This should be a bitfield containing the flags specifying how an image with this format will be used. Be aware that sparse images may not be supported at all under certain use cases, so it’s best to set this field conservatively and accurately rather than just turning on every bit and hoping for the best. Finally, the tiling mode to be used for the image is specified in tiling. Again, standard block sizes may be supported only in certain tiling modes. For example, it’s very unlikely that an implementation would support standard (or even reasonable) block sizes when LINEAR tiling is used.

Just as with vkGetPhysicalDeviceImageFormatProperties(), vkGetPhysicalDeviceSparseImageFormatProperties() can return an array of properties. The pPropertyCount parameter points to a variable that will be overwritten with the number of properties reported for the format. If pProperties is nullptr, then the initial value of the variable pointed to by pPropertyCount is ignored and the total number of properties is written into it. If pProperties is not nullptr, then it should be a pointer to an array of VkSparseImageFormatProperties structures that will receive the properties of the image. In this case, the initial value of the variable pointed to by pPropertyCount is the number of elements in the array, and it is overwritten with the number of items populated in the array.

Because the memory binding used to back sparse images can be changed, even after the image is in use, the update to the binding properties of the image is pipelined along with that work. Unlike vkBindImageMemory() and vkBindBufferMemory(), which are operations likely carried out by the host, memory is bound to a sparse resource using an operation on the queue, allowing the device to execute them. The command to bind memory to a sparse resource is vkQueueBindSparse(), the prototype of which is

Click here to view code image

VkResult vkQueueBindSparse (

 VkQueue queue,

 uint32_t bindInfoCount,

 const VkBindSparseInfo* pBindInfo,

 VkFence fence);

The queue that will execute the binding operation is specified in queue. Several binding operations can be performed by a single call to vkQueueBindSparse(). The number of operations to perform is passed in bindInfoCount, and pBindInfo is a pointer to an array of bindInfoCount VkBindSparseInfo structures, each describing one of the bindings. The definition of VkBindSparseInfo is

Click here to view code image

typedef struct VkBindSparseInfo {

 VkStructureType sType;

 const void* pNext;

 uint32_t waitSemaphoreCount;

 const VkSemaphore* pWaitSemaphores;

 uint32_t bufferBindCount;

 const VkSparseBufferMemoryBindInfo* pBufferBinds;

 uint32_t imageOpaqueBindCount;

 const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;

 uint32_t imageBindCount;

 const VkSparseImageMemoryBindInfo* pImageBinds;

 uint32_t signalSemaphoreCount;

 const VkSemaphore* pSignalSemaphores;

} VkBindSparseInfo;

The act of binding memory to sparse resources is actually pipelined with other work performed by the device. As you read in Chapter 1, “Overview of Vulkan,” work is performed by submitting it to queues. The binding is then performed along with the execution of commands submitted to the same queue. Because vkQueueBindSparse() behaves a lot like a command submission, VkBindSparseInfo contains many fields related to synchronization.

The sType field of VkBindSparseInfo should be set to VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, and pNext should be set to nullptr. As with VkSubmitInfo, each sparse binding operation can optionally wait for one or more semaphores to be signaled before performing the operation and can signal one or more semaphores when it is done. This allows updates to the sparse resource’s bindings to be synchronized with other work performed by the device.

The number of semaphores to wait on is specified in waitSemaphoreCount, and the number of semaphores to signal is specified in signalSemaphoreCount. The pWaitSemaphores field is a pointer to an array of waitSemaphoreCount semaphore handles to wait on, and pSignalSemaphores is a pointer to an array of signalSemaphoreCount semaphores to signal. Semaphores are covered in some detail in Chapter 11, “Synchronization.”

Each binding operation can include updates to buffers and images. The number of buffer binding updates is specified in bufferBindCount and pBufferBinds is a pointer to an array of bufferBindCount VkSparseBufferMemoryBindInfo structures, each describing one of the buffer memory binding operations. The definition of VkSparseBufferMemoryBindInfo is

Click here to view code image

typedef struct VkSparseBufferMemoryBindInfo {

 VkBuffer buffer;

 uint32_t bindCount;

 const VkSparseMemoryBind* pBinds;

} VkSparseBufferMemoryBindInfo;

Each instance of VkSparseBufferMemoryBindInfo contains the handle of the buffer to which memory will be bound. A number of regions of memory can be bound to the buffer at different offsets. The number of memory regions is specified in bindCount, and each binding is described by an instance of the VkSparseMemoryBind structure. pBinds is a pointer to an array of bindCount VkSparseMemoryBind structures. The definition of VkSparseMemoryBind is

Click here to view code image

typedef struct VkSparseMemoryBind {

 VkDeviceSize resourceOffset;

 VkDeviceSize size;

 VkDeviceMemory memory;

 VkDeviceSize memoryOffset;

 VkSparseMemoryBindFlags flags;

} VkSparseMemoryBind;

The size of the block of memory to bind to the resource is contained in size. The offsets of the block in the resource and in the memory object are contained in resourceOffset and memoryOffset, respectively, and are both expressed in units of bytes. The memory object that is the source of storage for the binding is specified in memory. When the binding is executed, the block of memory, size bytes long and starting at memoryOffset bytes into the memory object specified in memory, will be bound into the buffer specified in the buffer field of the VkSparseBufferMemoryBindInfo structure.

The flags field contains additional flags that can be used to further control the binding. No flags are used for buffer resources. However, image resources use the same VkSparseMemoryBind structure to affect memory bindings directly to images. This is known as an opaque image memory binding, and the opaque image memory bindings to be performed are also passed through the VkBindSparseInfo structure. The pImageOpaqueBinds member of VkBindSparseInfo points to an array of imageOpaqueBindCount VkSparseImageOpaqueMemoryBindInfo structures defining the opaque memory bindings. The definition of VkSparseImageOpaqueMemoryBindInfo is

Click here to view code image

typedef struct VkSparseImageOpaqueMemoryBindInfo {

 VkImage image;

 uint32_t bindCount;

 const VkSparseMemoryBind* pBinds;

} VkSparseImageOpaqueMemoryBindInfo;

Just as with VkSparseBufferMemoryBindInfo, VkSparseImageOpaqueMemoryBindInfo contains a handle to the image to which to bind memory in image and a pointer to an array of VkSparseMemoryBind structures in pBinds, which is bindCount elements long. This is the same structure used for buffer memory bindings. However, when this structure is used for images, you can set the flags field of each VkSparseMemoryBind structure to include the VK_SPARSE_MEMORY_BIND_METADATA_BIT flag in order to explicitly bind memory to the metadata associated with the image.

When memory is bound opaquely to a sparse image, the blocks of memory have no defined correlation with texels in the image. Rather, the backing store of the image is treated as a large, opaque region of memory with no information about how texels are laid out in it provided to the application. However, so long as memory is bound to the entire image when it is used, results will still be well-defined and consistent. This allows sparse images to be backed by multiple, smaller memory objects, potentially easing pool allocation strategies, for example.

To bind memory to an explicit region of an image, you can perform a nonopaque image memory binding by passing one or more VkSparseImageMemoryBindInfo structures through the VkBindSparseInfo structures passed to vkQueueBindSparse(). The definition of VkSparseImageMemoryBindInfo is

Click here to view code image

typedef struct VkSparseImageMemoryBindInfo {

 VkImage image;

 uint32_t bindCount;

 const VkSparseImageMemoryBind* pBinds;

} VkSparseImageMemoryBindInfo;

Again, the VkSparseImageMemoryBindInfo structure contains a handle to the image to which to bind memory in image, a count of the number of bindings to perform in bindCount, and a pointer to an array of structures describing the bindings in pBinds. This time, however, pBinds points to an array of bindCount VkSparseImageMemoryBind structures, the definition of which is

Click here to view code image

typedef struct VkSparseImageMemoryBind {

 VkImageSubresource subresource;

 VkOffset3D offset;

 VkExtent3D extent;

 VkDeviceMemory memory;

 VkDeviceSize memoryOffset;

 VkSparseMemoryBindFlags flags;

} VkSparseImageMemoryBind;

The VkSparseImageMemoryBind structure contains much more information about how the memory is to be bound to the image resource. For each binding, the image subresource to which the memory is to be bound is specified in subresource, which is an instance of the VkImageSubresource, the definition of which is

Click here to view code image

typedef struct VkImageSubresource {

 VkImageAspectFlags aspectMask;

 uint32_t mipLevel;

 uint32_t arrayLayer;

} VkImageSubresource;

The VkImageSubresource allows you to specify the aspect of the image (VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_DEPTH_BIT, or VK_IMAGE_ASPECT_STENCIL_BIT, for example) in aspectMask, the mipmap level to which you want to bind memory in mipLevel, and the array layer where the memory should be bound in arrayLayer. For nonarray images, arrayLayer should be set to zero.

Within the subresource, the offset and extent fields of the VkSparseImageMemoryBind structure define the offset and size of the region of texels to bind the image data to. This must be aligned to the tile-size boundaries, which are either the standard sizes as shown in Table 2.1 or the per-format block size that can be retrieved from vkGetPhysicalDeviceSparseImageFormatProperties().

Again, the memory object from which to bind memory is specified in memory, and the offset within the memory where the backing store resides is specified in memoryOffset. The same flags are available in the flags field of VkSparseImageMemoryBind.

Summary

This chapter introduced you to the different types of resources that are used by Vulkan. It described how the memory used to back them is allocated and then associated with them. It also explained how you can manage the application memory used by Vulkan through the use of a custom allocator. You have seen how to move resources from state to state and how to synchronize acess to them through pipeline barriers. This enables efficient, parallel access to resources both from multiple stages of the Vulkan pipeline and from the host.

Chapter 3. Queues and Commands

What You’ll Learn in This Chapter

• What a queue is and how to use it

• How to create commands and send them to Vulkan

• How to ensure that a device has finished processing your work

Vulkan devices expose multiple queues that perform work. In this chapter, we discuss the various queue types and explain how to submit work to them in the form of command buffers. We also show how to instruct a queue to complete all of the work you’ve sent it.

Device Queues

Each device in Vulkan has one or more queues. The queue is the part of the device that actually performs work. It can be thought of as a subdevice that exposes a subset of the device’s functionality. In some implementations, each queue may even be a physically separate part of the system.

Queues are grouped into one or more queue families, each containing one or more queues. Queues within a single family are essentially identical. Their capabilities are the same, their performance level and access to system resources is the same, and there is no cost (beyond synchronization) of transferring work between them. If a device contains multiple cores that have the same capabilities but differ in performance, access to memory, or some other factor that might mean they can’t operate identically, it may expose them in separate families that otherwise appear identical.

As discussed in Chapter 1, “Overview of Vulkan,” you can query the properties of each of a physical device’s queue families by calling vkGetPhysicalDeviceQueueFamilyProperties(). This function writes the properties of the queue family into an instance of the VkQueueFamilyProperties structure that you hand it.

The number and type of queues that you wish to use must be specified when you create the device. As you saw in Chapter 1, “Overview of Vulkan,” the VkDeviceCreateInfo structure that you pass to vkCreateDevice() contains the queueCreateInfoCount and pQueueCreateInfos members. Chapter 1, “Overview of Vulkan,” glossed over them, but now it’s time to fill them in. The queueCreateInfoCount member contains the number of VkDeviceQueueCreateInfo structures stored in the array pointed to by pQueueCreateInfos. The definition of the VkDeviceQueueCreateInfo structure is

Click here to view code image

typedef struct VkDeviceQueueCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDeviceQueueCreateFlags flags;

 uint32_t queueFamilyIndex;

 uint32_t queueCount;

 const float* pQueuePriorities;

} VkDeviceQueueCreateInfo;

As with most Vulkan structures, the sType field is the structure type, which in this case should be VK_STRUCTURE_TYPE_QUEUE_CREATE_INFO, and the pNext field is used for extensions and should be set to nullptr when none are used. The flags field contains flags controlling queue construction, but no flag is defined for use in the current version of Vulkan, so this field should be set to zero.

The fields of interest here are queueFamilyIndex and queueCount. The queueFamilyIndex field specifies the family from which you want to allocate queues, and the queueCount field specifies the number of queues to allocate from that family. To allocate queues from multiple families, simply pass an array of more than one VkDeviceQueueCreateInfo structure in the pQueueCreateInfos member of the VkDeviceCreateInfo structure.

The queues are constructed when the device is created. For this reason, we don’t create queues, but obtain them from the device. To do this, call vkGetDeviceQueue():

Click here to view code image

void vkGetDeviceQueue (

 VkDevice device,

 uint32_t queueFamilyIndex,

 uint32_t queueIndex,

 VkQueue* pQueue);

The vkGetDeviceQueue() function takes as arguments the device from which you want to obtain the queue, the family index, and the index of the queue within that family. These are specified in device, queueFamilyIndex, and queueIndex, respectively. The pQueue parameter points to the VkQueue handle that is to be filled with the handle to the queue. queueFamilyIndex and queueIndex must refer to a queue that was initialized when the device was created. If they do, a queue handle is placed into the variable pointed to by pQueue; otherwise, this variable is set to VK_NULL_HANDLE.

Creating Command Buffers

The primary purpose of a queue is to process work on behalf of your application. Work is represented as a sequence of commands that are recorded into command buffers. Your application will create command buffers containing the work it needs to do and submit them to one of the queues for execution. Before you can record any commands, you need to create a command buffer. Command buffers themselves are not created directly, but allocated from pools. To create a pool, call vkCreateCommandPool(), whose prototype is

Click here to view code image

VkResult vkCreateCommandPool (

 VkDevice device,

 const VkCommandPoolCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkCommandPool* pCommandPool);

As with most Vulkan object creation functions, the first parameter, device, is the handle to the device that will own the new pool object, and a description of the pool is passed via a structure, a pointer to which is placed in pCreateInfo. This structure is an instance of VkCommandPoolCreateInfo, the definition of which is

Click here to view code image

typedef struct VkCommandPoolCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkCommandPoolCreateFlags flags;

 uint32_t queueFamilyIndex;

} VkCommandPoolCreateInfo;

As with most Vulkan structures, the first two fields, sType and pNext, contain the structure type and a pointer to another structure containing more information about the pool to be created. Here, we’ll set sType to VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO and, because we’re not passing any extra information, set pNext to nullptr.

The flags field contains flags that determine the behavior of the pool and the command buffers that are allocated from it. These are members of the VkCommandPoolCreateFlagBits enumeration, and there are currently two flags defined for use here.

• Setting the VK_COMMAND_POOL_CREATE_TRANSIENT_BIT indicates that command buffers taken from the pool will be short-lived and returned to the pool shortly after use. Not setting this bit suggests to Vulkan that you might keep the command buffers around for some time.

• Setting the VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT allows individual command buffers to be reused by resetting them or restarting them. (Don’t worry, we’ll cover that in a moment.) If this bit is not specified, then only the pool itself can be reset, which implicitly recycles all of the command buffers allocated from it.

Each of these bits may add some overhead to the work done by a Vulkan implementation to track the resources or otherwise alter its allocation strategy. For example, setting VK_COMMAND_POOL_CREATE_TRANSIENT_BIT may cause a Vulkan implementation to employ a more advanced allocation strategy for the pool in order to avoid fragmentation as command buffers are frequently allocated and then returned to it. Setting VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT may cause the implementation to track the reset status of each command buffer rather than simply track it at the pool level.

In this case, we’re actually going to set both bits. This gives us the most flexibility, possibly at the expense of some performance in cases where we could have managed command buffers in bulk.

Finally, the queueFamilyIndex field of VkCommandPoolCreateInfo specifies the family of queues to which command buffers allocated from this pool will be submitted. This is necessary because even where two queues on a device have the same capabilities and support the same set of commands, issuing a particular command to one queue may work differently from issuing that same command to another queue.

The pAllocator parameter is used for application-managed host memory allocations, which is covered in Chapter 2, “Memory and Resources.” Assuming successful creation of the command pool, its handle will be written into the variable pointed to by pCommandPool, and vkCreateCommandPool() will return VK_SUCCESS.

Once we have a pool from which to allocate command buffers, we can grab new command buffers by calling vkAllocateCommandBuffers(), which is defined as

Click here to view code image

VkResult vkAllocateCommandBuffers (

 VkDevice device,

 const VkCommandBufferAllocateInfo* pAllocateInfo,

 VkCommandBuffer* pCommandBuffers);

The device used to allocate the command buffers is passed in device, and the remaining parameters describing the command buffers to allocate are passed in an instance of the VkCommandBufferAllocateInfo structure, the address of which is passed in pCommandBuffers. The definition of VkCommandBufferAllocateInfo is

Click here to view code image

typedef struct VkCommandBufferAllocateInfo {

 VkStructureType sType;

 const void* pNext;

 VkCommandPool commandPool;

 VkCommandBufferLevel level;

 uint32_t commandBufferCount;

} VkCommandBufferAllocateInfo;

The sType field should be set to VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, and as we’re using only the core feature set here, we set the pNext parameter to nullptr. A handle to the command pool that we created earlier is placed into the commandPool parameter.

The level parameter specifies the level of the command buffers that we want to allocate. It can be set to either VK_COMMAND_BUFFER_LEVEL_PRIMARY or VK_COMMAND_BUFFER_LEVEL_SECONDARY. Vulkan allows primary command buffers to call secondary command buffers. For our first few examples, we will use only primary-level command buffers. We’ll cover secondary-level command buffers later in the book.

Finally, commandBufferCount specifies the number of command buffers that we want to allocate from the pool. Note that we don’t tell Vulkan anything about the length or size of the command buffers we’re creating. The internal data structures representing device commands will generally vary too greatly for any unit of measurement, such as bytes or commands, to make much sense. Vulkan will manage the command buffer memory for you.

If vkAllocateCommandBuffers() is successful, it will return VK_SUCCESS and place the handles to the allocated command buffers in the array pointed to by pCommandBuffers. This array should be big enough to hold all the handles. Of course, if you want to allocate only a single command buffer, you can point this at a regular VkCommandBuffer handle.

To free command buffers, we use the vkFreeCommandBuffers() command, which is declared as

Click here to view code image

void vkFreeCommandBuffers (

 VkDevice device,

 VkCommandPool commandPool,

 uint32_t commandBufferCount,

 const VkCommandBuffer* pCommandBuffers);

The device parameter is the device that owns the pool from which the command buffers were allocated. commandPool is a handle to that pool, commandBufferCount is the number of command buffers to free, and pCommandBuffers is a pointer to an array of commandBufferCount handles to the command buffers to free. Note that freeing a command buffer doesn’t necessarily free all of the resources associated with it but returns them to the pool from which they were allocated.

To free all of the resources used by a command pool and all of the command buffers allocated from it, call vkDestroyCommandPool(), the prototype of which is

Click here to view code image

void vkDestroyCommandPool (

 VkDevice device,

 VkCommandPool commandPool,

 const VkAllocationCallbacks* pAllocator;

The device that owns the command pool is passed in the device parameter, and a handle to the command pool to destroy is passed in commandPool. A pointer to a host memory allocation structure compatible with the one used to create the pool is passed in pAllocator. This parameter should be nullptr if the pAllocator parameter to vkCreateCommandPool() was also nullptr.

There is no need to explicitly free all of the command buffers allocated from a pool before destroying the pool. The command buffers allocated from the pool are all freed as a part of destroying the pool and freeing its resources. Care should be taken, however, that no command buffers allocated from the pool are still executing or queued for execution on the device when vkDestroyCommandPool() is called.

Recording Commands

Commands are recorded into command buffers using Vulkan command functions, all of which take a command buffer handle as their first parameter. Access to the command buffer must be externally synchronized, meaning that it is the responsibility of your application to ensure that no two threads simultaneously attempt to record commands into the same command buffer at the same time. However, the following is perfectly acceptable:

• One thread can record commands into multiple command buffers by simply calling command buffer functions on different command buffers in succession.

• Two or more threads can participate in building a single command buffer, so long as the application can guarantee that no two of them are ever executing a command buffer building function concurrently.

One of the key design principles of Vulkan is to enable efficient multithreading. To achieve this, it is important that your application’s threads do not block each other’s execution by, for example, taking a mutex to protect a shared resource. For this reason, it’s best to have one or more command buffers for each thread rather than to try sharing one. Further, as command buffers are allocated from pools, you can go further and create a command pool for each thread, allowing command buffers to be allocated by your worker threads from their respective pools without interacting.

Before you can start recording commands into a command buffer, however, you have to begin the command buffer, which resets it to an initial state. To do this, call vkBeginCommandBuffer(), the prototype of which is

Click here to view code image

VkResult vkBeginCommandBuffer (

 VkCommandBuffer commandBuffer,

 const VkCommandBufferBeginInfo* pBeginInfo);

The command buffer to begin recording is passed in commandBuffer, and the parameters that are used in recording this command buffer are passed through a pointer to a VkCommandBufferBeginInfo structure specified in pBeginInfo. The definition of VkCommandBufferBeginInfo is

Click here to view code image

typedef struct VkCommandBufferBeginInfo {

 VkStructureType sType;

 const void* pNext;

 VkCommandBufferUsageFlags flags;

 const VkCommandBufferInheritanceInfo* pInheritanceInfo;

} VkCommandBufferBeginInfo;

The sType field of VkCommandBufferBeginInfo should be set to VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, and pNext should be set to nullptr. The flags field is used to tell Vulkan how the command buffer will be used. This should be a bitwise combination of some of the members of the VkCommandBufferUsageFlagBits enumeration, which include the following:

• VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT means that the command buffer will be recorded, executed only once, and then destroyed or recycled.

• VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT means that the command buffer will be used inside a renderpass and is valid only for secondary command buffers. The flag is ignored when you create a primary command buffer, which is what we will cover in this chapter. Renderpasses and secondary command buffers are covered in more detail in Chapter 13, “Multipass Rendering.”

• VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT means that the command buffer might be executed or pending execution more than once.

For our purposes, it’s safe to set flags to zero, which means that we might execute the command buffer more than once but not simultaneously and that we’re not creating a secondary command buffer.

The pInheritanceInfo member of VkCommandBufferBeginInfo is used when beginning a secondary command buffer to define which states are inherited from the primary command buffer that will call it. For primary command buffers, this pointer is ignored. We’ll cover the content of the VkCommandBufferInheritanceInfo structure when we introduce secondary command buffers in Chapter 13, “Multipass Rendering.”

Now it’s time to create our first command. Back in Chapter 2, “Memory and Resources,” you learned about buffers, images, and memory. The vkCmdCopyBuffer() command is used to copy data between two buffer objects. Its prototype is

Click here to view code image

void vkCmdCopyBuffer (

 VkCommandBuffer commandBuffer,

 VkBuffer srcBuffer,

 VkBuffer dstBuffer,

 uint32_t regionCount,

 const VkBufferCopy* pRegions);

This is the general form of all Vulkan commands. The first parameter, commandBuffer, is the command buffer to which the command is appended. The srcBuffer and dstBuffer parameters specify the buffer objects to be used as the source and destination of the copy, respectively. Finally, an array of regions is passed to the function. The number of regions is specified in regionCount, and the address of the array of regions is specified in pRegions. Each region is represented as an instance of the VkBufferCopy structure, the definition of which is

Click here to view code image

typedef struct VkBufferCopy {

 VkDeviceSize srcOffset;

 VkDeviceSize dstOffset;

 VkDeviceSize size;

} VkBufferCopy;

Each element of the array simply contains the source and destination offsets and the size of each region to be copied in srcOffset, dstOffset, and size, respectively. When the command is executed, for each region in pRegions, size bytes of data will be copied from srcOffset in srcBuffer to dstOffset in dstBuffer. The offsets are also measured in bytes.

One thing that is fundamental to the operation of Vulkan is that the commands are not executed as soon as they are called. Rather, they are simply added to the end of the specified command buffer. If you are copying data to or from a region of memory that is visible to the host (i.e., it’s mapped), then you need to be sure of several things:

• Ensure that the data is in the source region before the command is executed by the device.

• Ensure that the data in the source region is valid until after the command has been executed on the device.

• Ensure that you don’t read the destination data until after the command has been executed on the device.

The first of these is perhaps the most interesting. In particular, it means that you can build the command buffer containing the copy command before putting the source data in memory. So long as the source data is in the right place before the command buffer is executed, things will work out.

Listing 3.1 demonstrates how to use vkCmdCopyBuffer() to copy a section of data from one buffer to another. The command buffer to perform the copy with is passed in the cmdBuffer parameter; the source and destination buffers are passed in srcBuffer and dstBuffer parameters, respectively; and the offsets of the data within them is passed in the srcOffset and dstOffset parameters. The function packs these parameters, along with the size of the copy, into a VkBufferCopy structure and calls vkCmdCopyBuffer() to perform the copy operation.

Listing 3.1: Example of Using vkCmdCopyBuffer()

Click here to view code image

void CopyDataBetweenBuffers(VkCmdBuffer cmdBuffer,

 VkBuffer srcBuffer, VkDeviceSize srcOffset,

 VkBuffer dstBuffer, VkDeviceSize dstOffset,

 VkDeviceSize size)

{

 const VkBufferCopy copyRegion =

 {

 srcOffset, dstOffset, size

 };

 vkCmdCopyBuffer(cmdBuffer, srcBuffer, dstBuffer, 1, ©Region);

}

Remember that srcOffset and dstOffset are relative to the start of the source and destination buffers, respectively, but that each of those buffers could be bound to memory at different offsets and could potentially be bound to the same memory object. Therefore, if one of the memory objects is mapped, the offset within the memory object is the offset at which the buffer object is bound to it plus the offset you pass to vkCmdCopyBuffer().

Before the command buffer is ready to be sent to the device for execution, we must tell Vulkan that we’re done recording commands into it. To do this, we call vkEndCommandBuffer(), the prototype of which is

Click here to view code image

VkResult vkEndCommandBuffer (

 VkCommandBuffer commandBuffer);

The vkEndCommandBuffer() function takes only a single parameter, commandBuffer, which is the command buffer to end recording. After vkEndCommandBuffer() is executed on a command buffer, Vulkan finishes any final work it needs to do to get the command buffer ready for execution.

Recycling Command Buffers

In many applications, a similar sequence of commands is used to render all or part of each frame. Therefore, it is likely that you will record similar command buffers over and over. Using the commands introduced so far, you would call vkAllocateCommandBuffers() to grab one or more command buffer handles, record commands into the command buffers, and then call vkFreeCommandBuffers() to return the command buffers to their respective pools. This is a relatively heavyweight operation, and if you know that you will reuse a command buffer for similar work many times in a row, it may be more efficient to reset the command buffer. This effectively puts the command buffer back into its original state but does not necessarily interact with the pool at all. Therefore, if the command buffer dynamically allocates resources from the pool as it grows, it can hang on to those resources and avoid the cost of reallocation the second and subsequent times it’s rebuilt. To reset a command buffer, call vkResetCommandBuffer(), the prototype of which is

Click here to view code image

VkResult vkResetCommandBuffer (

 VkCommandBuffer commandBuffer,

 VkCommandBufferResetFlags flags);

The command buffer to reset is passed in commandBuffer. flags specifies additional operations to perform while resetting the command buffer. The only flag defined for use here is VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT. If this bit is set, then resources allocated from the pool by the command buffer are returned to the pool. Even with this bit set, it’s probably still more efficient to call vkResetCommandBuffer() than it is to free and reallocate a new command buffer.

It’s also possible to reset all the command buffers allocated from a pool in one shot. To do this, call vkResetCommandPool(), the prototype of which is

Click here to view code image

VkResult vkResetCommandPool (

 VkDevice device,

 VkCommandPool commandPool,

 VkCommandPoolResetFlags flags);

The device that owns the command pool is specified in device, and the pool to reset is specified in commandPool. Just as with vkResetCommandBuffer(), the flags parameter specifies additional action to be taken as part of resetting the pool. Again, the only flag defined for use here is VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT. When this bit is set, any resources dynamically allocated by the pool are freed as part of the reset operation.

Command buffers allocated from the pool are not freed by vkResetCommandPool(), but all reenter their initial state as if they had been freshly allocated. vkResetCommandPool() is typically used at the end of a frame to return a batch of reusable command buffers to their pool rather than individually reset individual command buffers.

Care should be taken to try to keep the complexity of command buffers consistent over their multiple uses if they are reset without returning resources to the pool. As a command buffer grows, it may allocate resources dynamically from the pool, and the command pool may allocate resources from a systemwide pool. The amount of resources that a command buffer may consume is essentially unbounded, because there is no hard-wired limit to the number of commands you can place in a single command buffer. If your application uses a mix of very small and very large command buffers, it’s possible that eventually all command buffers will grow as large as the most complex command buffers.

To avoid this scenario, either periodically specify the VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT or VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT when resetting command buffers or their pools, respectively, or try to ensure that the same command buffers are always used in the same way—either short, simple command buffers or long, complex command buffers. Avoid mixing use cases.

Submission of Commands

To execute the command buffer on the device, we need to submit it to one of the device’s queues. To do this, call vkQueueSubmit(), the prototype of which is

Click here to view code image

VkResult vkQueueSubmit (

 VkQueue queue,

 uint32_t submitCount,

 const VkSubmitInfo* pSubmits,

 VkFence fence);

This command can submit one or more command buffers to the device for execution. The queue parameter specifies the device queue to which to send the command buffer. Access to the queue must be externally synchronized. All of the command buffers to submit were allocated from a pool, and that pool must have been created with respect to one of the device’s queue families. This is the queueFamilyIndex member of the VkCommandPoolCreateInfo structure passed to vkCreateCommandPool(). queue must be a member of that family.

The number of submissions is specified in submitCount, and an array of structures describing each of the submissions is specified in pSubmits. Each submission is represented by an instance of the VkSubmitInfo structures, the definition of which is

Click here to view code image

typedef struct VkSubmitInfo {

 VkStructureType sType;

 const void* pNext;

 uint32_t waitSemaphoreCount;

 const VkSemaphore* pWaitSemaphores;

 const VkPipelineStageFlags* pWaitDstStageMask;

 uint32_t commandBufferCount;

 const VkCommandBuffer* pCommandBuffers;

 uint32_t signalSemaphoreCount;

 const VkSemaphore* pSignalSemaphores;

} VkSubmitInfo;

The sType field of VkSubmitInfo should be set to VK_STRUCTURE_TYPE_SUBMIT_INFO, and pNext should be set to nullptr. Each VkSubmitInfo structure can represent multiple command buffers that are to be executed by the device.

Each set of command buffers can be wrapped in a set of semaphores upon which to wait before beginning execution and can signal one or more semaphores when they complete execution. A semaphore is a type of synchronization primitive that allows work executed by different queues to be scheduled and coordinated correctly. We will cover semaphores along with other synchronization primitives in Chapter 11, “Synchronization.” For now, we’re not going to use these fields, so waitSemaphoreCount and signalSemaphoreCount can be set to zero, and pWaitSemaphores, pWaitDstStageMask, and pSignalSemaphores can all be set to nullptr.

The command buffers we want to execute are placed in an array, and its address is passed in pCommandBuffers. The number of command buffers to execute (the length of the pCommandBuffers array) is specified in commandBufferCount. At some time after the vkQueueSubmit() command is called, the commands in the command buffers begin executing on the device. Commands submitted to different queues on the same device (or to queues belonging to different devices) may execute in parallel. vkQueueSubmit() returns as soon as the specified command buffers have been scheduled, possibly long before they’ve even begun executing.

The fence parameter to vkQueueSubmit() is a handle to a fence object, which can be used to wait for completion of the commands executed by this submission. A fence is another type of synchronization primitive that we will cover in Chapter 11, “Synchronization.” For now, we’ll set fence to VK_NULL_HANDLE. Until we cover fences, we can wait for all work submitted to a queue to complete by calling vkQueueWaitIdle(). Its prototype is

Click here to view code image

VkResult vkQueueWaitIdle (

 VkQueue queue);

The only parameter to vkQueueWaitIdle(), queue, is the queue upon which to wait. When vkQueueWaitIdle() returns, all command buffers submitted to queue are guaranteed to have completed execution. A shortcut to wait for all commands submitted to all queues on a single device to have completed is to call vkDeviceWaitIdle(). Its prototype is

Click here to view code image

VkResult vkDeviceWaitIdle (

 VkDevice device);

Calling vkQueueWaitIdle() or vkDeviceWaitIdle() is really not recommended, as they fully flush any work on the queue or device and are very heavyweight operations. Neither should be called in any performance-critical part of your application. Suitable use cases include just before shutting down the application or when reinitializing application subsystems such as thread management, memory management, and so on, where there is likely to be a substantial pause anyway.

Summary

This chapter introduced you to command buffers, which are the mechanisms by which commands are communicated by your application to the Vulkan device. We introduced our first Vulkan command and showed you how to ask the device to execute work for you.

We discussed how to send the command buffers to the Vulkan device for execution by submitting them to the queue. You saw how to ensure that all work submitted to a queue or to a device has finished executing. Although we glossed over a number of important topics, such as how to call one command buffer from another and how to implement fine-grained synchronization between the host and the device and between queues on the device, these topics will be discussed in upcoming chapters.

Chapter 4. Moving Data

What You’ll Learn in This Chapter

• How to manage the state of resources as they are used by Vulkan

• How to copy data between resources and fill buffers and images with a known value

• How to perform blit operations to stretch and scale image data

Graphics and compute operations are generally data-intensive. Vulkan includes several objects that provide a means to store and manipulate data. It is often necessary to move data into and out of those objects, and several commands are provided to do exactly that: copy data and fill buffer and image objects. Further, at any given time a resource may be in one of any number of states, and many parts of the Vulkan pipeline may need access to them. This chapter covers data movement commands that can be used to copy data and fill memory—the commands needed to manage the state of resources as they are accessed by your applications.

Chapter 3, “Queues and Commands,” showed that commands executed by the device are placed in command buffers and submitted to one of its queues for execution. This is important because it means that commands are not executed as you call them in your application, but as they are encoutered by the device while it makes its way through the command buffers you’ve submitted. The first command you were introduced to, vkCmdCopyBuffer(), copies data between two buffers or between different regions in the same buffer. This is one of may commands that affect buffers, images, and other objects in Vulkan. This chapter covers similar commands for filling, copying, and clearing buffers and images.

Managing Resource State

At any given time in the execution of a program, each resource can be in one of many different states. For example, if the graphics pipeline is drawing to an image or using it as the source of texture data, or if Vulkan is copying data from the host into an image, each of those usage scenarios is different. For some Vulkan implementations, there may be no real difference between some of these states, and for others, accurately knowing the state of a resource at a given point in time can make the difference between your application working or rendering junk.

Because commands in command buffers are responsible for most access to resources, and because command buffers might be built in a different order from the order in which they are submitted for execution, it’s not really practical for Vulkan implementations to attempt to track the state of a resource and make sure it’s in the right one for each usage scenario. In particular, a resource may begin in one state and move to another due to the execution of a command buffer. While drivers could track the state of resources as they are used in a command buffer, tracking state across command buffers would require significant effort1 when the command buffers were submitted for execution. Therefore, this responsibility falls to your application. Resource state is perhaps most important for images because they are complex, structured resources.

1. The validation layers do, in fact, attempt to track this state. While this comes with a substantial performance impact, the layer is capable of catching and reporting many resource-state-related issues.

The state of an image is roughly divided into two essentially orthogonal pieces of state: its layout, which determines how the data is laid out in memory and was discussed briefly earlier in the book, and a record of who last wrote to the image, which affects caching and coherency of data on the device. The initial layout of an image is specified when it is created, and then can be changed throughout the image’s lifetime, either explicitly using barriers or implicitly using renderpass. Barriers also marshal access to resources from different parts of the Vulkan pipeline, and in some cases, transitioning a resource from one layout to another can be accomplished at other midpipeline synchronization work performed by barriers.

The specific use cases for each layout are discussed in some depth later in the book. However, the fundamental act of moving a resource from state to state is known as a barrier, and it is extremely important to get barriers right and to use them effectively in your application.

Pipeline Barriers

A barrier is a synchronization mechanism for memory access mamangement and resource state movement within the stages of the Vulkan pipeline. The primary command for synchronizing access to resources and moving them from state to state is vkCmdPipelineBarrier(), the prototype of which is

Click here to view code image

void vkCmdPipelineBarrier (

 VkCommandBuffer commandBuffer,

 VkPipelineStageFlags srcStageMask,

 VkPipelineStageFlags dstStageMask,

 VkDependencyFlags dependencyFlags,

 uint32_t memoryBarrierCount,

 const VkMemoryBarrier* pMemoryBarriers,

 uint32_t bufferMemoryBarrierCount,

 const VkBufferMemoryBarrier* pBufferMemoryBarriers,

 uint32_t imageMemoryBarrierCount,

 const VkImageMemoryBarrier* pImageMemoryBarriers);

The command buffer that will execute the barrier is passed in commandBuffer. The next two parameters, srcStageMask and dstStageMask, specify which pipeline stages wrote to the resource last and which stages will read from the resource next, respectively. That is, they specify the source and destination for the data flow represented by the barrier. Each is constructed from a number of the members of the VkPipelineStageFlagBits enumeration.

• VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT: The top of pipe is considered to be hit as soon as the device starts processing the command.

• VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT: When the pipeline executes an indirect command, it fetches some of the parameters for the command from memory. This is the stage that fetches those parameters.

• VK_PIPELINE_STAGE_VERTEX_INPUT_BIT: This is the stage where vertex attributes are fetched from their respective buffers. After this, content of vertex buffers can be overwritten, even if the resulting vertex shaders have not yet completed execution.

• VK_PIPELINE_STAGE_VERTEX_SHADER_BIT: This stage is passed when all vertex shader work resulting from a drawing command is completed.

• VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT: This stage is passed when all tessellation control shader invocations produced as the result of a drawing command have completed execution.

• VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT: This stage is passed when all tessellation evaluation shader invocations produced as the result of a drawing command have completed execution.

• VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT: This stage is passed when all geometry shader invocations produced as the result of a drawing command have completed execution.

• VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT: This stage is passed when all fragment shader invocations produced as the result of a drawing command have completed execution. Note that there is no way to know that a primitive has been completely rasterized while the resulting fragment shaders have not yet completed. However, rasterization does not access memory, so no information is lost here.

• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT: All per-fragment tests that might occur before the fragment shader is launched have completed.

• VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT: All per-fragment tests that might occur after the fragment shader is executed have completed. Note that outputs to the depth and stencil attachments happen as part of the test, so this stage and the early fragment test stage include the depth and stencil outputs.

• VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT: Fragments produced by the pipeline have been written to the color attachments.

• VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT: Compute shader invocations produced as the result of a dispatch have completed.

• VK_PIPELINE_STAGE_TRANSFER_BIT: Any pending transfers triggered as a result of calls to vkCmdCopyImage() or vkCmdCopyBuffer(), for example, have completed.

• VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT: All operations considered to be part of the graphics pipeline have completed.

• VK_PIPELINE_STAGE_HOST_BIT: This pipeline stage corresponds to access from the host.

• VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT: When used as a destination, this special flag means that any pipeline stage may access memory. As a source, it’s effectively equivalent to VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT.

• VK_PIPELINE_STAGE_ALL_COMMANDS_BIT: This stage is the big hammer. Whenever you just don’t know what’s going on, use this; it will synchronize everything with everything. Just use it wisely.

Because the flags specified in srcStageMask and dstStageMask are used to indicate when things happen, it’s acceptable for Vulkan implementations to move them around or interpret them in various ways. The srcStageMask specifies when the source stage has finished reading or writing a resource. As a result, moving the effective position of that stage later in the pipeline doesn’t change the fact that those accesses have completed; it may mean only that the implementation waits longer than it really needs to for them to complete.

Likewise, the dstStageMask specifies the point at which the pipeline will wait before proceeding. If an implementation moves that wait point earlier, that will still work. The event that it waits on will still have completed when the logically later parts of the pipeline begin execution. That implementation just misses the opportunity to perform work when it was instead waiting.

The dependencyFlags parameter specifies a set of flags that describes how the dependency represented by the barrier affects the resources referenced by the barrier. The only defined flag is VK_DEPENDENCY_BY_REGION_BIT, which indicates that the barrier affects only the region modified by the source stages (if it can be determined), which is consumed by the destination stages.

A single call to vkCmdPipelineBarrier() can be used to trigger many barrier operations. There are three types of barrier operations: global memory barriers, buffer barriers, and image barriers. Global memory barriers affect things such as synchronized access to mapped memory between the host and the device. Buffer and image barriers primarily affect device access to buffer and image resources, respectively.

Global Memory Barriers

The number of global memory barriers to be triggered by vkCmdPipelineBarrier() is specified in memoryBarrierCount. If this is nonzero, then pMemoryBarriers points to an array of memoryBarrierCount VkMemoryBarrier structures, each defining a single memory barrier. The definition of VkMemoryBarrier is

Click here to view code image

typedef struct VkMemoryBarrier {

 VkStructureType sType;

 const void* pNext;

 VkAccessFlags srcAccessMask;

 VkAccessFlags dstAccessMask;

} VkMemoryBarrier;

The sType field of VkMemoryBarrier should be set to VK_STRUCTURE_TYPE_MEMORY_BARRIER, and pNext should be set to nullptr. The only other fields in the structure are the source and destination access masks specified in srcAccessMask and dstAccessMask, respectively. The access masks are bitfields containing members of the VkAccessFlagBits. The source access mask specifies how the memory was last written, and the destination access mask specifies how the memory will next be read. The available access flags are

• VK_ACCESS_INDIRECT_COMMAND_READ_BIT: The memory referenced will be the source of commands in an indirect drawing or dispatch command such as vkCmdDrawIndirect() or vkCmdDispatchIndirect().

• VK_ACCESS_INDEX_READ_BIT: The memory referenced will be the source of index data in an indexed drawing command such as vkCmdDrawIndexed() or vkCmdDrawIndexedIndirect().

• VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT: The memory referenced will be the source of vertex data fetched by Vulkan’s fixed-function vertex assembly stage.

• VK_ACCESS_UNIFORM_READ_BIT: The memory referenced is the source of data for a uniform block accessed by a shader.

• VK_ACCESS_INPUT_ATTACHMENT_READ_BIT: The memory referenced is used to back an image used as an input attachment.

• VK_ACCESS_SHADER_READ_BIT: The memory referenced is used to back an image object that is read from using image loads or texture reads in a shader.

• VK_ACCESS_SHADER_WRITE_BIT: The memory referenced is used to back an image object that is written to using image stores in a shader.

• VK_ACCESS_COLOR_ATTACHMENT_READ_BIT: The memory referenced is used to back an image used as a color attachment where reads are performed, perhaps because blending is enabled. Note that this is not the same as an input attachment, where data is read explicitly by the fragment shader.

• VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT: The memory referenced is used to back an image used as a color attachment that will be written to.

• VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT: The memory referenced is used to back an image used as a depth or stencil attachment that will be read from because the relevant test is enabled.

• VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT: The memory referenced is used to back an image used as a depth or stencil attachment that will be written to because the relevant write mask is enabled.

• VK_ACCESS_TRANSFER_READ_BIT: The memory referenced is used as the source of data in a transfer operation such as vkCmdCopyImage(), vkCmdCopyBuffer(), or vkCmdCopyBufferToImage().

• VK_ACCESS_TRANSFER_WRITE_BIT: The memory referenced is used as the destination of a transfer operation.

• VK_ACCESS_HOST_READ_BIT: The memory referenced is mapped and will be read from by the host.

• VK_ACCESS_HOST_WRITE_BIT: The memory referenced is mapped and will be written to by the host.

• VK_ACCESS_MEMORY_READ_BIT: All other memory reads not explicitly covered by the preceding cases should specify this bit.

• VK_ACCESS_MEMORY_WRITE_BIT: All other memory writes not explicitly covered by the preceding cases should specify this bit.

Memory barriers provide two important pieces of functionality. First, they help avoid hazards, and second, they help ensure data consistency.

A hazard occurs when read and write operations are reordered relative to the order in which the programmer expects them to execute. They can be very hard to diagnose because they are often platform- or timing-dependent. There are three types of hazards:

• A read-after-write, or RaW, hazard occurs when the programmer expects to read from a piece of memory that has recently been written to and that those reads will see the results of the writes. If the read is rescheduled and ends up executing before the write is complete, the read will see old data.

• A write-after-read, or WaR, hazard occurs when a programmer expects to overwrite a piece of memory that had previously been read by another part of the program. If the write operation ends up being scheduled before the read operation, then the read operation will see the new data, not the older data it was expecting.

• A write-after-write, or WaW, hazard occurs when a programmer expects to overwrite the same location in memory multiple times and that only the results of the last write will be visible to subsequent readers. If the writes are rescheduled with respect to one another, then only the result of the write that happened to execute last will be visible to readers.

There is no such thing as a read-after-read hazard because no data is modified.

In the memory barrier, the source isn’t necessarily a producer of data but the first operation that is protected by that barrier. For avoiding RaW hazards, the source is actually a read operation.

For example, to ensure that all texture fetches are complete before overwriting an image with a copy operation, we need to specify VK_ACCESS_SHADER_READ_BIT in the srcAccessMask field and VK_ACCESS_TRANSFER_WRITE_BIT in the dstAccessMask field. This tells Vulkan that the first stage is reading from an image in a shader and that the second stage may overwrite that image, so we should not reorder the copy into the image before any shaders that may have read from it.

Note that there is some overlap between the bits in VkAccessFlagBits and those in VkPipelineStageFlagBits. The VkAccessFlagBits flags specify what operation is being performed, and the VkPipelineStageFlagBits describe where in the pipeline the action is performed.

The second piece of functionality provided by the memory barrier is to ensure consistency of the views of data from different parts of the pipeline. For example, if an application contains a shader that writes to a buffer from a shader and then needs to read that data back from the buffer by mapping the underlying memory object, it should specify VK_ACCESS_SHADER_WRITE_BIT in srcAccessMask and VK_ACCESS_HOST_READ_BIT in dstAccessMask. If there are caches in the device that may buffer writes performed by shaders, those caches may need to be flushed in order for the host to see the results of the write operations.

Buffer Memory Barriers

Buffer memory barriers provide finer-grained control of the memory used to back buffer objects. The number of buffer memory barriers executed by a call to vkCmdPipelineBarrier() is specified in the bufferMemoryBarrierCount parameter, and the pBufferMemoryBarriers field is a pointer to an array of this many VkBufferMemoryBarrier structures, each defining a buffer memory barrier. The definition of VkBufferMemoryBarrier is

Click here to view code image

typedef struct VkBufferMemoryBarrier {

 VkStructureType sType;

 const void* pNext;

 VkAccessFlags srcAccessMask;

 VkAccessFlags dstAccessMask;

 uint32_t srcQueueFamilyIndex;

 uint32_t dstQueueFamilyIndex;

 VkBuffer buffer;

 VkDeviceSize offset;

 VkDeviceSize size;

} VkBufferMemoryBarrier;

The sType field of each VkBufferMemoryBarrier structure should be set to VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, and pNext should be set to nullptr. The srcAccessMask and dstAccessMask fields have the same meanings as they do in the VkMemoryBarrier structure. Obviously, some of the flags that refer specifically to images, such as color or depth attachments, have little meaning when dealing with buffer memory.

When ownership of the buffer is being transferred from one queue to another and those queues are in different families, the family indices of the source and destination queues must be supplied in srcQueueFamilyIndex and dstQueueFamilyIndex, respectively. If there is no transfer of ownership, then srcQueueFamilyIndex and dstQueueFamilyIndex can both be set to VK_QUEUE_FAMILY_IGNORED. In this case, the sole ownership is assumed to be the queue family for which the command buffer is being built.

The buffer the access to which is being controlled by the barrier is specified in buffer. To synchronize access to a range of a buffer, use the offset and size fields of the structure to specify that range, in bytes. To control access to the whole buffer, simply set offset to zero and size to VK_WHOLE_SIZE.

If the buffer will be accessed by work executing on more than one queue, and those queues are of different families, additional action must be taken by your application. Because a single device exposing multiple queue families may actually be made up of multiple physical components, and because those components may have their own caches, scheduling architecture, memory controllers, and so on, Vulkan needs to know when a resource is moved from queue to queue. If this is the case, specify the queue family index of the source queue in srcQueueFamilyIndex and the family of the destination queue in dstQueueFamilyIndex.

Similarly to image memory barriers, if the resource is not being transferred between queues belonging to different families, srcQueueFamilyIndex and dstQueueFamilyIndex should be set to VK_QUEUE_FAMILY_IGNORED.

Image Memory Barriers

Just as with buffers, special attention should be paid to images, and image memory barriers are used to control access to images. The number of image memory barriers to be performed by the call to vkCmdPipelineBarrier() is specified in the imageMemoryBarrierCount parameter, and pImageMemoryBarriers is a pointer to an array of this many VkImageMemoryBarrier structures, each describing a single barrier. The definition of VkImageMemoryBarrier is

Click here to view code image

typedef struct VkImageMemoryBarrier {

 VkStructureType sType;

 const void* pNext;

 VkAccessFlags srcAccessMask;

 VkAccessFlags dstAccessMask;

 VkImageLayout oldLayout;

 VkImageLayout newLayout;

 uint32_t srcQueueFamilyIndex;

 uint32_t dstQueueFamilyIndex;

 VkImage image;

 VkImageSubresourceRange subresourceRange;

} VkImageMemoryBarrier;

The sType field of each VkImageMemoryBarrier structure should be set to VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, and pNext should be set to nullptr. Just as with the other memory barriers, the srcAccessMask and dstAccessMask fields specify the source and destination access type. Again, only some of the access types will apply to images. Also, when you are controlling access across queues, the srcQueueFamilyIndex and dstQueueFamilyIndex fields should be set to the family indices of the queues where the source and destination work will take place.

The oldLayout and newLayout fields specify the layouts to be used for the image before and after the barrier. These are the same fields that can be used when creating the image. The image that the barrier is to affect is specified in image, and the parts of the image to be affected by the barrier are specified in subresourceRange, which is an instance of the VkImageSubresourceRange structure, the definition of which is

Click here to view code image

typedef struct VkImageSubresourceRange {

 VkImageAspectFlags aspectMask;

 uint32_t baseMipLevel;

 uint32_t levelCount;

 uint32_t baseArrayLayer;

 uint32_t layerCount;

} VkImageSubresourceRange;

The image aspect is the part of the image that is to be included in the barrier. Most image formats and types have only a single aspect. A common exception is a depth-stencil image, which may have a separate aspect for each of the depth and stencil components of the image. It is possible, using the aspect flags, to discard stencil data while keeping depth data for later sampling, for example.

For images with mipmaps, a subset of the mipmaps can be included in the barrier by specifying the lowest-numbered (highest-resolution) mipmap level in the baseMipLevel field and the number of levels in the levelCount field. If the image doesn’t have a full mipmap chain, baseMipLevel should be set to 0, and levelCount should be set to 1.

Likewise, for array images, a subset of the image layers can be included in the barrier by setting baseArrayLayer to the index of the first layer and layerCount to the number of layers to include. Again, even if the image is not an array image, you should set baseArrayLayer to 0 and layerCount to 1. In short, treat all images as though they have mipmaps (even if it’s only one level) and all images as though they are arrays (even if they have only one layer).

Listing 4.1 shows an example of how to perform an image memory barrier.

Listing 4.1: Image Memory Barrier

Click here to view code image

const VkImageMemoryBarrier imageMemoryBarriers =

{

 VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType

 nullptr, // pNext

 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, // srcAccessMask

 VK_ACCESS_SHADER_READ_BIT, // dstAccessMask

 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // oldLayout

 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, // newLayout

 VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex

 VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex

 image, // image

 { // subresourceRange

 VK_IMAGE_ASPECT_COLOR_BIT, // aspectMask

 0, // baseMipLevel

 VK_REMAINING_MIP_LEVELS, // levelCount

 0, // baseArrayLayer

 VK_REMAINING_ARRAY_LAYERS // layerCount

 }

};

vkCmdPipelineBarrier(m_currentCommandBuffer,

 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,

 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,

 0,

 0, nullptr,

 0, nullptr,

 1, &imageMemoryBarrier);

The image memory barrier shown in Listing 4.1 takes an image that was previously in the VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL layout and moves it to the VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL layout. The source of data is the color output from the pipeline, as specified by VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, and the destination of the data is sampling by a shader, as specified by VK_ACCESS_SHADER_READ_BIT.

There is no transfer of ownership across queues, so both srcQueueFamilyIndex and dstQueueFamilyIndex are set to VK_QUEUE_FAMILY_IGNORED. Also, we’re performing the barrier across all mipmap levels and array layers in the image, so the levelCount and layerCount members of the subresourceRange structure are set to VK_REMAINING_MIP_LEVELS and VK_REMAINING_ARRAY_LAYERS, respectively.

This barrier takes an image that previously was written to as a color attachment by a graphics pipeline and moves it into a state in which it can be read from by a shader.

Clearing and Filling Buffers

You were introduced to buffer objects in Chapter 2, “Memory and Resources.” A buffer is a linear region of data backed by memory. In order for a buffer to be useful, you need to be able to fill it with data. In some cases, simply clearing the whole buffer to a known value is all you need to do. This allows you to, for example, initialize a buffer that you will eventually write into using a shader or some other operation.

To fill a buffer with a fixed value, call vkCmdFillBuffer(), the prototype of which is

Click here to view code image

void vkCmdFillBuffer (

 VkCommandBuffer commandBuffer,

 VkBuffer dstBuffer,

 VkDeviceSize dstOffset,

 VkDeviceSize size,

 uint32_t data);

The command buffer into which to place the command is specified in commandBuffer. The buffer that will be filled with data is specified in dstBuffer. To fill a section of the buffer with data, specify the starting offset of the fill operation, in bytes, in dstOffset and the size of the region, again in bytes, in size. Both dstOffset and size must be multiples of 4. To fill from dstOffset to the end of the buffer, pass the special value, VK_WHOLE_SIZE, in the size parameter. It follows that to fill an entire buffer, simply set dstOffset to 0 and size to VK_WHOLE_SIZE.

The value that you want to fill the buffer with is passed in data. This is a uint32_t variable that is simply replicated for the region of the fill operation. It is as though the buffer is interpreted as an array of uint32_t, and each element from dstOffset to the end of the region is filled with this value. To clear a buffer with a floating-point value, you can reinterpret the floating-point value as a uint32_t value and pass that to vkCmdFillBuffer(). Listing 4.2 demonstrates this.

Listing 4.2: Filling a Buffer with Floating-Point Data

Click here to view code image

void FillBufferWithFloats(VkCommandBuffercmdBuffer,

 VkBuffer dstBuffer,

 VkDeviceSize offset,

 VkDeviceSize length,

 const float value)

{

 vkCmdFillBuffer(cmdBuffer,

 dstBuffer,

 0,

 1024,

 (const uint32_t)&value);

}

Sometimes, filling a buffer with a fixed value is not enough, and there is a need to place data more explicitly in a buffer object. When a large amount of data is needed to be transfered into or between buffers, either mapping the buffer and writing to it with the host or copying data from another (possibly mapped) buffer with vkCmdCopyBuffer() is most appropriate. However, for small updates, such as updating the values of a vector or small data structures, vkCmdUpdateBuffer() can be used to place data directly into a buffer object.

The prototype for vkCmdUpdateBuffer() is

Click here to view code image

void vkCmdUpdateBuffer (

 VkCommandBuffer commandBuffer,

 VkBuffer dstBuffer,

 VkDeviceSize dstOffset,

 VkDeviceSize dataSize,

 const uint32_t* pData);

vkCmdUpdateBuffer() copies data directly from host memory into a buffer object. The data is consumed from host memory as soon as vkCmdUpdateBuffer() is called, and as such, it’s fine to free the host memory data structure or overwrite its content once vkCmdUpdateBuffer() returns. Be aware, though, that the data is not written into the buffer until vkCmdUpdateBuffer() is executed by the device after the command buffer has been submitted. For this reason, Vulkan must make a copy of the data you’ve supplied and hold it either in some auxiliary data structure associated with the command buffer or directly inside the command buffer itself.

Again, the command buffer that will contain the command is passed in commandBuffer, and the destination buffer object is passed in dstBuffer. The offset at which the data is to be placed is passed in dstOffset, and the size of the data to place into the buffer is passed in dataSize. Both dstOffset and dataSize are in units of bytes, but as with vkCmdFillBuffer(), both must be a multiple of 4. The special value VK_WHOLE_SIZE is not accepted for the size parameter to vkCmdUpdateBuffer() because it is also used as the size of the host memory region that is the source of the data. The maximum size of data that can be placed in a buffer with vkCmdUpdateBuffer() is 65,536 bytes.

pData points to the host memory containing the data that will eventually be placed into the buffer object. Although the type of the variable expected here is a pointer to uint32_t, any data can be in the buffer. Simply typecast a pointer to any memory region readable by the host to const uint32_t*, and pass it to pData. Ensure that the data region is at least size bytes long. For example, it’s reasonable to construct a C++ data structure matching the layout of a uniform or shader storage block and simply copy its entire content into a buffer that will be used appropriately in a shader.

Again, be cautious when using vkCmdFillBuffer(). It is intended for short, immediate updates to buffers. For example, writing a single value into a uniform buffer is probably much more efficiently achieved with vkCmdFillBuffer() than it is with a buffer mapping and a call to vkCmdCopyBuffer().

Clearing and Filling Images

Just as with buffers, it it possible to copy data directly between images and to fill images with fixed values. Images are larger, more complex, opaque data structures, so the raw offsets and data are not generally visible to an application.2

2. Of course, it’s possible to map the memory that is used for backing an image. In particular, when linear tiling is used for an image, this is standard practice. However, in general, this is not recommended.

To clear an image to a fixed value, call vkCmdClearColorImage(), the prototype of which is

Click here to view code image

void vkCmdClearColorImage (

 VkCommandBuffer commandBuffer,

 VkImage image,

 VkImageLayout imageLayout,

 const VkClearColorValue* pColor,

 uint32_t rangeCount,

 const VkImageSubresourceRange* pRanges);

The command buffer that will contain the clear command is passed in commandBuffer. The image that is to be cleared is passed in image, and the layout that the image is expected to be in when the clear command is executed is passed in imageLayout.

The accepted layouts for imageLayout are VK_IMAGE_LAYOUT_GENERAL and VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL. To clear images that are in different layouts, it is necessary to move them to one of these two layouts using a pipeline barrier before executing the clear command.

The values to clear the image to are specified in an instance of the VkClearColorValue union, the definition of which is

Click here to view code image

typedef union VkClearColorValue {

 float float32[4];

 int32_t int32[4];

 uint32_t uint32[4];

} VkClearColorValue;

The VkClearColorValue is simply a union of three arrays of four values each. One is for floating-point data, one is for signed integer data, and one is for unsigned integer data. Vulkan will read the appropriate member for the format of the image being cleared. Your application can write into the member that matches the source of data. No data conversion is performed by vkCmdClearColorImage(); it is up to your application to fill the VkClearColorValue union correctly.

Any number of regions of the destination image can be cleared with a single call to vkCmdClearColorImage(), although each will be cleared with the same values. If you need to clear multiple regions of the same image with different colors, you will need to call vkCmdClearColorImage() multiple times. However, you want to clear all regions with the same color, specify the number of regions in rangeCount, and pass a pointer to an array of rangeCount VkImageSubresourceRange structures in pRanges. The definition of VkImageSubresourceRange is

Click here to view code image

typedef struct VkImageSubresourceRange {

 VkImageAspectFlags aspectMask;

 uint32_t baseMipLevel;

 uint32_t levelCount;

 uint32_t baseArrayLayer;

 uint32_t layerCount;

} VkImageSubresourceRange;

This structure was first introduced in Chapter 2, “Memory and Resources,” when we discussed creation of image view. Here, it is used to define the regions of the image that you want to clear. Because we are clearing a color image, the aspectMask must be set to VK_IMAGE_ASPECT_COLOR_BIT. The baseMipLevel and levelCount fields are used to specify the starting mipmap level and number of levels to clear, respectively, and if the image is an array image, the baseArrayLayer and layerCount fields are used to specify the starting layer and number of layers to clear. If the image is not an array image, these fields should be set to 0 and 1, respectively.

Clearing a depth-stencil image is similar to clearing a color image, except that a special VkClearDepthStencilValue structure is used to specify the clear values. The prototype of vkCmdClearDepthStencilImage() is similar to that of vkCmdClearColorImage() and is

Click here to view code image

void vkCmdClearDepthStencilImage (

 VkCommandBuffer commandBuffer,

 VkImage image,

 VkImageLayout imageLayout,

 const VkClearDepthStencilValue* pDepthStencil,

 uint32_t rangeCount,

 const VkImageSubresourceRange * pRanges);

Again, the command buffer that will perform the clear operation is specified in commandBuffer, the image to clear is specified in image, and the layout that the image is expected to be in at the time of the clear operation is specified in imageLayout. As with vkCmdClearColorImage(), imageLayout should be either VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL. No other layouts are valid for a clear operation.

The values to which to clear the depth-stencil image are passed through an instance of the VkClearDepthStencilValue structure, which contains both the depth and stencil clear values. Its definition is

Click here to view code image

typedef struct VkClearDepthStencilValue {

 float depth;

 uint32_t stencil;

} VkClearDepthStencilValue;

As with vkCmdClearColorImage(), a number of ranges of the image can be cleared in a single call to vkCmdClearDepthStencilImage(). The number of ranges to clear is specified in rangeCount, and the pRanges parameter should point to an array of rangeCount VkImageSubresourceRange structures defining the ranges to be cleared.

Because depth-stencil images may contain both a depth and a stencil aspect, the aspectMask field of each member of pRanges can contain VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_ASPECT_STENCIL_BIT, or both. If aspectMask contains VK_IMAGE_ASPECT_DEPTH_BIT, then the value stored in the depth field of the VkClearDepthStencilValue structure is used to clear the depth aspect of the specified range. Likewise, if aspectMask contains VK_IMAGE_ASPECT_STENCIL_BIT, then the stencil aspect of the specified range will be cleared using the stencil member of the VkClearDepthStencilValue structure.

Note that it’s generally much more efficient to specify a single region with both VK_IMAGE_ASPECT_DEPTH_BIT and VK_IMAGE_ASPECT_STENCIL_BIT set than it is to specify two regions each with only one bit set.

Copying Image Data

In the previous section, we discussed clearing images to a fixed value passed through a simple structure. In many cases, though, you need to upload texture data into images or copy image data between images. Vulkan supports copying image data from a buffer to an image, between images, and from an image to a buffer.

To copy data from a buffer to one or more regions of an image, call vkCmdCopyBufferToImage(), the prototype of which is

Click here to view code image

void vkCmdCopyBufferToImage (

 VkCommandBuffer commandBuffer,

 VkBuffer srcBuffer,

 VkImage dstImage,

 VkImageLayout dstImageLayout,

 uint32_t regionCount,

 const VkBufferImageCopy* pRegions);

The command buffer that will execute the command is specified in commandBuffer, the source buffer object is specified in srcBuffer, and the image into which the data will be copied is specified in dstImage. As with the destination image in clears, the layout of the destination image for copies is expected to be either VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL and is specified in the dstImageLayout parameter.

The number of regions to update is given in regionCount, and pRegions is a pointer to an array of regionCount VkBufferImageCopy structures, each definining an area of the image to copy data into. The definition of VkBufferImageCopy is

Click here to view code image

typedef struct VkBufferImageCopy {

 VkDeviceSize bufferOffset;

 uint32_t bufferRowLength;

 uint32_t bufferImageHeight;

 VkImageSubresourceLayers imageSubresource;

 VkOffset3D imageOffset;

 VkExtent3D imageExtent;

} VkBufferImageCopy;

The bufferOffset field contains the offset of the data in the buffer, in bytes. The data in the buffer is laid out left to right, top to bottom, as shown in Figure 4.1. The bufferRowLength field specifies the number of texels in the source image, and bufferImageHeight specifies the number of rows of data in the image. If bufferRowLength is zero, the image is assumed to be tightly packed in the buffer and therefore equal to imageExtent.width. Likewise, if bufferImageHeight is zero, then the number of rows in the source image is assumed to be equal to the height of the image extent, which is in imageExtent.height.

[image: Image]

Figure 4.1: Data Layout of Images Stored in Buffers

The subresource into which to copy the image data is specified in an instance of the VkImageSubresourceLayers structure, the definition of which is

Click here to view code image

typedef struct VkImageSubresourceLayers {

 VkImageAspectFlags aspectMask;

 uint32_t mipLevel;

 uint32_t baseArrayLayer;

 uint32_t layerCount;

} VkImageSubresourceLayers;

The aspectMask field of VkImageSubresourceLayers contains the aspect or aspects that are the destination of the image copy. Usually, this will be a single bit from the VkImageAspectFlagBits enumeration. If the target image is a color image, then this should simply be set to VK_IMAGE_ASPECT_COLOR_BIT. If the image is a depth-only image, it should be VK_IMAGE_ASPECT_DEPTH_BIT, and if the image is a stencil-only image, it should be VK_IMAGE_ASPECT_STENCIL_BIT. If the image is a combined depth-stencil image, then you can copy data into both the depth and stencil aspects simultaneously by specifying both VK_IMAGE_ASPECT_DEPTH_BIT and VK_IMAGE_ASPECT_STENCIL_BIT.

The target mipmap level is specified in mipLevel. You can copy data into only a single mipmap level with each element in the pRegions array, although you can of course specify multiple elements, each targeting a different level.

If the target image is an array image, then you can specify the starting layer and number of layers for the image copy in baseArrayLayer and layerCount, respectively. If the image is not an array image, then these fields should be set to 0 and 1.

Each region can target either an entire mipmap level or a smaller window within each mipmap level. The offset of the window is specified in imageOffset, and the size of the window is specified in imageExtent. To overwrite an entire mipmap level, set imageOffset.x and imageOffset.y to 0, and set imageExtent.width and imageExtent.height to the size of the mipmap level. It is up to you to calculate this. Vulkan will not do it for you.

It’s also possible to perform the copy in the opposite direction—to copy data from an image into a buffer. To do this, call vkCmdCopyImageToBuffer(), the prototype of which is

Click here to view code image

void vkCmdCopyImageToBuffer (

 VkCommandBuffer commandBuffer,

 VkImage srcImage,

 VkImageLayout srcImageLayout,

 VkBuffer dstBuffer,

 uint32_t regionCount,

 const VkBufferImageCopy* pRegions);

The command buffer to execute the copy is specified in commandBufer, the source image in srcImage, and the destination buffer in dstBuffer. As with the other copy commands, the srcImageLayout parameter specifies the layout that the source image is expected to be in. Because the image is now the source of data, the layout should either be VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL.

Again, a number of regions can be copied in a single call to vkCmdCopyImageToBuffer(), each represented by an instance of the VkBufferImageCopy structure. The number of regions to copy is specified in regionCount, and the pRegions parameter contains a pointer to an array of regionCount VkBufferImageCopy structures defining each of these regions. This is the same structure accepted by vkCmdCopyBufferToImage(). However, in this use case, bufferOffset, bufferRowLength, and bufferImageHeight contain parameters for the destination of the copy, and imageSubresource, imageOffset, and imageExtent contain parameters for the source of the copy.

Finally, it’s also possible to copy data between two images. To do this, use the vkCmdCopyImage() command, the prototype of which is

Click here to view code image

void vkCmdCopyImage (

 VkCommandBuffer commandBuffer,

 VkImage srcImage,

 VkImageLayout srcImageLayout,

 VkImage dstImage,

 VkImageLayout dstImageLayout,

 uint32_t regionCount,

 const VkImageCopy* pRegions);

The command buffer that will execute the command is passed in commandBuffer, the image containing the source data is passed in srcImage, and the image that is the destination for the copy is passed in dstImage. Again, the layout for both images must be passed to the copy command. srcImageLayout is the expected layout of the source image at the time of the copy and should be either VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL (as this is the source of a transfer operation). Similarly, dstImageLayout is the expected layout of the destination image and should be either VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

As with the buffer-to-image and image-to-buffer copy commands, vkCmdCopyImage() can copy several regions at a time. The number of regions to copy is specified in regionCount, and each is represented by an instance of the VkImageCopy structure contained in an array, the address of which is passed in pRegions. The definition of VkImageCopy is

Click here to view code image

typedef struct VkImageCopy {

 VkImageSubresourceLayers srcSubresource;

 VkOffset3D srcOffset;

 VkImageSubresourceLayers dstSubresource;

 VkOffset3D dstOffset;

 VkExtent3D extent;

} VkImageCopy;

Each instance of VkImageCopy contains the subresource information and offsets for the source and destination windows. vkCmdCopyImage() cannot resize image data, so the extent of the source and destination regions is the same and is contained in the extent field.

srcSubresource contains the subresource definition for the source data and has the same meaning as the imageSubresource field in the VkBufferImageCopy structure passed to vkCmdCopyImageToBuffer(). Likewise, the dstSubresource field contains the subresource definition for the destination region and has the same meaning as the imageSubresource field in the VkBufferImageCopy structure passed to vkCmdCopyBufferToImage().

The srcOffset and dstOffset fields contain the coordinates of the source and destination windows, respectively.

Copying Compressed Image Data

As discussed in Chapter 2, “Memory and Resources,” Vulkan supports a number of compressed image formats. All compression formats currently defined are block-based formats with fixed block sizes. For many of these formats, the block size is 4 × 4 texels. For the ASTC formats, the block size varies by image.

When copying data between buffers and images, only an integral number of blocks may be copied. Therefore, the width and height of each image region, in texels, must be integer multiples of the block size used by the image. Further, the origins of copy regions must also be integer multiples of the block size.

It is also possible to copy data between two compressed images or between a compressed and an uncompressed image using vkCmdCopyImage(). When you do so, the source and destination image formats must have the same compressed block size. That is, if the size of the compressed block is 64 bits, for example, then both the source and destination formats must be compressed images with 64-bit block sizes, or the uncompressed image format must be a 64-bit per-texel format.

When copying from an uncompressed image to a compressed one, each source texel is treated as a single raw value containing the same number of bits as a block in the compressed image. This value is written directly into the compressed image as though it were the compressed data. The texel values are not compressed by Vulkan. This allows you to create compressed image data in your application or shaders and then copy it into compressed images for later processing. Vulkan does not compress raw image data for you. Further, for uncompressed to compressed copies, the extent field of the VkImageCopy structure is in units of texels in the source image but must conform to the block size requirements of the destination image.

When copying from a compressed format to an uncompressed format, the opposite is true. Vulkan does not decompress the image data. Rather, it pulls raw 64-bit or 128-bit compressed block values from the source image and deposits them in the destination image. In this case, the destination image should have the same number of bits per texel as bits per block in the source image. For a compressed to uncompressed copy, the extent field of the VkImageCopy structure is measured in units of texels in the destination image but must conform to the requiremnts imposed by the block size in the source image.

Copying between two block compressed image formats is allowed, so long as both formats have an equal number of bits per block. However, the value of this is debatable, as image data compressed in one format generally does not decode meaningfully when interpreted as another format. Regardless of its worth, when performing this operation, the regions to be copied are still measured in texels, but all offsets and extents must be integer multiples of the common block size.

The only exception to the rule that image copies into, out of, and between compressed images are aligned to multiples of the block size occurs when the source or destination image is not an integer multiple of the block size wide or high, and the region to be copied extends to the edge of the image.

Stretching Images

Of all the image-related commands covered so far, none supports format conversion or resizing of the copied area. To do this, you need to use the vkCmdBlitImage() command, which can take images of different formats and stretch or shrink the region to be copied as it is written into the target image. The term blit is short for block image transfer and refers to the operation of not only copying image data, but potentially also processing it along the way.

The prototype of vkCmdBlitImage() is

Click here to view code image

void vkCmdBlitImage (

 VkCommandBuffer commandBuffer,

 VkImage srcImage,

 VkImageLayout srcImageLayout,

 VkImage dstImage,

 VkImageLayout dstImageLayout,

 uint32_t regionCount,

 const VkImageBlit* pRegions,

 VkFilter filter);

The command buffer that will execute the command is passed in commandBuffer. The source and destination images are passed in srcImage and dstImage, respectively. Again, as with vkCmdCopyImage(), the expected layouts of the source and destination images are passed in srcImageLayout and dstImageLayout. The layout of the source image must be either VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, and the layout of the destination image must be either VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

As with the other copy commands, vkCmdBlitImage() can copy any number of regions of the source image into the destination image, and each is represented by a data structure. The number of regions to copy is passed in regionCount, and pRegion points to an array of regionCount VkImageBlit structures, each defining one of the regions to copy. The definition of VkImageBlit is

Click here to view code image

typedef struct VkImageBlit {

 VkImageSubresourceLayers srcSubresource;

 VkOffset3D srcOffsets[2];

 VkImageSubresourceLayers dstSubresource;

 VkOffset3D dstOffsets[2];

} VkImageBlit;

The srcSubresource and dstSubresource fields of VkImageBlit define the subresource for the source and destination images. Whereas in VkImageCopy each region was defined by a VkOffset3D structure and shared a VkExtent3D structure, in VkImageBlit each region is defined by a pair of VkOffset3D structures arranged as arrays of two elements.

The first element of the srcOffsets and dstOffsets arrays defines one corner of the region to be copied, and the second element of these arrays defines the opposite corner of the region. The region defined by srcOffsets in the source image is then copied into the region defined by dstOffsets in the destination image. If either region is “upside down” with respect to the other, then the copied region will be flipped vertically. Likewise, if one region is “back to front” with respect to the other, then the image will be flipped horizontally. If both of these conditions are met, then the copied region will be rotated 180° with respect to the original.

If the regions are different sizes in the source and destination rectangles, then the image data will be magnified or minified, accordingly. In this case, the filter mode specified in the filter parameter to vkCmdBlitImage() will be used to filter the data. filter must be one of VK_FILTER_NEAREST or VK_FILTER_LINEAR to apply point sampling or linear filtering, respectively.

The format of the source image must be one that supports the VK_FORMAT_FEATURE_BLIT_SRC_BIT feature. In most implementations, this will include almost all image formats. Further, the destination format must be one that supports VK_FORMAT_FEATURE_BLIT_DST_BIT. In general, this is any format that can be rendered to or written to by the device using image stores in shaders. It is unlikely that any Vulkan device supports blitting to a compressed image format.

Summary

This chapter discussed how to clear images with fixed values and full buffer objects with data. We placed small amounts of data directly into buffer objects using commands embedded inside command buffers and explained how Vulkan is able to copy image data between buffers and images, between images and buffers, and between pairs of images. Finally, we introduced you to the concept of a blit, which is an operation that allows image data to be scaled and to undergo format conversion as it is copied. These operations provide a foundation for getting large amounts of data into and out of the Vulkan device for further processing.

Chapter 5. Presentation

What You’ll Learn in This Chapter

• How to display the results of your program onscreen

• How to determine the display devices attached to the system

• How to change display modes and interface with a native window system

Vulkan is primarily a graphics API in the sense that the majority of its functionality is dedicated to generating and processing images. Most Vulkan applications will be designed to show their results to the user. This is a process known as presentation. However, because the variety of platforms upon which Vulkan runs is large, and because not all applications need to present their outputs to the user visually, presentation is not a core part of the API but is handled by a set of extensions. This chapter discusses how to enable and use those extensions to get pictures on the screen.

Presentation Extension

Presentation in Vulkan is not part of the core API. In fact, a given implementation of Vulkan may not support presentation at all. The reasons for this are

• Not all Vulkan applications need to present images to the user. Computecentric applications, for example, might produce nonvisual data or produce images that only need to be saved to disk rather than displayed in real time.

• Presentation is generally handled by the operating system, window system, or other platform-specific library, which can vary quite a bit from platform to platform.

Due to this, presentation is handled by a set of extensions collectively known as the WSI extensions, or Window System Integration systems. Extensions in Vulkan must be enabled explicitly before they can be used, and the extension needed for each platform is slightly different, as some of the functions take platform-specific parameters. Before you can perform any presentation-related operations, therefore, you need to enable the appropriate presentation-related extensions using the mechanisms described in Chapter 1, “Overview of Vulkan.”

Presentation in Vulkan is handled by a small suite of extensions. Functionality that is common to almost all platforms that support presenting graphical output to the user is supported by one extension, and functionality that is specific to each platform is supported by a number of smaller, platform-specific extensions.

Presentation Surfaces

The object to which graphics data is rendered in order to be presented is known as a surface and is represented by a VkSurfaceKHR handle. This special object is introduced by the VK_KHR_surface extension. This extension adds general functionality for handling surface objects but is customized on a per-platform basis to provide the platform-specific interfaces to associate a surface with a window. Interfaces are defined for Microsoft Windows, Mir and Wayland, X Windows via either the XCB or Xlib interface, and Android. Further platforms may be added in the future.

The prototypes and data types for the platform-specific parts of the extension are included in the main vulkan.h header file but are protected behind platform-specific preprocessor guards. The code for this book supports the Windows platform and the Linux platform via the Xlib and Xcb interfaces. To enable the code for these platforms, before including vulkan.h, we must define one of the VK_USE_PLATFORM_WIN32_KHR, VK_USE_PLATFORM_XLIB_KHR, or VK_USE_PLATFORM_LIB_XCB_KHR defines. The build system for the book’s source code does this for you using a compiler command-line option.

Vulkan is also supported on a wide range of other operating systems and device types. In particular, many of Vulkan’s features are geared to mobile and embedded devices. For example, Vulkan is the API of choice on the Android platform, and in addition to the interfaces covered here, the Android platform has full support through its own platform interfaces. Outside of initialization, though, using Vulkan on Android should be a fairly similar experience to using Vulkan on other platforms.

Presentation on Microsoft Windows

Before we can present, we need to determine whether any queues on a device support presentation operations. Presentation capability is a per-queue-family feature. On Windows platforms, call the vkGetPhysicalDeviceWin32PresentationSupportKHR() function to determine whether a particular queue family supports presentation. Its prototype is

Click here to view code image

VkBool32 vkGetPhysicalDeviceWin32PresentationSupportKHR(

 VkPhysicalDevice physicalDevice,

 uint32_t queueFamilyIndex);

The physical device being queried is passed in physicalDevice, and the queue family index is passed in queueFamilyIndex. If at least one queue family supports presentation, then we can proceed to create presentable surfaces using the device. To create a surface, use the vkCreateWin32SurfaceKHR() function, whose prototype is

Click here to view code image

VkResult vkCreateWin32SurfaceKHR(

 VkInstance instance,

 const VkWin32SurfaceCreateInfoKHR* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkSurfaceKHR* pSurface);

This function associates a Windows native window handle with a new surface object and returns the object in the variable pointed to by pSurface. Only a Vulkan instance is required, and its handle is passed into instance. The information describing the new surface is passed through pCreateInfo, which is a pointer to an instance of the VkWin32SurfaceCreateInfoKHR structure, the definition of which is

Click here to view code image

typedef struct VkWin32SurfaceCreateInfoKHR {

 VkStructure Type sType;

 const void* pNext;

 VkWin32SurfaceCreateFlagsKHR flags;

 HINSTANCE hinstance;

 HWND hwnd;

} VkWin32SurfaceCreateInfoKHR;

The sType field of VkWin32SurfaceCreateInfoKHR should be set to VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR, and pNext should be set to nullptr unless another extension in use extends the structure. The flags field is reserved for future use and should be set to zero.

The hinstance parameter should be set to the HINSTANCE of the application or module that was used to create the the native window. This is typically passed to the application in the first parameter of WinMain or can be obtained by calling the Win32 function GetModuleHandle with a null pointer. The hwnd member is the handle to the native window with which to associate the Vulkan surface. This is the window in which the results of presentation to swap chains created for the surface will be displayed.

Presentation on Xlib-Based Platforms

The process for creating a surface on an Xlib-based system is similar. First, we need to determine whether the platform supports presentation to an Xlib surface on an X server. To do this, call vkGetPhysicalDeviceXlibPresentationSupportKHR(), whose prototype is

Click here to view code image

VkBool32 vkGetPhysicalDeviceXlibPresentationSupportKHR(

 VkPhysicalDevice physicalDevice,

 uint32_t queueFamilyIndex,

 Display* dpy,

 VisualID visualID);

For the physical device whose handle is specified in physicalDevice, and the queue family index specified in queueFamilyIndex, vkGetPhysicalDeviceXlibPresentationSupportKHR() reports whether queues in that family support presentation to Xlib surfaces for a given X server. The connection to the X server is represented by the dpy parameter. Presentation is supported on a per-format basis. In Xlib, formats are represented by visual IDs, and the visual ID for the intended format of the surface is passed in visualID.

Asssuming that at least one queue family on a device supports presentation to a format we’d like to use, we can then create a surface for an Xlib window by calling the vkCreateXlibSurfaceKHR() function, the prototype of which is

Click here to view code image

VkResult vkCreateXlibSurfaceKHR(

 VkInstance instance,

 const VkXlibSurfaceCreateInfoKHR* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkSurfaceKHR* pSurface);

vkCreateXlibSurfaceKHR() creates a new surface associated with an Xlib window. The Vulkan instance should be passed in instance, and the remaining parameters controlling the creation of the surface are passed in pCreateInfo, which is a pointer to an instance of the VkXlibSurfaceCreateInfoKHR structure, the definition of which is

Click here to view code image

typedef struct VkXlibSurfaceCreateInfoKHR {

 VkStructureType sType;

 const void* pNext;

 VkXlibSurfaceCreateFlagsKHR flags;

 Display* dpy;

 Window window;

} VkXlibSurfaceCreateInfoKHR;

The sType field of VkXlibSurfaceCreateInfoKHR should be set to VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR, and pNext should be set to nullptr. The flags field is reserved and should be set to zero.

The dpy field is the Xlib Display representing the connection to the X server, and window is the Xlib Window handle to the window with which the new surface will be associated.

If vkCreateXlibSurfaceKHR() requires any host memory, it will use the host memory allocator passed in pAllocator. If pAllocator is nullptr, then an internal allocator will be used.

If surface creation is successful, the resulting VkSurface handle is written into the variable pointed to by pSurface.

Presentation with Xcb

Xcb is a slightly lower-level interface to the X protocol than is provided by Xlib and may be a better choice for applications that wish to achieve lower latency. As with Xlib and the other platforms, before creating objects for presentation on an Xcb system, we need to determine whether any of the queues on a physical device support presentation. To do this, call vkGetPhysicalDeviceXcbPresentationSupportKHR(), the prototype of which is

Click here to view code image

VkBool32 vkGetPhysicalDeviceXcbPresentationSupportKHR(

 VkPhysicalDevice physicalDevice,

 uint32_t queueFamilyIndex,

 xcb_connection_t* connection,

 xcb_visualid_t visual_id);

The physical device being queried is passed in physicalDevice, and the index of the queue family is passed in queueFamilyIndex. The connection to the X server is passed in connection. Again, presentation capability is reported on a per-visual ID basis, and the visual ID being queried is passed in visual_id.

Once you have determined that at least one queue family on the device supports presentation in the visual ID of your choice, you can create a surface into which to render using vkCreateXcbSurfaceKHR(), the prototype of which is

Click here to view code image

VkResult vkCreateXcbSurfaceKHR(

 VkInstance instance,

 const VkXcbSurfaceCreateInfoKHR* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkSurfaceKHR* pSurface);

The Vulkan instance is passed in instance, and the remaining parameters controlling creation of the surface are passed through an instance of the VkXcbSurfaceCreateInfoKHR structure pointed to by pCreateInfo. The definition of VkXcbSurfaceCreateInfoKHR is

Click here to view code image

typedef struct VkXcbSurfaceCreateInfoKHR {

 VkStructureType sType;

 const void* pNext;

 VkXcbSurfaceCreateFlagsKHR flags;

 xcb_connection_t* connection;

 xcb_window_t window;

} VkXcbSurfaceCreateInfoKHR;

The sType field for VkXcbSurfaceCreateInfoKHR should be set to VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR, and pNext should be set to nullptr. The flags field is reserved and should be set to zero. The connection to the X server is passed in the connection field, and the handle to the window is passed in window.

If vkCreateXcbSurfaceKHR() is successful, it will write the handle to the new surface into the variable pointed to by pSurface. If it needs any host memory to construct the handle and pAllocator is not nullptr, then it will use your allocator to request that memory.

Swap Chains

Regardless of which platform you’re running on, the resulting VkSurfaceKHR handle refers to Vulkan’s view of a window. In order to actually present anything to that surface, it’s necessary to create a special image that can be used to store the data in the window. On most platforms, this type of image is either owned by or tightly integrated with the window system, so rather than creating a normal Vulkan image object, we use a second object called a swap chain to manage one or more image objects.

Swap-chain objects are used to ask the native window system to create one or more images that can be used to present into a Vulkan surface. This is exposed using the VK_KHR_swapchain extension. Each swap-chain object manages a set of images, usually in some form of ring buffer. The application can ask the swap chain for the next available image, render into it, and then hand the image back to the swap chain ready for display. By managing presentable images in a ring or queue, one image can be presented to the display while another is being drawn to by the application, overlapping the operation of the window system and application.

To create a swap-chain object, call vkCreateSwapchainKHR(), the prototype of which is

Click here to view code image

VkResult vkCreateSwapchainKHR(

 VkDevice device,

 const VkSwapchainCreateInfoKHR* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkSwapchainKHR* pSwapchain);

The device with which the swap chain is to be associated is passed in device. The resulting swap chain can be used with any of the queues on device that support presentation. The information about the swap chain is passed in an instance of the VkSwapchainCreateInfoKHR structure, the address of which is passed in pCreateInfo. The definition of VkSwapchainCreateInfoKHR is

Click here to view code image

typedef struct VkSwapchainCreateInfoKHR {

 VkStructureType sType;

 const void* pNext;

 VkSwapchainCreateFlagsKHR flags;

 VkSurfaceKHR surface;

 uint32_t minImageCount;

 VkFormat imageFormat;

 VkColorSpaceKHR imageColorSpace;

 VkExtent2D imageExtent;

 uint32_t imageArrayLayers;

 VkImageUsageFlags imageUsage;

 VkSharingMode imageSharingMode;

 uint32_t queueFamilyIndexCount;

 const uint32_t* pQueueFamilyIndices;

 VkSurfaceTransformFlagBitsKHR preTransform;

 VkCompositeAlphaFlagBitsKHR compositeAlpha;

 VkPresentModeKHR presentMode;

 VkBool32 clipped;

 VkSwapchainKHR oldSwapchain;

} VkSwapchainCreateInfoKHR;

The sType field for VkSwapchainCreateInfoKHR should be set to VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, and pNext should be set to nullptr. The flags field is reserved for use in future versions of the VK_KHR_swapchain extension and should be set to zero.

The surface to which the new swap chain will present is passed in surface. This should be a surface created with one of the the platform-specific surface creation functions such as vkCreateWin32SurfaceKHR() or vkCreateXlibSurfaceKHR(). The number of images in the swap chain is passed in minImageCount. For example, to enable double or triple buffering, set minImageCount to 2 or 3, respectively. Setting minImageCount to 1 represents a request to render to the front buffer or directly to the display. Some platforms don’t support this (and may not even support double buffering). To determine the minimum and maximum number of images supported in a swap chain, call vkGetPhysicalDeviceSurfaceCapabilitiesKHR(), which is discussed later in this section.

Note that setting minImageCount to 2 means that you’ll have a single front buffer and a single back buffer. After triggering presentation of a finished back buffer, you won’t be able to begin rendering to the other buffer until the presentation has completed. For best performance, possibly at the price of some latency, you should set minImageCount to at least 3 if the device supports it.

The format and color space of the presentable images is specified in imageFormat and imageColorSpace. The format must be a Vulkan format for which the device reports the presentation capability. imageColorSpace is a member of the VkColorSpaceKHR enumeration, the only member of which is VK_COLORSPACE_SRGB_NONLINEAR_KHR, which means that the presentation engine can expect sRGB nonlinear data, if the imageFormat member indicates an sRGB format image.

The imageExtent field specifies the dimensions of the images in the swap chain, in pixels, and imageArrayLayers field specifies the number of layers in each image. This can be used to render to a layered image and then present specific layers of it to the user. The imageUsage field is a collection of the standard VkImageUsageFlags enumeration specifying how the images will be used (in addition to as present sources). For example, if you want to render to the image as a normal color attachment, you would include VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, and if you want to write directly to it with a shader, you would include VK_IMAGE_USAGE_STORAGE_BIT.

The set of usages that are included in imageUsage must be selected from the usages supported for swap-chain images. This is determined by calling vkGetPhysicalDeviceSurfaceCapabilitiesKHR().

The sharingMode field specifies how the images are to be shared across queues. If the image is going to be used by only one queue at a time (which is likely, as presentable images are generally write-only), then set this to VK_SHARING_MODE_EXCLUSIVE. If the image is likely to be used across multiple queues, then this can be set to VK_SHARING_MODE_CONCURRENT. In this case, pQueueFamilyIndices should be a pointer to an array of indices of the queues with which the images will be used, and queueFamilyIndexCount is the length of this array, in elements. When sharingMode is VK_SHARING_MODE_EXCLUSIVE, these two fields are ignored.

The preTransform field specifies how the images should be transformed prior to presentation to the user. This allows images to be rotated or flipped (or both) to accommodate things like portrait displays and rear-projection systems. It is a bitwise combination of a selection of members of the VkSurfaceTransformFlagBitsKHR enumeration.

The compositeAlpha field controls how alpha composition is handled by the window system. This is a member of the VkCompositeAlphaFlagBitsKHR enumeration. If this is set to VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, then the alpha channel of the presentable image (if it exists) is ignored and treated as though it contains constant 1.0 values. Other values of compositeAlpha allow partially transparent images to be composited by the native window system.

The presentMode field controls synchronization with the window system and the rate at which the images are presented to the surface. The available modes are

• VK_PRESENT_MODE_IMMEDIATE_KHR: When presentation is scheduled, the image is presented to the user as soon as possible, without waiting for any external events such as vertical blanking. This provides the highest possible frame rate but can introduce tearing or other artifacts.

• VK_PRESENT_MODE_MAILBOX_KHR: When a new image is presented, it is marked as the pending image, and at the next opportunity (probably after the next vertical refresh), the system will display it to the user. If a new image is presented before this happens, that image will be shown, and the previously presented image will be discarded.

• VK_PRESENT_MODE_FIFO_KHR: Images to be presented are stored in an internal queue and shown to the user in order. A new image is taken from the queue at regular intervals (usually after each vertical refresh).

• VK_PRESENT_MODE_FIFO_RELAXED_KHR: This mode behaves similarly to VK_PRESENT_MODE_FIFO_KHR, except that if the queue is empty and vertical refresh occurs, the next image posted to the queue will be displayed immediately, similarly to VK_PRESENT_MODE_IMMEDIATE_KHR. This allows an application running faster than the vertical refresh rate to avoid tearing while still going as fast as possible if it can’t keep up in places.

As a general rule, if you want to run with vertical sync (vsync) on, select VK_PRESENT_MODE_FIFO_KHR, and if you want to run as fast as possible, select VK_PRESENT_MODE_IMMEDIATE_KHR or VK_PRESENT_MODE_MAILBOX_KHR. VK_PRESENT_MODE_IMMEDIATE_KHR will show visible tearing in most cases but provides the lowest possible latency. VK_PRESENT_MODE_MAILBOX_KHR continues to flip at regular intervals, producing a maximum latency of one vertical refresh, but will not exhibit tearing.

The clipped member of VkSwapchainCreateInfoKHR is used to optimize cases where not all of the surface might be visible. For example, if the surface to which the images will be presented represents a window that might be covered or partially off the screen, it may be possible to avoid rendering the parts of it that the user will never see. When clipped is VK_TRUE, Vulkan can eliminate those parts of the image from rendering operations. When clipped is VK_FALSE, Vulkan will render the entire image, regardless of whether it’s visible or not.

Finally, the oldSwapchain field of VkSwapchainCreateInfoKHR may be used to pass an existing swap chain associated with the surface back to Vulkan for recycling. This is used when one swap chain is being replaced by another, such as when a window is resized and the swap chain needs to be reallocated with larger images.

The parameters contained in the VkSwapchainCreateInfoKHR structure must all conform to the capabilities of the suface, which you can determine by calling vkGetPhysicalDeviceSurfaceCapabilitiesKHR(), the prototype of which is

Click here to view code image

VkResult vkGetPhysicalDeviceSurfaceCapabilitiesKHR(

 VkPhysicalDevice physicalDevice,

 VkSurfaceKHR surface,

 VkSurfaceCapabilitiesKHR* pSurfaceCapabilities);

The physical device that owns the surface is passed in physicalDevice, and the surface whose capabilies are being queried is passed in surface. vkGetPhysicalDeviceSurfaceCapabilitiesKHR() then returns information about the surface in an instance of the VkSurfaceCapabilitiesKHR structure, a pointer to which is provided through the pSurfaceCapabilities parameter. The definition of VkSurfaceCapabilitiesKHR is

Click here to view code image

typedef struct VkSurfaceCapabilitiesKHR {

 uint32_t minImageCount;

 uint32_t maxImageCount;

 VkExtent2D currentExtent;

 VkExtent2D minImageExtent;

 VkExtent2D maxImageExtent;

 uint32_t maxImageArrayLayers;

 VkSurfaceTransformFlagsKHR supportedTransforms;

 VkSurfaceTransformFlagBitsKHR currentTransform;

 VkCompositeAlphaFlagsKHR supportedCompositeAlpha;

 VkImageUsageFlags supportedUsageFlags;

} VkSurfaceCapabilitiesKHR;

The number of images in the swap chain must fall between the minImageCount and maxImageCount parameters of the surface’s capabilities. The current size of the surface at the time of the query is returned in currentExtent. If the surface is resizable (such as a sizeable window on a desktop), then the smallest and largest sizes that the surface can become are returned in minImageExtent and maxImageExtent. If the surface supports presentation from array images, the maximum number of layers in those images is returned in minArrayLayers.

Some surfaces support performing transformations on images as they are presented. For example, an image might be flipped or rotated to accommodate presentation to displays or other devices that are at nonstandard angles. The set of supported transforms is returned in the supportedTransforms field of VkSurfaceCapabilitiesKHR and is a bitfield made up of a selection of members of the VkSurfaceTransformFlagBitsKHR enumeration. One of those bits is set in currentTransform, which contains the current transform applied when the query is made.

If the surface supports composition, then the supported composition modes are contained as a combination of flags from the VkCompositeAlphaFlagBitsKHR enumeration in the supportedCompositeAlpha field.

Finally, the allowed usage for the images created through a swap chain on this surface is returned in supportedUsageFlags.

Once you have a swap chain associated with a surface to which you want to present, you need to get handles to the images representing the items in the chain. To do this, call vkGetSwapchainImagesKHR(), the prototype of which is

Click here to view code image

VkResult vkGetSwapchainImagesKHR(

 VkDevice device,

 VkSwapchainKHR swapchain,

 uint32_t* pSwapchainImageCount,

 VkImage* pSwapchainImages);

The device that owns the swap chain should be passed in device, and the swap chain from which you are requesting images should be passed in swapchain. pSwapchainImageCount points to a variable that will contain the number of images received. If pSwapchainImages is nullptr, then the initial value of pSwapchainImageCount will be ignored, and the variable will instead be overwritten with the number of swap-chain images in the swap-chain object. If pSwapchainImages is not nullptr, then it should be a pointer to an array of VkImage handles that will be filled with the images from the swap chain. The intial value of the variable pointed to by pSwapchainImageCount is the length of the array, and it will be overwritten with the number of images actually placed in the array.

Because when you create the swap chain, you get to specify only the minimum number of images in the swap chain, not the exact number of images, you need to use vkGetSwapchainImagesKHR() to determine how many images there really are in a swap chain, even if you just created it. Listing 5.1 demonstrates how to create a swap chain for an existing surface, query the number of images in it, and then query the actual image handles.

Listing 5.1: Creating a Swap Chain

Click here to view code image

VkResult result;

// First, we create the swap chain.

VkSwapchainCreateInfoKHR swapChainCreateInfo =

{

 VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, // sType

 nullptr, // pNext

 0, // flags

 m_mainSurface, // surface

 2, // minImageCount

 VK_FORMAT_R8G8B8A8_UNORM, // imageFormat

 VK_COLORSPACE_SRGB_NONLINEAR_KHR, // imageColorSpace

 { 1024, 768 }, // imageExtent

 1, // imageArrayLayers

 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, // imageUsage

 VK_SHARING_MODE_EXCLUSIVE, // imageSharingMode

 0, // queueFamilyIndexCount

 nullptr, // pQueueFamilyIndices

 VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR, // preTransform

 VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, // compositeAlpha

 VK_PRESENT_MODE_FIFO_KHR, // presentMode

 VK_TRUE, // clipped

 m_swapChain // oldSwapchain

};

result = vkCreateSwapchainKHR(m_logicalDevice,

 &swapChainCreateInfo,

 nullptr,

 &m_swapChain);

// Next, we query the swap chain for the number of images it actually contains.

uint32_t swapChainImageCount = 0;

if (result == VK_SUCCESS)

{

 result = vkGetSwapchainImagesKHR(m_logicalDevice,

 m_swapChain,

 &swapChainImageCount,

 nullptr);

}

if (result == VK_SUCCESS)

{

 // Now we resize our image array and retrieve the image handles from the

 // swap chain.

 m_swapChainImages.resize(swapChainImageCount);

 result = vkGetSwapchainImagesKHR(m_logicalDevice,

 m_swapChain,

 &swapChainImageCount,

 m_swapChainImages.data());

}

return result == VK_SUCCESS? m_swapChain : VK_NULL_HANDLE;

Note that the code in Listing 5.1 contains many hard-coded values. In a more robust application, you should call vkGetPhysicalDeviceSurfaceCapabilitiesKHR() to determine the capabilities of the device with respect to presenting the surface and the capabilities of the surface to support parameters such as the transform mode, number of images in the swap chain, and so on.

In particular, the surface format chosen in the imageFormat field of VkSwapchainCreateInfoKHR must be a format that is supported by the surface. To determine which formats can be used for swap chains associated with a surface, call vkGetPhysicalDeviceSurfaceFormatsKHR(), the prototype of which is

Click here to view code image

VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceFormatsKHR(

 VkPhysicalDevice physicalDevice,

 VkSurfaceKHR surface,

 uint32_t* pSurfaceFormatCount,

 VkSurfaceFormatKHR* pSurfaceFormats);

The physical device that you are querying is passed in physicalDevice, and the surface to which you want to present is passed in surface. If pSurfaceFormats is nullptr, then the variable pointed to by pSurfaceFormatCount is overwritten with the number of formats supported by the surface. If pSurfaceFormats is not nullptr, then it is a pointer to an array of VkSurfaceFormatKHR structures large enough to receive the number of formats supported by the surface. In this case, the number of elements in the array is passed as the initial value of the variable pointed to by pSurfaceFormats, and this is overwritten with the number of formats actually written to the array.

The definition of VkSurfaceFormatKHR is

Click here to view code image

typedef struct VkSurfaceFormatKHR {

 VkFormat format;

 VkColorSpaceKHR colorSpace;

} VkSurfaceFormatKHR;

The format field of VkSurfaceFormatKHR is the format of pixels in memory for the surface, and colorSpace is the supported color space. At present, the only defined color space is VK_COLORSPACE_SRGB_NONLINEAR_KHR.

In some cases, devices will support presentation from almost any format. This is generally true of compositing systems that use the image you’ve rendered to as an input to some further processing. However, other devices may support presenting from a very limited set of surface formats—perhaps only a single format for a particular surface. This is likely to be the case when you are presenting directly to a display device.

The images you get back from a call to vkGetSwapchainImagesKHR() aren’t immediately usable. Before you can write any data into them, you need to acquire the next available image by using a call to vkAcquireNextImageKHR(). This function retrieves the index of the next image in the swap chain that your application should render to. Its prototype is

Click here to view code image

VkResult vkAcquireNextImageKHR(

 VkDevice device,

 VkSwapchainKHR swapchain,

 uint64_t timeout,

 VkSemaphore semaphore,

 VkFence fence,

 uint32_t* pImageIndex);

The device parameter is the device that owns the swap chain, and swapchain is the handle to the swap chain to retrieve the next swap-chain image index from.

vkAcquireNextImageKHR() waits for a new image to become available before returning to the application. timeout specifies the time, in nanoseconds, that it will wait before returning. If the timeout is exceeded, then vkAcquireNextImageKHR() will return VK_NOT_READY. By setting timeout to 0, you can implement nonblocking behavior whereby vkAcquireNextImageKHR() will either return a new image immediately or return VK_NOT_READY to indicate that it would block if called with a nonzero timeout.

The index of the next image into which the application should render will be written into the variable pointed to by pImageIndex. The presentation engine might still be reading data from the image, so in order to synchronize access to the image, the semaphore parameter can be used to pass the handle of a semaphore that will become signaled when the image can be rendered to, or the fence parameter can be used to pass the handle to a fence that will become signaled when it is safe to render to the image.

Semaphores and fences are two of the synchronization primitives supported by Vulkan. We will cover synchronization primitives in more detail in Chapter 11, “Synchronization.”

Full-Screen Surfaces

The platform-specific extensions mentioned in the previous section allow a VkSurface object to be created that represents a native window owned by the operating system or window system. These extensions are typically used to render into a window that is visible on a desktop. Although it is often possible to create a window with no border that covers an entire display, it is often more efficient to render directly to a display instead.

This functionality is provided by the VK_KHR_display and VK_KHR_display_swapchain extensions. These extensions provide a platform-independent mechanism for discovering displays attached to a system, determining their properties and supported modes, and so on.

If the Vulkan implementation supports VK_KHR_display, you can discover the number of display devices attached to a physical device by calling vkGetPhysicalDeviceDisplayPropertiesKHR(), the prototype of which is

Click here to view code image

VkResult vkGetPhysicalDeviceDisplayPropertiesKHR(

 VkPhysicalDevice physicalDevice,

 uint32_t* pPropertyCount,

 VkDisplayPropertiesKHR* pProperties);

Displays are attached to physical devices, and the physical device whose displays you want information about is passed in the physicalDevice parameter. pPropertyCount is a pointer to a variable that will be overwritten with the number of physical devices attached to the display. If pProperties is nullptr, then the initial value of the variable pointed to by pPropertyCount is ignored, and it is simply overwritten with the total number of displays attached to the device. However, if pPropertyCount is not nullptr, then it is a pointer to an array of VkDisplayPropertiesKHR structures. The length of this array is passed as the initial value of the variable pointed to by pPropertyCount. The definition of VkDisplayPropertiesKHR is

Click here to view code image

typedef struct VkDisplayPropertiesKHR {

 VkDisplayKHR display;

 const char* displayName;

 VkExtent2D physicalDimensions;

 VkExtent2D physicalResolution;

 VkSurfaceTransformFlagsKHR supportedTransforms;

 VkBool32 planeReorderPossible;

 VkBool32 persistentContent;

} VkDisplayPropertiesKHR;

The display member of each of the VkDisplayPropertiesKHR structures is a handle to the display that can be used to reference it later. The displayName is a human-readable string describing the display. The physicalDimensions field gives the dimensions of the display, in millimeters, and the physicalResolution field gives the native resolution of the display, in pixels.

Some displays (or display controllers) support flipping or rotating images as they’re displayed. If this is the case, those capabilities are reported in the supportedTransforms field. This bitfield is made up of the members of the VkSurfaceTransformsFlagsKHR enumeration described earlier.

If the display supports more than one plane, then planeReorderPossible will be set to VK_TRUE if those planes can be reordered with respect to one another. If the planes can be shown only in a fixed order, then planeReorderPossible will be set to VK_FALSE.

Finally, some displays can accept partial or infrequent updates, which in many cases can improve power efficiency. If the display does support being updated in this manner, persistentContent will be set to VK_TRUE; otherwise, it will be set to VK_FALSE.

All devices will support at least one plane on each connected display. A plane can display images to the user. In some cases, a device will support more than one plane that it can mix in various other planes to produce a final image. These planes are sometimes known as overlay planes because each plane can be overlaid on those logically beneath it. When a Vulkan application presents, it presents to one of the planes of the display. It’s possible to present to multiple planes from the same application.

The supported plane count is considered to be part of the device, as it is generally the device—not the physical display—that performs composition operations to merge information from the planes into a single image. The physical device can then display a subset of its supported planes on each connected display. To determine the number and type of planes supported by a device, call vkGetPhysicalDeviceDisplayPlanePropertiesKHR(), the prototype of which is

Click here to view code image

VkResult vkGetPhysicalDeviceDisplayPlanePropertiesKHR(

 VkPhysicalDevice physicalDevice,

 uint32_t* pPropertyCount,

 VkDisplayPlanePropertiesKHR* pProperties);

The physical device whose overlay capabilities to query is passed in physicalDevice. If pProperties is nullptr, then pPropertyCount is a pointer to a variable that will be overwritten with the number of display planes supported by the device. If pProperties is not nullptr, then it must be a pointer to an array of VkDisplayPlanePropertiesKHR structures large enough to hold information about the supported display planes. The number of elements in the array is determined from the initial value of the variable pointed to by pPropertyCount. The definition of VkDisplayPlanePropertiesKHR is

Click here to view code image

typedef struct VkDisplayPlanePropertiesKHR {

 VkDisplayKHR currentDisplay;

 uint32_t currentStackIndex;

} VkDisplayPlanePropertiesKHR;

For each display plane supported by the device, one entry is placed in the pProperties array. Each plane appears on a single physical display, which is represented by the currentDisplay member, and if the device supports more than one plane on each display, the currentStackIndex indicates the order in which the planes are overlaid on one another.

Some of the device’s display planes may span multiple physical displays. To determine which display devices a display plane is visible on, you can call vkGetDisplayPlaneSupportedDisplaysKHR(), which is declared as

Click here to view code image

VkResult vkGetDisplayPlaneSupportedDisplaysKHR(

 VkPhysicalDevice physicalDevice,

 uint32_t planeIndex,

 uint32_t* pDisplayCount,

 VkDisplayKHR* pDisplays);

For a given physical display, specified in physicalDevice, and display plane, specified in planeIndex, vkGetDisplayPlaneSupportedDisplaysKHR() writes the number of displays across which that plane is visible into the variable pointed to by pDisplayCount. If pDisplays is not nullptr, then the handles to those displays are written into the array to which it points.

Each display plane has a set of capabilities such as maximum resolution and whether or not it supports various composition modes, and these capabilities will vary by display mode. To determine these capabilities, call vkGetDisplayPlaneCapabilitiesKHR(), the prototype of which is

Click here to view code image

VkResult vkGetDisplayPlaneCapabilitiesKHR(

 VkPhysicalDevice physicalDevice,

 VkDisplayModeKHR mode,

 uint32_t planeIndex,

 VkDisplayPlaneCapabilitiesKHR* pCapabilities);

For a given device (passed in physicalDevice) and display mode (a handle to which is passed in mode), the support for this mode supported by the plane specified in planeIndex is written into an instance of the VkDisplayPlaneCapabilitiesKHR structure, the address of which is passed in pCapabilities. The definition of VkDisplayPlaneCapabilitiesKHR is

Click here to view code image

typedef struct VkDisplayPlaneCapabilitiesKHR {

 VkDisplayPlaneAlphaFlagsKHR supportedAlpha;

 VkOffset2D minSrcPosition;

 VkOffset2D maxSrcPosition;

 VkExtent2D minSrcExtent;

 VkExtent2D maxSrcExtent;

 VkOffset2D minDstPosition;

 VkOffset2D maxDstPosition;

 VkExtent2D minDstExtent;

 VkExtent2D maxDstExtent;

} VkDisplayPlaneCapabilitiesKHR;

The supported composition modes for the display plane are reported in supportedAlpha. This is a combination of the bits defined in VkDisplayPlaneAlphaFlagBitsKHR, which include

• VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR: The plane does not support blended composition at all, and all surfaces presented on that plane are considered to be fully opaque.

• VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR: The plane supports a single, global alpha value that is passed through the globalAlpha member of the VkDisplaySurfaceCreateInfoKHR structure used to create the surface.

• VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR: The plane supports per-pixel transparency that is sourced from the alpha channel of the images presented to the surfaces.

The minSrcPosition and maxSrcPosition fields specify the minimum and maximum offset of the displayable region within a presentable surface that can be displayed on the plane, and the minSrcExtent and maxSrcExtent fields specify its minimum and maximum size.

The minDstPosition and maxDstPosition fields specify the minimum and maximum offset at which the plane may be placed on the corresponding physical display, and minDstExtent and maxDstExtent indicate its physical size, in pixels, on that display.

Together, these fields allow a subset of a surface to be displayed in a window that may span one or more physical displays. This is considered to be a relatively advanced display capability, and in practice, most devices will report minSrcPosition, minDstPosition, maxSrcPosition, and maxDstPosition as the display origin and the maximum extents as the supported resolution of the display.

Each physical display may support multiple display modes. Each mode is represented by a VkDisplayModeKHR handle and has a number of properties. Each display can report a list of predefined display modes, which can be retrieved by calling vkGetDisplayModePropertiesKHR(), the prototype of which is

Click here to view code image

VkResult vkGetDisplayModePropertiesKHR(

 VkPhysicalDevice physicalDevice,

 VkDisplayKHR display,

 uint32_t* pPropertyCount,

 VkDisplayModePropertiesKHR* pProperties);

The physical device to which the display is attached is passed in physicalDevice, and the display whose modes you want to query is passed in display. Remember that multiple displays may be connected to a single physical device and each may support a different selection of display modes. The pPropertyCount parameter points to a variable that will be overwritten with the number of supported display modes. The initial value of this variable is ignored if pProperties is nullptr. If pProperties is not nullptr, then it should point to an array of VkDisplayModePropertiesKHR structures that will be filled with information about the display modes. The definition of VkDisplayModePropertiesKHR is

Click here to view code image

typedef struct VkDisplayModePropertiesKHR {

 VkDisplayModeKHR displayMode;

 VkDisplayModeParametersKHR parameters;

} VkDisplayModePropertiesKHR;

The first member of VkDisplayModePropertiesKHR, displayMode, is a VkDisplayModeKHR handle to the display mode that can be used to refer to it unambiguously. The second member is an instance of the VkDisplayModeParametersKHR structure containing the parameters of the display mode. The definition of this structure is

Click here to view code image

typedef struct VkDisplayModeParametersKHR {

 VkExtent2D visibleRegion;

 uint32_t refreshRate;

} VkDisplayModeParametersKHR;

The parameters of the display mode are quite simple, containing only the extent of the display, in pixels, represented by the visibleRegion member of VkDisplayModeParametersKHR and the refresh rate, measured in thousandths of a Hertz. Generally, an application will enumerate the display modes supported by the device to which it wishes to render and select the most appropriate one. If none of the preexisting display modes are suitable, it’s also possible to create new ones by calling vkCreateDisplayModeKHR(), the prototype of which is

Click here to view code image

VkResult vkCreateDisplayModeKHR(

 VkPhysicalDevice physicalDevice,

 VkDisplayKHR display,

 const VkDisplayModeCreateInfoKHR* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkDisplayModeKHR* pMode);

The physical device that will own the mode is passed in physicalDevice, and the display upon which the mode will be used is passed in display. If creation of the new mode is successful, a handle to it will be written into the variable pointed to by pMode. The parameters of the new mode are passed through a pointer to an instance of the VkDisplayModeCreateInfoKHR structure, the definition of which is

Click here to view code image

typedef struct VkDisplayModeCreateInfoKHR {

 VkStructureType sType;

 const void* pNext;

 VkDisplayModeCreateFlagsKHR flags;

 VkDisplayModeParametersKHR parameters;

} VkDisplayModeCreateInfoKHR;

The sType field of the VkDisplayModeCreateInfoKHR structure should be set to VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR, and pNext should be set to nullptr. The flags field is reserved for future use and should be set to zero. The remaining parameters of the new display mode are contained in an instance of the VkDisplayModeParametersKHR.

Once you have determined the topology of the displays connected to the physical devices in the system, their supported planes, and their display modes, you can create a VkSurfaceKHR object referencing one of them, which you can use just like a surface referencing a window. To do this, call vkCreateDisplayPlaneSurfaceKHR(), the prototype of which is

Click here to view code image

VkResult vkCreateDisplayPlaneSurfaceKHR(

 VkInstance instance,

 const VkDisplaySurfaceCreateInfoKHR* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkSurfaceKHR* pSurface);

vkCreateDisplayPlaneSurfaceKHR() is a function that operates at the instance level because a single display mode might span multiple planes across multiple displays, even being connected to to multiple physical devices. The parameters describing the surface are passed through an instance of the VkDisplaySurfaceCreateInfoKHR structure, the address of which is passed in pCreateInfo. The definition of VkDisplaySurfaceCreateInfoKHR is

Click here to view code image

typedef struct VkDisplaySurfaceCreateInfoKHR {

 VkStructureType sType;

 const void* pNext;

 VkDisplaySurfaceCreateFlagsKHR flags;

 VkDisplayModeKHR displayMode;

 uint32_t planeIndex;

 uint32_t planeStackIndex;

 VkSurfaceTransformFlagBitsKHR transform;

 float globalAlpha;

 VkDisplayPlaneAlphaFlagBitsKHR alphaMode;

 VkExtent2D imageExtent;

} VkDisplaySurfaceCreateInfoKHR;

The sType field of VkDisplaySurfaceCreateInfoKHR should be set to VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR, and pNext should be set to nullptr. The flags field is reserved for future use and should be set to zero. The handle to the display mode that is to be used for the new surface is passed through the displayMode field. This can be one of the predefined display modes returned from a call to vkGetDisplayModePropertiesKHR() or a user-created display mode produced from a call to vkCreateDisplayModeKHR().

The plane to which the surface will be presented is passed in planeIndex, and the relative order in which the plane should appear when composited with other planes on the device should be passed in planeStackIndex. At time of presentation, the image can be flipped or rotated, assuming that the operation is supported by the display. The operation to be performed is specified in transform, which is a single bit selected from the VkSurfaceTransformFlagBitsKHR enumeration. This must be a supported transform for the video mode.

The transforms that can be applied to a surface during presentation depend on the device and surface capabilities, which can be retrieved by using a call to vkGetPhysicalDeviceSurfaceCapabilitiesKHR().

If the image is to be composited on top of other planes, it is possible to set the transparency for the surface by using the globalAlpha and alphaMode fields. If alphaMode is VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR, then globalAlpha sets the global alpha value for composition. If alphaMode is VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR, then the alpha value for each pixel is taken from the presented image, and the value of globalAlpha is ignored. If alphaMode is VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR, then blended composition is disabled.

The imageExtent field specifies the size of the presentable surface. In general, for full-screen rendering, this should be the same as the extent of the display mode selected in displayMode.

Performing Presentation

Presentation is an operation that occurs in the context of a queue. Generally, commands executed inside command buffers submitted to a queue produce the images that are to be presented, so those images should be shown to the user only when the rendering operations that created them have completed. While a device in a system may support many queues, it is not required that all of them support presentation. Before you can use a queue for presentation to a surface, you must determine whether that queue supports presentation to that surface.

To determine whether a queue supports presentation, pass the physical device, surface and queue family to a call to vkGetPhysicalDeviceSurfaceSupportKHR(), the prototype of which is

Click here to view code image

VkResult vkGetPhysicalDeviceSurfaceSupportKHR(

 VkPhysicalDevice physicalDevice,

 uint32_t queueFamilyIndex,

 VkSurfaceKHR surface,

 VkBool32* pSupported);

The physical device to query is passed in physicalDevice. All queues are members of a queue family, and all members of a queue family are considered to have identical properties. Therefore, only the family of a queue is needed to determine whether that queue supports presentation. The queue-family index is passed in queueFamilyIndex.

The capability of a queue to present is dependent on the surface. For example, some queues may be able to present into windows owned by the operating system but have no direct access to physical hardware that controls full-screen surfaces. Therefore, the surface to which you want to present is passed in surface.

If vkGetPhysicalDeviceSurfaceSupportKHR() is successful, the ability of queues in the specified family to present to the surface specified in surface is written into the variable pointed to by pSupported—VK_TRUE indicating support and VK_FALSE indicating lack of support. If something goes wrong, vkGetPhysicalDeviceSurfaceSupportKHR() will return a failure code, and the value of pSupported will not be overwritten.

Before an image can be presented, it must be in the correct layout. This state is the VK_IMAGE_LAYOUT_PRESENT_SRC_KHR layout. Images are transitioned from layout to layout using image memory barriers, as discussed briefly in Chapter 2, “Memory and Resources.” Listing 5.2 shows how to transition an image from VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL to VK_IMAGE_LAYOUT_PRESENT_SRC_KHR layout using an image memory barrier.

Listing 5.2: Transitioning an Image to Present Source

Click here to view code image

const VkImageMemoryBarrier barrier =

{

 VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType

 nullptr, // pNext

 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, // srcAccessMask

 VK_ACCESS_MEMORY_READ_BIT, // dstAccessMask

 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // oldLayout

 VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, // newLayout

 0, // srcQueueFamilyIndex

 0, // dstQueueFamilyIndex

 sourceImage, // image

 { // subresourceRange

 VK_IMAGE_ASPECT_COLOR_BIT, // aspectMask

 0, // baseMipLevel

 1, // levelCount

 0, // baseArrayLayer

 1, // layerCount

 }

};

vkCmdPipelineBarrier(cmdBuffer,

 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,

 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,

 0,

 0, nullptr,

 0, nullptr,

 1, &barrier);

Note that the image memory barrier is executed inside a command buffer and this command buffer should be submitted to a device queue for execution. Once the image is in VK_IMAGE_LAYOUT_PRESENT_SRC_KHR layout, it can be presented to the user by calling vkQueuePresentKHR(), the prototype of which is

Click here to view code image

VkResult vkQueuePresentKHR(

 VkQueue queue,

 const VkPresentInfoKHR* pPresentInfo);

The queue to which the image should be submitted for presentation is specified in queue. The rest of the parameters to the command are passed through an instance of the VkPresentInfoKHR structure, the definition of which is

Click here to view code image

typedef struct VkPresentInfoKHR {

 VkStructureType sType;

 const void* pNext;

 uint32_t waitSemaphoreCount;

 const VkSemaphore* pWaitSemaphores;

 uint32_t swapchainCount;

 const VkSwapchainKHR* pSwapchains;

 const uint32_t* pImageIndices;

 VkResult* pResults;

} VkPresentInfoKHR;

The sType field of VkPresentInfoKHR should be set to VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, and pNext should be set to nullptr. Before the images are presented, Vulkan will optionally wait on one or more semaphores to enable rendering to the images to be synchronized with the presentation operation. The number of semaphores to wait on is passed in the waitSemaphoreCount member, and the pWaitSemaphores member points to an array of this many semaphore handles to wait on.

A single call to vkQueuePresentKHR() can actually present multiple images to multiple swap chains at the same time. This is useful, for example, in an application that is rendering to multiple windows at the same time. The number of images to preset is specified in swapchainCount. pSwapchains is an array of the swap-chain objects to present with.

The images presented to each of the swap chains are not referenced by their VkImage handles but by the indices into their arrays of swap-chain images as retrieved from the swap-chain object. For each swap chain that will be presented to, one image index is passed through the corresponding element in the array pointed to by pImageIndices.

Each of the separate present operations triggered by the call to vkQueuePresentKHR() can produce its own result code. Remember that some values of VkResult indicate success. pResults is a pointer to an array of swapchainCount VkResult variables that will be filled with the results of the present operations.

Cleaning Up

Regardless of the method of presentation you’ve used in your application, it is important to clean up correctly. First, you should destroy the swap chain to which you are presenting. To do this, call vkDestroySwapchainKHR(), the prototype of which is

Click here to view code image

void vkDestroySwapchainKHR(

 VkDevice device,

 VkSwapchainKHR swapchain,

 const VkAllocationCallbacks* pAllocator);

The device that owns the swap chain is passed in device, and the swap chain to destroy is passed in swapchain. If a host memory allocator was used to create the swap chain, then a pointer to a compatible allocator is passed in pAllocator.

When the swap chain is destroyed, all of the presentable images associated with the swap chain are also destroyed. Therefore, before you destroy a swap chain, you should ensure that there is no pending work that might write to any of its surfaces and that there are no pending present operations that might read from them. The easiest way to do this is to call vkDeviceWaitIdle() on the device. While not normally recommended, destruction of a swap chain usually does not occur in a performance-critical part of an application, so in this case, simple is best.

When images are acquired from a swap chain using vkAcquireNextImageKHR() or presented using vkQueuePresentKHR(), semaphores are passed to these functions to signal and wait on, resepectively. Care should be taken that the semaphores live long enough that the swap chain can complete any signaling operations on them before they are destroyed. To ensure this, it is best to destroy the swap chain before destroying any semaphores that might have been used with it.

Summary

In this chapter, you learned about the operations supported by Vulkan for getting images onto displays. We covered presenting to various window systems, the mechanism by which you determine which images to render into, and how to enumerate and control the physical display devices attached to a system. We briefly covered synchronization involved in presenting and will dig further into synchronization primitives later in the book. We also discussed methods for configuring display synchronization. With the information in this chapter, you should have a decent understanding of how Vulkan presents images to the user.

Chapter 6. Shaders and Pipelines

What You’ll Learn in This Chapter

• What a shader is and how it’s used

• The basics of SPIR-V, the Vulkan shading language

• How to construct a shader pipeline and use it to do work

Shaders are small programs that are executed directly on the device. These are the fundamental building blocks of any complex Vulkan program. Shaders are perhaps more important to the operation of your program than the Vulkan API itself. This chapter introduces shaders and shader modules, shows how they are constructed from SPIR-V binaries, and illustrates how those binaries are generated from GLSL using standard tools. It discusses the construction of pipelines containing those shaders and other information required to run them, and then shows how to execute the shaders to do work on the device.

Shaders are the fundamental building blocks of work to be executed on the device. Vulkan shaders are represented by SPIR-V, which is a binary intermediate representation of program code. SPIR-V can be generated offline using a compiler, online directly inside your application, or by passing a high-level language to a library at runtime. The sample applications accompanying this book take the first approach: compiling the shaders offline and then loading the resulting SPIR-V binaries from disk.

The original shaders are written in GLSL using the Vulkan profile. This is a modified and enhanced version of the same shading language used with OpenGL. Most of the examples, therefore, discuss Vulkan features in terms of their representation in GLSL. However, it should be clear that Vulkan itself knows nothing of GLSL and doesn’t care where SPIR-V shaders come from.

An Overview of GLSL

Although not officially part of the Vulkan specification, Vulkan shares much of its heritage with OpenGL. In OpenGL, the officially supported high-level language is GLSL—the OpenGL Shading Language. Therefore, during the design of SPIR-V, much attention was paid to ensuring that at least one high-level language would be suitable for use in the generation of SPIR-V shaders. Minor modifications were made to the GLSL specification for use with Vulkan. Some features were added to enable GLSL shaders to interact cleanly with the Vulkan system, and legacy features in OpenGL that were not carried forward into Vulkan were removed from the Vulkan profile of GLSL.

The result is a slimline version of GLSL that supports most of the features of Vulkan while enabling a high level of portability between OpenGL and Vulkan. In short, if you stick to the modern features of OpenGL in an OpenGL application, much of what you write in your shaders will compile directly into SPIR-V using the official reference compiler. Of course, you are free to write your own compilers and tools or to use a third-party compiler to produce SPIR-V modules from any language you choose.

The modifications to GLSL to allow it to be used to produce a SPIR-V shader suitable for use with Vulkan are documented in the GL_KHR_vulkan_glsl extension.

In this section, we provide a brief overview of GLSL. It is assumed that the reader is somewhat familiar with high-level shading languages in general and is capable of researching GLSL in more depth if needed.

Listing 6.1 shows the simplest possible GLSL shader. It is simply an empty function, returning void, that does absolutely nothing. It’s actually a valid shader for any stage in the Vulkan pipeline, although executing it in some stages would result in some undefined behavior.

Listing 6.1: Simplest Possible GLSL Shader

#version 450 core

void main (void)

{

 // Do nothing!

}

All GLSL shaders should begin with a #version directive to inform the GLSL compiler which version of GLSL we’re using. This allows the compiler to perform appropriate error checks and to allow certain language constructs that have been introduced over time.

When compiled to SPIR-V for use in Vulkan, a compiler should automatically define VULKAN to the version of the GL_KHR_vulkan_glsl extension in use such that you can wrap Vulkan-specific constructs or functionality in your GLSL shader in #ifdef VULKAN or #if VULKAN > {version} blocks in order to allow the same shaders to be used with OpenGL or Vulkan. Throughout this book, when Vulkan-specific features are discussed in the context of GLSL, it is assumed that the code beging written is either exclusively for Vulkan or is wrapped in the appropriate #ifdef preprocessor conditionals to allow it to be compiled for Vulkan.

GLSL is a C-like language, with its syntax and many of its semantics taken from C or C++. If you are a C programmer, you should be comfortable with constructs such as for and while loops; flow-control keywords such as break and continue; switch statements; relational operators such as ==, <, and >; the ternary operator a ? b : c; and so on. All of these are available in GLSL shaders.

The fundamental data types in GLSL are signed and unsigned integer and floating-point values, denoted as int, uint, and float, respectively. Double-precision floating-point values are also supported using the double data type. Inside GLSL, they have no defined bit width, much as in C. GLSL has no stdint analog, so defining a specific bit width for variables is not supported, although the GLSL and SPIR-V specifications do provide some minimum guarantees for the range and precision of numeric representations used by Vulkan. However, bit width and layouts are defined for variables sourced from and written to memory. Integers are stored in memory in twos-component form, and floating-point variables follow IEEE conventions wherever possible, aside from minor differences in precision requirements, handling of denormals and not-a-number (NaN) values, and so on.

In addition to the basic scalar integer and floating-point data types, GLSL represents short vectors of up to four components and small matrices of up to 4 × 4 elements as first-class citizens in the language. Vectors and matrices of the fundamental data types (signed and unsigned integers and floating-point scalars) can be declared. The vec2, vec3, and vec4 types, for example, are vectors of two, three, and four floating-point values, respectively. Integer vectors are notated using the i or u prefixes for signed and unsigned integers, respectively. Thus, ivec4 is a vector of four signed integers, and uvec4 is a vector of four unsigned integers. The d prefix is used to denote double-precision floating-point. Thus, dvec4 is a vector of four double-precision floating-point values.

Matrices are written using the form matN or matNxM, representing N × N square matrices and N × M rectangular matrices, respectively. The d prefix may also be used with matrix data types to form double-precision matrices. Therefore, dmat4 is a 4 × 4 matrix of double-precision floating-point values. Matrices of integers, however, are not supported. Matrices are considered to be column-primary and may be treated as arrays of vectors. Thus, writing m[3] where m is of type mat4 yields a four-element vector of floating-point values (a vec4) representing the last column of m.

The Boolean type is also a first-class citizen in GLSL and can be formed into vectors (but not matrices), just like floating-point and integer variables. Boolean variables are written using the bool type. Relational operators comparing vectors produce vectors of Booleans, with each element representing one of the comparison results. The special built-in functions any() and all() are used to produce a single Boolean expressing whether any element of the source vector is true and whether all of the elements of the source vector are true, respectively.

Data produced by the system is passed into GLSL shaders through built-in variables. Examples are variables such as gl_FragCoord, gl_VertexIndex, and so on, which will each be introduced as we reach the relevant parts of Vulkan throughout this book. Built-in variables often have specific semantics, and reading and writing them can change how a shader behaves.

User-specified data is normally passed into shaders through memory. Variables can be bound together into blocks, which can then be bound to device-accessible resources backed by memory that your application can write into. This allows you to pass large amounts of data to shaders. For smaller but more frequently updated data, special variables called push constants are available and will be covered later in the book.

GLSL provides a very large number of built-in functions. In contrast to C, however, GLSL has no header files, and it is not necessary to #include anything. Rather, the GLSL equivalent to a standard library is automatically provided by the compiler. It includes a large suite of math functions, functions for accessing textures, and special functions such as flow-control functions that control the execution of the shader on the device.

An Overview of SPIR-V

SPIR-V shaders are embedded in modules. Each module can contain one or many shaders. Each shader has an entry point that has a name and a shader type, which is used to define which shading stage the shader runs in. The entry point is where the shader begins execution when it is run. A SPIR-V module is passed to Vulkan along with creation information, and Vulkan returns an object representing that module. The module can then be used to construct a pipeline, which is a fully compiled version of a single shader along with information required to run it on the device.

Representation of SPIR-V

SPIR-V is the only officially supported shading language for Vulkan. It is accepted at the API-level and is ultimately used to construct pipelines, which are objects that configure a Vulkan device to do work for your application.

SPIR-V was designed to be easy for tools and drivers to consume. This improves portability by reducing the variability between implementations. The native representation of a SPIR-V module is a stream of 32-bit words stored in memory. Unless you are a tool writer or plan to generate SPIR-V yourself, it is unlikely that you will deal with the binary encoding of SPIR-V directly. Rather, you will either look at a textual representation of SPIR-V or generate SPIR-V using a tool such as glslangvalidator, the official Khronos GLSL compiler.

Saving the shader in Listing 6.1 as a text file with the .comp extension tells glslangvalidator that the shader is to be compiled as a compute shader. We can then compile this shader using glslangvalidator with the command line

Click here to view code image

glslangvalidator simple.comp -o simple.spv

This produces a SPIR-V binary named simple.spv. We can disassemble the binary using the SPIR-V disassembler, spirv-dis, which outputs a human-readable disassembly of the generated SPIR-V binary. This is shown in Listing 6.2.

Listing 6.2: Simplest SPIR-V

Click here to view code image

; SPIR-V

; Version: 1.0

; Generator: Khronos Glslang Reference Front End; 1

; Bound: 6

; Schema: 0

 OpCapability Shader

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint GLCompute %4 "main"

 OpExecutionMode %4 LocalSize 1 1 1

 OpSource GLSL 450

 OpName %4 "main"

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %4 = OpFunction %2 None %3

 %5 = OpLabel

 OpReturn

 OpFunctionEnd

You can see that the text form of SPIR-V looks like a strange dialect of assembly language. We can step through this disassembly and see how it relates to the original input. Each line of the output assembly represents a single SPIR-V instruction, possibly made up of multiple tokens.

The first instruction in the stream, OpCapability Shader, requests that the Shader capability be turned on. SPIR-V functionality is roughly divided into related groups of instructions and features. Before your shader can use any of these features, it must declare that it will be using the capability of which the feature is part. The shader in Listing 6.2 is a graphics shader and therefore uses the Shader capability. This is the most fundamental capability. Without this, we cannot compile graphics shaders. As we introduce more SPIR-V and Vulkan functionality, we will introduce the various capabilities that each feature depends on.

Next, we see %1 = OpExtInstImport "GLSL.std.450". This is essentially importing an additional set of instructions corresponding to the functionality included in GLSL version 450, which is what the original shader was written in. Notice that this instruction is preceeded by %1 =. This names the result of the instruction by assigning it an ID. The result of OpExtInstImport is effectively a library. When we want to call functions in this library, we do so using the OpExtInst instruction, which takes both a library (the result of the OpExtInstImport instruction) and an instruction index. This allows the SPIR-V instruction set to be arbitrarily extended.

Next, we see some additional declarations. OpMemoryModel specifies the working memory model for this module, which in this case is the logical memory model corresponding to GLSL version 450. This means that all memory access is performed through resources rather than a physical memory model, which accesses memory through pointers.

Next is the declaration of an entry point in the module. The OpEntryPoint GLCompute %4 "main" instruction means that there is an available entry point corresponding to an OpenGL compute shader, with ID 4 exported with the function name main. This name is used to reference the entry point when we hand the resulting shader module back to Vulkan.

We use this ID in the subsequent instruction, OpExecutionMode %4 LocalSize 1 1 1, which defines the execution group size of this shader to be 1 × 1 × 1 work item. This is implicit in GLSL if the local size layout qualifier is not present.

The next two instructions are simply informational. OpSource GLSL 450 indicates that the module was compiled from GLSL version 450, and OpName 4 "main" provides a name for the token with ID 4.

Now we see the real meat of the function. First, %2 = OpTypeVoid declares that we want to use ID 2 as the type void. Everything in SPIR-V has an ID, even type definitions. Large, aggregate types can be built up by referencing sequentially smaller, simpler types. However, we need to start from somewhere, and assigning a type to void is where we’re starting.

%3 = OpTypeFunction %2 means that we’re defining ID 3 as a function type taking void (previously declared as ID 2) and taking no parameters. We use this in the following line, %4 = OpFunction %2 None %3. This means that we’re declaring ID 4 (which we previously named "main") to be an instance of the function 3 (declared in the line above), returning void (as ID 2), and having no particular decarations. This is indicated by None in the instructions and can be used for things like inlining, whether the variable is constant (its constness), and so on.

Finally, we see the declaration of a label (which is unused and only a side effect of the way the compiler operates), the implicit return statement, and eventually the end of the function. This is the end of our SPIR-V module.

The complete binary dump of the shader is 192 bytes long. SPIR-V is quite verbose, as 192 bytes is quite a bit longer than the original shader. However, SPIR-V makes explicit some of the things that are implicit in the original shading language. For example, declaring a memory model is not necessary in GLSL because it supports only a logical memory model. Further, there is some redundancy in the SPIR-V module as compiled here; we don’t care about the name of the main function, the label with ID 5 is never actually used, and the shader imports the GLSL.std.450 library but never actually uses it. It is possible to strip such unneeded instructions from a module. Even after this, because SPIR-V is relatively sparsely encoded, the resulting binaries are fairly easy to compress with even a generic compressor and probably significantly more compressible with a specialized compression library.

All SPIR-V code is written in SSA (single static assignment) form, which means that every virtual register (the tokens written as %n in the listing above) are written exactly once. Almost every instruction that does work produces a result identifier. As we progress to more complex shaders, you will see that machine-generated SPIR-V is somewhat unwieldy, and because of its verbosity and enforced SSA form, it is quite difficult to write by hand. It is strongly recommended that you use a compiler to generate SPIR-V offline or online by using the compiler as a library that your application can link to.

If you do plan to generate or interpret SPIR-V modules yourself, you can use the defined binary encoder to build tools to parse or create them. However, they have a well-defined binary storage format that is explained later in this chapter.

All SPIR-V modules begin with a magic number that can be used to weakly validate that the binary blob is, in fact, a SPIR-V module. This magic number is 0x07230203 when viewed as a native unsigned integer. This number can also be used to deduce the endianness of the module. Because each SPIR-V token is a 32-bit word, if a SPIR-V module is passed by disk or network to a host of a different endianness, the bytes within the word are swapped, and its value is changed. For example, if a SPIR-V module stored in little-endian format is loaded by a big-endian host, the magic number will be read as 0x03022307, so the host knows to swap the byte order of the words in the module.

Following the magic number are several more words that describe properties of the module. First is the version number of SPIR-V used in the module. This is encoded using the bytes of the 32-bit word where bits 16 through 23 contain the major version and bits 8 through 15 contain the minor version. SPIR-V 1.0 therefore uses the encoding 0x00010000. The remaining bits in the version number are reserved. Next is a token containing the version of the tool that generated the SPIR-V module. This value is tool-dependent.

Next is the maximum number of IDs used in the module. All variables, functions, and other components of the SPIR-V module are assigned an ID less than this number, so including it up front allows tools consuming SPIR-V to allocate arrays of data structures to hold them in rather than allocating those structures on the fly. The last word in the header is reserved and should be set to zero. Following this is the stream of instructions.

Handing SPIR-V to Vulkan

Vulkan doesn’t care too much where the SPIR-V shaders and modules come from. Typically, they will be compiled offline as part of building your application, compiled using an online compiler, or generated directly in your application. Once you have a SPIR-V module, you need to hand it to Vulkan so that a shader module object can be created from it. To do this, call vkCreateShaderModule(), the prototype of which is

Click here to view code image

VkResult vkCreateShaderModule (

 VkDevice device,

 const VkShaderModuleCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkShaderModule* pShaderModule);

As with all Vulkan object creation functions, vkCreateShaderModule() takes a device handle as input along with a pointer to a structure containing a descrtiption of the object being created. In this case, this is a VkShaderModuleCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkShaderModuleCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkShaderModuleCreateFlags flags;

 size_t codeSize;

 const uint32_t* pCode;

} VkShaderModuleCreateInfo;

The sType field of VkShaderModuleCreateInfo should be set to VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved for future use and should be set to zero. The codeSize field contains the size of the SPIR-V module in bytes, the code for which is passed in pCode.

If the SPIR-V code is valid and understood by Vulkan, then vkCreateShaderModule() will return VK_SUCCESS and place a handle to a new shader module in the variable pointed to by pShaderModule. You can then use the shader module to create pipelines, which are the final form of the shader used to do work on the device.

Once you are done with a shader module, you should destroy it to free its resources. This is performed by calling vkDestroyShaderModule(), the prototype of which is

Click here to view code image

void vkDestroyShaderModule (

 VkDevice device,

 VkShaderModule shaderModule,

 const VkAllocationCallbacks* pAllocator);

A handle to the device that owns the shader module should be passed in device, and the shader module to be destroyed should be passed in shaderModule. Access to the shader module must be externally synchronized. No other access to the shader module needs to be externally synchronized. In particular, it is possible to use the same shader module to create multiple pipelines in parallel, as discussed in the next section. Your application only needs to ensure that the shader module is not destroyed while there are Vulkan commands executing on other threads that might access the same module.

After the module has been destroyed, its handle is immediately invalidated. However, pipelines created using the module remain valid until they are destroyed. If a host memory allocator was used when the shader module was created, then a pointer to a compatible allocator should be passed in pAllocator; otherwise, pAllocator should be set to nullptr.

Pipelines

As you read in the previous sections, Vulkan uses shader modules to represent collections of shaders. Shader modules are created by handing the module code to vkCreateShaderModule(), but before they can be used to do useful work on the device, you need to create a pipeline. There are two types of pipeline in Vulkan: compute and graphics. The graphics pipeline is rather complex and contains a lot of state unrelated to shaders. However, a compute pipeline is conceptually much simpler and contains essentially nothing but the shader code itself.

Compute Pipelines

Before we discuss creating a compute pipeline, we should cover the basics of compute shaders in general. The shader and its execution are the core of Vulkan. Vulkan also provides access to various fixed blocks of functionality for performing things such as copying data around and processing pixel data. However, the shader will form the core of any nontrivial application.

The compute shader provides raw access to the compute capabilities of the Vulkan device. The device can be seen as a collection of wide vector processing units that operate on related pieces of data. A compute shader is written as though it were a serial, single track of execution. However, there are hints that many such tracks of execution may run together. This is, in fact, how most Vulkan devices are constructed. Each track of execution is known as an invocation.

When a compute shader is executed, many invocations are started at once. The invocations are grouped into local work groups of fixed size, and then one or more such groups are launched together in what is sometimes known as a global work group. Logically, both the local and global work groups are three-dimensional. However, setting the size of any one of the three dimensions to one reduces the dimensionality of the group.

The size of the local work group is set in the compute shader. In GLSL, this is done using a layout qualifier, which is translated to the LocalSize decoration on the OpExecutionMode declaration in the SPIR-V shader passed to Vulkan. Listing 6.3 shows the size declaration applied to a GLSL shader, and Listing 6.4 shows the resulting SPIR-V disassembly, truncated for clarity.

Listing 6.3: Local Size Declaration in a Compute Shader (GLSL)

Click here to view code image

#version 450 core

layout (local_size_x = 4, local_size_y = 5, local_size_z 6) in;

void main(void)

{

 // Do nothing.

}

Listing 6.4: Local Size Declaration in a Compute Shader (SPIR-V)

Click here to view code image

...

 OpCapability Shader

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint GLCompute %4 "main"

 OpExecutionMode %4 LocalSize 4 5 6

 OpSource GLSL 450

...

As you can see, the OpExecutionMode instruction in Listing 6.4 sets the local size of the shader to {4, 5, 6} as specified in Listing 6.3.

The maximum local work group size for a compute shader is generally fairly small and is required only to be at least 128 invocations in the x and y dimensions and 64 invocations in the z dimension. Further, the total “volume” of the work group (the product of the limit in x, y, and z directions) is subject to a further limit, which is required only to be at least 128 invocations. Although many implementations support higher limits, you should always query those limits if you want to exceed the required minimums.

The maximum size of a work group can be determined from the maxComputeWorkGroupSize field of the VkPhysicalDeviceLimits structure returned from a call to vkGetPhysicalDeviceProperties(), as explained in Chapter 1, “Overview of Vulkan.” Further, the maximum total number of invocations in the local work group is contained in the maxComputeWorkGroupInvocations field of the same structure. An implementation will likely reject a SPIR-V shader that exceeds any of those limits, although behavior can technically be undefined in this case.

Creating Pipelines

To create one or more compute pipelines, call vkCreateComputePipelines(), the prototype of which is

Click here to view code image

VkResult vkCreateComputePipelines (

 VkDevice device,

 VkPipelineCache pipelineCache,

 uint32_t createInfoCount,

 const VkComputePipelineCreateInfo* pCreateInfos,

 const VkAllocationCallbacks* pAllocator,

 VkPipeline* pPipelines);

The device parameter to vkCreateComputePipelines() is the device with which the pipelines will be used and is responsible for allocating the pipeline objects. pipelineCache is a handle to an object that can be used to accelerate the creation of pipeline objects and is covered later in this chapter. The parameters for the creation of each new pipeline is represented by an instance of the VkComputePipelineCreateInfo structure. The number of structures (and therefore the number of pipelines to create) is passed in createInfoCount, and the address of an array of these structures is passed in pCreateInfos. The definition of VkComputePipelineCreateInfo is

Click here to view code image

typedef struct VkComputePipelineCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineCreateFlags flags;

 VkPipelineShaderStageCreateInfo stage;

 VkPipelineLayout layout;

 VkPipeline basePipelineHandle;

 int32_t basePipelineIndex;

} VkComputePipelineCreateInfo;

The sType field of VkComputePipelineCreateInfo should be set to VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved for future use, and in the current version of Vulkan, it should be set to zero. The stage field is an embedded structure containing information about the shader itself and is an instance of the VkPipelineShaderStageCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkPipelineShaderStageCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineShaderStageCreateFlags flags;

 VkShaderStageFlagBits stage;

 VkShaderModule module;

 const char* pName;

 const VkSpecializationInfo* pSpecializationInfo;

} VkPipelineShaderStageCreateInfo;

The sType for VkPipelineShaderStageCreateInfo is VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved in the current version of Vulkan and should be set to zero.

The VkPipelineShaderStageCreateInfo structure is used for all stages of pipeline creation. Although graphics pipelines have multiple stages (which you’ll learn about in Chapter 7, “Graphics Pipelines”), compute pipelines have only a single stage, and therefore stage should be set to VK_SHADER_STAGE_COMPUTE_BIT.

module is the handle to the shader module you created earlier; it contains the shader code for the compute pipeline you want to create. Because a single shader module can contain multiple entry points and ultimately many shaders, the entry point that represents this particular pipeline is specified in the pName field of VkPipelineShaderStageCreateInfo. This is one of the few instances where human-readable strings are used in Vulkan.

Specialization Constants

The final field in VkPipelineShaderStageCreateInfo is a pointer to an instance of the VkSpecializationInfo structure. This structure contains the information required to specialize a shader, which is the process of building a shader with some of its constants compiled in.

A typical Vulkan implementation will delay final code generation for pipelines until vkCreateComputePipelines() is called. This allows the values of specialization constants to be considered during the final passes of optimization over the shader. Typical uses and applications of specialization constants include

• Producing special cases through branching: Including a condition on a Boolean specialization constant will result in the final shader taking only one branch of the if statement. The nontaken branch will probably be optimized away. If you have two similar versions of a shader that differ in only a couple of places, this is a good way to merge them into one.

• Special cases through switch statements: Likewise, using an integer specialization constant as the tested variable in a switch statement will result in only one of the cases ever being taken in that particular pipeline. Again, most Vulkan implementations will optimize out all the never-taken cases.

• Unrolling loops: Using an integer specialization constant as the iteration count in a for loop may result in the Vulkan implementation making better decisions about how to unroll the loop or whether to unroll it at all. For example, if the loop counter ends up with a value of 1, then the loop goes away and its body becomes straight-line code. A small loop iteration count might result in the compiler unrolling the loop exactly that number of times. A larger iteration count may result in the compiler unrolling the loop by a factor of the count and then looping over that unrolled section a smaller number of times.

• Constant folding: Subexpressions involving specialization constants can be folded just as with any other constant. In particular, expressions involving multiple specialization constants may fold into a single constant.

• Operator simplification: Trivial operations such as adding zero or multiplying by one disappear, multiplying by negative one can be absorbed into additions turning them to subtractions, multiplying by small integers such as two can be turned into additions or even absorbed into other operations, and so on.

In GLSL, a specialization constant is declared as a regular constant that is given an ID in a layout qualifier. Specialization constants in GLSL can be Booleans, integers, floating-point values, or composites such as arrays, structures, vectors, or matrices. When translated to SPIR-V, these become OpSpecConstant tokens. Listing 6.5 shows an example GLSL declaration of some specialization constants, and Listing 6.6 shows the resulting SPIR-V produced by the GLSL compiler.

Listing 6.5: Specialization Constants in GLSL

Click here to view code image

layout (constant_id = 0) const int numThings = 42;

layout (constant_id = 1) const float thingScale = 4.2f;

layout (constant_id = 2) const bool doThat = false;

Listing 6.6: Specialization Constants in SPIR-V

Click here to view code image

...

 OpDecorate %7 SpecId 0

 OpDecorate %9 SpecId 1

 OpDecorate %11 SpecId 2

 %6 = OpTypeInt 32 1

 %7 = OpSpecConstant %6 42

 %8 = OpTypeFloat 32

 %9 = OpSpecConstant %8 4.2

 %10 = OpTypeBool

 %11 = OpSpecConstantFalse %10

...

Listing 6.6 has been edited to remove portions unrelated to the specialization constants. As you can see, however, %7 is declared as a specialization constant using OpSpecConstant of type %6 (a 32-bit integer) with a default value of 42. Next, %9 is declared as a specialization constant of type %8 (a 32-bit floating-point value) with a default value of 4.2. Finally, %11 is decalared as a Boolean value (type %10 in this SPIR-V) with a default value of false. Note that Booleans are declared with either OpSpecConstantTrue or OpSpecConstantFalse, depending on whether their default value is true or false, respectively.

Note that in both the GLSL shader and the resulting SPIR-V shader, the specialization constants are assigned default values. In fact, they must be assigned default values. These constants may be used like any other constant in the shader. In particular, they can be used for things like sizing arrays where only compile-time constants are otherwise allowed. If new values are not included in the VkSpecializationInfo structure passed to vkCreateComputePipelines(), then those default values are used. However, the constants can be overridden by passing new values when the pipeline is created. The definition of VkSpecializationInfo is

Click here to view code image

typedef struct VkSpecializationInfo {

 uint32_t mapEntryCount;

 const VkSpecializationMapEntry* pMapEntries;

 size_t dataSize;

 const void* pData;

} VkSpecializationInfo;

Inside the VkSpecializationInfo structure, mapEntryCount contains the number of specialization constants that are to be set, and this is the number of entries in the array of VkSpecializationMapEntry structures in the array pointed to by pMapEntries. Each of these represents a single specialization constant. The definition of VkSpecializationMapEntry is

Click here to view code image

typedef struct VkSpecializationMapEntry {

 uint32_t constantID;

 uint32_t offset;

 size_t size;

} VkSpecializationMapEntry;

The constantID field is the ID of the specialization constant and is used to match the constant ID used in the shader module. This is set using the constant_id layout qualifier in GLSL and the SpecId decoration in SPIR-V. The offset and size fields are the offset and size of the raw data containing the values of the specicialization constants. The raw data is pointed to by pData field of the VkSpecializationInfo structure, and its size is given in dataSize. Vulkan uses the data in this blob to initialize the specialization constants. If one or more of the specialization constants in the shader is not specified in the specialization info when the pipeline is constructed, its default value is used.

When you are done with a pipeline and no longer need it, you should destroy it in order to free any resources associated with it. To destroy a pipeline object, call vkDestroyPipeline(), the prototype of which is

Click here to view code image

void vkDestroyPipeline (

 VkDevice device,

 VkPipeline pipeline,

 const VkAllocationCallbacks* pAllocator);

The device that owns the pipeline is specified in device, and the pipeline to be destroyed is passed in pipeline. If a host memory allocator was used to create the pipeline, a pointer to a compatible allocator should be passed in pAllocator; otherwise, pAllocator should be set to nullptr.

After a pipeline has been destroyed, it should not be used again. This includes any references to it from command buffers that may not yet have completed execution. It is the application’s responsibility to ensure that any submitted command buffers referencing the pipeline have completed execution and that any command buffers into which the pipeline is bound are not submitted after the pipeline is destroyed.

Accelerating Pipeline Creation

Creation of pipelines is possibly one of the most expensive operations that your application might perform. Although SPIR-V code is consumed by vkCreateShaderModule(), it is not until you call vkCreateGraphicsPipelines() or vkCreateComputePipelines() that Vulkan sees all of the shader stages and other state associated with the pipeline that might affect the final code that will execute on the device. For this reason, a Vulkan implementation may delay the majority of work involved in creating a ready-to-run pipeline object until the last possible moment. This includes shader compilation and code generation, which are typically fairly intensive operations.

Because an application that runs many times will use the same pipelines over and over, Vulkan provides a mechanism to cache the results of pipeline creation across runs of an application. This allows applications that build all of their pipelines at startup to start more quickly. The pipeline cache is represented as an object that is created by calling

Click here to view code image

VkResult vkCreatePipelineCache (

 VkDevice device,

 const VkPipelineCacheCreateInfo* pCreateInfo,

 const VkAllocationCallbacks * pAllocator,

 VkPipelineCache* pPipelineCache);

The device that will be used to create the pipeline cache is specified in device. The remaining parameters for the creation of the pipeline cache are passed through a pointer to an instance of the VkPipelineCacheCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkPipelineCacheCreateInfo {

 VkStructureType sType;

 const void * pNext;

 VkPipelineCacheCreateFlags flags;

 size_t initialDataSize;

 const void * pInitialData;

} VkPipelineCacheCreateInfo;

The sType field of the VkPipelineCacheCreateInfo structure should be set to VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved for future use and should be set to zero. If existing data is available from a previous run of the application, its address can be passed through pInitialData. The size of the data is passed in initialDataSize. If no initial data is available, initialDataSize should be set to zero, and pInitialData should be set to nullptr.

When the cache is created, the initial data (if any) is used to prime the cache. If necessary, Vulkan makes a copy of the data. The data pointed to by pInitialData is not modified. As more pipelines are created, data describing them may be added to the cache, growing it over time. To retrieve the data from the cache, call vkGetPipelineCacheData(). The prototype of vkGetPipelineCacheData() is

Click here to view code image

VkResult vkGetPipelineCacheData (

 VkDevice device,

 VkPipelineCache pipelineCache,

 size_t* pDataSize,

 void* pData);

The device that owns the pipeline cache should be specified in device, and the handle to the pipeline cache whose data is being queried should be passed in pipelineCache. If pData is not nullptr, then it points to a region of memory that will receive the cache data. In this case, the initial value of the variable pointed to by pDataSize is the size, in bytes, of this region of memory. That variable will be overwritten with the amount of data actually written into memory.

If pData is nullptr, then the initial value of the variable pointed to by pDataSize is ignored, and the variable is overwritten with the size of the data required to store the cache. In order to store the entire cache data, call vkGetPipelineCacheData() twice; the first time, call it with pData set to nullptr and pDataSize pointing to a variable that will receive the required size of the cache data. Then size a buffer appropriately to store the resulting cache data and call vkGetPipelineCacheData() again, this time passing a pointer to this memory region in pData. Listing 6.7 illustrates how to save the pipeline data to a file.

Listing 6.7: Saving Pipeline Cache Data to a File

Click here to view code image

VkResult SaveCacheToFile(VkDevice device, VkPipelineCache cache,

 const char* fileName)

{

 size_t cacheDataSize;

 VkResult result = VK_SUCCESS;

 // Determine the size of the cache data.

 result = vkGetPipelineCacheData(device,

 cache,

 &cacheDataSize,

 nullptr);

 if (result == VK_SUCCESS && cacheDataSize != 0)

 {

 FILE* pOutputFile;

 void* pData;

 // Allocate a temporary store for the cache data.

 result = VK_ERROR_OUT_OF_HOST_MEMORY;

 pData = malloc(cacheDataSize);

 if (pData != nullptr)

 {

 // Retrieve the actual data from the cache.

 result = vkGetPipelineCacheData(device,

 cache,

 &cacheDataSize,

 pData);

 if (result == VK_SUCCESS)

 {

 // Open the file and write the data to it.

 pOutputFile = fopen(fileName, "wb");

 if (pOutputFile != nullptr)

 {

 fwrite(pData, 1, cacheDataSize, pOutputFile);

 fclose(pOutputFile);

 }

 free(pData);

 }

 }

 }

 return result;

}

Once you have received the pipeline data, you can store it to disk or otherwise archive it ready for a future run of your application. There is no defined structure to the content of the cache; it is implementation-dependent. However, the first few words of the cache data always form a header that can be used to verify that a blob of data is a valid cache and which device created it.

The layout of the cache header can be represented as the following C structure:

Click here to view code image

// This structure does not exist in official headers but is included here

// for illustration.

typedef struct VkPipelineCacheHeader {

 uint32_t length;

 uint32_t version;

 uint32_t vendorID;

 uint32_t deviceID;

 uint8_t uuid[16];

} VkPipelineCacheHeader;

Although the members of the structure are listed as uint32_t typed variables, the data in the cache is not formally of type uint32_t. Caches are always stored in little-endian byte order, regardless of the byte ordering of the host. This means that if you want to interpret this structure on a big-endian host, you need to reverse the byte order of the uint32_t fields.

The length field is the size of the header structure, in bytes. In the current revision of the specification, this length should be 32. The version field is the version of the structure. The only defined version is 1. The vendorID and deviceID fields should match the vendorID and deviceID fields of the VkPhysicalDeviceProperties structure returned from a call to vkGetPhysicalDeviceProperties(). The uuid field is an opaque string of bytes that uniquely identifies the device. If there is a mismatch between the vendorID, deviceID, or uuid field and what the Vulkan driver expects, it may reject the cache data and reset the cache to empty. A driver may also embed checksum, encryption, or other data inside the cache to ensure that invalid cache data is not loaded into the device.

If you have two cache objects and wish to merge them, you can do that by calling vkMergePipelineCaches(), the prototype of which is

Click here to view code image

VkResult vkMergePipelineCaches (

 VkDevice device,

 VkPipelineCache dstCache,

 uint32_t srcCacheCount,

 const VkPipelineCache* pSrcCaches);

The device parameter is a handle to the device that owns the caches that are to be merged. dstCache is a handle to the destination cache, which will end up as an amalgamation of all of the entries from all source caches. The number of caches that are to be merged is specified in srcCacheCount, and pSrcCaches is a pointer to an array of VkPipelineCache handles to the caches to be merged.

After vkMergePipelineCaches() has executed, dstCache will contain all of the cache entries from all of the source caches specified in pSrcCaches. It is then possible to call vkGetPipelineCacheData() on the destination cache to retrieve a single, large cache data structure representing all entries from all of the caches.

This is particularly useful, for example, when creating pipelines in many threads. Although access to the pipeline cache is thread-safe, implementations may internally take locks to prevent concurrent write access to multiple caches. If you instead create multiple pipeline caches—one for each thread—and use them during initial creation of your pipelines, any per-cache locks taken by the implementation will be uncontested, speeding access to them. Later, when all pipelines are created, you can merge the pipelines in order to save their data in one large resource.

When you are done creating pipelines and no longer need the cache, it’s important to destroy it, because it could be quite large. To destroy a pipeline cache object, call vkDestroyPipelineCache(), the prototype of which is

Click here to view code image

void vkDestroyPipelineCache (

 VkDevice device,

 VkPipelineCache pipelineCache,

 const VkAllocationCallbacks* pAllocator);

device is a handle to the device that owns the pipeline cache, and pipelineCache is a handle to the pipeline cache object that is to be destroyed. After the pipeline cache has been destroyed, it should not be used again, although pipelines created using the cache are still valid. Also, any data retrieved from the cache using a call to vkGetPipelineCacheData() is valid and can be used to construct a new cache that should result in matches on subsequent pipeline creation requests.

Binding Pipelines

Before you can use a pipeline, it must be bound into the a command buffer that will execute drawing or dispatching commands. When such a command is executed, the current pipeline (and all the shaders in it) are used to process the commands. To bind a pipeline to a command buffer, call vkCmdBindPipeline(), the prototype of which is

Click here to view code image

void vkCmdBindPipeline (

 VkCommandBuffer commandBuffer,

 VkPipelineBindPoint pipelineBindPoint,

 VkPipeline pipeline);

The command buffer to which you are binding the pipeline is specified in commandBuffer, and the pipeline you are binding is specified in pipeline. There are two binding points for pipelines on each command buffer: the graphics and compute binding points. The compute bind point is where compute pipelines should be bound. Graphics pipelines are covered in the next chapter and should be bound to the graphics pipeline bind point.

To bind a pipeline to the compute binding point, set pipelineBindPoint to VK_PIPELINE_BIND_POINT_COMPUTE, and to bind the pipeline to the graphics binding point, set pipelineBindPoint to VK_PIPELINE_BIND_POINT_GRAPHICS.

The current pipeline binding for each of compute and graphics is part of the state of a command buffer. When a new command buffer is begun, this state is undefined. Therefore, you must bind a pipeline to the relevant binding point before invoking any work that would use a pipeline.

Executing Work

In the previous section, you saw how to construct a compute pipeline using vkCreateComputePipelines() and bind it into a command buffer. Once a pipeline is bound, you can use it to execute work.

Compute shaders running as part of a compute pipeline execute in groups called local work groups. These groups logically execute in lockstep and are of a fixed size specified in the shader. The maximum size of a local work group is typically small but must be at least 128 invocations × 128 invocations × 64 invocations. Further, the maximum number of total invocations in a single local work group may also be smaller than this total volume and is required only to be 128 invocations.

For this reason, local work groups are started in larger groups, sometimes called the global work group or dispatch size. Kicking off work in a compute shader is therefore called dispatching work, or a dispatch. The local work group is logically a 3D construct, or volume of invocations, although one or two of the dimensions can be a single invocation in size, making the work group flat in that direction. Likewise, these local work groups are dispatched together in three dimensions, even if one or more of those dimensions is a single work group deep.

The command to dispatch a global work group using a compute pipeline is vkCmdDispatch(), the prototype of which is

Click here to view code image

void vkCmdDispatch (

 VkCommandBuffer commandBuffer,

 uint32_t x,

 uint32_t y,

 uint32_t z);

The command buffer that will execute the command is passed in commandBuffer. The number of local work groups in each of the x, y, and z dimensions is passed in the x, y, and z parameters, respectively. A valid compute pipeline must be bound to the command buffer at the VK_PIPELINE_BIND_POINT_COMPUTE binding point. When the command is executed by the device, a global work group of x × y × z local work groups begins executing the shader contained in the bound pipeline.

It is perfectly possible to have a local work group that has a different effective dimensionality from that of the global work group. For example, it’s fine to have a 32 × 32 × 1 dispatch of 64 × 1 × 1 local work groups.

In addition to being able to specify the number of work groups in the dispatch using parameters to vkCmdDispatch(), it’s possible to perform an indirect dispatch, where the size of the dispatch in work groups is sourced from a buffer object. This allows dispatch sizes to be computed after a command buffer is built by performing an indirect dispatch using a buffer and then overwriting the contents of the buffer using the host. The content of the buffer can even be updated using the device itself to provide a limited means for the device to feed itself work.

The prototype of vkCmdDispatchIndirect() is

Click here to view code image

void vkCmdDispatchIndirect (

 VkCommandBuffer commandBuffer,

 VkBuffer buffer,

 VkDeviceSize offset);

Again, the command buffer that will contain the command is passed in commandBuffer. Rather than passing the dispatch size as in vkCmdDispatch(), the number of workgroups in each dimension are expected to be stored as three consecutive uint32_t variables at the offset specified in offset (in bytes) in the buffer object specified in buffer. The parameters in the buffer essentially represent an instance of the VkDispatchIndirectCommand structure, the definition of which is

Click here to view code image

typedef struct VkDispatchIndirectCommand {

 uint32_t x;

 uint32_t y;

 uint32_t z;

} VkDispatchIndirectCommand;

Again, the contents of the buffer are not read until the vkCmdDispatchIndirect() command is reached during processing of the command buffer by the device.

The maximum number of work groups in each dimension supported by a device can be determined by inspecting the maxComputeWorkGroupCount field of the device’s VkPhysicalDeviceLimits structure returned from a call to vkGetPhysicalDeviceProperties(), as explained in Chapter 1, “Overview of Vulkan.” Exceeding those limits in a call to vkCmdDispatch() or placing values outside those limits in the buffer referenced by vkCmdDispatchIndirect() will result in undefined (probably bad) behavior.

Resource Access in Shaders

The shaders in your program consume and produce data in one of two ways. The first is through interaction with fixed function hardware, and the second is by directly reading and writing resources. You saw in Chapter 2, “Memory and Resources,” how to create buffers and images. In this section, we introduce descriptor sets, which are representations of the set of resources that shaders can interact with.

Descriptor Sets

A descriptor set is a set of resources that are bound into the pipeline as a group. Multiple sets can be bound to a pipeline at a time. Each set has a layout, which describes the order and types of resources in the set. Two sets with the same layout are considered to be compatible and interchangeable. The descriptor set layout is represented by an object, and sets are created with respect to this object. Further, the set of sets that are accessible to a pipeline are grouped into another object: the pipeline layout. Pipelines are created with respect to this pipeline layout object.

The relationship between the descriptor set layout and the pipeline layout is illustrated in Figure 6.1. As you can see in the figure, two descriptor sets are defined, the first having a texture, a sampler, and two buffers. The second set contains four textures, two samplers, and three buffers. These descriptor sets’ layouts are aggregated into a single pipeline layout. A pipeline can then be created with respect to the pipeline layout, while descriptor sets are created with respect to descriptor set layouts. Those descriptor sets can be bound into command buffers along with compatible pipelines to allow those pipelines to access the resources in them.

[image: Image]

Figure 6.1: Descriptor Sets and Pipeline Sets

At any time, the application can bind a new descriptor set to the command buffer in any point that has an identical layout. The same descriptor set layouts can be used to create multiple pipelines. Therefore, if you have a set of objects that share a common set of resources, but additionally each require some unique resources, you can leave the common set bound and replace the unique resources as your application moves through the objects that need to be rendered.

To create a descriptor set layout object, call vkCreateDescriptorSetLayout(), the prototype of which is

Click here to view code image

VkResult vkCreateDescriptorSetLayout (

 VkDevice device,

 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

VkDescriptorSetLayout* pSetLayout);

As usual, the information required to construct the descriptor set layout object is passed through a pointer to a structure. This is an instance of the VkDescriptorSetLayoutCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkDescriptorSetLayoutCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDescriptorSetLayoutCreateFlags flags;

 uint32_t bindingCount;

 const VkDescriptorSetLayoutBinding* pBindings;

} VkDescriptorSetLayoutCreateInfo;

The sType field of VkDescriptorSetLayoutCreateInfo should be set to VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, and pNext should be set to nullptr. flags is reserved for future use and should be set to zero.

Resources are bound to binding points in the descriptor set. The bindingCount and pBindings members of VkDescriptorSetLayoutCreateInfo contain the number of binding points that the set will contain and a pointer to an array containing their descriptions, respectively. Each binding is described by an instance of the VkDescriptorSetLayoutBinding structure, the definition of which is

Click here to view code image

typedef struct VkDescriptorSetLayoutBinding {

 uint32_t binding;

 VkDescriptorType descriptorType;

 uint32_t descriptorCount;

 VkShaderStageFlags stageFlags;

 const VkSampler* pImmutableSamplers;

} VkDescriptorSetLayoutBinding;

Each resource accessible to a shader is given a binding number. This binding number is stored in the binding field of VkDescriptorSetLayoutBinding. The bindings used in a descriptor set do not need to be contiguous, and there can be gaps (unused binding numbers) in a set. However, it’s recommended that you don’t create sparsely populated sets because this can waste resources in the device.

The type of descriptor at this binding point is stored in descriptorType. This a member of the VkDescriptorType enumeration. We’ll discuss the various resource types a little later, but they include

• VK_DESCRIPTOR_TYPE_SAMPLER: A sampler is an object that can be used to perform operations such as filtering and sample coordinate transformations when reading data from an image.

• VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: A sampled image is an image that can be used in conjunction with a sampler to provide filtered data to a shader.

• VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: A combined image-sampler object is a sampler and an image paired together. The same sampler is always used to sample from the image, which can be more efficient on some architectures.

• VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: A storage image is an image that cannot be used with a sampler but can be written to. This is in contrast to a sampled image, which cannot be written to.

• VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: A uniform texel buffer is a buffer that is filled with homogeneous formatted data that cannot be written by shaders. Knowing that buffer content is constant may allow some Vulkan implementations to optimize access to the buffer better.

• VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: A storage texel buffer is a buffer that contains formatted data much like a uniform texel buffer, but a storage buffer can be written to.

• VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER and VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: These are similar to VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER and VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, except that the data is unformatted and described by structures declared in the shader.

• VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC and VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: These are similar to VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER and VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, but include an offset and size that are passed when the descriptor set is bound to the pipeline rather than when the descriptor is bound into the set. This allows a single buffer in a single set to be updated at high frequency.

• VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: An input attachment is a special type of image whose content is generated by earlier operations on the same image in a graphics pipeline.

Listing 6.8 illustrates how a selection of resources is declared inside a GLSL shader.

Listing 6.8 : Declaring Resources in GLSL

Click here to view code image

#version 450 core

layout (set = 0, binding = 0) uniform sampler2DmyTexture;

layout (set = 0, binding = 2) uniform sampler3DmyLut;

layout (set = 1, binding = 0) uniform myTransforms

{

 mat4 transform1;

 mat3 transform2;

};

void main(void)

{

 // Do nothing!

}

Listing 6.9 shows a condensed form of what the shader in Listing 6.8 translates to when compiled with the GLSL compiler.

Listing 6.9: Declaring Resources in SPIR-V

Click here to view code image

; SPIR-V

; Version: 1.0

; Generator: Khronos Glslang Reference Front End; 1

; Bound: 22

; Schema: 0

 OpCapability Shader

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint GLCompute %4 "main"

 OpExecutionMode %4 LocalSize 1 1 1

 OpSource GLSL 450

 OpName %4 "main"

 OpName %10 "myTexture"

 OpName %14 "myLut"

 OpName %19 "myTransforms"

 OpMemberName %19 0 "transform1"

 OpMemberName %19 1 "transform2"

 OpName %21 ""

 OpDecorate %10 DescriptorSet 0

 OpDecorate %10 Binding 0

 OpDecorate %14 DescriptorSet 0

 OpDecorate %14 Binding 2

 OpMemberDecorate %19 0 ColMajor

 OpMemberDecorate %19 0 Offset 0

 OpMemberDecorate %19 0 MatrixStride 16

 OpMemberDecorate %19 1 ColMajor

 OpMemberDecorate %19 1 Offset 64

 OpMemberDecorate %19 1 MatrixStride 16

 OpDecorate %19 Block

 OpDecorate %21 DescriptorSet 1

 OpDecorate %21 Binding 0

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeImage %6 2D 0 0 0 1 Unknown

 %8 = OpTypeSampledImage %7

 %9 = OpTypePointer UniformConstant %8

 %10 = OpVariable %9 UniformConstant

 %11 = OpTypeImage %6 3D 0 0 0 1 Unknown

 %12 = OpTypeSampledImage %11

 %13 = OpTypePointer UniformConstant %12

 %14 = OpVariable %13 UniformConstant

 %15 = OpTypeVector %6 4

 %16 = OpTypeMatrix %15 4

 %17 = OpTypeVector %6 3

 %18 = OpTypeMatrix %17 3

 %19 = OpTypeStruct %16 %18

 %20 = OpTypePointer Uniform %19

 %21 = OpVariable %20 Uniform

 %4 = OpFunction %2 None %3

 %5 = OpLabel

 OpReturn

 OpFunctionEnd

Multiple descriptor set layouts can be used in a single pipeline. As you can see in Listings 6.8 and 6.9, the resources are placed in two sets, the first containing "myTexture" and "myLut" (both samplers) and the second containing "myTransforms" (a uniform buffer). To group two or more descriptor sets into something the pipeline can use, we need to aggregate them into a VkPipelineLayout object. To do this, call vkCreatePipelineLayout(), the prototype of which is

Click here to view code image

VkResult vkCreatePipelineLayout (

 VkDevice device,

 const VkPipelineLayoutCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkPipelineLayout* pPipelineLayout);

This function uses the device specified in device to create a new VkPipelineLayout object using the information in a VkPipelineLayoutCreateInfo structure passed by address in pCreateInfo. The definition of VkPipelineLayoutCreateInfo is

Click here to view code image

typedef struct VkPipelineLayoutCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineLayoutCreateFlags flags;

 uint32_t setLayoutCount;

 const VkDescriptorSetLayout* pSetLayouts;

 uint32_t pushConstantRangeCount;

 const VkPushConstantRange* pPushConstantRanges;

} VkPipelineLayoutCreateInfo;

The sType field for VkPipelineLayoutCreateInfo should be set to VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved in the current version of Vulkan and should be set to zero.

The number of descriptor set layouts (which is the same as the number of sets in the pipeline layout) is given in setLayoutCount, and pSetLayouts is a pointer to an array of VkDescriptorSetLayout handles created previously with calls to vkCreateDescriptorSetLayout(). The maximum number of descriptor sets that can be bound at once (and therefore the maximum number of set layouts in a pipeline layout) is at least 4. Some implementations may support a higher limit than this. You can determine the absolute maximum number of layouts supported by inspecting the maxBoundDescriptorSets member of the device’s VkPhysicalDeviceLimits structure, which you can retrieve by calling vkGetPhysicalDeviceProperties().

The final two parameters, pushConstantRangeCount and pPushConstantRanges, are used to describe the push constants used in the pipeline. Push constants are a special class of resource that can be used directly as constants in a shader. It is extremely fast to update the values of push constants, requiring no synchronization. We discuss push constants later in this chapter.

When the VkDescriptorSetLayout object is created, the resources used by all of the sets within the pipeline layout are aggregated and must fall within a device-dependent limit. Effectively, there is an upper bound on the number and type of resources that can be accessed by a single pipeline.

Further, some devices may not support accessing all of the pipeline’s resources from every shader stage simultaneously and therefore have a per-stage upper limit on the number of resources accessible from each stage.

Each of the limits can be checked by retrieving the device’s VkPhysicalDeviceLimits structure through a call to vkGetPhysicalDeviceProperties() and checking the relevant members. The members of VkPhysicalDeviceLimits associated with pipeline layout maximums are shown in Table 6.1.

[image: Image]

Table 6.1: Pipeline Resource Limits

If your shaders or the resulting pipeline need to use more resources than are guaranteed to be supported as shown in Table 6.1, then you need to check the resource limits and be prepared to fail gracefully if you exceed them. However, if your resource requirements fit comfortably inside this range, there’s no reason to query any of it directly as Vulkan guarantees at least this level of support.

Two pipelines can be used with the same set of descriptor sets if their pipeline layouts are considered to be compatible. For two pipeline layouts to be compatible for descriptor sets, they must

• Use the same number of push constant ranges

• Use the same descriptor set layouts (or identical layouts) in the same order

Two pipeline layouts are also considered to be partially compatible if they use the same (or identically defined) set layouts for the first few sets and then differ after that. In that case, the pipelines are compatible up to the point where the descriptor set layouts change.

When a pipeline is bound to a command buffer, it can continue to use any bound descriptor sets that are compatible with the set bindings in the pipeline layout. Thus, switching between two (partially) compatible pipelines doesn’t require re-binding any sets up to the point where the pipelines share layouts. If you have a set of resources that you want to be globally available, such as a uniform block containing some per-frame constants, or a set of textures that you want to be available to every shader, put those in the first set(s). Resources that might change at higher frequency can be placed in higher-numbered sets.

Listing 6.10 shows the application-side code to create the descriptor set layouts and pipeline layout describing the sets referenced in Listings 6.8 and 6.9.

Listing 6.10: Creating a Pipeline Layout

Click here to view code image

// This describes our combined image-samplers. One set, two disjoint bindings.

static const VkDescriptorSetLayoutBinding Samplers[] =

{

 {

 0, // Start from binding 0

 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // Combined image-sampler

 1, // Create one binding

 VK_SHADER_STAGE_ALL, // Usable in all stages

 nullptr // No static samplers

 },

 {

 2, // Start from binding 2

 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // Combined image-sampler

 1, // Create one binding

 VK_SHADER_STAGE_ALL, // Usable in all stages

 nullptr // No static samplers

 }

};

// This is our uniform block. One set, one binding.

static const VkDescriptorSetLayoutBinding UniformBlock =

{

 0, // Start from binding 0

 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, // Uniform block

 1, // One binding

 VK_SHADER_STAGE_ALL, // All stages

 nullptr // No static samplers

};

// Now create the two descriptor set layouts.

static const VkDescriptorSetLayoutCreateInfo createInfoSamplers =

{

 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,

 nullptr,

 0,

 2,

 &Samplers[0]

};

static const VkDescriptorSetLayoutCreateInfo createInfoUniforms =

{

 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,

 nullptr,

 0,

 1,

 &UniformBlock

};

// This array holds the two set layouts.

VkDescriptorSetLayout setLayouts[2];

vkCreateDescriptorSetLayout(device, &createInfoSamplers,

 nullptr, &setLaouts[0]);

vkCreateDescriptorSetLayout(device, &createInfoUniforms,

 nullptr, &setLayouts[1]);

// Now create the pipeline layout.

const VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo =

{

 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr,

 0,

 2, setLayouts,

 0, nullptr

};

VkPipelineLayout pipelineLayout;

vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo,

 nullptr, pipelineLayout);

The pipeline layout we create in Listing 6.10 matches the layout expected by the shader code in Listings 6.9 and 6.10. When we create a compute pipeline using that shader, we pass the pipeline layout object created in Listing 6.10 as the layout field of the VkComputePipelineCreateInfo structure passed to vkCreateComputePipelines().

When the pipeline layout is no longer needed, it should be destroyed by calling vkDestroyPipelineLayout(). This frees any resources associated with the pipeline layout object. The prototype of vkDestroyPipelineLayout() is

Click here to view code image

void vkDestroyPipelineLayout (

 VkDevice device,

 VkPipelineLayout pipelineLayout,

 const VkAllocationCallbacks* pAllocator);

After the pipeline layout object is destroyed, it should not be used again. However, any pipelines created using the pipeline layout object remain valid until they are destroyed. It is therefore not necessary to keep pipeline layout objects around in order to use the pipelines created using them.

To destroy a descriptor set layout object and free its resources, call

Click here to view code image

void vkDestroyDescriptorSetLayout (

 VkDevice device,

 VkDescriptorSetLayout descriptorSetLayout,

 const VkAllocationCallbacks* pAllocator);

The device that owns the descriptor set layout should be passed in device, and the handle to the descriptor set layout is passed in descriptorSetLayout. pAllocator should point to a host memory allocation structure that is compatible with the one used to create the descriptor set layout or should be nullptr if the pAllocator parameter to vkCreateDescriptorSetLayout() was also nullptr.

After a descriptor set layout is destroyed, its handle is no longer valid, and it should not be used again. However, descriptor sets, pipeline layouts, and other objects created by referencing the set remain valid.

Binding Resources to Descriptor Sets

Resources are represented by descriptors and are bound to the pipeline by first binding their descriptors into sets and then binding those descriptor sets to the pipeline. This allows a large number of resources to be bound with very little processing time because the exact set of resources used by a particular drawing command can be determined in advance and the descriptor set holding them created up front.

The descriptors are allocated from pools called descriptor pools. Because descriptors for different types of resources are likely to have similar data structures on any given implementation, pooling the allocations used to store descriptors allows drivers to make efficient use of memory. To create a descriptor pool, call vkCreateDescriptorPool(), the prototype of which is

Click here to view code image

VkResult vkCreateDescriptorPool (

 VkDevice device,

 const VkDescriptorPoolCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkDescriptorPool* pDescriptorPool);

The device that is to be used to create the descriptor pool is specified in device, and the remaining parameters describing the new pool are passed through a pointer to an instance of the VkDescriptorPoolCreateInfo structure in pCreateInfo. The definition of VkDescriptorPoolCreateInfo is

Click here to view code image

typedef struct VkDescriptorPoolCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDescriptorPoolCreateFlags flags;

 uint32_t maxSets;

 uint32_t poolSizeCount;

 const VkDescriptorPoolSize* pPoolSizes;

} VkDescriptorPoolCreateInfo;

The sType field of VkDescriptorPoolCreateInfo should be set to VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, and the pNext field should be set to nullptr. The flags field is used to pass additional information about the allocation strategy that should be used to manage the resources consumed by the pool. The only defined flag is VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, which, if set, indicates that the application may free individual descriptors allocated from the pool, so the allocator should be prepared for that. If you don’t intend to return individual descriptors to the pool, simply set flags to zero.

The maxSets field specifies the maximum total number of sets that may be allocated from the pool. Note that this is the total number of sets, regardless of the size of each set or the overall size of the pool. The next two fields, poolSizeCount and pPoolSize, specify the number of resource descriptors for each type of resoruce that might be stored in the set. pPoolSize is a pointer to an array of poolSizeCount instances of the VkDescriptorPoolSize structure, each one specifying the number of descriptors of a particular type that may be allocated from the pool. The definition of VkDescriptorPoolSize is

Click here to view code image

typedef struct VkDescriptorPoolSize {

 VkDescriptorType type;

 uint32_t descriptorCount;

} VkDescriptorPoolSize;

The first field of VkDescriptorPoolSize, type, specifies the type of resource, and the second field, descriptorCount, specifies the number of descriptors of that type to be stored in the pool. type is a member of the VkDescriptorType enumeration. If no element of the pPoolSize array specifies a particular type of resource, then no descriptors of that type can be allocated from the resulting pool. If a particular type of resource appears twice in the array, then the sum of all of their descriptorCount fields is used to size the pool for that type of resource. The total number of resources in the pool is divided among the sets allocated from the pool.

If creation of the pool is successful, then a handle to the new VkDescriptorPool object is written into the variable pointed to by pDescriptorPool. To allocate blocks of descriptors from the pool, we create new descriptor set objects by calling vkAllocateDescriptorSets(), the declaration of which is

Click here to view code image

VkResult vkAllocateDescriptorSets (

 VkDevice device,

 const VkDescriptorSetAllocateInfo* pAllocateInfo,

 VkDescriptorSet* pDescriptorSets);

The device that owns the descriptor pool from which the sets are to be allocated is passed in device. The remaining information describing the sets to be allocated is passed via a pointer to an instance of the VkDescriptorSetAllocateInfo structure in pDescriptorSets. The definition of VkDescriptorSetAllocateInfo is

Click here to view code image

typedef struct VkDescriptorSetAllocateInfo {

 VkStructureType sType;

 const void* pNext;

 VkDescriptorPool descriptorPool;

 uint32_t descriptorSetCount;

 const VkDescriptorSetLayout* pSetLayouts;

} VkDescriptorSetAllocateInfo;

The sType field of the VkDescriptorSetAllocateInfo structure should be set to VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, and the pNext field should be set to nullptr. A handle to the descriptor pool from which to allocate the sets is specified in descriptorPool, which should be a handle of a descriptor set created by a call to vkCreateDescriptorPool(). Access to descriptorPool should be externally synchronized. The number of sets to create is specified in descriptorSetCount. The layout of each set is then passed through an array of VkDescriptorSetLayout object handles in pSetLayouts.

When successful, vkAllocateDescriptorSets() consumes sets and descriptors from the specified pool and deposits the new descriptor set handles in the array pointed to by pDescriptorSets. The number of descriptors consumed from the pool for each descriptor set is determined from the descriptor set layouts passed through pSetLayouts, the creation of which we described earlier.

If the descriptor pool was created with the flags member of the VkDescriptorSetCreateInfo structure containing VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, then descriptor sets may be returned to the pool by freeing them. To free one or more descriptor sets, call vkFreeDescriptorSets(), the prototype of which is

Click here to view code image

VkResult vkFreeDescriptorSets (

 VkDevice device,

 VkDescriptorPool descriptorPool,

 uint32_t descriptorSetCount,

 const VkDescriptorSet* pDescriptorSets);

The device that owns the descriptor pool is specified in device, and the pool to which the descriptor sets should be returned is specified in descriptorPool. Access to descriptorPool must be externally synchronized. The number of descriptor sets to free is passed in descriptorSetCount, and pDescriptorSets points to an array of VkDescriptorSet handles to the objects to free. When the descriptor sets are freed, their resources are returned to the pool from which they came and may be allocated to a new set in the future.

Even if VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT was not specified when a descriptor pool was created, it’s still possible to recycle all the resources from all sets allocated from the pool. This is accomplished by resetting the pool itself by calling vkResetDescriptorPool(). With this command, it’s not necessary to explicitly specify every set allocated from the pool. The prototype of vkResetDescriptorPool() is

Click here to view code image

VkResult vkResetDescriptorPool (

 VkDevice device,

 VkDescriptorPool descriptorPool,

 VkDescriptorPoolResetFlags flags);

device is a handle to the device that owns the descriptor pool, and descriptorPool is a handle to the descriptor pool being reset. Access to the descriptor pool must be externally synchronized. flags is reserved for future use and should be set to zero.

Regardless of whether sets are individually freed by calling vkFreeDescriptorSets() or freed in bulk by calling vkResetDescriptorPool(), care must be taken to ensure that sets are not referenced after they have been freed. In particular, any command buffer containing commands that might reference descriptor sets that are to be freed should either have completed execution or should be discarded without submission.

To completely free the resources associated with a descriptor pool, you should destroy the pool object by calling vkDestroyDescriptorPool(), the prototype of which is

Click here to view code image

void vkDestroyDescriptorPool(

 VkDevice device,

 VkDescriptorPool descriptorPool,

 const VkAllocationCallbacks* pAllocator);

A handle to the device that owns the pool should be passed in device, and the handle to the pool to destroy is passed in descriptorPool. pAllocator should point to a host memory allocation structure that is compatible with the one used to create the pool or should be nullptr if the pAllocator parameter to vkCreateDescriptorPool() was also nullptr.

When the descriptor pool is destroyed, all of its resources are freed, including any sets allocated from it. There is no need to explicitly free the descriptor sets allocated from the pool before destroying it or to reset the pool with a call to vkResetDescriptorPool(). However, just as when descriptor sets are freed explicitly, you must make sure that your application does not access sets allocated from a pool after that pool has been destroyed. This includes any work performed by the device during execution of command buffers submitted but not yet completed.

To bind resources into descriptor sets, we can either write to the descriptor set directly or copy bindings from another descriptor set. In either case, we use the vkUpdateDescriptorSets() command, the prototype of which is

Click here to view code image

void vkUpdateDescriptorSets (

 VkDevice device,

 uint32_t descriptorWriteCount,

 const VkWriteDescriptorSet* pDescriptorWrites,

 uint32_t descriptorCopyCount,

 const VkCopyDescriptorSet* pDescriptorCopies);

The device that owns the descriptor set to be updated is passed in device. The number of direct writes is passed in descriptorWriteCount, and the number of descriptor copies is passed in descriptorCopyCount. The parameters for each write are contained in a VkWriteDescriptorSet structure, and the parameters for each copy are contained in a VkCopyDescriptorSet structure. The pDescriptorWrites and pDescriptorCopies parameters contain pointers to descriptorWriteCount and descriptorCopyCount VkWriteDescriptorSet and VkCopyDescriptorSet structures, respectively. The definition of VkWriteDescriptorSet is

Click here to view code image

typedef struct VkWriteDescriptorSet {

 VkStructureType sType;

 const void* pNext;

 VkDescriptorSet dstSet;

 uint32_t dstBinding;

 uint32_t dstArrayElement;

 uint32_t descriptorCount;

 VkDescriptorType descriptorType;

 const VkDescriptorImageInfo* pImageInfo;

 const VkDescriptorBufferInfo* pBufferInfo;

 const VkBufferView* pTexelBufferView;

} VkWriteDescriptorSet;

The sType field of VkWriteDescriptorSet should be set to VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, and pNext should be set to nullptr. For each write operation, the destination descriptor set is specified in dstSet, and the binding index is specified in dstBinding. If the binding in the set refers to an array of resources, then dstArrayElement is used to specify the starting index of the update, and descriptorCount is used to specify the number of consecutive descriptors to update. If the target binding is not an array, then dstArrayElement should be set to 0, and descriptorCount should be set to 1.

The type of resource being updated is specified in descriptorType, which is a member of the VkDescriptorType enumeration. The value of this parameter determines which of the next parameters is considered by the function. If the descriptor being updated is an image resource, then pImageInfo is a pointer to an instance of the VkDescriptorImageInfo structure containing information about the image. The definition of VkDescriptorImageInfo is

Click here to view code image

typedef struct VkDescriptorImageInfo {

 VkSampler sampler;

 VkImageView imageView;

 VkImageLayout imageLayout;

} VkDescriptorImageInfo;

A handle to the image view that is to be bound into the descriptor set is passed in imageView. If the resource in the descriptor set is a VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, then a handle to the accompanying sampler is specified in sampler. The layout that the image is expected to be in when it is used in the descriptor set is passed in imageLayout.

If the resource to be bound into the descriptor set is a buffer, then the parameters describing the binding are stored in an instance of the VkDescriptorBufferInfo structure, and a pointer to this structure is stored in the pBufferInfo of VkWriteDescriptorSet. The definition of VkDescriptorBufferInfo is

Click here to view code image

typedef struct VkDescriptorBufferInfo {

 VkBuffer buffer;

 VkDeviceSize offset;

 VkDeviceSize range;

} VkDescriptorBufferInfo;

The buffer object to bind is specified in buffer, and the offset and size of binding, expressed in bytes, are specified in offset and range, respectively. The bound range must lie entirely inside the buffer object. To bind the whole buffer (inferring the size of the range from the buffer object), then range can be set to VK_WHOLE_SIZE.

If the referenced buffer binding is a uniform buffer binding, then range must be less than or equal to the device’s maxUniformBufferRange limit, as determined by calling vkGetPhysicalDeviceProperties() and inspecting the VkPhysicalDeviceLimits structure. Also, the offset parameter must be an integer multiple of the device’s uniform buffer offset alignment requirement, which is contained in the minUniformBufferOffsetAlignment field of the VkPhysicalDeviceLimits structure. Likewise, if the buffer binding is a storage buffer, then range must be less than or equal to the maxStorageBufferRange field of VkPhysicalDeviceLimits. For storage buffers, the offset parameter must be an integer multiple of the minStorageBufferOffsetAlignment field of the VkPhysicalDeviceLimits structure.

The maxUniformBufferRange and maxStorageBufferRange limits are guaranteed to be at least 16,384 and 227, respectively. If the buffers you’re using fit within these limits, there’s no reason to query them. Note that the guaranteed maximum size of a storage buffer is much larger than that of a uniform buffer. If you have a very large amount of data, it may be worth considering using storage buffers over uniform buffers, even if access to the buffer’s content is uniform in nature.

The minUniformBufferOffsetAlignment and minStorageBufferOffsetAlignment are guaranteed to be at most 256 bytes. Note that these are maximum minimums, and the values reported for a device may be smaller than this.

In addition to writing directly into descriptor sets, vkUpdateDescriptorSets() can copy descriptors from one set to another or between bindings in the same set. These copies are described in the array of VkCopyDescriptorSet structures passed through the pDescriptorCopies parameter. The definition of VkCopyDescriptorSet is

Click here to view code image

typedef struct VkCopyDescriptorSet {

 VkStructureType sType;

 const void* pNext;

 VkDescriptorSet srcSet;

 uint32_t srcBinding;

 uint32_t srcArrayElement;

 VkDescriptorSet dstSet;

 uint32_t dstBinding;

 uint32_t dstArrayElement;

 uint32_t descriptorCount;

} VkCopyDescriptorSet;

The sType field of VkCopyDescriptorSet should be set to VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET, and pNext should be set to nullptr. The handles of the source and destination descriptor sets are specified in the srcSet and dstSet, respectively. These can be the same set so long as the range of descriptors to copy does not overlap.

The srcBinding and dstBinding fields specify the binding indices of the source and destination descriptors, respectively. If the descriptors to be copied form an array of bindings, the indices of the start of the range of descriptors in the source and destination sets are specified in srcArrayElement and dstArrayElement, respectively. If the descriptors do not form arrays, both of these fields should be set to 0. The length of the array of descriptors to copy is specified in descriptorCount. If the copy is not of an array of descriptors, then descriptorCount should be set to 1.

When vkUpdateDescriptorSets() executes, the updates are performed by the host. Any access by the device to the descriptor sets referenced by the pDescriptorWrites or pDescriptorCopies arrays must be complete before vkUpdateDescriptorSets() is called. This includes work described in command buffers that have already been submitted but may not yet have completed execution.

All of the descriptor writes described by pWriteDescriptors are executed first, in the order in which they appear in the array, followed by all of the copies described by pCopyDescriptors. This means that if a particular binding is the destination of a write or copy operation more than once, only the last action on that binding as a destination will be visible after all the operations complete.

Binding Descriptor Sets

Just as with pipelines, to access the resources attached to a descriptor set, the descriptor set must be bound to the command buffer which will execute the commands that access those descriptors. There are also two binding points for descriptor sets—one for compute and one for graphics—which are the sets that will be accessed by the pipelines of the appropriate type.

To bind descriptor sets to a command buffer, call vkCmdBindDescriptorSets(), the prototype of which is

Click here to view code image

void vkCmdBindDescriptorSets (

 VkCommandBuffer commandBuffer,

 VkPipelineBindPoint pipelineBindPoint,

 VkPipelineLayout layout,

 uint32_t firstSet,

 uint32_t descriptorSetCount,

 const VkDescriptorSet* pDescriptorSets,

 uint32_t dynamicOffsetCount,

 const uint32_t* pDynamicOffsets);

The command buffer to which the descriptor sets will be bound is specified in commandBuffer. The pipelineBindPoint argument specifies whether to bind the descriptor sets into the compute or graphics binding point by setting it to VK_PIPELINE_BIND_POINT_COMPUTE or VK_PIPELINE_BIND_POINT_GRAPHICS, respectively.

The pipeline layout that will be used by pipelines that will access the descriptors in the set specified in layout. This layout needs to be compatible with any pipeline that will use the sets and allows Vulkan to correctly configure the set bindings before a pipeline is bound to the command buffer. This means that the order in which you bind resources and pipelines into a command buffer doesn’t matter so long as by the time you issue any drawing or dispatch commands, the layouts match.

To bind a subset of the sets accessible to the pipeline layout, use the firstSet and descriptorSetCount arguments to specify the index of the first set to bind and the number of sets, respectively. pDescriptorSets is a pointer to an array of VkDescriptorSet handles to the sets to be bound. These are obtained from calls to vkAllocateDescriptorSets() discussed earlier.

vkCmdBindDescriptorSets() is also responsible for setting the offsets used in any dynamic uniform or shader storage bindings. These are passed in the dynamicOffsetCount and pDynamicOffsets parameters. dynamicOffsetCount is the number of dynamic offsets to set, and pDynamicOffsets is a pointer to an array of dynamicOffsetCount 32-bit offsets. For each dynamic uniform or shader storage buffer in the descriptor set(s) being bound, there should be one offset specified in the pDynamicOffsets array. This offset is added to the base of the buffer view bound to the block in the descriptor set. This allows uniform and shader storage blocks to be re-bound to sections of a larger buffer without needing to create a new buffer view each time the offset is updated. Some implementations may need to pass additional information to the shader to account for this offset, but it is still generally faster than creating buffer views on the fly.

Uniform, Texel, and Storage Buffers

Shaders can access the content of buffer memory directly through three types of resources:

• Uniform blocks provide fast access to constant (read-only) data stored in buffer objects. They are declared as though they were structures in a shader and are attached to memory using a buffer resource bound into the descriptor set.

• Shader storage blocks provide read-write access to buffer objects. Declared similarly to uniform blocks, data is arranged as though it were a structure but can be written to. Shader storage blocks also support atomic operations.

• Texel buffers provide access to long, linear arrays of formatted texel data. They are read-only, and a texel buffer binding performs format conversion from the underlying data format into the floating-point representation that the shader expects when the buffer is read.

Which type of resource you use depends on how you want to access it. The maximum size of a uniform block is often limited, while access to it is generally very fast. On the other hand, the maximum size of a shader storage block is very large, but in some implementations, access to it could be slower—especially if write operations are enabled. For access to large arrays of formatted data, a texel buffer is probably the best choice.

Unform and Shader Storage Blocks

To declare a uniform block in GLSL, use the uniform keyword, as shown in Listing 6.11. A shader storage block is declared similarly, except that the uniform keyword is omitted and the buffer keyword is used instead. The listing shows an example of each. The uniform block uses a descriptor set and binding index that is specified using a GLSL layout qualifier.

Listing 6.11: Declaring Uniform and Shader Blocks in GLSL

Click here to view code image

layout (set = 0, binding = 1) uniform my_uniform_buffer_t

{

 float foo;

 vec4 bar;

 int baz[42];

} my_uniform_buffer;

layout (set = 0, binding = 2) buffer my_storage_buffer_t

{

 int peas;

 float carrots;

 vec3 potatoes[99];

} my_storage_buffer;

The layout of variables inside the block is determined by a set of rules, which by default follow the std140 rules for uniform blocks and std430 rules for shader storage blocks. These rule sets are named for the version of GLSL in which they were introduced. The set of rules for packing data into memory may be changed by specifying a different layout in GLSL. Vulkan itself, however, does not automatically assign offsets to members of the block. This is the job of the front-end compiler that produces the SPIR-V shader that Vulkan consumes.

The resulting SPIR-V shader must conform to either the std140 or std430 layout rules (the latter being more flexible than the former), although those rules are not explicitly part of the SPIR-V specification. When the declarations are translated to SPIR-V by the front-end compiler, the members of the block are explictly assigned locations. If the shader is generated from something other than GLSL, such as from another high-level language, or programmatically by a component of an application, then so long as the offsets assigned by the SPIR-V generator conform to the appropriate rule set, then the shader will work.

Listing 6.12 shows the shader from Listing 6.11 after it has been translated to SPIR-V by the reference compiler.

Listing 6.12: Declaring Uniform and Shader Blocks in SPIR-V

Click here to view code image

 OpCapability Shader

%1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint Vertex %4 "main"

 OpSource GLSL 450

 OpName %4 "main"

 ;; Name the my_uniform_buffer_t block and its members.

 OpName %12 "my_uniform_buffer_t"

 OpMemberName %12 0 "foo"

 OpMemberName %12 1 "bar"

 OpMemberName %12 2 "baz"

 OpName %14 "my_uniform_buffer"

 ;; Name the my_storage_buffer_t block and its members.

 OpName %18 "my_storage_buffer_t"

 OpMemberName %18 0 "peas"

 OpMemberName %18 1 "carrots"

 OpMemberName %18 2 "potatoes"

 OpName %20 "my_storage_buffer"

 OpDecorate %11 ArrayStride 16

 ;; Assign offsets to the members of my_uniform_buffer_t.

 OpMemberDecorate %12 0 Offset 0

 OpMemberDecorate %12 1 Offset 16

 OpMemberDecorate %12 2 Offset 32

 OpDecorate %12 Block

 OpDecorate %14 DescriptorSet 0

 OpDecorate %14 Binding 1

 OpDecorate %17 ArrayStride 16

 ;; Assign offsets to the members of my_storage_buffer_t.

 OpMemberDecorate %18 0 Offset 0

 OpMemberDecorate %18 1 Offset 4

 OpMemberDecorate %18 2 Offset 16

 OpDecorate %18 BufferBlock

 OpDecorate %20 DescriptorSet 0

 OpDecorate %20 Binding 2

 ...

As you can see from Listing 6.12, the compiler has explicitly assigned offsets to each member of the blocks declared in Listing 6.11. Any mention of std140 and std430 is absent from the SPIR-V version of the shader.1

1. std140 and std430 are also absent from the GLSL version of the shader, but they are implied and assumed by the front-end compiler.

Texel Buffers

A texel buffer is a special type of buffer binding used in a shader that can perform format conversion when the data is read. Texel buffers are read-only and are declared in GLSL using a samplerBuffer typed variable, as shown in Listing 6.13. Sampler buffers can return floating-point or signed or unsigned integer data to the shader. An example of each is shown in Listing 6.13.

Listing 6.13: Declaring Texel Buffers in GLSL

Click here to view code image

layout (set = 0, binding = 3) uniform samplerBuffer my_float_texel_buffer;

layout (set = 0, binding = 4) uniform isamplerBuffer my_signed_texel_buffer;

layout (set = 0, binding = 5) uniform usamplerBuffer my_unsigned_texel_buffer;

When translated to SPIR-V using the reference compiler, the declarations from Listing 6.13 produce the SPIR-V shader shown in Listing 6.14.

Listing 6.14: Declaring Texel Buffers in SPIR-V

Click here to view code image

 OpCapability Shader

 OpCapability SampledBuffer

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint Vertex %4 "main"

 OpSource GLSL 450

 OpName %4 "main"

 ;; Name our texel buffers.

 OpName %10 "my_float_texel_buffer"

 OpName %15 "my_signed_texel_buffer"

 OpName %20 "my_unsigned_texel_buffer"

 ;; Assign set and binding decorations.

 OpDecorate %10 DescriptorSet 0

 OpDecorate %10 Binding 3

 OpDecorate %15 DescriptorSet 0

 OpDecorate %15 Binding 4

 OpDecorate %20 DescriptorSet 0

 OpDecorate %20 Binding 5

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 ;; Declare the three texel buffer variables.

 %6 = OpTypeFloat 32

 %7 = OpTypeImage %6 Buffer 0 0 0 1 Unknown

 %8 = OpTypeSampledImage %7

 %9 = OpTypePointer UniformConstant %8

%10 = OpVariable %9 UniformConstant

%11 = OpTypeInt 32 1

%12 = OpTypeImage %11 Buffer 0 0 0 1 Unknown

%13 = OpTypeSampledImage %12

%14 = OpTypePointer UniformConstant %13

%15 = OpVariable %14 UniformConstant

%16 = OpTypeInt 32 0

%17 = OpTypeImage %16 Buffer 0 0 0 1 Unknown

%18 = OpTypeSampledImage %17

%19 = OpTypePointer UniformConstant %18

%20 = OpVariable %19 UniformConstant

 ...

To fetch from a texel buffer in GLSL, the texelFetch function is used with the sampler variable to read individual texels. A samplerBuffer (or the corresponding signed or unsigned integer variants, isamplerBuffer and usamplerBuffer) can be thought of as a 1D texture that supports only point sampling. However, the maximum size of a texel buffer attached to one of these variables is generally much, much larger than the maximum size of a 1D texture. For example, the minimum required upper bound for a texel buffer in Vulkan is 65,535 elements, whereas the minimum required size for a 1D texture is only 4,096 texels. In some cases, implementations will support texel buffers that are gigabytes in size.

Push Constants

One special type of resource briefly introduced earlier is the push constant. A push constant is a uniform variable in a shader that can be used just like a member of a uniform block, but rather than being backed by memory, it is owned and updated by Vulkan itself.2 As a consequence, new values for these constants can be pushed into the pipeline directly from the command buffer, hence the term.

2. In reality, some implementations may still back push constants with device memory internally. However, it is likely that such implementations will have more optimal paths for updating that memory; some implementations will have fast, dedicated memory or registers for these constants; and a single call to vkCmdPushConstants() is likely to perform better than memory barriers associated with updating a uniform block in any case.

Push constants are logically considered to be part of the pipeline’s resources and are therefore declared along with the other resources in the pipeline layout used to create pipeline objects. In the VkPipelineLayoutCreateInfo structure, two fields are used to define how many push constants will be used by the pipeline. Push constants belong to ranges, each defined by a VkPushConstantRange structure. The pushConstantRanges member of VkPipelineLayoutCreateInfo specifies the count of the number of ranges of push constants that are included in the pipeline’s resource layout, and the pPushConstantRanges of VkPipelineLayoutCreateInfo is a pointer to an array of VkPushConstantRange structures, each defining a range of push constants used by the pipeline. The definition of VkPushConstantRange is

Click here to view code image

typedef struct VkPushConstantRange {

 VkShaderStageFlags stageFlags;

 uint32_t offset;

 uint32_t size;

} VkPushConstantRange;

The space used for push constants is abstracted as though it were a contiguous region of memory, even if that may not be the case in practice in some implementations. In some implementations, each shader stage has its own space for constant storage, and in such implementations, passing a single constant to multiple shading stages may require broadcasting it and consuming more resources. The stages that will “see” each range of constants are included in the stageFlags field of VkPushConstantRange. This is a bitwise combination of a selection of flags from VkShaderStageFlagBits. The starting offset and size of the region are specified in offset and size, respectively.

To consume push constants inside the pipeline, variables representing them are declared in the pipeline’s shaders. A push constant is declared in a SPIR-V shader using the PushConstant storage class on a variable declaration. In GLSL, such a declaration can be produced by declaring a uniform block with the push_constant layout qualifier. There is one such block declaration available per pipeline. Logically, it has the same “in-memory” layout as a std430 block. However, this layout is used only to compute offsets to members and may not be how a Vulkan implementation internally represents the data in the block.

Listing 6.15 shows a GLSL declaration of a push constant block, and Listing 6.16 shows the resulting SPIR-V.

Listing 6.15: Declaring Push Constants in GLSL

Click here to view code image

layout (push_constant) uniform my_push_constants_t

{

 int bourbon;

 int scotch;

 int beer;

} my_push_constants;

Listing 6.16: Declaring Push Constants in SPIR-V

Click here to view code image

 OpCapability Shader

%1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint GLCompute %4 "main"

 OpExecutionMode %4 LocalSize 1 1 1

 OpSource GLSL 450

 OpName %4 "main"

 ;; Name the push constant block and its members.

 OpName %7 "my_push_constants_t"

 OpMemberName %7 0 "bourbon"

 OpMemberName %7 1 "scotch"

 OpMemberName %7 2 "beer"

 OpName %9 "my_push_constants"

 ;; Assign offsets to the members of the push constant block.

 OpMemberDecorate %7 0 Offset 0

 OpMemberDecorate %7 1 Offset 4

 OpMemberDecorate %7 2 Offset 8

 OpDecorate %7 Block

%2 = OpTypeVoid

%3 = OpTypeFunction %2

%6 = OpTypeInt 32 1

%7 = OpTypeStruct %6 %6 %6

 ;; Declare the push constant block itself.

%8 = OpTypePointer PushConstant %7

%9 = OpVariable %8 PushConstant

 ...

Push constants become part of the layout of the pipeline that will use them. When push constants are included in a pipeline, they may consume some of the resources that Vulkan would otherwise use to track pipeline or descriptor bindings. Therefore, you should treat push constants as relatively precious resources.

To update the content of one or more push constants, call vkCmdPushConstants(), the prototype of which is

Click here to view code image

void vkCmdPushConstants (

 VkCommandBuffer commandBuffer,

 VkPipelineLayout layout,

 VkShaderStageFlags stageFlags,

 uint32_t offset,

 uint32_t size,

 const void* pValues);

The command buffer that will perform the update is specified in commandBuffer, and the layout that defines the locations of the push constants is specified in layout. This layout must be compatible with any pipeline that is subsequently bound and used in dispatch or drawing commands.

The stages that will need to see the updated constants should be specified in stageFlags. This is a bitwise combination of some of the flags from the VkShaderStageFlagBits enumeration. Although there is only one push constant block available to each pipeline, it may be that in some implementations, push constants are implemented by using per-stage resources. When stageFlags is set accurately, performance may increase by allowing Vulkan to not update the stages that aren’t included. Be careful, though: In implementations that do support broadcasting constants across stages at no cost, these flags might be ignored, and your shaders may see the updates anyway.

As push constants are logically represented as backed by memory with a std430 layout, the content of each push constant “lives” at an offset from the beginning of the block that can be computed using the std430 rules. The offset of the first constant to update within this virtual block is specified in offset, and the size of the update, in bytes, is specified in size.

A pointer to the data to place in the push constants is passed in pValues. Typically, this will be a pointer to an array of uint32_t or float variables. Both offset and size must be a multiple of 4 to align them correctly with respect to the size of these data types. When vkCmdPushConstants() is executed, it is as though the contents of the array were copied directly into a std430 block.

You are free to replace the content of the array or free the memory immediately after calling vkCmdPushConstants(). The data in the array is consumed immediately by the command, and the value of the pointer is not retained. Therefore, it’s perfectly fine to set pValues to something that lives on the stack or to the address of a local variable.

The total amount of space available for push constants in a single pipeline (or pipeline layout) can be determined by inspecting the maxPushConstantsSize field of the device’s VkPhysicalDeviceLimits structure. This is guaranteed to be at least 128 bytes (enough for a couple of 4 × 4 matrices). It’s not particularly large, but if this is sufficient, there’s no reason to query the limit. Again, treat push constants as scarce resources. Prefer to use a normal uniform block for larger data structures, and use push constants for single integers or very frequently updated data.

Sampled Images

When shaders read from images, they can do so in one of two ways. The first is to perform a raw load, which directly reads formatted or unformatted data from a specific location in the image, and the second is to sample the image using a sampler. Sampling can include operations such as performing basic transformations on the image coordinates or filtering texels to smooth the image data returned to the shader.

The state of a sampler is represented by a sampler object, which is bound into descriptor sets just as images and buffers are. To create a sampler object, call vkCreateSampler(), the prototype of which is

Click here to view code image

VkResult vkCreateSampler (

 VkDevice device,

 const VkSamplerCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkSampler* pSampler);

The device that will create the sampler is passed in device, and the remaining parameters of the sampler are passed through a pointer to an instance of the VkSamplerCreateInfo structure in pCreateInfo. The upper bound on the total number of samplers that can be created by a device is implementation-dependent. It’s guaranteed to be at least 4,000. If there’s a possibility that your application may create more than this limit, then you need to check the device’s level of support for creating large numbers of samplers. The total number of samplers that a device can manage is contained in the maxSamplerAllocationCount field of its VkPhysicalDeviceLimits structure, which you can obtain from a call to vkGetPhysicalDeviceProperties().

The definition of VkSamplerCreateInfo is

Click here to view code image

typedef struct VkSamplerCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkSamplerCreateFlags flags;

 VkFilter magFilter;

 VkFilter minFilter;

 VkSamplerMipmapMode mipmapMode;

 VkSamplerAddressMode addressModeU;

 VkSamplerAddressMode addressModeV;

 VkSamplerAddressMode addressModeW;

 float mipLodBias;

 VkBool32 anisotropyEnable;

 float maxAnisotropy;

 VkBool32 compareEnable;

 VkCompareOp compareOp;

 float minLod;

 float maxLod;

 VkBorderColor borderColor;

 VkBool32 unnormalizedCoordinates;

} VkSamplerCreateInfo;

The sType field of VkSamplerCreateInfo should be set to VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved for future use and should be set to zero.

Image Filtering

The magFilter and minFilter fields specify the filtering mode to be used when the image is magnified or minified, respectively. Whether an image is magnified or minified is determined by comparing sampling coordinates across adjacent pixels being shaded. If the gradient of the sampling coordinates is greater than one, then the image is minified; otherwise, it is magnified. magFilter and minFilter are both members of the VkFilter enumeration. The members of VkFilter are

• VK_FILTER_NEAREST: When sampling, the nearest texel in the image is chosen and returned directly to the shader.

• VK_FILTER_LINEAR: A 2 × 2 footprint containing the texel coordinates is used to produce a weighted average of four texels, and this average is returned to the shader.

The VK_FILTER_NEAREST mode causes Vulkan to simply select the nearest texel to the requested coordinates when sampling from an image. In many cases, this can lead to a blocky or aliased image, causing shimmering artifacts in the rendered picture. The VK_FILTER_LINEAR mode tells Vulkan to apply linear filtering to the image when it is sampled.

When you are filtering an image with linear filtering, the requested sample may lie somewhere between two texel centers in 1D, four centers in 2D, and so on. Vulkan will read from the surrounding texels and then combine the results using a weighted sum of the values based on the distance to each center. This is illustrated in Figure 6.2. In the figure, a sample is taken at the ×, which lies between the four texel centers marked A, B, C, and D. Regardless of the integer part of the texture coordinate {u, v}, the fractional part of the texture coordinate is given by {α, β}.

[image: Image]

Figure 6.2: Linear Sampling

To form a linear weighted sum of the texels at A and B, their values are simply combined according to the relationship

Tu0 = αA + (1 −α) B

This can be writen as

Tu0 = B + α (B−A)

Likewise, a weighted sum of C and D is formed as

Tu1 = αC + (1 −α) D or

Tu1 = D−α (D−C)

The two temporary values Tu0 and Tu1 can then be combined into a single, weighted sum using a similar mechanism, but with β:

T = βTu0 + (1 −β) Tu1 or

T = Tu1 + β(Tu1 −Tu0)

This can be extended in any number of dimensions, although only texture dimensionalities up to three are defined by Vulkan.

Mipmapping

The mipmapMode field specifies how mipmaps are used in the image when it is sampled. This is a member of the VkSamplerMipmapMode enumeration, whose members have the following meanings:

• VK_SAMPLER_MIPMAP_MODE_NEAREST: The computed level-of-detail is rounded to the nearest integer, and that level is used to select the mipmap level. If sampling from the base level, then the filtering mode specified in magFilter is used to sample from that level; otherwise, the minFilter filter is used.

• VK_SAMPLER_MIPMAP_MODE_LINEAR: The computed level of detail is rounded both up and down, and the two resulting mipmap levels are sampled. The two resulting texel values are then blended and returned to the shader.

To select a mipmap from the image, Vulkan will compute the derivative of the coordinates used to sample from the texture. The exact math is covered in some detail in the Vulkan specification. In short, the level selected is the log2 of the maximum of the derivatives of each of the texture coordinate dimensions. This level can also be biased using parameters taken from the sampler or supplied by the shader, or it can be entirely specified in the shader. Regardless of its source, the result may not be an exact integer.

When the mipmap mode is VK_SAMPLER_MIPMAP_MODE_NEAREST, then the selected mipmap level is simply rounded down to the next-lowest integer, and then that level is sampled as though it were a single-level image. When the mipmap mode is VK_SAMPLER_MIPMAP_MODE_LINEAR, a sample is taken from each of the next-lower and next-higher levels using the filtering mode selected by the minFilter field, and then those two samples are further combined using a weighted average, similarly to how the samples are combined during linear sampling, as described earlier.

Note that this filtering mode applies only to minification, which is the process of sampling from a mipmap level other than the base level. When the log2 of the texture coordinate derivatives is less than 1, then the 0th level is selected, so only a single level is available for sampling. This is known as magnification and uses the filtering mode specified in magFilter to sample from the base level only.

The next three fields in VkSamplerCreateInfo—addressModeU, addressModeV, and addressModeW—are used to select the transform that is applied to texture coordinates that would otherwise sample outside the image. The following modes are available:

• VK_SAMPLER_ADDRESS_MODE_REPEAT: As the texture coordinate progresses from 0.0 to 1.0 and beyond, it is wrapped back to 0.0, effectively using only the fractional part of the coordinate to sample from the image. The effect is to tile the image indefinitely.

• VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: The texture coordinate progresses from 0.0 to 1.0 as normal, and then in the range 1.0 to 2.0, the fractional part is subtracted from 1.0 to form a new coordinate moving back toward 0.0. The effect is to alternately tile the normal and mirror-image version of a texture.

• VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: Texture coordinates beyond 1.0 are clamped to 1.0, and negative coordinates are clamped to 0.0. This clamped coordinate is used to sample from the image. The effect is that the texels along the edge of the image are used to fill any area that would be sampled outside the image.

• VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: Sampling from the texture outside its bounds will result in texels of the border color, as specified in the borderColor field, being returned rather than data from the image.

• VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: This is a hybrid mode that first applies a single mirroring of the texture coordinate and then behaves like VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

The effect of each of the sampler addressing modes applied to an image is shown in Figure 6.3. In the figure, the top-left image shows the result of the VK_SAMPLER_ADDRESS_MODE_REPEAT addressing mode. As you can see, the texture is simply repeated across the frame. The top-right image shows the result of VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT. Each alternate repetition of the texture is mirrored in the X or Y direction.

[image: Image]

Figure 6.3: Effect of Sampling Modes

The bottom-left image applies the VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE addressing mode to the texture. Here, the last column or row of pixels is repeated indefinitely after the sampling coordinates leave the texture. Finally, the bottom-right image shows the result of the VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER mode. This texture was created with a black border color, so the area outside the texture appears to be blank, but Vulkan is actually sampling black texels from this region. This allows you to see the original texture.

When the filter mode is VK_FILTER_LINEAR, wrapping or clamping the texture coordinate is applied to each of the generated coordinates in the 2 × 2 footprint used to create the resulting texel. The result is that filtering is applied as though the image really wrapped.

For the VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER filter mode, when texels are sampled from the border (i.e., what would be outside the image), the border color is substituted rather than fetching data from the image. The color that is used depends on the value of the borderColor field. This is not a full color specification, but a member of the VkBorderColor enumeration, which allows one of a small, predefined set of colors to be selected. These are

• VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK: Returns floating-point zeros to the shader in all channels

• VK_BORDER_COLOR_INT_TRANSPARENT_BLACK: Returns integer zeros to the shader in all channels

• VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK: Returns floating-point zeros in the R, G, and B channels, and floating-point one in A

• VK_BORDER_COLOR_INT_OPAQUE_BLACK: Returns integer zeros in R, G, and B, and integer one in A

• VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE: Returns floating-point ones to the shader in all channels

• VK_BORDER_COLOR_INT_OPAQUE_WHITE: Returns integer ones to the shader in all channels

The mipLodBias field of VkSamplerCreateInfo specifies a floating-point bias that is added to the computed level of detail before mipmap selection is made. This allows you to nudge the level of detail up or down the mipmap chain to make the resulting filtered texture look sharper or blurrier than it might otherwise.

If you want to use anisotropic filtering, set anisotropyEnable to VK_TRUE. The exact details of anisotropic filtering are implementation-dependent. Anisotropic filtering generally works by considering a projected footprint of the area to be sampled rather than using a fixed 2 × 2 footprint. An approximation to an area sample is formed by taking many samples within the footprint.

Because the number of samples taken can be quite large, anisotropic filtering can have a negative effect on performance. Also, under extreme cases, the projected footprint can be quite large, and this can result in a large area and correspondingly blurry filter result. To limit these effects, you can clamp the maximum amount of anisotropy by setting maxAnisotropy to a value between 1.0 and the maximum value supported by the device. You can determine this by calling vkGetPhysicalDeviceProperties() and inspecting the maxSamplerAnisotropy member of the embedded VkPhysicalDeviceLimits structure.

When a sampler is used with a depth image, it can be configured to perform a comparison operation and return the result of the comparison rather than the raw values stored in the image. When this mode is enabled, the comparison is performed on each sample taken from the image, and the resulting value is the fraction of the total samples taken that passed the test. This can be used to implement a technique known as percentage closer filtering, or PCF. To enable this mode, set compareEnable to VK_TRUE, and set the comparison operation in compareOp.

compareOp is a member of the VkCompareOp enumeration, which is used in many places in Vulkan. As you will see in Chapter 7, “Graphics Pipelines,” this is the same enumeration that is used to specify the depth test operation. The available operations and how they are interpreted in the context of shader accesses to depth resources are shown in Table 6.2.

The sampler can be configured to restrict sampling to a subset of the mip levels in an image with mipmaps. The range of mipmaps to sample from is specified in minLod and maxLod, which contain the lowest (highest-resolution) and highest (lowest-resolution) mipmaps that should be sampled from, respectively. To sample from the entire mipmap chain, set minLod to 0.0, and set maxLod to a level of detail high enough that the computed level of detail will never be clamped.

Finally, unnormalizedCoordinates is a flag that, when set to VK_TRUE, indicates that the coordinates used to sample from the image are in units of raw texels, rather than a value that is normalized between 0.0 and 1.0 across each dimension of the texture. This allows texels to be explicitly fetched from the image. However, several restrictions exist in this mode. When unnormalizedCoordinates is VK_TRUE, minFilter and magFilter must be the same, mipmapMode must be VK_SAMPLER_MIPMAP_MODE_NEAREST, and anisotropyEnable and compareEnable must be VK_FALSE.

When you are done with a sampler, you should destroy it by calling vkDestroySampler(), the prototype of which is

Click here to view code image

void vkDestroySampler (

 VkDevice device,

 VkSampler sampler,

 const VkAllocationCallbacks* pAllocator);

device is the device that owns the sampler object, and sampler is the sampler object to destroy. If a host memory allocator was used when the sampler was created, a compatible allocator should be passed through the pAllocator parameter; otherwise, pAllocator should be nullptr.

[image: Image]

Table 6.2: Texture Comparison Functions

Summary

This chapter covered the basics of the shading language supported by Vulkan, SPIR-V, including how SPIR-V shader modules are consumed by Vulkan and how pipelines containing those shaders are constructed. You saw how to construct a compute shader and use it to create a compute pipeline, how to dispatch work into that pipeline, and how a pipeline can access resources in order to consume and produce data. In upcoming chapters, we will build on the concept of pipelines to produce pipeline objects with multiple stages and make use of more advanced features.

Chapter 7. Graphics Pipelines

What You’ll Learn in This Chapter

• What the Vulkan graphics pipeline looks like

• How to create a graphics pipeline object

• How to draw graphical primitives with Vulkan

Perhaps the most common use of Vulkan is as a graphics API. Graphics are a fundamental part of Vulkan and drive the core of almost any visual application. Graphics processing in Vulkan can be seen as a pipeline that takes graphics commands through the many stages required to produce a picture on a display. This chapter covers the basics of graphics pipelines in Vulkan and introduces our first graphics example.

The Logical Graphics Pipeline

The graphics pipeline in Vulkan can be seen as a production line, where commands enter the front of the pipeline and are processed in stages. Each stage performs some kind of transform, taking the commands and their associated data and turning them into something else. By the end of the pipeline, the commands have been transformed into colorful pixels making up your output picture.

Many parts of the graphics pipeline are optional and can be disabled or might not even be supported by a Vulkan implementation. The only part of the pipeline that an application must enable is the vertex shader. The full Vulkan graphics pipeline is shown in Figure 7.1. However, don’t be alarmed; we’ll introduce each stage gently in this chapter and dig into more details in subsequent parts of the book.

[image: Image]

Figure 7.1: The Full Vulkan Graphics Pipeline

The following is a brief description of each stage of the pipeline and what it does.

• Draw: This is where your commands enter the Vulkan graphics pipeline. Typically, a small processor or dedicated piece of hardware inside the Vulkan device interprets the commands in the command buffer and directly interacts with the hardware to induce work.

• Input assembly: This stage reads the index and vertex buffers that contain information about the vertices making up the draw you’ve sent.

• Vertex shader: This is where the vertex shader executes. It takes as input the properties of the vertex and prepares transformed and processed vertex data for the next stage.

• Tessellation control shader: This programmable shading stage is responsible for producing tessellation factors and other per-patch data that is used by the fixed-function tessellation engine.

• Tessellation primitive generation: Not shown in Figure 7.1, this fixed function stage uses the tessellation factors produced in the tessellation control shader to break patch primitives into many smaller, simpler primitives ready to be shaded by the tessellation evaluation shader.

• Tessellation evaluation shader: This shading stage runs on each new vertex produced by the tessellation primitive generator. It operates similarly to a vertex shader except that the incoming vertices are generated rather than read from memory.

• Geometry shader: This shading stage operates on full primiitves. The primitives might be points, lines or triangles, or special variations of them that include additional vertices surrounding them. This stage also has the ability to change the primitive type midpipeline.

• Primitive assembly: This stage groups vertices produced by the vertex, tessellation, or geometry stage and groups them into primitives suitable for rasterization. It also culls and clips primitives and transforms them into the appropriate viewport.

• Clip and cull: This fixed-function stage determines which parts of which primitives might contribute to the output image and discards parts of primitives that do not, forwarding potentially visible primitives to the rasterizer.

• Rasterizer: Rasterization is the fundamental core of all graphics in Vulkan. The rasterizer takes assembled primitives that are still represented by a sequence of vertices and turns them into individual fragments, which may become the pixels that make up your image.

• Prefragment operations: Several operations can be performed on fragments once their positions are known but before they are shaded. These prefragment operations include depth and stencil tests when they are enabled.

• Fragment assembly: Not shown in the figure, the fragment assembly stage takes the output of the rasterizer along with any per-fragment data and sends it, as a group, into the fragment shading stage.

• Fragment shader: This stage runs the final shader in the pipeline, which is responsible for computing the data that will be sent on to the final fixed-function processing stages that follow.

• Postfragment operations: In some circumstances, the fragment shader modifies data that would normally be used in prefragment operations. In these cases, those prefragment operations move to the postfragment stage and are executed here.

• Color blending: The color operations take the final results of the fragment shader and postfragment operations and use them to update the framebuffer. The color operations include blending and logic operations.

As you can tell, there are a lot of interrelated stages in the graphics pipeline. Unlike the compute pipeline introduced in Chapter 6, “Shaders and Pipelines,” the graphics pipeline contains not only the configuration of a wide selection of fixed functionality, but also up to five shader stages. Further, depending on the implementation, some of the logically fixed-function stages are actually at least partially implemented in shader code generated by drivers.

The purpose of representing the graphics pipeline as an object in Vulkan is to provide the implementation as much information as needed to move parts of the pipeline between fixed-function hardware and programmable shader cores. If the information were not all available at the same time in the same object, it would mean that some implementations of Vulkan may need to recompile a shader based on configurable state. The set of states contained in the graphics pipeline has been carefully chosen to prevent this, making switching states as fast as possible.

The fundamental unit of drawing in Vulkan is a vertex. Vertices are grouped into primitives and processed by the Vulkan pipeline. The simplest drawing command in Vulkan is vkCmdDraw(), whose prototype is

Click here to view code image

void vkCmdDraw (

 VkCommandBuffer commandBuffer,

 uint32_t vertexCount,

 uint32_t instanceCount,

 uint32_t firstVertex,

 uint32_t firstInstance);

Like other Vulkan commands, vkCmdDraw() appends a command to a command buffer that will later be executed by the device. The command buffer to append to is specified in commandBuffer. The number of vertices to push into the pipeline is specified in vertexCount. If you want to draw the same set of vertices over and over with slightly different parameters, you can specify the number of instances in instanceCount. This is known as instancing, and we’ll cover that later in this chapter. For now, we can just set instanceCount to 1. It’s also possible to start drawing from a vertex or instance other than 0. To do this, we can use firstVertex and firstInstance, respectively. Again, we’ll cover that later. For the time being, we’ll set both of these parameters to 0.

Before you can draw anything, you must bind a graphics pipeline to the command buffer, and before that, you must create a graphics pipeline. Undefined behavior (generally bad behavior) will occur if you try drawing without binding a pipeline first.

When you call vkCmdDraw(), vertexCount vertices are generated and pushed into the current Vulkan graphics pipeline. For each vertex, input assembly is executed, followed by your vertex shader. Declaring inputs beyond what is provided for you by Vulkan is optional, but having a vertex shader is not. Thus, the simplest possible graphics pipeline consists only of a vertex shader.

Renderpasses

One of the things that distinguishes a Vulkan graphics pipeline from a compute pipeline is that, usually, you’ll be using the graphics pipeline to render pixels into images that you will either further process or display to the user. In complex graphics applications, the picture is built up over many passes where each pass is responsible for producing a different part of the scene, applying full-frame effects such as postprocessing or composition, rendering user interface elements, and so on.

Such passes can be represented in Vulkan using a renderpass object. A single renderpass object encapsulates multiple passes or rendering phases over a single set of output images. Each pass within the renderpass is known as a subpass. Renderpass objects can contain many subpasses, but even in simple applications with only a single pass over a single output image, the renderpass object contains information about that output image.

All drawing must be contained inside a renderpass. Further, graphics pipelines need to know where they’re rendering to; therefore, it’s necessary to create a renderpass object before creating a graphics pipeline so that we can tell the pipeline about the images it’ll be producing. Renderpasses are covered in great depth in Chapter 13, “Multipass Rendering.” In this chapter, we’ll create the simplest possible renderpass object that will allow us to render into an image.

To create a renderpass object, call vkCreateRenderPass(), the prototype of which is

Click here to view code image

VkResult vkCreateRenderPass (

 VkDevice device,

 const VkRenderPassCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkRenderPass* pRenderPass);

The device parameter to vkCreateRenderPass() is the device that will create the renderpass object, and pCreateInfo points to a structure defining the renderpass. This is an instance of the VkRenderPassCreateInfo structure, whose definition is

Click here to view code image

typedef struct VkRenderPassCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkRenderPassCreateFlags flags;

 uint32_t attachmentCount;

 const VkAttachmentDescription* pAttachments;

 uint32_t subpassCount;

 const VkSubpassDescription* pSubpasses;

 uint32_t dependencyCount;

 const VkSubpassDependency* pDependencies;

} VkRenderPassCreateInfo;

The sType field of VkRenderPassCreateInfo should be set to VK_STRUCTURE_TYPE_RENDERPASS_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved for future use and should be set to zero.

pAttachments is a pointer to an array of attachmentCount VkAttachmentDescription structures that define the attachments associated with the renderpass. Each of these structures defines a single image that is to be used as an input, output, or both within one or more of the subpasses in the renderpass. If there really are no attachments associated with the renderpass, you can set attachmentCount to zero and pAttachments to nullptr. However, outside of some advanced use cases, almost all graphics rendering will use at least one attachment. The definition of VkAttachmentDescription is

Click here to view code image

typedef struct VkAttachmentDescription {

 VkAttachmentDescriptionFlags flags;

 VkFormat format;

 VkSampleCountFlagBits samples;

 VkAttachmentLoadOp loadOp;

 VkAttachmentStoreOp storeOp;

 VkAttachmentLoadOp stencilLoadOp;

 VkAttachmentStoreOp stencilStoreOp;

 VkImageLayout initialLayout;

 VkImageLayout finalLayout;

} VkAttachmentDescription;

The flags field is used to give Vulkan additional information about the attachment. The only defined bit is VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, which, if set, indicates that the attachment might be using the same memory as another attachment referenced by the same renderpass. This tells Vulkan not to do anything that might make data in that attachment inconsistent. This bit can be used in some advanced cases where memory is at a premium and you are trying to optimize its usage. In most cases, flags can be set to zero.

The format field specifies the format of the attachment. This is one of the VkFormat enumerations and should match the format of the image used as the attachment. Likewise, samples indicates the number of samples in the image and is used for multisampling. When multisampling is not in use, set samples to VK_SAMPLE_COUNT_1_BIT.

The next four fields specify what to do with the attachment at the beginning and end of the renderpass. The load operations tell Vulkan what to do with the attachment when the renderpass begins. This can be set to one of the following values:

• VK_ATTACHMENT_LOAD_OP_LOAD indicates that the attachment has data in it already and that you want to keep rendering to it. This causes Vulkan to treat the contents of the attachment as valid when the renderpass begins.

• VK_ATTACHMENT_LOAD_OP_CLEAR indicates that you want Vulkan to clear the attachment for you when the renderpass begins. The color to which you want to clear the attachments is specified when the renderpass has begun.

• VK_ATTACHMENT_LOAD_OP_DONT_CARE indicates that you don’t care about the content of the attachment at the beginning of the renderpass and that Vulkan is free to do whatever it wishes with it. You can use this if you plan to explicitly clear the attachment or if you know that you’ll replace the content of the attachment inside the renderpass.

Likewise, the store operations tell Vulkan what you want it to do with the contents of the attachments when the renderpass ends. These can be set to one of the following values:

• VK_ATTACHMENT_STORE_OP_STORE indicates that you want Vulkan to keep the contents of the attachment for later use, which usually means that it should write them out into memory. This is usually the case for images you want to display to the user, read from later, or use as an attachment in another renderpass (with the VK_ATTACHMENT_LOAD_OP_LOAD load operation).

• VK_ATTACHMENT_STORE_OP_DONT_CARE indicates that you don’t need the content after the renderpass has ended. This is normally used for intermediate storage or for the depth or stencil buffers.

If the attachment is a combined depth-stencil attachment, then the stencilLoadOp and stencilStoreOp fields tell Vulkan what to do with the stencil part of the attachment (the regular loadOp and storeOp fields specify what should happen to the depth part of the attachment), which can be different from the depth part.

The initialLayout and finalLayout fields tell Vulkan what layout to expect the image to be in when the renderpass begins and what layout to leave it in when the renderpass ends. Note that renderpass objects do not automatically move images into the initial layout. This is the layout that the image is expected to be in when the renderpass is used. The renderpass does, however, move the image to the final layout when it’s done.

You can use barriers to explicitly move images from layout to layout, but where possible, it’s best to try to move images from layout to layout inside renderpasses. This gives Vulkan the best opportunity to choose the right layout for each part of the renderpass and even perform any operations required to move images between layouts in parallel with other rendering. Advanced usage of these fields and renderpasses in general is covered in Chapter 13, “Multipass Rendering.”

After you define all of the attachments that are going to be used in the renderpass, you need to define all of the subpasses. Each subpass references a number of attachments (from the array you passed in pAttachments) as inputs or outputs. Those descriptions are specified in an array of VkSubpassDescription structures, one for each subpass in the renderpass. The definition of VkSubpassDescription is

Click here to view code image

typedef struct VkSubpassDescription {

 VkSubpassDescriptionFlags flags;

 VkPipelineBindPoint pipelineBindPoint;

 uint32_t inputAttachmentCount;

 const VkAttachmentReference* pInputAttachments;

 uint32_t colorAttachmentCount;

 const VkAttachmentReference* pColorAttachments;

 const VkAttachmentReference* pResolveAttachments;

 const VkAttachmentReference* pDepthStencilAttachment;

 uint32_t preserveAttachmentCount;

 const uint32_t* pPreserveAttachments;

} VkSubpassDescription;

The flags field of VkSubpassDescription is reserved for future use and should be set to zero. Also, the current version of Vulkan supports renderpasses only for graphics, so pipelineBindPoint should be set to VK_PIPELINE_BIND_POINT_GRAPHICS. The remaining fields describe the attachments used by the subpass. Each subpass can have a number of input attachments, which are attachments from which it can read data; color attachments, which are attachments to which its outputs are written; and a depth-stencil attachment, which is used as a depth and stencil buffer. These attachments are specified in the pInputAttachments, pColorAttachments, and pDepthStencilAttachment fields, respectively. The numbers of input and color attachments are specified in inputAttachmentCount and colorAttachmentCount, respectively. There is only one depth-stencil attachment, so this parameter is not an array and has no associated count.

The maximum number of color attachments that a single subpass can render to can be determined by inspecting the maxColorAttachments member of the device’s VkPhysicalDeviceLimits structure, which you can retrieve by calling vkGetPhysicalDeviceProperties(). maxColorAttachments is guaranteed to be at least 4, so if you never use more than this many color attachments, you don’t need to query the limit. However, many implementations support a higher limit than this, so you may be able to implement more advanced algorithms in fewer passes by writing to more outputs at once.

Each of these arguments is a pointer to either a single VkAttachmentReference structure or an array of them and forms a reference to one of the attachments described in pAttachments. The definition of VkAttachmentReference is

Click here to view code image

typedef struct VkAttachmentReference {

 uint32_t attachment;

 VkImageLayout layout;

} VkAttachmentReference;

Each attachment reference is a simple structure containing an index into the array of attachments in attachment and the image layout that the attachment is expected to be in at this subpass. In addition to the input and output attachment references, two further sets of references are provided to each subpass.

First, the resolve attachments, which are specified through pResolveAttachments, are the attachments to which multisample image data is resolved. These attachments correspond to the color attachments specified in pColorAttachments, and the number of resolve attachments is assumed to be the same, as specified in colorAttachmentCount.

If one of the elements of pColorAttachments is a multisample image, but only the final, resolved image is needed after the renderpass is complete, you can ask Vulkan to resolve the image for you as part of the renderpass, and possibly disacard the original multisample data. To do this, set the store operation for the multisample color attachment to VK_ATTACHMENT_STORE_OP_DONT_CARE, and set a corresponding single-sample attachment in the matching element of pResolveAttachments. The store operation for the resolve attachment should be set to VK_ATTACHMENT_STORE_OP_STORE, which will cause Vulkan to keep the single-sample data but throw out the original multisample data.

Second, if there are attachments that you want to live across a subpass but that are not directly referenced by the subpass, you should reference them in the pPreserveAttachments array. This reference will prevent Vulkan from making any optimizations that might disturb the contents of those attachments.

When there is more than one subpass in a renderpass, Vulkan can figure out which subpasses are dependent on one another by following the attachment references and looking for inputs and outputs that make subpasses dependent on one another. However, there are cases in which dependencies cannot easily be represented by a simple input-to-output relationship. This generally happens when a subpass writes directly to a resource such as an image or buffer and a subsequent subpass reads that data back. Vulkan cannot figure this out automatically, so you must provide such dependency information explicitly. This is done using the pDependencies member of VkRenderPassCreateInfo, which is a pointer to an array of dependencyCount VkSubpassDependency structures. The definition of VkSubpassDependency is

Click here to view code image

typedef struct VkSubpassDependency {

 uint32_t srcSubpass;

 uint32_t dstSubpass;

 VkPipelineStageFlags srcStageMask;

 VkPipelineStageFlags dstStageMask;

 VkAccessFlags srcAccessMask;

 VkAccessFlags dstAccessMask;

 VkDependencyFlags dependencyFlags;

} VkSubpassDependency;

Each dependency is a reference from a source subpass (the producer of data) and a destination subpass (the consumer of that data), specified in srcSubpass and dstSubpass, respectively. Both are indices into the array of subpasses that make up the renderpass. The srcStageMask is a bitfield specifying which pipeline stage(s) of the source subpass produced the data. Likewise, dstStageMask is a bitfield specifying which stages of the destination subpass will consume the data.

The srcAccessMask and dstAccessMask fields are also bitfields. They specify how each of the source and destination subpasses access the data. For example, the source stage may perform image stores from its vertex shader or write to a color attachment through regular fragment shader outputs. Meanwhile, the destination subpass may read through an input attachment or an image load.

For the purpose of creating a simple renderpass with a single subpass, with a single output attachment and no external dependencies, the data structures are mostly empty. Listing 7.1 demonstrates how to set up a simple renderpass in this configuration.

Listing 7.1: Creating a Simple Renderpass

Click here to view code image

// This is our color attachment. It's an R8G8B8A8_UNORM single sample image.

// We want to clear it at the start of the renderpass and save the contents

// when we're done. It starts in UNDEFINED layout, which is a key to

// Vulkan that it's allowed to throw the old content away, and we want to

// leave it in COLOR_ATTACHMENT_OPTIMAL state when we're done.

static const VkAttachmentDescription attachments[] =

{

 {

 0, // flags

 VK_FORMAT_R8G8B8A8_UNORM, // format

 VK_SAMPLE_COUNT_1_BIT, // samples

 VK_ATTACHMENT_LOAD_OP_CLEAR, // loadOp

 VK_ATTACHMENT_STORE_OP_STORE, // storeOp

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // stencilLoadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // stencilStoreOp

 VK_IMAGE_LAYOUT_UNDEFINED, // initialLayout

 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // finalLayout

 }

};

// This is the single reference to our single attachment.

static const VkAttachmentReference attachmentReferences[] =

{

 {

 0, // attachment

 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // layout

 }

};

// There is one subpass in this renderpass, with only a reference to the

// single output attachment.

static const VkSubpassDescription subpasses[] =

{

 {

 0, // flags

 VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint

 0, // inputAttachmentCount

 nullptr, // pInputAttachments

 1, // colorAttachmentCount

 &attachmentReferences[0], // pColorAttachments

 nullptr, // pResolveAttachments

 nullptr, // pDepthStencilAttachment

 0, // preserveAttachmentCount

 nullptr // pPreserveAttachments

 }

};

// Finally, this is the information that Vulkan needs to create the renderpass

// object.

static VkRenderPassCreateInfo renderpassCreateInfo =

{

 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, // sType

 nullptr, // pNext

 0, // flags

 1, // attachmentCount

 attachments[0], // pAttachments

 1, // subpassCount

 &subpasses[0], // pSubpasses

 0, // dependencyCount

 nullptr // pDependencies

};

VkRenderPass renderpass = VK_NULL_HANDLE;

// The only code that actually executes is this single call, which creates

// the renderpass object.

vkCreateRenderPass(device,

 &renderpassCreateInfo,

 nullptr,

 &renderpass);

In Listing 7.1, we set up a simple renderpass with a single color attachment of format VK_FORMAT_R8G8B8A8_UNORM, no depth-stencil attachment, and no dependencies. It looks like a lot of code, but that’s because we need to specify full data structures even though we’re not using most of the fields. As your applications grow more complex, the amount of code you need to write doesn’t actually grow correspondingly. Further, because the structures are constant, the amount of code executed by Listing 7.1 is minimal.

We’ll use the renderpass created in Listing 7.1 to create a graphics pipeline in the next section.

Of course, when we are done using the renderpass object, we should destroy it. To do this, call vkDestroyRenderPass(), the prototype of which is

Click here to view code image

void vkDestroyRenderPass (

 VkDevice device,

 VkRenderPass renderPass,

 const VkAllocationCallbacks* pAllocator);

device is the device that created the renderpass, and renderPass is the handle to the renderpass object to destroy. If a host memory allocator was used to create the renderpass, pAllocator should point to a compatible allocator; otherwise, pAllocator should be nullptr.

The Framebuffer

The framebuffer is an object that represents the set of images that graphics pipelines will render into. These affect the last few stages in the pipeline: depth and stencil tests, blending, logic operations, multisampling, and so on. A framebuffer object is created by using a reference to a renderpass and can be used with any renderpass that has a similar arrangement of attachments.

To create a framebuffer object, call vkCreateFramebuffer(), the prototype of which is

Click here to view code image

VkResult vkCreateFramebuffer (

 VkDevice device,

 const VkFramebufferCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkFramebuffer* pFramebuffer);

The device that will be used to create the framebuffer object is passed in device, and the remaining parameters describing the new framebuffer object are passed through a pointer to an instance of the VkFramebufferCreateInfo structure in pCreateInfo. The definition of VkFramebufferCreateInfo is

Click here to view code image

typedef struct VkFramebufferCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkFramebufferCreateFlags flags;

 VkRenderPass renderPass;

 uint32_t attachmentCount;

 const VkImageView* pAttachments;

 uint32_t width;

 uint32_t height;

 uint32_t layers;

} VkFramebufferCreateInfo;

The sType field of VkFramebufferCreateInfo should be set to VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved and should be set to zero.

A handle to a renderpass object that is compatible with the framebuffer being created should be passed in renderPass. For the purposes of compatibility with framebuffer objects, two renderpasses are compatible if their attachment references are the same.

The set of images that is to be bound into the framebuffer object is passed through an array of VkImageView handles, a pointer to which is passed in pAttachments. The number of images in pAttachments is specified in attachmentCount. The passes comprising the renderpass make references to the image attachments, and those references are specified as indices into the array specified in pAttachments. If you know that a particular renderpass doesn’t use some of the attachments, but you want the framebuffer to be compatible with several renderpass objects or to keep a consistent layout of images in your application, some of the image handles in pAttachments can be VkNullHandle.

Although each of the images in the framebuffer has a native width, height, and (in the case of array images) layer count, you must still specify the dimensions of the framebuffer. These dimensions are passed in the width, height, and layers fields of the VkFramebufferCreateInfo structure. Rendering to regions of the framebuffer that are outside some of the images results in no rendering to those parts of the attachment images that are outside the image while continuing to render to those parts of the images that are.

The maximum supported size of a framebuffer is device-dependent. To determine the supported dimensions of the framebuffer, check the maxFramebufferWidth, maxFramebufferHeight, and maxFramebufferLayers fields of the device’s VkPhysicalDeviceLimits structure. These provide the maximum supported width, height, and layer count for framebuffers, respectively. The supported width and height are guaranteed to be at least 4,096 pixels, and the number of supported layers is guaranteed to be at least 256. However, most desktop-class hardware will support limits of 16,384 pixels in width and height and 2,048 layers.

It’s also possible to create a framebuffer with no attachments at all. This is known as an attachmentless framebuffer. In this case, the framebuffer’s dimensions are solely defined by the width, height, and layers fields. This type of framebuffer is typically used with fragment shaders that have other side effects, such as performing image stores, or with occlusion queries, which can measure other aspects of rendering but don’t necessarily require that the result of rendering be stored anywhere.

If vkCreateFramebuffer() is successful, it will write the new VkFramebuffer handle into the variable pointed to by pFramebuffer. If it requires any host memory, it will use the allocator pointed to by pAllocator to allocate it. If pAllocator is not nullptr, then a compatible allocator should be used when the framebuffer is destroyed.

As you will see in Chapter 8, “Drawing,” we will use the framebuffer object in conjunction with a renderpass in order to draw into the images attached to the framebuffer. When you are done using a framebuffer, you should destroy it by calling vkDestroyFramebuffer(), the prototype of which is

Click here to view code image

void vkDestroyFramebuffer (

 VkDevice device,

 VkFramebuffer framebuffer,

 const VkAllocationCallbacks* pAllocator);

device is a handle to the device that created the framebuffer object, and framebuffer is a handle to the framebuffer object being destroyed. If a host memory allocator was used to allocate the framebuffer, a compatible allocator should be passed through the pAllocator object.

Destroying a framebuffer object does not affect any of the images attached to the framebuffer. Images can be attached to multiple framebuffers at the same time and can be used in multiple ways at the same time as being attached to a framebuffer. However, even if the images are not destroyed, the framebuffer should not be used—including any access in command buffers by the device. You should ensure that any command buffers referencing the framebuffer have completed execution if they have been submitted or have not been submitted after the framebuffer object is destroyed.

Creating a Simple Graphics Pipeline

Creating a graphics pipeline is achieved using a method similar to the one for creating a compute pipeline, as described in Chapter 6, “Shaders and Pipelines.” However, as you have seen, the graphics pipeline includes many shading stages and fixed-function processing blocks, so the description of a graphics pipeline is correspondingly that much more complex. Graphics pipelines are created by calling vkCreateGraphicsPipelines(), the prototype of which is

Click here to view code image

VkResult vkCreateGraphicsPipelines (

 VkDevice device,

 VkPipelineCache pipelineCache,

 uint32_t createInfoCount,

 const VkGraphicsPipelineCreateInfo* pCreateInfos,

 const VkAllocationCallbacks* pAllocator,

 VkPipeline* pPipelines);

As you can see, the prototype for vkCreateGraphicsPipelines() is similar to vkCreateComputePipelines(). It takes a device (device), a handle to a pipeline cache (pipelineCache), and an array of createInfo structures along with the count of the number of structures in the array (pCreateInfos and createInfoCount, respectively). This is where the real guts of the function are. VkGraphicsPipelineCreateInfo is a large, complex structure, and it contains pointers to several other structures along with handles to other objects that you need to have created. Take a deep breath: The definition of VkGraphicsPipelineCreateInfo is

Click here to view code image

typedef struct VkGraphicsPipelineCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineCreateFlags flags;

 uint32_t stageCount;

 const VkPipelineShaderStageCreateInfo* pStages;

 const VkPipelineVertexInputStateCreateInfo* pVertexInputState;

 const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState;

 const VkPipelineTessellationStateCreateInfo* pTessellationState;

 const VkPipelineViewportStateCreateInfo* pViewportState;

 const VkPipelineRasterizationStateCreateInfo* pRasterizationState;

 const VkPipelineMultisampleStateCreateInfo* pMultisampleState;

 const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState;

 const VkPipelineColorBlendStateCreateInfo* pColorBlendState;

 const VkPipelineDynamicStateCreateInfo* pDynamicState;

 VkPipelineLayout layout;

 VkRenderPass renderPass;

 uint32_t subpass;

 VkPipeline basePipelineHandle;

 int32_t basePipelineIndex;

} VkGraphicsPipelineCreateInfo;

As you were warned, VkGraphicsPipelineCreateInfo is a large structure with many substructures referenced by pointers. However, it’s easy enough to break down into blocks, and many of the additional creation info is optional and can be left as nullptr. As with all other Vulkan creation info structures, VkGraphicsPipelineCreateInfo starts with an sType field and a pNext field. The sType for VkGraphicsPipelineCreateInfo is VK_GRAPHICS_PIPELINE_CREATE_INFO, and pNext can be left as nullptr unless extensions are in use.

The flags field contains information about how the pipeline will be used. Three flags are defined in the current version of Vulkan, and their meanings are as follows:

• VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT tells Vulkan that this pipeline is not going to be used in performance-critical applications and that you would prefer to receive a ready-to-go pipeline object quickly rather than have Vulkan spend a lot of time optimizing the pipeline. You might use this for things like simple shaders for displaying splash screens or user interface elements that you want to display quickly.

• VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT and VK_PIPELINE_CREATE_DERIVATIVE_BIT are used with derivative pipelines. This is a feature whereby you can group similar pipelines and tell Vulkan that you’ll switch rapidly among them. The VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT flag tells Vulkan that you will want to create derivatives of the new pipeline, and VK_PIPELINE_CREATE_DERIVATIVE_BIT tells Vulkan that this pipeline is a pipeline.

Graphics Shader Stages

The next two fields in the VkGraphicsPipelineCreateInfo structure, stageCount and pStages, are where you pass your shaders into the pipeline. pStages is a pointer to an array of stageCount VkPipelineShaderStageCreateInfo structures, each describing one of the shading stages. These are the same structures that you saw in the definition of VkComputePipelineCreateInfo, except now you have an array of them. The definition of VkPipelineShaderStageCreateInfo is

Click here to view code image

typedef struct VkPipelineShaderStageCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineShaderStageCreateFlags flags;

 VkShaderStageFlagBits stage;

 VkShaderModule module;

 const char* pName;

 const VkSpecializationInfo* pSpecializationInfo;

} VkPipelineShaderStageCreateInfo;

All graphics pipelines must have at least a vertex shader, and the vertex shader is always the first shading stage in the pipeline. Therefore, the pStages of VkGraphicsPipelineCreateInfo should point to a VkPipelineShaderStageCreateInfo describing a vertex shader. The parameters in the VkPipelineShaderStageCreateInfo structure have the same meaning as they did when we created a compute pipeline in Chapter 6, “Shaders and Pipelines.” module should be a shader module that contains at least one vertex shader, and pName should be the name of a vertex shader entry point in that module.

Because in our simple pipeline we’re not using most of the stages of the Vulkan graphics pipeline, we can leave most of the other fields of the VkGraphicsPipelineCreateInfo structure as their defaults or as nullptr for the pointers. The layout field is the same as the layout field in the VkComputePipelineCreateInfo structure and specifies the pipeline layout used for resources by this pipeline.

We can set the renderPass member of our structure to the handle of the renderpass object we created earlier in Listing 7.1. There’s only one subpass in this renderpass, so we can set subpass to zero.

Listing 7.2 shows a minimal example of creating a graphics pipeline containing only a vertex shader. It looks long, but most of it is setting up default values in structures that are not actually used by the pipeline. These structures will be explained in the following few paragraphs.

Listing 7.2: Creating a Simple Graphics Pipeline

Click here to view code image

VkPipelineShaderStageCreateInfo shaderStageCreateInfo =

{

 VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, // sType

 nullptr, // pNext

 0, // flags

 VK_SHADER_STAGE_VERTEX_BIT, // stage

 module, // module

 "main", // pName

 nullptr // pSpecializationInfo

};

static const

VkPipelineVertexInputStateCreateInfo vertexInputStateCreateInfo =

{

 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, // sType

 nullptr, // pNext

 0, // flags

 0, // vertexBindingDescriptionCount

 nullptr, // pVertexBindingDescriptions

 0, // vertexAttributeDescriptionCount

 nullptr // pVertexAttributeDescriptions

};

static const

VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCreateInfo =

{

 VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,// sType

 nullptr, // pNext

 0, // flags

 VK_PRIMITIVE_TOPOLOGY_POINT_LIST, // topology

 VK_FALSE // primitiveRestartEnable

};

static const

VkViewport dummyViewport =

{

 0.0f, 0.0f, // x, y

 1.0f, 1.0f, // width, height

 0.1f, 1000.0f // minDepth, maxDepth

};

static const

VkRect2D dummyScissor =

{

 { 0, 0 }, // offset

 { 1, 1 } // extent

};

static const

VkPipelineViewportStateCreateInfo viewportStateCreateInfo =

{

 VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, // sType

 nullptr, // pNext

 0, // flags

 1, // viewportCount

 &dummyViewport, // pViewports

 1, // scissorCount

 &dummyScissor // pScissors

};

static const

VkPipelineRasterizationStateCreateInfo rasterizationStateCreateInfo =

{

 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, // sType

 nullptr, // pNext

 0, // flags

 VK_FALSE, // depthClampEnable

 VK_TRUE, // rasterizerDiscardEnable

 VK_POLYGON_MODE_FILL, // polygonMode

 VK_CULL_MODE_NONE, // cullMode

 VK_FRONT_FACE_COUNTER_CLOCKWISE, // frontFace

 VK_FALSE, // depthBiasEnable

 0.0f, // depthBiasConstantFactor

 0.0f, // depthBiasClamp

 0.0f, // depthBiasSlopeFactor

 0.0f // lineWidth

};

static const

VkGraphicsPipelineCreateInfo graphicsPipelineCreateInfo =

{

 VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, // sType

 nullptr, // pNext

 0, // flags

 1, // stageCount

 &shaderStageCreateInfo, // pStages

 &vertexInputStateCreateInfo, // pVertexInputState

 &inputAssemblyStateCreateInfo, // pInputAssemblyState

 nullptr, // pTessellationState

 &viewportStateCreateInfo, // pViewportState

 &rasterizationStateCreateInfo, // pRasterizationState

 nullptr, // pMultisampleState

 nullptr, // pDepthStencilState

 nullptr, // pColorBlendState

 nullptr, // pDynamicState

 VK_NULL_HANDLE, // layout

 renderpass, // renderPass

 0, // subpass

 VK_NULL_HANDLE, // basePipelineHandle

 0, // basePipelineIndex

};

result = vkCreateGraphicsPipelines(device,

 VK_NULL_HANDLE,

 1,

 &graphicsPipelineCreateInfo,

 nullptr,

 &pipeline);

Of course, most of the time, you won’t be using a graphics pipeline containing only a vertex shader. Up to five shader stages make up the graphics pipeline, as introduced earlier in this chapter. These stages include the following:

• The vertex shader, specified as VK_SHADER_STAGE_VERTEX_BIT, processes one vertex at a time and passes it to the next logical stage in the pipeline.

• The tessellation control shader, specified as VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, processes one control point at a time but has access to all of the data that makes up the patch. It can be considered to be a patch shader, and it produces the tessellation factors and per-patch data associated with the patch.

• The tessellation evaluation shader, specified using VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, processes one tessellated vertex at a time. In many applications, it evaluates the patch function at each point—hence, the name. It also has access to the full patch data produced by the tessellation control shader.

• The geometry shader, specified using VK_SHADER_STAGE_GEOMETRY_BIT, executes once for each primitive that passes through the pipeline: points, lines, or triangles. It can produce new primitives or throw them away rather than passing them on. It can also change the type of a primitive as it passes by.

• The fragment shader, specified using VK_SHADER_STAGE_FRAGMENT_BIT, executes once per fragment, after rasterization. It is primarily responsible for computing the final color of each pixel.

Most straightforward rendering will include at least a vertex and a fragment shader. Each shader stage can consume data from the previous stage or pass data on to the next, forming a pipeline. In some cases, the inputs to a shader are supplied by fixed-function blocks, and sometimes the outputs from a shader are consumed by fixed-function blocks. Regardless of the source or destination of data, the means of declaring the inputs and outputs to shaders are the same.

To declare an input to a shader in SPIR-V, a variable must be decorated as Input when it is declared. Likewise, to create an output from the shader, decorate a variable as Output when it is declared. Unlike in GLSL, special-purpose inputs and outputs do not have predefined names in SPIR-V. Rather, they are decorated with their purpose. Then you write shaders in GLSL and compile them to SPIR-V using a GLSL compiler. The compiler will recognize access to built-in variables and translate them into appropriately declared and decorated input and output variables in the resulting SPIR-V shader.

Vertex Input State

To render real geometry, you need to feed data into the front of the Vulkan pipeline. You can use the vertex and instance indices that are provided by SPIR-V to programmatically generate geometry or explicitly fetch geometry data from a buffer. Alternatively, you can describe the layout of geometric data in memory and Vulkan can fetch it for you, supplying it directly to your shader.

To do this, we use the pVertexInputState member of VkGraphicsPipelineCreateInfo, which is a pointer to an instance of the VkPipelineVertexInputStateCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkPipelineVertexInputStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineVertexInputStateCreateFlags flags;

 uint32_t vertexBindingDescriptionCount;

 const VkVertexInputBindingDescription* pVertexBindingDescriptions;

 uint32_t vertexAttributeDescriptionCount;

 const VkVertexInputAttributeDescription* pVertexAttributeDescriptions;

} VkPipelineVertexInputStateCreateInfo;

The VkPipelineVertexInputStateCreateInfo structure begins with the familiar sType and pNext fields, which should be set to VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO and nullptr, respectively. The flags field of VkPipelineVertexInputStateCreateInfo is reserved for future use and should be set to zero.

Vertex input state is divided into a set of vertex bindings to which you can bind buffers containing data and a set of vertex attributes that describe how vertex data is laid out in those buffers. Buffers bound to the vertex buffer binding points are sometimes referred to as vertex buffers. It should be noted, though, that there’s not really any such thing as a “vertex buffer” in the sense that any buffer can store vertex data, and a single buffer can store vertex data and other kinds of data as well. The only requirement for a buffer to be used as storage for vertex data is that it must have been created with the VK_BUFFER_USAGE_VERTEX_BUFFER_BIT set.

vertexBindingDescriptionCount is the number of vertex bindings used by the pipeline, and pVertexBindingDescriptions is a pointer to an array of that many VkVertexInputBindingDescription structures, each describing one of the bindings. The definition of VkVertexInputBindingDescription is

Click here to view code image

typedef struct VkVertexInputBindingDescription {

 uint32_t binding;

 uint32_t stride;

 VkVertexInputRate inputRate;

} VkVertexInputBindingDescription;

The binding field is the index of the binding described by this structure. Each pipeline can address a number of vertex buffer bindings, and their indices do not need to be contiguous. It is not necessary to describe every binding in a given pipeline so long as every binding that is used by that pipeline is described.

The last binding index addressed by the array of VkVertexInputBindingDescription structures must be less than the maximum number of bindings supported by the device. This limit is guaranteed to be at least 16, but for some devices, it could be higher. If you don’t need more than 16 bindings, then there’s no reason to check the limit. However, you can determine the highest binding index by checking the maxVertexInputBindings member of the device’s VkPhysicalDeviceLimits structure, which is returned from a call to vkGetPhysicalDeviceProperties().

Each binding can be seen as an array of structures located in a buffer object. The stride of the array—that is, the distance between the start of each structure, measured in bytes—is specified in stride. If the vertex data is specified as an array of structures, the stride parameter essentially contains the size of the structure, even if the shader doesn’t use every member of it. The maximum value of stride for any particular binding is implementation-dependent but is guaranteed to be at least 2,048 bytes. If you want to use vertex data with a greater stride than this, you need to query the supported stride to make sure that the device can handle it.

To determine the maximum supported stride, check the maxVertexInputBindingStride field of the device’s VkPhysicalDeviceLimits structure.

Further, Vulkan can iterate through the array either as a function of the vertex index or as a function of the instance index when instancing is in use. This is specified in the inputRate field, which should be either VK_VERTEX_INPUT_RATE_VERTEX or VK_VERTEX_INPUT_RATE_INSTANCE.

Each vertex attribute is essentially a member of one of the structures stored in the vertex buffer. Each vertex attribute sourced from the vertex buffer shares the step rate and stride of the array but has its own data type and offset within that structure. This is described using the VkVertexInputAttributeDescription structure. The address of an array of these structures is passed in the pVertexAttributeDescriptions field of VkPipelineVertexInputStateCreateInfo, and the number of elements in the array (which is the number of vertex attributes) is passed in

vertexAttributeDescriptionCount. The definition of VkVertexInputAttributeDescription is

Click here to view code image

typedef struct VkVertexInputAttributeDescription {

 uint32_t location;

 uint32_t binding;

 VkFormat format;

 uint32_t offset;

} VkVertexInputAttributeDescription;

Each attribute has a location that is used to refer to it in the vertex shader. Again, the vertex attribute locations don’t need to be contiguous, and it’s not necessary to describe every single vertex attribute location so long as all the attributes used by the pipeline are described. The attribute’s location is specified though the location member of VkVertexInputAttributeDescription.

The binding to which the buffer is bound, and from which this attribute sources its data, is specified in binding and should match one of the bindings specified in the array of VkVertexInputBindingDescription structures described earlier. The format of the vertex data is specified in format, and the offset within each structure is specified in offset.

Just as the total size of the structure has an upper limit, there is an upper limit to the offset from the start of the structure for each attribute: the upper bound on offset. This is guaranteed to be at least 2,047 bytes, which is high enough to place a single byte right at the end of a structure of the maximum guaranteed size (2,048 bytes). If you need to use bigger structures than this, you need to check the capability of the device to handle it. The maxVertexInputAttributeOffset field of the device’s VkPhysicalDeviceLimits structure contains the maximum value that can be used in offset. You can retrieve this structure by calling vkGetPhysicalDeviceProperties().

Listing 7.3 shows how to create a structure in C++ and describe it using the VkVertexInputBindingDescription and VkVertexInputAttributeDescription such that you can use it to hand vertex data to Vulkan.

Listing 7.3: Describing Vertex Input Data

Click here to view code image

typedef struct vertex_t

{

 vmath::vec4 position;

 vmath::vec3 normal;

 vmath::vec2 texcoord;

} vertex;

static const

VkVertexInputBindingDescription vertexInputBindings[] =

{

 { 0, sizeof(vertex), VK_VERTEX_INPUT_RATE_VERTEX } // Buffer

};

static const

VkVertexInputAttributeDescription vertexAttributes[] =

{

 { 0, 0, VK_FORMAT_R32G32B32A32_SFLOAT, 0 }, // Position

 { 1, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(vertex, normal) }, // Normal

 { 2, 0, VK_FORMAT_R32G32_SFLOAT, offsetof(vertex, texcoord) } // Tex Coord

};

static const

VkPipelineVertexInputStateCreateInfo vertexInputStateCreateInfo =

{

 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, // sType

 nullptr, // pNext

 0, // flags

 vkcore::utils::arraysize(vertexInputBindings), // vertexBindingDescriptionCount

 vertexInputBindings, // pVertexBindingDescriptions

 vkcore::utils::arraysize(vertexAttributes), // vertexAttributeDescriptionCount

 vertexAttributes // pVertexAttributeDescriptions

};

The maximum number of input attributes that can be used in a single vertex shader is implementation-dependent but is guaranteed to be at least 16. This is the upper limit on the number of VkVertexInputAttributeDescription structures in the pVertexInputAttributeDescriptions array. Some implementations may support more inputs than this. To determine the maximum number of vertex shader inputs that you can use, check the maxVertexInputAttributes field of the device’s VkPhysicalDeviceLimits structure.

Vertex data is read from the vertex buffers that you bind to the command buffer and then passed to the vertex shader. For the vertex shader to be able to interpret that vertex data, it must declare inputs corresponding to the vertex attributes you have defined. To do this, create a variable in your SPIR-V vertex shader with the Input storage class. In a GLSL shader, this can be expressed using an in variable.

Each input must have an assigned location. This is specified in GLSL using the location layout qualifier, which is then translated into a SPIR-V Location decoration applied to the input. Listing 7.4 shows a fragment of a GLSL vertex shader that declares a number of inputs. The resulting SPIR-V produced by glslangvalidator is shown in Listing 7.5.

The shader shown in Listing 7.5 is incomplete, as it has been edited to make the declared inputs clearer.

Listing 7.4: Declaring Inputs to a Vertex Shader (GLSL)

Click here to view code image

#version 450 core

layout (location = 0) in vec3 i_position;

layout (location = 1) in vec2 i_uv;

void main(void)

{

 gl_Position = vec4(i_position, 1.0f);

}

Listing 7.5: Declaring Inputs to a Vertex Shader (SPIR-V)

Click here to view code image

; SPIR-V

; Version: 1.0

; Generator: Khronos Glslang Reference Front End; 1

; Bound: 30

; Schema: 0

 OpCapability Shader

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint Vertex %4 "main" %13 %18 %29

 OpSource GLSL 450

 OpName %18 "i_position" ;; Name of i_position

 OpName %29 "i_uv" ;; Name of i_uv

 OpDecorate %18 Location 0 ;; Location of i_position

 OpDecorate %29 Location 1 ;; Location of i_uv

...

 %6 = OpTypeFloat 32 ;; %6 is 32-bit floating-point type

 %16 = OpTypeVector %6 3 ;; %16 is a vector of 3 32-bit floats (vec3)

 %17 = OpTypePointer Input %16

 %18 = OpVariable %17 Input ;; %18 is i _position - input pointer to vec3

 %27 = OpTypeVector %6 2 ;; %27 is a vector of 2 32-bit floats

 %28 = OpTypePointer Input %27

 %29 = OpVariable %28 Input ;; %29 is i _uv - input pointer to vec2

...

It is also possible to declare a vertex shader input that corresponds only to certain components of the vertex attribute. Again, the attribute is the data supplied by your application through vertex buffers, and the vertex shader input is the variable in the vertex shader corresponding to the data read by Vulkan on your behalf.

To create a vertex shader input that corresponds to a subset of the components of an input vector, use the GLSL component layout qualifier, which is translated into a SPIR-V Component decoration applied to the vertex shader input. Each vertex shader input can begin at a component numbered 0 through 3, corresponding to the x, y, z, and w channels of the source data. Each input consumes as many consecutive components as it requires. That is, a scalar consumes a single component, a vec2 consumes 2, a vec3 consumes 3, and so on.

Vertex shaders can also declare matrices as inputs. In GLSL, this is as simple as using the in storage qualifier on a variable in the vertex shader. In SPIR-V, a matrix is effectively declared as a special type of vector consisting of vector types. The matrix is considered to be column primary by default. Therefore, each set of contiguous data fills a single column of the matrix.

Input Assembly

The input assembly phase of the graphics pipeline takes the vertex data and groups it into primitives ready for processing by the rest of the pipeline. It is described by an instance of the VkPipelineInputAssemblyStateCreateInfo structure that is passed through the pInputAssemblyState member of the VkGraphicsPipelineCreateInfo structure. The definition of VkPipelineInputAssemblyStateCreateInfo is

Click here to view code image

typedef struct VkPipelineInputAssemblyStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineInputAssemblyStateCreateFlags flags;

 VkPrimitiveTopology topology;

 VkBool32 primitiveRestartEnable;

} VkPipelineInputAssemblyStateCreateInfo;

The sType field should be set to VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved for future use and should be set to zero.

The primitive topology is specified in topology, which should be one of the primitive topologies supported by Vulkan. These are members of the VkPrimitiveTopology enumeration. The simplest members of this enumeration are the list topologies, which are

• VK_PRIMITIVE_TOPOLOGY_POINT_LIST: Each vertex is used to construct an independent point.

• VK_PRIMITIVE_TOPOLOGY_LINE_LIST: Vertices are grouped into pairs, each pair forming a line segment from the first to the second vertex.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: Vertices are grouped into triplets forming triangles.

Next are the strip and fan primitives. These are groupings of vertices into primitives (lines or triangles) in which each line or triangle shares one or two vertices with the previous one. The strip and fan primitives are as follows:

• VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: The first two vertices in a draw form a single line segment. Each new vertex after them forms a new line segment from the last processed vertex. The result is a connected sequence of lines.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: The first three vertices in a draw form a single triangle. Each subsequent vertex forms a new triangle along with the last two vertices. The result is a connected row of triangles, each sharing an edge with the last.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: The first three vertices in a draw form a single triangle. Each subsequent vertex forms a new triangle along with the last vertex and the first vertex in the draw.

Strip and fan topologies are not complex but can be difficult to visualize if you are not familiar with them. Figure 7.2 shows these topologies laid out graphically.

[image: Image]

Figure 7.2: Strip (Left) and Fan (Right) Topologies

Next are the adjacency primitives, which are typically used only when a geometry shader is enabled and are able to convey additional information about primitives next to them in an original mesh. The adjacency primitive topologies are

• VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: Every four vertices in the draw form a single primitive, with the center two vertices forming a line and the first and last vertex in each group of four being presented to the geometry shader, when present.

• VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: The first four vertices in the draw form a single primitive, with the center two vertices forming a line segment and the first and last being presented to the geometry shader as adjacency information. Each subsequent vertex essentially slides this window of four vertices along by one, forming a new line segment and presenting the new vertex as adjacency information.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: Similar to lines with adjacency, each group of six vertices is formed into a single primitive, with the first, third, and fifth in each group constructing a triangle and the second, fourth, and sixth being presented to the geometry shader as adjacency information.

• VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: This is perhaps the most confusing primitive topology and certainly needs a diagram to visualize. Essentially, the strip begins with the first six vertices forming a triangle with adjacency information as in the list case. For every two new vertices, a new triangle is formed, with the odd-numbered vertices forming the triangle and the even-numbered vertices providing adjacency information.

Again, adjacency topologies can be quite difficult to visualize—especially the VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY topology. Figure 7.3 illustrates the layout of vertices within the VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY topology. In the figure you can see that there are two triangles formed from a total of 12 vertices. The vertices wrap around the outside of each triangle, with the odd-numbered vertices forming the center triangles (A and B) and the even-numbered vertices forming virtual triangles that are not rendered, but carry adjacency information. This concept carries on to the triangle strip

[image: Image]

Figure 7.3: Triangles with Adjacency Topology

primitive. Figure 7.4 shows how it is applied to the VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY.

[image: Image]

Figure 7.4: Triangle Strip with Adjacency Topology

Adjacency topologies are typically used only when a geometry shader is present, as the geometry shader is the only stage that really sees the adjacency vertices. However, it’s possible to use adjacency primitives without a geometry shader; the adjacency vertices will simply be discarded.

The last primitive topology is VK_PRIMITIVE_TOPOLOGY_PATCH_LIST. This topology is used when tessellation is enabled, which requires additional information to be passed to pipeline construction.

The last field in VkPipelineInputAssemblyStateCreateInfo is primitiveRestartEnable. This is a flag that is used to allow strip and fan primitive topologies to be cut and restarted. Without this, each strip or fan would need to be a separate draw. When you use restarts, many strips or fans can be combined into a single draw. Restarts take effect only when indexed draws are used because the point at which to restart the strip is marked using a special, reserved value in the index buffer. This is covered in more detail in Chapter 8, “Drawing.”

Tessellation State

Tessellation is the process of breaking a large, complex primitive into a large number of smaller primitives approximating the original. Vulkan can tessellate a patch primitive into many smaller point, line, or triangle primitives prior to geometry shading and rasterization. Most of the state related to tessellation is configured using the tessellation control shader and tessellation evaluation shader. However, because these shading stages don’t run until vertex data has already been fetched and processed by the vertex shader, some information is needed up front to configure this stage of the pipeline.

This information is provided through an instance of the VkPipelineTessellationStateCreateInfo structure, pointed to by the pTessellationState member of VkGraphicsPipelineCreateInfo. The definition of VkPipelineTessellationStateCreateInfo is

Click here to view code image

typedef struct VkPipelineTessellationStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineTessellationStateCreateFlags flags;

 uint32_t patchControlPoints;

} VkPipelineTessellationStateCreateInfo;

When the topology field of the VkPipelineInputAssemblyStateCreateInfo structure is set to VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, pTessellationState must be a pointer to a VkPipelineTessellationStateCreateInfo structure; otherwise, pTessellationState can be nullptr.

sType for VkPipelineTessellationStateCreateInfo is VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO. pNext should be set to nullptr, and flags is reserved for use in future versions of Vulkan and should be set to zero. The only field of significance in VkPipelineTessellationStateCreateInfo is patchControlPoints, which sets the number of control points that will be grouped into a single primitive (patch). Tessellation is a somewhat advanced topic and will be covered in more detail in Chapter 9, “Geometry Processing.”

Viewport State

Viewport transformation is the final coordinate transform in the Vulkan pipeline before rasterization occurs. It transforms vertices from normalized device coordinates into window coordinates. Multiple viewports can be in use simultaneously. The state of these viewports, including the number of active viewports and their parameters, is set through an instance of the VkPipelineViewportStateCreateInfo structure, the address of which is passed through the pViewportState member of VkGraphicsPipelineCreateInfo. The definition of VkPipelineViewportStateCreateInfo is

Click here to view code image

typedef struct VkPipelineViewportStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineViewportStateCreateFlags flags;

 uint32_t viewportCount;

 const VkViewport* pViewports;

 uint32_t scissorCount;

 const VkRect2D* pScissors;

} VkPipelineViewportStateCreateInfo;

The sType field of VkPipelineViewportStateCreateInfo should be set to VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved for use in a future version of Vulkan and should be set to zero.

The number of viewports that will be available to the pipeline is set in viewportCount, and the dimensions of each viewport are passed in an array of VkViewport structures, the address of which is specified in pViewports. The definition of VkViewport is

typedef struct VkViewport {

 float x;

 float y;

 float width;

 float height;

 float minDepth;

 float maxDepth;

} VkViewport;

The VkPipelineViewportStateCreateInfo structure is also used to set the scissor rectangles for the pipeline. As with viewports, a single pipeline can define multiple scissor rectangles, and they are passed through an array of VkRect2D structures. The number of scissor rectangles is specified in scissorCount. Note that the index used for the viewport and scissor rectangles when drawing is the same, so you must set scissorCount to the same value as viewportCount. VkRect2D is a simple structure defining a rectangle in 2D and is used for many things in Vulkan. Its definition is

typedef struct VkRect2D {

 VkOffset2D offset;

 VkExtent2D extent;

} VkRect2D;

Support for multiple viewports is optional. When multiple viewports are supported, then at least 16 are available. The maximum number of viewports that can be enabled in a single graphics pipeline can be determined by inspecting the maxViewports member of the VkPhysicalDeviceLimits structure returned from a call to vkGetPhysicalDeviceProperties(). If multiple viewports are supported, then this limit will be at least 16. Otherwise, this field will contain the value 1.

More information about how the viewport transformation works and how to utilize multiple viewports in your application is given in Chapter 9, “Geometry Processing.” Further information about scissor testing is contained in Chapter 10, “Fragment Processing.” In order to simply render to the full framebuffer, disable the scissor test and create a single viewport with the same dimensions as the framebuffer’s color attachments.

Rasterization State

Rasterization is the fundamental process whereby primitives represented by vertices are turned into streams of fragments ready to be shaded by your fragment shader. The state of the rasterizer controls how this process occurs and is set using an instance of the VkPipelineRasterizationStateCreateInfo passed through the pRasterizationState member of VkGraphicsPipelineCreateInfo. The definition of VkPipelineRasterizationStateCreateInfo is

Click here to view code image

typedef struct VkPipelineRasterizationStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineRasterizationStateCreateFlags flags;

 VkBool32 depthClampEnable;

 VkBool32 rasterizerDiscardEnable;

 VkPolygonMode polygonMode;

 VkCullModeFlags cullMode;

 VkFrontFace frontFace;

 VkBool32 depthBiasEnable;

 float depthBiasConstantFactor;

 float depthBiasClamp;

 float depthBiasSlopeFactor;

 float lineWidth;

} VkPipelineRasterizationStateCreateInfo;

The sType field of VkPipelineRasterizationStateCreateInfo should be set to VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO and pNext should be set to nullptr. The flags field is reserved and should be set to zero.

The depthClampEnable field is used to turn depth clamping on or off. Depth clamping causes fragments that would have been clipped away by the near or far planes to instead be projected onto those planes and can be used to fill holes in geometry that would be caused by clipping.

rasterizerDiscardEnable is used to turn off rasterization altogether. When this flag is set, the rasterizer will not run, and no fragments will be produced.

The polygonMode field can be used to get Vulkan to turn triangles into points or lines automatically. The possible values for polygonMode are

• VK_POLYGON_MODE_FILL: This is the normal mode that is used to fill in triangles. Triangles will be drawn solid, and every point inside the triangle will create a fragment.

• VK_POLYGON_MODE_LINE: This mode turns the triangles into lines, with each edge of each triangle becoming a line. This is useful for drawing geometry in wireframe mode.

• VK_POLYGON_MODE_POINT: This mode simply draws each vertex as a point.

The advantage of using the polygon mode to turn geometry into wireframe or point clouds over simply drawing lines or points is that operations that operate only on complete triangles, such as back-face culling, are still performed. Thus, lines that would have encompassed a culled triangle are not drawn, whereas they would be if the geometry were simply drawn as lines.

Culling is controlled with cullMode, which can be zero or a bitwise combination of either of the following:

• VK_CULL_MODE_FRONT_BIT: Polygons (triangles) that are considered to face the viewer are discarded.

• VK_CULL_MODE_BACK_BIT: Polygons that are considered to face away from the viewer are discarded.

For convenience, Vulkan defines VK_CULL_MODE_FRONT_AND_BACK as the bitwise OR of both VK_CULL_MODE_FRONT_BIT and VK_CULL_MODE_BACK_BIT. Setting cullMode to this value will result in all triangles being dicarded. Note that culling doesn’t affect lines or points because they don’t have a facing direction.

Which direction a triangle is facing is determined from the winding order of its vertices—whether they proceed clockwise or counterclockwise in window space. Which of clockwise or counterclockwise is considered front-facing is determined by the frontFace field. This is a member of the VkFrontFace enumeration and can be either VK_FRONT_FACE_COUNTER_CLOCKWISE or VK_FRONT_FACE_CLOCKWISE.

The next four parameters—depthBiasEnable, depthBiasConstantFactor, depthBiasClamp, and depthBiasSlopeFactor—control the depth bias feature. This feature allows fragments to be offset in depth before the depth test and can be used to prevent depth fighting. This feature is discussed in some detail in Chapter 10, “Fragment Processing.”

Finally, lineWidth sets the width of line primitives, in pixels. This applies to all lines rasterized with the pipeline. This includes pipelines in which the primitive topology is one of the line primitives, the geometry or tessellation shaders turn the input primitives into lines, and the polygon mode (set by polygonMode) is VK_POLYGON_MODE_LINE. Note that some Vulkan implementations don’t support wide lines and will ignore this field. Others may run very slowly when this field is not 1.0; still others may honor this field completely and throw away all your lines if you set lineWidth to 0.0. Therefore, you should always set this field to 1.0 unless you’re sure you want something else.

Even when wide lines are supported, the maximum width of a line is device-dependent. It is guaranteed to be at least 8 pixels but could be much higher. To determine the maximum line width supported by a device, check the lineWidthRange field of its VkPhysicalDeviceLimits structure. This is an array of two floating-point values, the first being the minimum width of a line (which will be at most 1 pixel; its purpose is for drawing lines that are less than a pixel wide) and the second being the maximum width of a line. If variable line width is not supported, then both elements of the array will be 1.0.

Further, as line width is changed, a device may snap the width you specify into fixed-size increments. For example, it may support only whole-pixel size changes. This is the line width granularity, which can be determined by inspecting the lineWidthGranularity field of the VkPhysicalDeviceLimits structure.

Multisample State

Multisampling is the process of generating multiple samples for each pixel in an image. It is used to combat aliasing and can greatly improve image quality when used effectively. When you use multisampling, the color and depth-stencil attachments must be multisample images, and the multisample state of the pipeline should be set appropriately through the pMultisampleState member of VkGraphicsPipelineCreateInfo. This is a pointer to an instance of the VkPipelineMultisampleStateCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkPipelineMultisampleStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineMultisampleStateCreateFlags flags;

 VkSampleCountFlagBits rasterizationSamples;

 VkBool32 sampleShadingEnable;

 float minSampleShading;

 const VkSampleMask* pSampleMask;

 VkBool32 alphaToCoverageEnable;

 VkBool32 alphaToOneEnable;

} VkPipelineMultisampleStateCreateInfo;

The sType field of VkPipelineMultisampleStateCreateInfo should be set to VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO and pNext should be set to nullptr. The flags field is reserved and should be set to zero.

Depth and Stencil State

The depth-stencil state controls how the depth and stencil tests are conducted and what happens to a fragment should it pass or fail either of those tests. The depth and stencil tests can be performed either before or after the fragment shader runs. By default, the tests occur after the fragment shader.1

1. Most implementations will only keep up the appearance that the depth and stencil tests are running after the fragment shader and, if possible, run the tests before running the shader to avoid running shader code when the test would fail.

To run the fragment shader before the depth test, we can apply the SPIR-V EarlyFragmentTests execution mode to the entry point of our fragment shader.

The depth-stencil state is configured through the pDepthStencilState member of VkGraphicsPipelineCreateInfo, which is a pointer to an instance of the VkPipelineDepthStencilStateCreateInfo structure. The definition of VkPipelineDepthStencilStateCreateInfo is

Click here to view code image

typedef struct VkPipelineDepthStencilStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineDepthStencilStateCreateFlags flags;

 VkBool32 depthTestEnable;

 VkBool32 depthWriteEnable;

 VkCompareOp depthCompareOp;

 VkBool32 depthBoundsTestEnable;

 VkBool32 stencilTestEnable;

 VkStencilOpState front;

 VkStencilOpState back;

 float minDepthBounds;

 float maxDepthBounds;

} VkPipelineDepthStencilStateCreateInfo;

The sType field for VkPipelineDepthStencilStateCreateInfo should be set to VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_CREATE_INFO and pNext should be set to nullptr. The flags field is reserved and should be set to zero.

The depth test is enabled if depthTestEnable is set to VK_TRUE. If the depth test is enabled, then the test to use is selected using depthCompareOp, which is one of the VkCompareOp enumerant values. The available depth testing operations are discussed in more detail in Chapter 10, “Fragment Processing.” If depthTestEnable is set to VK_FALSE, then the depth test is enabled. The value of depthCompareOp is enabled, and all fragments are considered to have passed the depth test. It should be noted, however, that when the depth test is disabled, no writes to the depth buffer occur.

If the depth test passes (or if the depth test is disabled), then the fragment passes on to the stencil test. The stencil test is enabled if the stencilTestEnable field of VkPipelineDepthStencilCreateInfo is set to VK_TRUE and disabled otherwise. When stencil testing is enabled, a separate state is provided for front- and back-facing primitives in the front and back members, respectively. If stencil test is disabled, all fragments are considered to have passed the stencil test.

The details of depth and stencil testing are covered in more depth in Chapter 10, “Fragment Processing.”

Color Blend State

The final stage in the Vulkan graphics pipeline is the color blend stage. This stage is responsible for writing fragments into the color attachments. In many cases, this is a simple operation that simply overwrites the existing content of the attachment with value(s) output from the fragment shader. However, the color blender is capable of mixing (blending) those values with the values already in the framebuffer and performing simple logical operations between the output of the fragment shader and the current content of the framebuffer.

The state of the color blender is specified using the pColorBlendState member of the VkGraphicsPipelineCreateInfo structure. This is a pointer to an instance of the VkPipelineColorBlendStateCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkPipelineColorBlendStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineColorBlendStateCreateFlags flags;

 VkBool32 logicOpEnable;

 VkLogicOp logicOp;

 uint32_t attachmentCount;

 const VkPipelineColorBlendAttachmentState* pAttachments;

 float blendConstants[4];

} VkPipelineColorBlendStateCreateInfo;

The sType field of VkPipelineColorBlendStateCreateInfo should be set to VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved for future use and should be set to zero.

The logicOpEnable field specifies whether to perform logical operations between the output of the fragment shader and the content of the color attachments. When logicOpEnable is VK_FALSE, then logical operations are disabled and values produced by the fragment shader are written into the color attachment unmodified. When logicOpEnable is VK_TRUE, logic operations are enabled for the attachments that support them. The logic operation to apply is the same for every attachment and is a member of the VkLogicOp numeration. The meaning of each of the enumerants and more information about logical operations is given in Chapter 10, “Fragment Processing.”

Each attachment can have a different format, and can support different blending operations. These are specified with an array of VkPipelineColorBlendAttachmentState structures, the address of which is passed through the pAttachments member of VkPipelineColorBlendStateCreateInfo. The number of attachments is set in attachmentCount. The definition of VkPipelineColorBlendAttachmentState is

Click here to view code image

typedef struct VkPipelineColorBlendAttachmentState {

 VkBool32 blendEnable;

 VkBlendFactor srcColorBlendFactor;

 VkBlendFactor dstColorBlendFactor;

 VkBlendOp colorBlendOp;

 VkBlendFactor srcAlphaBlendFactor;

 VkBlendFactor dstAlphaBlendFactor;

 VkBlendOp alphaBlendOp;

 VkColorComponentFlags colorWriteMask;

} VkPipelineColorBlendAttachmentState;

For each color attachment, the members of VkPipelineColorBlendAttachmentState control whether blending is enabled, what the source and destination factors are, what the blending operation is (for both the color and alpha channels separately), and which channels in the output image are to be updated.

If the colorBlendEnable field of VkPipelineColorBlendAttachmentState is VK_TRUE, then the remaining parameters control the state of blending. Blending will be covered in more detail in Chapter 10, “Fragment Processing.” When colorBlendEnable is VK_FALSE, the blending parameters in VkPipelineColorBlendAttachmentState are ignored, and blending is disabled for that attachment.

Regardless of the state of colorBlendEnable, the final field, colorWriteMask, controls which channels of the output image are written in this attachment. It is a bitfield made up of bits from the VkColorComponentFlagBits enumeration. The four channels, represented by VK_COLOR_COMPONENT_R_BIT, VK_COLOR_COMPONENT_G_BIT, VK_COLOR_COMPONENT_B_BIT, and VK_COLOR_COMPONENT_A_BIT, can be individually masked out for writing. If the flag corresponding to a particular channel is not included in colorWriteMask, then that channel will not be modified. Only the channels included in colorWriteMask will be updated through rendering to the attachment.

Dynamic State

As you have seen, the graphics pipeline object is large and complex, and contains a lot of state. In many graphics applications, it is often desirable to be able to change some states at a relatively high frequency. If every change in every state required that you created a new graphics pipeline object, then the number of objects your application would have to manage would quickly become very large.

To make fine-grained state changes more manageable, Vulkan provides the ability to mark particular parts of the graphics pipeline as dynamic, which means that they can be updated on the fly using commands directly inside the command buffer rather than using an object. Because this reduces the opportunity for Vulkan to optimize or absorb parts of state, it’s necessary to specify exactly what state you want to make dynamic. This is done through the pDynamicState member of the VkGraphicsPipelineCreateInfo structure, which is a pointer to an instance of the VkPipelineDynamicStateCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkPipelineDynamicStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineDynamicStateCreateFlags flags;

 uint32_t dynamicStateCount;

 const VkDynamicState* pDynamicStates;

} VkPipelineDynamicStateCreateInfo;

The sType for VkPipelineDynamicStateCreateInfo should be set to VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved and should be set to zero.

The number of states that you wish to be dynamic is specified in dynamicStateCount. This is the length of the array pointed to by pDynamicStates, which is an array of elements from the VkDynamicState enumeration. Including a member of this enumeration in the pDynamicStates array tells Vulkan that you want to be able to change that state using the corresponding dynamic state setting commands. The members of VkDynamicState and their meanings are as follows:

• VK_DYNAMIC_STATE_VIEWPORT: The viewport rectangle is dynamic and will be updated using vkCmdSetViewport().

• VK_DYNAMIC_STATE_SCISSOR: The scissor rectangle is dynamic and will be updated using vkCmdSetScissor().

• VK_DYNAMIC_STATE_LINE_WIDTH: The line width is dynamic and will be updated using vkCmdSetLineWidth().

• VK_DYNAMIC_STATE_DEPTH_BIAS: The depth bias parameters are dynamic and will be updated using vkCmdSetDepthBias().

• VK_DYNAMIC_STATE_BLEND_CONSTANTS: The color blend constants are dynamic and will be updated using vkCmdSetBlendConstants().

• VK_DYNAMIC_STATE_DEPTH_BOUNDS: The depth bounds parameters are dynamic and will be updated using vkCmdSetDepthBounds().

• VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, and VK_DYNAMIC_STATE_STENCIL_REFERENCE: The corresponding stencil parameters are dynamic and will be updated using vkCmdSetStencilCompareMask(), vkCmdSetStencilWriteMask(), and vkCmdSetStencilReference(), respectively.

If a state is specified as being dynamic, then it becomes your responsibility to set that state when binding the pipeline. If the state is not marked as dynamic, then it is considered static and is set when the pipeline is bound. Binding a pipeline with static state makes the dynamic state undefined. The reason for this is that Vulkan implementations might optimize static states into the pipeline object and not actually program them into hardware if they’re not used or if it can otherwise be determined that this is valid. When a pipeline with that state marked dynamic is subsequently bound, it’s not defined whether the dynamic state is consistent in hardware.

When you are switching between pipelines that mark the same state as dynamic, however, then the state remains persistent across binds. Table 7.1 illustrates this.

[image: Image]

Table 7.1: Dynamic and Static State Validity

As you can see in Table 7.1, the only case in which state becomes undefined occurs when switching from a pipeline with that state marked as static to one in which the same state is marked as dynamic. In all other cases, the state is well defined and comes from either the pipeline’s state or the dynamic state set with the appropriate command.

If you set a dynamic state when a pipeline with that state set as static is currently bound, the results are undefined if you then draw with that pipeline. The effect could be to ignore the state-setting command and continue to use the static version of the state from the pipeline, honor the state-setting command and use the new dynamic state, or corrupt state altogether and break your application entirely. The effect will be different across implementations and will likely depend on which state is erroneously overridden.

Setting dynamic state and then binding a pipeline with that state marked as dynamic should cause the dynamic state to be used. However, it’s good practice to bind the pipeline first and then bind any related state simply to avert the possibility of undefined behavior.

Summary

This chapter provided a whirlwind tour of the Vulkan graphics pipeline. The pipeline consists of multiple stages, some of which are configurable but fixed-function, and some of which are made up of extremely powerful shaders. Building on the concept of the pipeline object introduced in Chapter 6, “Shaders and Pipelines,” the graphics pipeline object was introduced. This object includes a large amount of fixed function state. Although the pipelines built in this chapter were simple, a solid foundation was laid upon which to build more complex and expressive pipelines in later chapters.

Chapter 8. Drawing

What You’ll Learn in This Chapter

• The details of the different drawing commands in Vulkan

• How to draw many copies of data through instancing

• How to pass drawing parameters through buffers

Drawing is the fundamental operation in Vulkan that triggers work to be performed by a graphics pipeline. Vulkan includes several drawing commands, each generating graphics work in slightly different ways. This chapter delves deep into the drawing commands supported by Vulkan. First, we reintroduce the basic drawing command first discussed in Chapter 7, “Graphics Pipelines”; then we explore indexed and instanced drawing commands. Finally, we discuss a method to retrieve the parameters for a drawing command from device memory and even generate them on the device itself.

Back in Chapter 7, “Graphics Pipelines,” you were introduced to your first drawing command, vkCmdDraw(). This command simply pushes vertices into the Vulkan graphics pipeline. When we introduced the command, we glossed over some of its parameters. We also hinted at the existence of other drawing commands. For reference, here is the prototype for vkCmdDraw() again:

Click here to view code image

void vkCmdDraw (

 VkCommandBuffer commandBuffer,

 uint32_t vertexCount,

 uint32_t instanceCount,

 uint32_t firstVertex,

 uint32_t firstInstance);

As with all commands that execute on the device, the first parameter is a VkCommandBuffer handle. The number of vertices in each draw is specified in vertexCount, and the vertex index from which the vertices start is specified in firstVertex. The vertices that are sent down the pipeline have indices starting from firstVertex and proceed through vertexCount contiguous vertices. If you’re using vertex buffers and attributes to automatically feed data into your vertex shader, then the shader will see data fetched from that contiguous section of the arrays. If you’re using the vertex index directly in your shader, you will see it count monotonically from firstVertex upward.

Getting Ready to Draw

As we mentioned back in Chapter 7, “Graphics Pipelines,” all drawing is contained inside a renderpass. Although renderpass objects can encapsulate many subpasses, even simple rendering that draws into a single output image must be part of a renderpass. The renderpass is created by calling vkCreateRenderPass() as described in Chapter 7. To prepare for rendering, we need to call vkCmdBeginRenderPass(), which sets the current renderpass object and, perhaps more important, configures the set of output images that will be drawn into. The prototype of vkCmdBeginRenderPass() is

Click here to view code image

void vkCmdBeginRenderPass (

 VkCommandBuffer commandBuffer,

 const VkRenderPassBeginInfo* pRenderPassBegin,

 VkSubpassContents contents);

The command buffer that will contain the commands issued inside the renderpass is passed in commandBuffer. The bulk of the parameters describing the renderpass are passed through a pointer to an instance of the VkRenderPassBeginInfo structure in pRenderPassBegin. The definition of VkRenderPassBeginInfo is

Click here to view code image

typedef struct VkRenderPassBeginInfo {

 VkStructureType sType;

 const void* pNext;

 VkRenderPass renderPass;

 VkFramebuffer framebuffer;

 VkRect2D renderArea;

 uint32_t clearValueCount;

 const VkClearValue* pClearValues;

} VkRenderPassBeginInfo;

The sType field of the VkRenderPassBeginInfo structure should be set to VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, and pNext should be set to nullptr. The renderpass that is begun is specified in renderPass, and the framebuffer that we’re going to render into is specified in framebuffer. As discussed in Chapter 7, “Graphics Pipelines,” the framebuffer is the collection of images that will be rendered to by graphics commands.

Within any particular use of a renderpass, we can choose to render only into a small area of the attached images. To do this, use the renderArea member of the VkRenderPassBeginInfo structure to specify the rectangle in which all rendering will be contained. Simply setting renderArea.offset.x and renderArea.offset.y to 0 and renderArea.extent.width and renderArea.extent.height to the width and height of the images in the framebuffer tells Vulkan that you’re going to render into the whole rendering area of the framebuffer.

If any of the attachments in the renderpass have a load operation of VK_ATTACHMENT_LOAD_OP_CLEAR, then the colors or values that you want to clear them to are specified in an array of VkClearValue unions, a pointer to which is passed in pClearValues. The number of elements in pClearValues is passed in clearValueCount. The definition of VkClearValue is

Click here to view code image

typedef union VkClearValue {

 VkClearColorValue color;

 VkClearDepthStencilValue depthStencil;

} VkClearValue;

If the attachment is a color attachment, then the values stored in the color member of the VkClearValue union are used, and if the attachment is a depth, stencil, or depth-stencil attachment, then the values stored in the depthStencil member are used. color and depthStencil are instances of the VkClearColorValue and VkClearDepthStencilValue structures, respectively, the definitions of which are

Click here to view code image

typedef union VkClearColorValue {

 float float32[4];

 int32_t int32[4];

 uint32_t uint32[4];

} VkClearColorValue;

and

Click here to view code image

typedef struct VkClearDepthStencilValue {

 float depth;

 uint32_t stencil;

} VkClearDepthStencilValue;

The index of each attachment is used to index into the array of VkClearValue unions. This means that if only some of the attachments have a load operation of VK_ATTACHMENT_LOAD_OP_CLEAR, then there could be unused entries in the array. There must be at least as many entries in the pClearValues array as the highest-indexed attachment with a load operation of VK_ATTACHMENT_LOAD_OP_CLEAR.

For each attachment with a load operation of VK_ATTACHMENT_LOAD_OP_CLEAR, if it is a color attachment, then the values of the float32, int32, or uint32 arrays are used to clear the attachment, depending on whether it is a floating-point or normalized format, a signed integer format, or an unsigned integer format, respectively. If the attachment is a depth, stencil, or depth-stencil attachment, then the values of the depth and stencil members of the depthStencil member of the VkClearValue union are used to clear the appropriate aspect of the attachment.

Once the renderpass has begun, you can place drawing commands (which are discussed in the next section) in the command buffer. All rendering will be directed into the framebuffer specified in the VkRenderPassBeginInfo structure passed to vkCmdBeginRenderPass(). To finalize rendering contained in the renderpass, you need to end it by calling vkCmdEndRenderPass(), the prototype of which is

Click here to view code image

void vkCmdEndRenderPass (

 VkCommandBuffer commandBuffer);

After vkCmdEndRenderPass() has executed, any rendering directed through the renderpass is completed, and the content of the framebuffer is updated. Until then, the framebuffer’s content is undefined. Only attachments with a store operation of VK_ATTACHMENT_STORE_OP_STORE will reflect the new content produced by the rendering inside the renderpass. If an attachment has a store operation of VK_ATTACHMENT_STORE_OP_DONT_CARE, then its content is undefined after the renderpass has completed.

Vertex Data

If the graphics pipeline you’re going to use requires vertex data, before performing any drawing commands, you need to bind buffers to source the data from. When buffers are in use as the sources of vertex data, they are sometimes known as vertex buffers. The command to buffers for use as vertex data is vkCmdBindVertexBuffers(), and its prototype is

Click here to view code image

void vkCmdBindVertexBuffers (

 VkCommandBuffer commandBuffer,

 uint32_t firstBinding,

 uint32_t bindingCount,

 const VkBuffer* pBuffers,

 const VkDeviceSize* pOffsets);

The command buffer to which to bind the buffers is specified in commandBuffer. A given pipeline may reference many vertex buffers, and vkCmdBindVertexBuffers() is capable of updating a subset of the bindings on a particular command buffer. The index of the first binding to update is passed in firstBinding, and the number of contiguous bindings to update is passed in bindingCount. To update noncontiguous ranges of vertex buffer bindings, you need to call vkCmdBindVertexBuffers() multiple times.

The pBuffers parameter is a pointer to an array of bindingCount VkBuffer handles to the buffer objects to be bound, and pOffsets is a pointer to an array of bindingCount offsets into the buffer objects at which the data for each binding starts. The values in pOffsets are specified in bytes. It is perfectly reasonable to bind the same buffer object with different offsets (or even the same offset, if that’s what’s required) to a command buffer; simply include the same VkBuffer handle multiple times in the pBuffers array.

The layout and format of the data in the buffers are defined by the graphics pipeline that will consume the vertex data. Therefore, the format of the data is not specified here, but in the VkPipelineVertexInputStateCreateInfo structure passed via the VkGraphicsPipelineCreateInfo used to create the graphics pipeline. Back in Chapter 7, “Graphics Pipelines,” we showed an example of setting up interleaved vertex data as a C++ structure in Listing 7.3. Listing 8.1 shows a slightly more advanced example that uses one buffer to store position data alone and a second buffer that stores a per-vertex normal and texture coordinate.

Listing 8.1: Separate Vertex Attribute Setup

Click here to view code image

typedef struct vertex_t

{

 vmath::vec3 normal;

 vmath::vec2 texcoord;

} vertex;

static const

VkVertexInputBindingDescription vertexInputBindings[] =

{

 { 0, sizeof(vmath::vec4), VK_VERTEX_INPUT_RATE_VERTEX }, // Buffer 1

 { 1, sizeof(vertex), VK_VERTEX_INPUT_RATE_VERTEX } // Buffer 2

};

static const

VkVertexInputAttributeDescription vertexAttributes[] =

{

 { 0, 0, VK_FORMAT_R32G32B32A32_SFLOAT, 0 }, // Position

 { 1, 1, VK_FORMAT_R32G32B32_SFLOAT, 0 }, // Normal

 { 2, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(vmath::vec3) } // Tex Coord

};

static const

VkPipelineVertexInputStateCreateInfo vertexInputStateCreateInfo =

{

 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, // sType

 nullptr, // pNext

 0, // flags

 vkcore::utils::arraysize(vertexInputBindings), // vertexBindingDescription-

 // Count

 vertexInputBindings, // pVertexBinding-

 // Descriptions

 vkcore::utils::arraysize(vertexAttributes), // vertexAttribute-

 // DescriptionCount

 vertexAttributes // pVertexAttribute-

 // Descriptions

};

In Listing 8.1, we have defined three vertex attributes spread across two buffers. In the first buffer, only a single vec4 variable is stored, and this is used for position. The stride for this buffer is therefore the size of a vec4, which is 16 bytes. In the second buffer, we store the interleaved normal and texture coordinates for the vertex. We represent this as the vertex structure, allowing the compiler to compute the stride for us.

Indexed Draws

Simply pushing contiguous runs of vertices into the pipeline isn’t always what you want. In most geometric meshes, many vertices are used more than once. A fully connected mesh may share a single vertex among many triangles. Even a simple cube shares each vertex among three adjacent triangles. It is extremely wasteful to have to specify each vertex three times in your vertex buffers. Besides this, some Vulkan implementations are smart enough that if they see a vertex with the same input parameters more than once, they can skip processing it a second time and subsequent times, and instead reuse the results of the first vertex shader invocation.

To enable this, Vulkan allows indexed draws. The indexed equivalent of vkCmdDraw() is vkCmdDrawIndexed(), the prototype of which is

Click here to view code image

void vkCmdDrawIndexed (

 VkCommandBuffer commandBuffer,

 uint32_t indexCount,

 uint32_t instanceCount,

 uint32_t firstIndex,

 int32_t vertexOffset,

 uint32_t firstInstance);

Again, the first parameter to vkCmdDrawIndexed() is the handle to the command buffer in which the draw will be executed. Rather than simply starting from zero and counting upward, however, vkCmdDrawIndexed() fetches indices from an index buffer. The index buffer is a regular buffer object that you bind to the command buffer by calling vkCmdBindIndexBuffer(), the prototype of which is

Click here to view code image

void vkCmdBindIndexBuffer (

 VkCommandBuffer commandBuffer,

 VkBuffer buffer,

 VkDeviceSize offset,

 VkIndexType indexType);

The command buffer to which to bind the index buffer is specified in commandBuffer, and the handle to the buffer object containing indexed data is specified in buffer. A section of a buffer object can be bound to the command buffer starting from offset. The bound section always extends to the end of the buffer object. There is no bounds checking on the index buffer; Vulkan will read as many indices from the buffer as you tell it to. However, it will never read past the end of the buffer object.

The data type of the indices in the buffer is specified in indexType. This is a member of the VkIndexType enumeration, the members of which are

• VK_INDEX_TYPE_UINT16: Unsigned 16-bit integers

• VK_INDEX_TYPE_UINT32: Unsigned 32-bit integers

When you call vkCmdDrawIndexed(), Vulkan will start fetching data from the currently bound index buffer at an offset of

Click here to view code image

 offset + firstIndex * sizeof(index)

where sizeof(index) is 2 for VK_INDEX_TYPE_UINT16 and 4 for VK_INDEX_TYPE_UINT32. The code will fetch indexCount contiguous integers from the index buffer and then add vertexOffset to them. This addition is always performed in 32 bits, regardless of the index type for the currently bound index buffer. It is not defined what would happen if this addition overflowed the 32-bit unsigned integer range, so you should avoid that.

A schematic illustrating the data flow is shown in Figure 8.1.

[image: Image]

Figure 8.1: Index Data Flow

Note that when the index type is VK_INDEX_TYPE_UINT32, the maximum range of index values may not be supported. To check this, look at the maxDrawIndexedIndexValue field of the device’s VkPhysicalDeviceLimits structure, which you can retrieve by calling vkGetPhysicalDeviceProperties(). This value will always be at least 224-1 and may be as high as 232-1.

To demonstrate the effectiveness of the use of index data, Listing 8.2 shows the difference between the data required for drawing a simple cube using indexed and nonindexed data.

Listing 8.2: Indexed Cube Data

Click here to view code image

// Raw, non-indexed data

static const float vertex_positions[] =

{

 -0.25f, 0.25f, -0.25f,

 -0.25f, -0.25f, -0.25f,

 0.25f, -0.25f, -0.25f,

 0.25f, -0.25f, -0.25f,

 0.25f, 0.25f, -0.25f,

 -0.25f, 0.25f, -0.25f,

 0.25f, -0.25f, -0.25f,

 0.25f, -0.25f, 0.25f,

 0.25f, 0.25f, -0.25f,

 0.25f, -0.25f, 0.25f,

 0.25f, 0.25f, 0.25f,

 0.25f, 0.25f, -0.25f,

 0.25f, -0.25f, 0.25f,

 -0.25f, -0.25f, 0.25f,

 0.25f, 0.25f, 0.25f,

 -0.25f, -0.25f, 0.25f,

 -0.25f, 0.25f, 0.25f,

 0.25f, 0.25f, 0.25f,

 -0.25f, -0.25f, 0.25f,

 -0.25f, -0.25f, -0.25f,

 -0.25f, 0.25f, 0.25f,

 -0.25f, -0.25f, -0.25f,

 -0.25f, 0.25f, -0.25f,

 -0.25f, 0.25f, 0.25f,

 -0.25f, -0.25f, 0.25f,

 0.25f, -0.25f, 0.25f,

 0.25f, -0.25f, -0.25f,

 0.25f, -0.25f, -0.25f,

 -0.25f, -0.25f, -0.25f,

 -0.25f, -0.25f, 0.25f,

 -0.25f, 0.25f, -0.25f,

 0.25f, 0.25f, -0.25f,

 0.25f, 0.25f, 0.25f,

 0.25f, 0.25f, 0.25f,

 -0.25f, 0.25f, 0.25f,

 -0.25f, 0.25f, -0.25f

};

static const uint32_t vertex_count = sizeof(vertex_positions) /

 (3 * sizeof(float));

// Indexed vertex data

static const float indexed_vertex_positions[] =

{

 -0.25f, -0.25f, -0.25f,

 -0.25f, 0.25f, -0.25f,

 0.25f, -0.25f, -0.25f,

 0.25f, 0.25f, -0.25f,

 0.25f, -0.25f, 0.25f,

 0.25f, 0.25f, 0.25f,

 -0.25f, -0.25f, 0.25f,

 -0.25f, 0.25f, 0.25f,

};

// Index buffer

static const uint16_t vertex_indices[] =

{

 0, 1, 2,

 2, 1, 3,

 2, 3, 4,

 4, 3, 5,

 4, 5, 6,

 6, 5, 7,

 6, 7, 0,

 0, 7, 1,

 6, 0, 2,

 2, 4, 6,

 7, 5, 3,

 7, 3, 1

};

static const uint32_t index_count = vkcore::utils::arraysize(vertex_indices);

As you can see in Listing 8.2, the amount of data used to draw the cube is quite small. Only the vertex data for the 8 unique vertices is stored, along with 36 indices used to reference them. As geometry sizes go up with scene complexity, the savings can be quite large. In this simple example, the nonindexed vertex data is 36 vertices, each consisting of 3 elements of 4 bytes, which is a total of 432 bytes of data. Meanwhile, the indexed data is 12 vertices, again each of 3 elements of 4 bytes, plus 36 indices, each consuming 2 bytes of storage. This produces a total 168 bytes of data for the indexed cube.

In addition to the space savings provided by using indexed data, many Vulkan implementations include a vertex cache that can reuse the results of computations performed on vertex data. If the vertices are nonindexed, then the pipeline must assume that they are all unique. However, when the vertices are indexed, two vertices with the same index are the same. In any closed mesh, the same vertex will appear more than once, as it is shared among multiple primitives. This reuse can save quite a bit of work.

Index-Only Rendering

The raw index of the current vertex is available to your vertex shaders. This index appears in the variable decorated with VertexIndex in a SPIR-V shader, which is generated using the gl_VertexIndex built-in variable in GLSL. This contains the content of the index buffer (or the automatically generated vertex index) plus the value of vertexOffset passed to vkCmdDrawIndexed().

You can use this index to fetch data from a buffer, for example. This allows you to pump geometry into the pipeline without worrying about vertex attributes. However, in some scenarios, a single 32-bit value might be all you need. In these cases, you can use the vertex index directly as data. Vulkan doesn’t actually care what the values in the index buffer are so long as you don’t use them to address into vertex buffers.

The object local vertex position for many pieces of geometry can be represented by 16-, 10-, or even 8-bit data with sufficient precision. Three 10-bit values can be packed inside a single 32-bit word. In fact, this is exactly what the VK_FORMAT_A2R10G10B10_SNORM_PACK32 format (and its unsigned counterpart) represent. Although the vertex data is not usable directly as an index buffer, it’s possible to manually unpack the vertex data in the shader as though it had that format. As such, by simply unpacking the index in our shader, we can draw simple geometry without anything more than an index buffer.

Listing 8.3 shows the GLSL shader you use to do this unpacking operation.

Listing 8.3: Using the Vertex Index in a Shader

Click here to view code image

#version 450 core

vec3 unpackA2R10G10B10_snorm(uint value)

{

 int val_signed = int(value);

 vec3 result;

 const float scale = (1.0f / 512.0f);

 result.x = float(bitfieldExtract(val_signed, 20, 10));

 result.y = float(bitfieldExtract(val_signed, 10, 10));

 result.z = float(bitfieldExtract(val_signed, 0, 10));

 return result * scale;

}

void main(void)

{

 gl_Position = vec4(unpackA2R10G10B10_snorm(gl_VertexIndex), 1.0f);

}

The vertex shader shown in Listing 8.3 simply unpacks the incoming vertex index by using the unpackA2R10G10B10_snorm function. The resulting value is written to gl_Position. The 10 bits of precision in each of the x, y, and z coordinates effectively snap our vertices to a 1,024 × 1,024 × 1,024 grid of positions. This is sufficient in many cases. If an additional scale is applied, this can be passed to the shader via a push constant, and if the vertex is to undergo other transforms via matrix multiplications, for example, those transforms still proceed at full precision.

Reset Indices

Another subfeature of indexed draws allows you to use the primitive restart index. This special index value can be stored in the index buffer that can be used to signal the start of a new primitive. It is most useful when the primitive topology is one of the long, continuous primitives, including VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN, and VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, along with the adjacency versions of those topologies, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, and VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY.

The primitive restart feature is enabled using the VkPipelineInputAssemblyStateCreateInfo structure passed through the pInputAssemblyState member of the VkGraphicsPipelineCreateInfo structure used to create a graphics pipeline. Again, the definition of this structure is

Click here to view code image

typedef struct VkPipelineInputAssemblyStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineInputAssemblyStateCreateFlags flags;

 VkPrimitiveTopology topology;

 VkBool32 primitiveRestartEnable;

} VkPipelineInputAssemblyStateCreateInfo;

The topology field has to be set to one of the primitive topologies that supports primitive restarts (the list and fan topologies mentioned earlier), and the primitiveRestartEnable field is set to VK_TRUE. When primitive restart is enabled, the special value of the maximum possible value for the index type (0xFFFF for VK_INDEX_TYPE_UINT16 and 0xFFFFFFFF for VK_INDEX_TYPE_UINT32) is used as the special restart marker.

If primitive restart is not enabled, the special reset marker is treated as a normal vertex index. While using 32-bit indices, it’s unlikely that you’ll ever need to use this value, because that would mean you had more than 4 billion vertices. However, the index value can still be passed to the vertex shader. It’s not valid to enable the reset for primitive topologies other than the strip and fan topologies mentioned earlier.

When Vulkan encounters the reset value in the index buffer, it ends the current strip or fan and starts a new one beginning with the vertex addressed by the next index in the index buffer. If the reset value appears multiple times in a row, Vulkan simply skips them, looking for the next nonreset index value. If there aren’t enough vertices to form a complete primitive (for example, if the reset index appears before three nonreset vertices are seen when the primitive topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP or VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN), then Vulkan will throw out all the vertices used so far and start a new primitive.

Figure 8.2 shows how reset indices affect the VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP topology. In the top strip, contiguous indices between 0 and 12 are used to create a single long strip. When you enable primitive resets and replace index 6 with reset index value 0xFFFFFFFF, the strip stops after the first four triangles and restarts with a triangle between vertices 7, 8, and 9.

[image: Image]

Figure 8.2: The Effect of Primitive Restart on Triangle Strips

The reset index is useful for cutting a very large draw using strips or fans into many smaller pieces. There comes a cut-off point in usefulness when the number of subdraws (individual strips or fans) decreases and their size increases, at which point it’s probably best to simply produce two separate draws. This is especially true if it means switching pipelines between one with primitive restart enabled and one with it disabled.

If your model consists of hundreds or thousands of short strips, it might be a good idea to use primitive restart. If your model consists of a handful of very long strips, just make multiple drawing commands. Also, in some architectures, using the reset index can affect performance, and it may be better to simply use list topologies and unroll the index buffer rather than try to use strips.

Instancing

There are two parameters to vkCmdDraw() and vkCmdDrawIndexed() that we have thus far glossed over. These are the firstInstance and instanceCount parameters, and they are used to control instancing. This is a technique whereby many copies of the same geometry can be sent into the graphics pipeline. Each copy is known as an instance. At first, this seems like it wouldn’t be much use, but there are two ways that your application can apply variation to each of the instances of the geometry:

• Use the InstanceIndex built-in decoration on a vertex shader input to receive the index of the current instance as an input to the shader. This input variable can then be used to fetch parameters from a uniform buffer or programmatically compute per-instance variation, for example.

• Use instanced vertex attributes to have Vulkan feed your vertex shader with unique data for each instance.

Listing 8.4 shows an example of using the instance index through the gl_InstanceIndex built-in variable in GLSL. The example draws many different cubes using instancing where each instance of the cube has a different color and transformation applied. The transformation matrix and color of each cube are placed in arrays that are stored in a pair of uniform buffers. The shader then indexes into these arrays with the gl_InstanceIndex built-in variable. The result of rendering with this shader is shown in Figure 8.3.

Listing 8.4: Using the Instance Index in a Shader

Click here to view code image

#version 450 core

layout (set = 0, binding = 0) uniform matrix_uniforms_b

{

 mat4 mvp_matrix[1024];

};

layout (set = 0, binding = 1) uniform color_uniforms_b

{

 vec4 cube_colors[1024];

};

layout (location = 0) in vec3 i_position;

out vs_fs

{

 flat vec4 color;

};

void main(void)

{

 float f = float(gl_VertexIndex / 6) / 6.0f;

 vec4 color1 = cube_colors[gl_InstanceIndex];

 vec4 color2 = cube_colors[gl_InstanceIndex & 512];

 color = mix(color1, color2, f);

 gl_Position = mvp_matrix[gl_InstanceIndex] * vec4(i_position, 1.0f);

}

[image: Image]

Figure 8.3: Many Instanced Cubes

Indirect Draws

In the vkCmdDraw() and vkCmdDrawIndexed() commands, the parameters to the command (vertexCount, vertexOffset, and so on) are passed as immediate parameters directly to the commands themselves. This means that you need to know the exact parameters of each draw call at the time that your application builds its command buffers. In most cases, having access to the parameters of drawing commands is a natural part of the application. However, in some situations, you don’t know the exact parameters for each and every draw. Examples include the following:

• The overall structure of the geometry is known, but the exact number of vertices and locations of data in the vertex buffers is not known, such as when an object is always rendered the same way but its level of detail may change over time.

• The drawing commands are to be generated by the device, rather than the host. In this situation, the total number and layout of vertex data may never be known to the host.

In these cases, you can use an indirect draw, which is a drawing command that sources its parameters from device-accessible memory rather than embedding them in the command buffer along with the command. The first indirect draw command is vkCmdDrawIndirect(), which performs a nonindexed draw using parameters contained in a buffer. Its prototype is

Click here to view code image

void vkCmdDrawIndirect (

 VkCommandBuffer commandBuffer,

 VkBuffer buffer,

 VkDeviceSize offset,

 uint32_t drawCount,

 uint32_t stride);

The command itself is still placed into the command buffer, just as with vkCmdDraw(). commandBuffer is the command buffer into which the command is placed. However, the parameters of the command are sourced from the buffer specified in buffer at the offset specified in offset, which is measured in bytes. At this offset in the buffer, an instance of the VkDrawIndirectCommand structure should appear, containing the actual parameters of the command. Its definition is

Click here to view code image

typedef struct VkDrawIndirectCommand {

 uint32_t vertexCount;

 uint32_t instanceCount;

 uint32_t firstVertex;

 uint32_t firstInstance;

} VkDrawIndirectCommand;

The members of VkDrawIndirectCommand have the same meanings as the similarly named parameters of vkCmdDraw(). vertexCount and instanceCount are the numbers of vertices and indices to invoke, respectively, and firstVertex and firstInstance are the starting values for the vertex and instance indices, respectively.

vkCmdDrawIndirect() performs a nonindexed, indirect draw using parameters from a buffer object. It’s also possible to perform an indexed indirect draw using vkCmdDrawIndexedIndirect(). The prototype of this function is

Click here to view code image

void vkCmdDrawIndexedIndirect (

 VkCommandBuffer commandBuffer,

 VkBuffer buffer,

 VkDeviceSize offset,

 uint32_t drawCount,

 uint32_t stride);

The parameters of vkCmdDrawIndexedIndirect() are identical to those of vkCmdDrawIndirect(). commandBuffer is the command buffer into which the command is written, buffer is the buffer containing the parameters; and offset is the offset, in bytes, at which the parameters are located in that buffer. However, the data structure containing the parameters of vkCmdDrawIndexedIndirect() is different. It is an instance of the VkDrawIndexedIndirectCommand structure, the definition of which is

Click here to view code image

typedef struct VkDrawIndexedIndirectCommand {

 uint32_t indexCount;

 uint32_t instanceCount;

 uint32_t firstIndex;

 int32_t vertexOffset;

 uint32_t firstInstance;

} VkDrawIndexedIndirectCommand;

Again, the members of VkDrawIndexedIndirectCommand have the same meanings as the similarly named parameters of vkCmdDrawIndexed(). indexCount and instanceCount are the numbers of vertex indices and instances to push into the pipeline; the firstIndex member specifies where to start fetching indices from the index buffer; vertexOffset specifies the offset value to be added to the index data; and firstInstance specifies the value from which the instance counter should start counting.

What is important to remember about indirect drawing commands is that while the buffer object and the offset into it are baked into the command buffer, the parameters for the draw don’t need to be in the sourced buffer object until the command buffer is executed by the device. As the device executes the command buffer, when it reaches the command, it will read whatever parameters are in the buffer and execute the drawing command as though those parameters had been specified directly to a regular drawing command. As far as the rest of the pipeline is concerned, there is no difference between a direct and an indirect draw.

This means several things:

• You can build command buffers with indirect draws long before they’re needed, filling in the final parameters for the draw (in the buffer object rather than the command buffer) before the command buffer is submitted for execution.

• You can create a command buffer containing an indirect draw, submit it, overwrite the parameters in the buffer object, and submit the same command buffer again. This effectively patches new parameters into what could be a long, complex command buffer.

• You can write parameters into a buffer object by using stores from a shader object, or by using a command such as vkCmdFillBuffer() or vkCmdCopyBuffer() to generate drawing parameters on the device itself—either in the same command buffer or in another submitted just before the one containing the draw commands.

You may have noticed that both vkCmdDrawIndirect() and vkCmdDrawIndexedIndirect() take a drawCount and a stride parameter. These parameters allow you to pass arrays of drawing commands to Vulkan. A single call to vkCmdDrawIndirect() or vkCmdDrawIndexedIndirect() will kick off drawCount separate draws, each sourcing its parameters from a VkDrawIndirectCommand or VkDrawIndexedIndirectCommand structure, respectively.

The array of structures still begins at offset bytes into the buffer object, and each of these structures is separated from the previous by stride bytes. If stride is zero, then the same parameter structure will be used for every draw.1

1. Note that this behavior differs from OpenGL, in which a stride of zero causes the device to assume a tightly packed array, and it is impossible to source the same parameters over and over.

The number of draws is still baked into the command buffer, but draws whose indexCount or instanceCount parameters are zero will be skipped by the device. While this doesn’t mean that you can truly produce a fully dynamic draw count, by using a fixed upper limit on the number of draws and ensuring that all unused entries in the array of parameters have at least one of vertexCoount, indexCount, or instanceCount, set to zero, you can generate a variable number of draws by using a single command.

Note that support for counts other than one (and zero) is optional. To check whether the device supports a count greater than one, check the multiDrawIndirect field of the device’s VkPhysicalDeviceFeatures structure as returned from a call to vkGetPhysicalDeviceFeatures(), and remember to enable the feature in the set of enabled features passed to vkCreateDevice() when creating the logical device.

When indirect counts are supported, the maximum number of draws that can be passed to a single call to vkCmdDrawIndirect() or vkCmdDrawIndexedIndirect() may still be limited. To check the supported count, inspect the maxDrawIndirectCount field of the device’s VkPhysicalDeviceLimits structure. When multiDrawIndirect is not supported, this field will be 1. If it is supported, then it is guaranteed to be at least 65,535. If the number of draws you’re pushing through each of these commands is less than this amount, then there’s no need to directly check the limit.

Drawing many pieces of geometry back to back with the same pipeline and graphics state can sometimes be limiting. However, in many cases, all that is different between draws is parameters passed to shaders. This is especially true when applications use über shaders or physically based rendering techniques. There is no direct way to pass parameters to the individual draws that make up a single call to vkCmdDrawIndirect() or vkCmdDrawIndexedIndirect() with a drawCount greater than one. However, what is available in the shader is the SPIR-V decoration DrawIndex decoration on an input to the vertex shader. This is produced by using the gl_DrawIDARB input in GLSL.

When decorated with DrawIndex, the shader input will contain the index of the draw, starting from zero and counting upward as the draws are generated by the device. This can then be used to index into arrays of data stored in uniform or shader storage blocks. Listing 8.5 shows a GLSL shader that uses gl_DrawIDARB to retrieve per-draw parameters from a shader storage block.

Listing 8.5: Draw Index Used in a Shader

Click here to view code image

#version 450 core

// Enable the GL_ARB_shader_draw_parameters extensions.

#extension GL_ARB_shader_draw_parameters : require

layout (location = 0) in vec3 position_3;

layout (set = 0, binding = 0) uniform FRAME_DATA

{

 mat4 view_matrix;

 mat4 proj_matrix;

 mat4 viewproj_matrix;

};

layout (set = 0, binding = 1) readonly buffer OBJECT_TRANSFORMS

{

 mat4 model_matrix[];

};

void main(void)

{

 // Extend input position to vec4.

 vec4 position = vec4(position_3, 1.0);

 // Compute per-object model-view matrix.

 mat4 mv_matrix = view_matrix * model_matrix[gl_DrawIDARB];

 // Output position using global projection matrix.

 gl_Position = proj_matrix * P;

}

The shader in Listing 8.5 uses a single uniform block to store per-frame constants and a single shader storage block to store a large array of per-object transformation matrices.2 The gl_DrawIDARB built-in variable is used to index into the model_matrix array stored in the shader storage block. The result is that each subdraw in the single vkCmdDrawIndirect() call uses its own model transformation matrix.

2. At the time of writing, the reference GLSL compiler does not contain support for the GL_ARB_draw_parameters extension that exposes gl_DrawID. This shader was developed in an OpenGL test environment and then edited to suit Vulkan. It is expected to work once support for GL_ARB_draw_parameters lands in the reference compiler.

Summary

This chapter covered the various drawing commands supported by Vulkan. You were reintroduced to vkCmdDraw(), which was first mentioned in Chapter 7, “Graphics Pipelines,” and which produces nonindexed draws. Indexed draws were covered, and then we explored instancing, which is a technique for drawing many copies of the same geometry with varying parameters driven by the instance index. Finally, we looked at indirect draws, which allow the parameters for drawing commands to be sourced from device memory rather than specified at command-buffer construction time. Together, instancing and indirect draws are powerful tools that allow complex scenes to be built up with very few drawing commands.

Chapter 9. Geometry Processing

What You’ll Learn in This Chapter

• Using tessellation to increase the geometric detail of your scene

• Using geometry shaders to process whole primitives

• Clipping geometry against user-specified planes

While many Vulkan programs will stick to vertex and fragment shaders, two optional pieces of functionality can be used to increase the geometric detail of the rendered images. These functions are tessellation and geometry shading. Although these concepts were briefly introduced earlier, this chapter digs deeper into the details of both tessellation and geometry shader functionality and discusses how to make effective use of these powerful sections of the geometry processing pipeline.

Tessellation

Tessellation is controlled by a collection of stages that appear near the front of the graphics pipeline, immediately after vertex shading. We briefly introduced tessellation in Chapter 7, “Graphics Pipelines.” However, because tessellation is an optional stage in the pipeline, we mostly glossed over it in order to cover the remaining stages. This section covers it in more detail.

Tessellation takes as input patches, which are really just collections of control points represented as vertices, and breaks them down into many smaller, simpler primitives—such as points, lines, or triangles—that can be rendered by the rest of the pipeline in the normal manner. Tessellation is an optional feature in Vulkan. Presence of support can be determined by checking the tessellationShader member of the device’s VkPhysicalDeviceFeatures structure. If this is VK_FALSE, then pipelines containing tessellation shaders cannot be created or used in your application.

Tessellation Configuration

From the application’s perspective, the tessellation engine is a fixed-function, though highly configurable, block of functionality surrounded by two shader stages. The first stage, the tessellation control shader, is responsible for processing the control points of a patch, setting up some per-patch parameters, and handing control to the fixed-function tessellation block. This block takes the patch and breaks it up into the fundamental point, line, or triangle primitives, finally passing the resulting generated vertex data to a second shading stage: the tessellation evaluation shader. This shader appears much like a vertex shader except that it runs for each generated vertex.

Tessellation is controlled and configured through a combination of two sources of information. The first source is the VkPipelineTessellationStateCreateInfo structure passed through the VkGraphicsPipelineCreateInfo structure used to create the graphics pipeline. Introduced in Chapter 7, “Graphics Pipelines,” VkPipelineTessellationStateCreateInfo is defined as

Click here to view code image

typedef struct VkPipelineTessellationStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineTessellationStateCreateFlags flags;

 uint32_t patchControlPoints;

} VkPipelineTessellationStateCreateInfo;

The only member that affects tessellation state in this structure is patchControlPoints, which sets the number of control points that make up a patch. The remaining state of the tessellation system is set by using the two shaders.

The maximum number of control points that can be used to construct a patch is implementation-dependent but is guaranteed to be at least 32. If tessellation is supported, then the Vulkan implementation will support at least 32 control points per patch, so if you never use patches larger than this, there is no reason to query the upper limit. If you need to use patches larger than 32 control points, you can determine the supported maximum by inspecting the maxTessellationPatchSize member of the device’s VkPhysicalDeviceLimits structure as returned from a call to vkGetPhysicalDeviceProperties().

Tessellation Modes

The fundamental operation of the tessellation engine is to take the patch and, given a set of tessellation levels, subdivide each edge according to its level. The distance of each subdivided point along each edge is assigned a value between 0.0 and 1.0. The two main modes of tessellation treat the patch as either a rectangle or a triangle. When the patch is tessellated as a rectangle, the subdivided coordinates form a 2D barycentric coordinate, and when the patch is tessellated as a triangle, the generated vertices have 3D barycentric coordinates.

Each patch has a set both of inner and of outer tessellation levels. The outer tessellation levels control the level of tessellation along the outer edge of the patch. If you set this level the same as that calculated for adjacent patches in a larger geometry, you can form seamless joins. The inner tessellation modes control the level of tessellation in the center of the patch. Figure 9.1 shows how the inner and outer levels are assigned to edges within quad patches and how barycentric coordinates are assigned to points within each patch.

[image: Image]

Figure 9.1: Quad Tessellation

As you can see from the figure, the four outer tessellation factors control the level of tessellation along each of the four outer edges of the quad. The u and v directions in barycentric coordinate space are marked in the figure. For triangle tessellation, the principle is similar, but the assignment of the 3D barycentric coordinate within the triangle is a little different. Figure 9.2 demonstrates.

[image: Image]

Figure 9.2: Triangle Tessellation.

As you can see in Figure 9.2, for triangle tessellation modes, the three outer tessellation factors control the level of tessellation along the outer edge of the triangular patch. Unlike with quad tessellation, triangle tessellation mode uses just a single tessellation factor, which is applied to the entire patch besides the outermost ring of triangles around its edge.

In addition to the quad and triangle tessellation modes, a special mode known as isoline mode allows a patch to be broken down into a series of straight lines. This can be considered to be a special case of quad tessellation mode. In isoline mode, the barycentric coordinates of generated points within the patch are still 2D, but there is no inner tessellation level, and there are only two outer tessellation levels. Figure 9.3 shows how this mode works.

[image: Image]

Figure 9.3: Isoline Tessellation

When you set the tessellation mode, one (or both) of the tessellation control or evaluation shaders must include the OpExecutionMode instruction with the Triangles, Quads, or IsoLines argument. To generate such a shader from GLSL, use an input layout qualifier in the tessellation evaluation shader, as shown in Table 9.1.

In the table, %n represents the index given to the main entry point. As SPIR-V modules can have multiple entry points, it’s possible to create a tessellation evaluation shader with an entry point for each mode. Note, however, that the tessellation mode affects the definition of the barycentric coordinate, so care must be taken to interpret it correctly.

In SPIR-V, the tessellation mode instruction can appear in the tessellation control shader, the tessellation evaluation shader, or both, so long as both shaders agree.

In addition to the Quads and Triangles tessellation modes, which produce triangles, and the IsoLines tessellation mode, which produces lines, a special fourth mode, PointMode, is supported. As its name suggests, this mode allows the tessellation engine to produce points. To enable this mode, use the OpExecutionMode instruction with the PointMode argument. Again, this mode can appear in the tessellation evaluation shader, the tessellation control shader, or both, so long as they agree. In GLSL, this mode appears in the tessellation evaluation shader as an input layout qualifier, so that

layout (point_mode) in;

becomes

OpExecutionMode %n PointMode

PointMode applies on top of other tessellation modes such as Quads or Triangles. In this mode, the patch is tessellated as normal, but rather than being joined, the resulting vertices are sent into the remainder of the pipeline as though they were points. Note that this is subtly different from simply setting the polygonMode field of the VkPipelineRasterizationStateCreateInfo structure to VK_POLYGON_MODE_POINT. In particular, points produced by the tessellator in this mode appear to the geometry shader (if enabled) to be points and are rasterized exactly once, rather than once for each generated primitive in which they appear, as they would be otherwise.

[image: Image]

Table 9.1: GLSL and SPIR-V Tessellation Modes

Controlling Subdivision

When subdividing the edges of the patches, the tessellator can use one of three strategies to place the split points, which eventually become vertices in the resulting tessellated mesh. This feature allows you to control the appearance of the tessellated patch and particularly to control how the edges of adjacent patches line up. The available modes are

• SpacingEqual: The tessellation level assigned to each edge is clamped to the range [1, maxLevel] and then rounded to the next higher integer n. The edge is then divided into n segments of equal length in barycentric space.

• SpacingFractionalEven: The tessellation level assigned to each edge is clamped to the range [2, maxLevel] and then rounded to the nearest even integer n. The edge is then subdivided into n − 2 segements of equal length, with two additional, shorter segments filling the center region of the edge.

• SpacingFractionalOdd: The tessellation level assigned to each edge is clamped to the range [1, maxLevel − 1] and then rounded to the nearest odd integer n. The edge is then subdivided into n − 2 segements of equal length, with two additional, shorter segments filling the center region of the edge.

For both SpacingFractionalEven and SpacingFractionalOdd, the edge is not tessellated at all if the clamped tessellation level is equal to 1. At levels over 1, the modes produce different visual effects. These effects are shown in Figure 9.4.

[image: Image]

Figure 9.4: Tessellation Spacing Modes

In the top-left image of Figure 9.4, the tessellation mode is set to SpacingEqual. As you can see, each outer edge of the tessellated triangle is divided into a number of equal-length segments. The tessellation level in all three images is set to 7.3. This level has been rounded up to 8, and the edge has been divided into that number of segments.

In the top-right image of Figure 9.4, the tessellation mode is SpacingFractionalEven. The tessellation level (7.3) has been rounded down to the next-lower even integer (6), and the outer edges of the triangle have been divided into this many equal-length segments. The remaining section of the edge is then divided into two equal-size pieces, producing two shorter segments in the center of the edge. This is most easily seen on the long diagonal edge of the triangle.

Finally, in the bottom image of Figure 9.4, the tessellation mode is set to SpacingFractionalOdd. Here, the tessellation level has been rounded down to the next-lower odd number (7). The outer edges of the tessellated triangle are then divided into this many equal-length segments, with the remaining space made up from two smaller segments inserted on either side of the central large segment. Again, this is easiest to see on the long, diagonal edge of the triangle. However, here we see the effect of the two small segments as they produce lines of higher tessellation leading into the center of the tessellated region.

[image: Image]

Table 9.2: GLSL and SPIR-V Tessellation Winding Order

Again, the tessellation spacing mode is set using the OpExecutionMode instruction in SPIR-V in the tessellation control shader, the evalaution shader, or both, so long as they agree. In GLSL, this instruction is also generated by using an input layout qualifier.

When the tessellation mode is either Triangles or Quads, the tessellation engine will produce triangles as outputs. The order in which the resulting vertices are processed by the remainder of the pipeline determines which way the triangles face relative to the original patch. The vertices of a triangle are said to appear either in clockwise or counterclockwise order, which is the order in which you would encounter them when traversing the triangle edges in the specified direction while viewing the triangle from the front.

Again, the tessellation winding order is set by using the OpExecutionMode instruction in the tessellation control shader, the evaluation shaders, or both, and the equivalent GLSL declaration is an input layout qualifier specified in the tessellation evaluation shader. The GLSL layout qualifier declarations and resulting SPIR-V OpExecutionMode instructions are shown in Table 9.2. Once again, in the table, the SPIR-V notation of %n indicates the index of the entry point to which the OpExecutionMode instruction applies.

Tessellation Variables

Each patch processed by the tessellation control shader has a fixed number of control points. This number is set by using the patchControlPoints member of the VkPipelineTessellationStateCreateInfo structure used to create the pipeline, as discussed earlier. Each control point is represented as a vertex passed into the pipeline by one of the drawing commands. The vertex shader processes the vertices one at a time before they are passed in groups to the tessellation control shader, which has access to all of the vertices making up a patch.

The tessellation evaluation shader also has access to all of the control points making up a patch, but the number of control points in the patch can be changed between the tessellation control shader and the tessellation evaluation shader. The number of control points that are passed from the tessellation control shader to the tessellation evaluation shader is set by using a SPIR-V OutputVertices argument to the OpExecutionMode instruction applied to the entry point. Again, this can appear in the tessellation control shader, the tessellation evaluation shader, or both, so long as they agree. This operation takes an integer constant (or specialization constant).

In GLSL, the number of control points passed from the tessellation control shader to the tessellation evaluation shader is specified by using an output layout qualifier in the tessellation control shader. For example, the GLSL declaration

layout (vertices = 9) out;

becomes

Click here to view code image

OpExecutionMode %n OutputVertices 9}

The inner and outer tessellation levels are set by using the tessellation control shader. This is accomplished in SPIR-V by decorating variables in the tessellation control shader with the TessLevelInner and TessLevelOuter decorations, respectively.

The variable representing the outer tessellation levels is an array of four floating-point values, all of which are used for Quads tessellation mode, the first three of which are used in Triangles tessellation mode, and only the first two of which are significant in IsoLines tessellation mode.

The variable representing the inner tessellation levels is an array of two floating-point values. In Quads tessellation mode, the two values control the inner tessellation level in the u and v domains. In Triangles tessellation mode, the first element of the array sets the tessellation mode for the center patch, and the second is ignored. In IsoLines mode, there is no inner tessellation level.

The inner and outer tessellation levels appear in GLSL as the gl_TessLevelInner and gl_TessLevelOuter built-in variables, respectively. When you are using these variables in a GLSL tessellation control shader, the compiler will generate the appropriate SPIR-V variable declaration and decorate it accordingly.

The maximum tessellation level that can be used in a Vulkan pipeline is device-dependent. You can determine the maximum tessellation level that the device supports by checking the maxTessellationGenerationLevel field of the device’s VkPhysicalDeviceLimits structure, which can be retrieved by calling vkGetPhysicalDeviceProperties(). The minimum guaranteed limit for maxTessellationGenerationLevel is 64, but some devices may support higher levels. However, most applications will not need higher levels of tessellation than this, and in this case, there is no reason to query the limit.

Consider the GLSL tessellation control shader shown in Listing 9.1, which simply sets the inner and outer tessellation levels of a patch to some hard-coded constants. This is not a complete tessellation control shader, but it is sufficient to demonstrate how tessellation assignments are translated from GLSL to SPIR-V.

Listing 9.1: Trivial Tessellation Control Shader (GLSL)

Click here to view code image

#version 450 core

layout (vertices = 1) out;

void main(void)

{

 gl_TessLevelInner[0] = 7.0f;

 gl_TessLevelInner[1] = 8.0f;

 gl_TessLevelOuter[0] = 3.0f;

 gl_TessLevelOuter[1] = 4.0f;

 gl_TessLevelOuter[2] = 5.0f;

 gl_TessLevelOuter[3] = 6.0f;

}

After compilation into SPIR-V, the shader shown in Listing 9.1 becomes the (substantially longer) SPIR-V shader shown in Listing 9.2. This listing is the raw output of the SPIR-V disassembler with comments added by hand.

Listing 9.2: Trivial Tessellation Control Shader (SPIR-V)

Click here to view code image

;; Require tessellation capability; import GLSL450 constructs.

 OpCapability Tessellation

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

;; Define "main" as the entry point for a tessellation control shader.

 OpEntryPoint TessellationControl %5663 "main" %3290 %5448

;; Number of patch output vertices = 1

 OpExecutionMode %5663 OutputVertices 1

;; Decorate the tessellation level variables appropriately.

 OpDecorate %3290 Patch

 OpDecorate %3290 BuiltIn TessLevelInner

 OpDecorate %5448 Patch

 OpDecorate %5448 BuiltIn TessLevelOuter

;; Declare types used in this shader.

 %8 = OpTypeVoid

 %1282 = OpTypeFunction %8

 %13 = OpTypeFloat 32

 %11 = OpTypeInt 32 0

;; This is the declaration of the gl_TessLevelInner[2] variable.

 %2576 = OpConstant %11 2

 %549 = OpTypeArray %13 %2576

 %1186 = OpTypePointer Output %549

 %3290 = OpVariable %1186 Output

 %12 = OpTypeInt 32 1

 %2571 = OpConstant %12 0

 %1330 = OpConstant %13 7

 %650 = OpTypePointer Output %13

 %2574 = OpConstant %12 1

 %2807 = OpConstant %13 8

;; Declare the gl_TessLevelOuter[4] variable.

 %2582 = OpConstant %11 4

 %609 = OpTypeArray %13 %2582

 %1246 = OpTypePointer Output %609

 %5448 = OpVariable %1246 Output

;; Declare constants used for indexing into our output arrays and the

;; values written into those arrays.

 %2978 = OpConstant %13 3

 %2921 = OpConstant %13 4

 %2577 = OpConstant %12 2

 %1387 = OpConstant %13 5

 %2580 = OpConstant %12 3

 %2864 = OpConstant %13 6

;; Start of the main function

 %5663 = OpFunction %8 None %1282

 %23934 = OpLabel

;; Declare references to elements of the output arrays and write constants

;; into them.

 %6956 = OpAccessChain %650 %3290 %2571

 OpStore %6956 %1330

 %19732 = OpAccessChain %650 %3290 %2574

 OpStore %19732 %2807

 %19733 = OpAccessChain %650 %5448 %2571

 OpStore %19733 %2978

 %19734 = OpAccessChain %650 %5448 %2574

 OpStore %19734 %2921

 %19735 = OpAccessChain %650 %5448 %2577

 OpStore %19735 %1387

 %23304 = OpAccessChain %650 %5448 %2580

 OpStore %23304 %2864

;; End of main

 OpReturn

 OpFunctionEnd

Tessellation control shaders execute a single invocation for each output control point defined in the patch. All of those invocations have access to all of the data associated with the input control points for the patch. As a result, the input variables to the tessellation control shader are defined as arrays. As discussed, the number of input and output control points in a patch do not have to be equal. In addition to the tessellation level outputs, the tessellation shader can define more outputs to be used for per-control point and per-patch data.

The per-control-point output from the tessellation control shader is declared as arrays whose sizes match the number of output control points in the patch. There is one tessellation control shader invocation per output control point, so there is one entry in each of the output arrays that corresponds to each of those invocations. The per-control-point outputs can only be written by the corresponding invocation. The index of the shader invocation within the patch is available as a built-in variable, which can be accessed by declaring an integer variable decorated by the SPIR-V InvocationId built-in. In GLSL, this variable is declared as the gl_InvocationID built-in variable. This variable must be used to index into the output arrays.

Listing 9.3 shows how to declare output variables in a GLSL tessellation control shader, and Listing 9.4 shows how that shader is translated into SPIR-V. Again, Listing 9.3 is not a complete tessellation control shader and, while legal, will not produce any useful output. Also, the SPIR-V shader shown in Listing 9.4 has been commented by hand.

Listing 9.3: Declaring Outputs in Tessellation Control Shaders (GLSL)

Click here to view code image

#version 450 core

layout (vertices = 4) out;

out float o_outputData[4];

void main(void)

{

 o_outputData[gl_InvocationId] = 19.0f;

}

Listing 9.4: Declaring Outputs in Tessellation Control Shaders (SPIR-V)

Click here to view code image

;; Declare a tessellation control shader.

 OpCapability Tessellation

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint TessellationControl %5663 "main" %3227 %4585

;; 4 output vertices per patch, declare InvocationId built-in

 OpExecutionMode %5663 OutputVertices 4

 OpDecorate %4585 BuiltIn InvocationId

 %8 = OpTypeVoid

 %1282 = OpTypeFunction %8

 %13 = OpTypeFloat 32

 %11 = OpTypeInt 32 0

 %2582 = OpConstant %11 4

 %549 = OpTypeArray %13 %2582

 %1186 = OpTypePointer Output %549

 %3227 = OpVariable %1186 Output

 %12 = OpTypeInt 32 1

;; This declares the InvocationId input.

 %649 = OpTypePointer Input %12

 %4585 = OpVariable %649 Input

 %37 = OpConstant %13 19

 %650 = OpTypePointer Output %13

;; Beginning of main

 %5663 = OpFunction %8 None %1282

 %24683 = OpLabel

;; Load the invocation ID.

 %20081 = OpLoad %12 %4585

;; Define a reference to output variable.

 %13546 = OpAccessChain %650 %3227 %20081

;; Store into it at invocation ID.

 OpStore %13546 %37

;; End of main

 OpReturn

 OpFunctionEnd

The output variables declared in the tessellation control shader are made available in the tessellation evaluation shader as inputs. The total number of components that can be produced per output vertex by a tessellation control shader is device-dependent and is determined by inspecting the maxTessellationControlTotalOutputComponents member of the device’s VkPhysicalDeviceLimits structure, which you can obtain by calling vkGetPhysicalDeviceProperties(). This is guaranteed to be at least 2,048 components. Some of these components may be used per vertex, and some may be applied to the patch, as discussed in the next section.

Of course, the per-vertex limit is the limit that applies to variables passed for each vertex from tessellation control to tessellation evaluation shader. The total number of components that a tessellation evaluation shader can receive as input from the tessellation control shader is contained in the maxTessellationEvaluationInputComponents field of the VkPhysicalDeviceLimits structure. This limit is at least 64 but could be higher, depending on the device.

Patch Variables

Although normal output variables in tessellation control shaders are instantiated as arrays corresponding to the output control points, sometimes specific pieces of data are needed that apply everywhere in the patch. These pieces of data can be declared as patch outputs. Patch outputs serve two purposes:

• They store per-patch data and pass it from tessellation control shader to tessellation evaluation shader.

• They allow data sharing between tessellation control shader invocations within a single patch.

Within the group of tessellation control shader invocations corresponding to a single patch, patch outputs are actually readable as well as writable. If other invocations in the same patch have written to a patch output, it is possible to read the data they have placed there.

To declare a patch output variable in GLSL, use the patch qualifier on the variable declaration. This declaration is translated into the Patch decoration on the variable subsequently declared in the SPIR-V shader. For example,

patch out myVariable;

becomes

OpName %n "myVariable"

OpDecorate %n Patch

where %n is the identifier assigned to the myVariable variable.

Because all of the tessellation control shader invocations corresponding to a single patch may be running in parallel, perhaps at different rates, simply writing to one patch variable and then reading from another patch variable won’t produce well-defined results. If some invocations get ahead of others while processing a patch, the invocations that are behind won’t “see” the results of writes performed by the other invocations that haven’t reached the write yet.

To synchronize the invocations within a patch and ensure that they all reach the same place at the same time, we can use the OpControlBarrier instruction, which can synchronize control flow of invocations within the tessellation control shader. Further, to ensure that the write to the patch variable is made visible to other invocations within the same patch, we also need to include either an OpMemoryBarrier instruction or further memory semantics in the OpControlBarrier instruction.

In GLSL, these instructions can be generated by calling the barrier() built-in function inside the tessellation control shader. When called, the GLSL compiler generates an OpMemoryBarrier instruction to force memory coherency across the set of tessellation control shader invocations, and then it generates an OpControlBarrier instruction to synchronize their control flow. After these instructions have executed, tessellation control shader invocations can read data written to patch variables by other invocations in the same patch.

If any one of the tessellation levels written by the tessellation control shader is 0.0 or a floating-point NaN, then the entire patch is discarded. This provides a mechanism for the tessellation control shader to programmatically throw out patches that it determines will not contribute to the output image. For example, if the maximum deviation from a plane for a displacement map is known, then the tessellation control shader can inspect a patch, determine whether all of the geomery that would result from tessellating that patch would face away from the viewer, and cull the patch. If such a patch were to be passed through by the tessellation control shader, then it would be tessellated, the tessellation evaluation shader would run, and all the resulting triangles would individually be culled by subsequent stages in the pipeline. This would be very inefficient.

Tessellation Evaluation Shaders

After the tessellation control shader runs and passes tessellation factors to the fixed-function tessellation unit, it generates new vertices inside the patch and assigns them barycentric coordinates in patch space. Each new vertex generates an invocation of the tessellation evaluation shader, to which the barycentric coordinate of the vertex is passed.

For IsoLines and Quads tessellation mode, these are 2D coordinates. For Triangles tessellation mode, these are 3D coordinates. Regardless of the mode, they are delivered to the tessellation evaluation shader via built-in variables.

In GLSL, this declaration corresponds to the gl_TessCoord built-in variable. When this variable is used, the GLSL compiler automatically generates the appropriate variable declarations and decorations in SPIR-V.

In SPIR-V, the result is the declaration of a three-element vector of floating-point values, decorated with the TessCoord decoration. Note that this is always a three-element array, even when the tessellation mode calls for a 2D barycentric coordinate (IsoLines or Quads). In those modes, the third component of the array is simply zero.

For example, the minimal tessellation evaluation shader in Listing 9.5 becomes the SPIR-V shader in Listing 9.6.

Listing 9.5: Accessing gl_TessCoord in Evaluation Shader (GLSL)

Click here to view code image

#version 450 core

layout (quads) in;

void main(void)

{

 gl_Position = vec4(gl_TessCoord, 1.0);

}

Listing 9.6: Accessing gl_TessCoord in Evaluation Shader (SPIR-V)

Click here to view code image

;; This is a GLSL 450 tessellation shader; enable capabilities.

 OpCapability Tessellation

 OpCapability TessellationPointSize

 OpCapability ClipDistance

 OpCapability CullDistance

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

;; Declare the entry point and decorate it appropriately.

 OpEntryPoint TessellationEvaluation %5663 "main" %4930 %3944

 OpExecutionMode %5663 Quads

 OpExecutionMode %5663 SpacingEqual

 OpExecutionMode %5663 VertexOrderCcw

;; Declare GLSL built-in outputs.

 OpMemberDecorate %2935 0 BuiltIn Position

 OpMemberDecorate %2935 1 BuiltIn PointSize

 OpMemberDecorate %2935 2 BuiltIn ClipDistance

 OpMemberDecorate %2935 3 BuiltIn CullDistance

 OpDecorate %2935 Block

;; This is the decoration of gl_TessCoord.

 OpDecorate %3944 BuiltIn TessCoord

 %8 = OpTypeVoid

 %1282 = OpTypeFunction %8

 %13 = OpTypeFloat 32

 %29 = OpTypeVector %13 4

 %11 = OpTypeInt 32 0

 %2573 = OpConstant %11 1

 %554 = OpTypeArray %13 %2573

 %2935 = OpTypeStruct %29 %13 %554 %554

 %561 = OpTypePointer Output %2935

 %4930 = OpVariable %561 Output

 %12 = OpTypeInt 32 1

 %2571 = OpConstant %12 0

;; Vector of 3 components, as input, decorated with BuiltIn TessCoord

 %24 = OpTypeVector %13 3

 %661 = OpTypePointer Input %24

 %3944 = OpVariable %661 Input

 %138 = OpConstant %13 1

 %666 = OpTypePointer Output %29

 %5663 = OpFunction %8 None %1282

 %24987 = OpLabel

;; Read from gl_TessCoord.

 %17674 = OpLoad %24 %3944

;; Extract the three elements.

 %22014 = OpCompositeExtract %13 %17674 0

 %23496 = OpCompositeExtract %13 %17674 1

 %7529 = OpCompositeExtract %13 %17674 2

;; Construct the new vec4.

 %18260 = OpCompositeConstruct %29 %22014 %23496 %7529 %138

;; Write to gl_Postion.

 %12055 = OpAccessChain %666 %4930 %2571

 OpStore %12055 %18260

;; End of main

 OpReturn

 OpFunctionEnd

The outputs declared in the tessellation evaluation shader are fed to the next stage of the pipeline. When a geometry shader is enabled, it receives its input from the tessellation evaluation shader; otherwise, the tessellation evaluation shader outputs are used to feed interpolation and are subsequently passed to the fragment shader. The total amount of data that a tessellation evaluation shader can produce is device-dependent and can be determined by checking the maxTessellationEvaluationOutputComponents field of the device’s VkPhysicalDeviceLimits structure.

Tessellation Example: Displacement Mapping

To tie all of this together, we’ll walk through a simple but complete example of using tessellation to implement displacement mapping. Displacement mapping is a common technique to add detail to a surface by offesetting along its normal by using a texture. To implement this, we’ll take a patch with four control points, each having a position and a normal. We will transform their positions and normals into world space in the vertex shader; then, in the tessellation control shader, we will compute their view space positions and set their tessellation levels. The tessellation control shader then passes the world-space positions to the tessellation evaluation shader.

In the tessellelation evaluation shader, we take the barycentric coordinates generated by the tessellator and use them to compute an interpolated normal and world space position, fetch from a texture, and then displace the computed vertex coordinate along the computed normal by a value derived from the texture. This final world-space coordinate is transformed into view space by using the world-to-view matrix, which is stored in the same buffer as our object-to-world matrix used in our vertex shader.

To set this up, we’ll use a texture to store our displacement map. In addition to our texture resources, we’ll use push constants to communicate with our shaders. For the purposes of this example, we’ll use a simple push constant to send a transformation matrix into the tessellation control shader.

The next two push constants are floating-point values. The first is used in the tessellation evaluation shader to scale the level of tessellation applied to the patch. The second is used in the tessellation evaluation shader to scale the amount of displacement applied to each vertex. The values read from the texture are normalized to the range [0.0, 1.0], so an external tessellation scale allows us to use this range optimally.

The description of the VkDescriptorSetLayoutCreateInfo used to create this descriptor set layout is shown in Listing 9.7.

Listing 9.7: Descriptor Setup for Displacement Mapping

Click here to view code image

struct PushConstantData

{

 vmath::mat4 mvp_matrix;

 float displacement_scale;

};

static const VkDescriptorSetLayoutBinding descriptorBindings[] =

{

 // Only binding is a sampled image with combined sampler.

 {

 0,

 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,

 1,

 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,

 nullptr

 }

};

static const VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo =

{

 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr,

 0,

 vkcore::utils::arraysize(descriptorBindings),

 descriptorBindings

};

vkCreateDescriptorSetLayout(getDevice(),

 &descriptorSetLayoutCreateInfo,

 nullptr,

 &m_descriptorSetLayout);

// Define a push constant range.

static const VkPushConstantRange pushConstantRange[] =

{

 // Push data into the evaluation shader.

 {

 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,

 0,

 sizeof (PushConstantData)

 }

};

VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo =

{

 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr,

 0,

 1,

 &m_descriptorSetLayout,

 vkcore::utils::arraysize(pushConstantRange),

 pushConstantRange

};

result = vkCreatePipelineLayout(getDevice(),

 &pipelineLayoutCreateInfo,

 &nullptr,

 &m_pipelineLayout);

As the geometry for the tessellated quad is simply four vertices arranged in a square, we’re not going to use vertex buffers in this example, but instead we’ll programmatically generate the object space positions in the vertex shader. The GLSL vertex shader used in this example is shown in Listing 9.8.

Listing 9.8: Vertex Shader for Displacement Mapping

Click here to view code image

#version 450 core

void main(void)

{

 float x = float(gl_VertexIndex & 1) - 0.5f;

 float y = float(gl_VertexIndex & 2) * 0.5f - 0.5f;

 gl_Position = vec4(x, y, 0.0f, 1.0f);

}

The output of the vertex shader is simply a quad of side length 1, centered on the origin. This is passed into the tessellation control shader shown in Listing 9.9, which sets the tessellation factors and passes the position of the vertices through otherwise unchanged.

Listing 9.9: Tessellation Control Shader for Displacement Mapping

Click here to view code image

#version 450 core

layout (vertices = 4) out;

void main(void)

{

 if (gl_InvocationID == 0)

 {

 gl_TessLevelInner[0] = 64.0f;

 gl_TessLevelInner[1] = 64.0f;

 gl_TessLevelOuter[0] = 64.0f;

 gl_TessLevelOuter[1] = 64.0f;

 gl_TessLevelOuter[2] = 64.0f;

 gl_TessLevelOuter[3] = 64.0f;

 }

 gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;

}

Note that the tessellation control shader shown in Listing 9.9 unconditionally sets the tessellation factors to 64, which is the minimum required tessellation level that must be supported by Vulkan implementations. This is a very high amount of tessellation, and most applications will not need this level. Rather, we would divide the patch into several smaller patches and then use a smaller, probably different tessellation level for each of them. The output of the tessellation control shader is then passed to the tessellation evaluation shader shown in Listing 9.10.

Listing 9.10: Tessellation Evaluation Shader for Displacement Mapping

Click here to view code image

#version 450 core

layout (quads, fractional_odd_spacing) in;

layout (push_constant) uniform push_constants_b

{

 mat4 mvp_matrix;

 float displacement_scale;

} push_constants;

layout (set = 0, binding = 0) uniform sampler2D texDisplacement;

void main(void)

{

 vec4 mid1 = mix(gl_in[0].gl_Position, gl_in[1].gl_Position, gl_TessCoord.x);

 vec4 mid2 = mix(gl_in[2].gl_Position, gl_in[3].gl_Position, gl_TessCoord.x);

 vec4 pos = mix(mid1, mid2, gl_TessCoord.y);

 float displacement = texture(texDisplacement, gl_TessCoord.xy).x;

 pos.z = displacement * push_constants.displacement_scale;

 gl_Position = push_constants.mvp_matrix * pos;

}

The shader in Listing 9.10 uses the content of gl_TessCoord.xy to interpolate the position of the vertices that land at the four corners of the quad patch produced by the tessellation control shader. The final position, pos, is simply a weighted average of the four corners. Additionally, gl_TessCoord.xy is used as a texture coordinate to sample from the displacement map texture, texDisplacement.

This displacement value is scaled by the displacement_scale push constant, which allows our application to vary the amount of displacement applied to the mesh. We know that our vertex and tessellation control shaders set up our patch in the x-y plane and that the z value for all of our tessellated points will therefore be zero. Overwriting the z component with displacement produces a patch that is like a landscape with the z direction being up. We transform this through our final transformation matrix to produce a vertex in view space.

The rest of the graphics pipeline setup for the displacement mapping example is similar to other applications shown thus far. However, because tessellation is enabled, we must set the pTessellationState member of our VkGraphicsPipelineCreateInfo to the address of a valid VkPipelineTessellationStateCreateInfo structure. This structure is extremely simple and is used only to set the number of control points in our patch. The VkPipelineTessellationStateCreateInfo for this application is shown in Listing 9.11.

Listing 9.11: Tessellation State Creation Information

Click here to view code image

VkPipelineTessellationStateCreateInfo tessellationStateCreateInfo =

{

 VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO, // sType

 nullptr, // pNext

 0, // flags

 4 // patchControlPoints

};

The result of running this application is shown in Figure 9.5. As you can see in the figure, we have set the polygon mode to VK_POLYGON_MODE_LINE, which allows us to see the structure of the tessellated patch.

[image: Image]

Figure 9.5: Result of Tessellated Displacement Mapping

For all of the geometric density shown in Figure 9.5, remember that no real geometry was passed into the graphics pipeline. The four corners of the patch are programmatically generated by the vertex shader, and no real vertex attributes are used. All of the triangles in the patch are generated by the tessellation engine, and their positions are computed by using a texture. By applying shading and detail textures to the surface of the patch, you can simulate even more apparent detail. Depending on the performance of the system, the tessellation levels chosen by the tessellation control shader can be scaled to balance performance and visual quality. Tessellation is therefore a very effective way to introduce geometric density to a scene without needing to regenerate mesh data or produce multiple versions of 3D art assets.

Geometry Shaders

The geometry shader is the final stage in the front-end, geometry-processing part of the pipeline. When enabled, it runs immediately after the tessellation evaluation shader if tessellation is enabled and after the vertex shader if tessellation is not in use. A geometry shader is unique in that a single invocation of the geometry shader processes an entire primitive. Further, the geometry shader is the only shader stage that can see adjacency primitives.1 Finally, the geometry shader is special in that it can both destroy and programmatically create new geometry.

1. The vertex shader can see the additional vertices that make up the adjacency primitive, but it has no knowledge of whether any particular vertex is part of the main primitive or the adjacency information.

To enable the geometry shader stage, include a geometry shader in the pipeline by including an instance of the VkPipelineShaderStageCreateInfo structure describing a geometry shader in the array of stages passed through pStages in the VkGraphicsPipelineCreateInfo structure. Support for geometry shaders is optional, so before creating a pipeline containing a geometry shader, your application should check for support by inspecting the geometryShader member of the VkPhysicalDeviceFeatures structure returned from a call to vkGetPhysicalDeviceFeatures(), and then set that same member to VK_TRUE in the VkDeviceCreateInfo structure passed to vkCreateDevice().

A geometry shader is created in SPIR-V by using the Geometry execution model with the OpEntryPoint instruction. A geometry shader must include the following pieces of information:

• The input primitive type, which must be one of points, lines, triangles, lines with adjacency, or triangles with adjacency

• The output primitive type, which must be one of points, line strips, or triangle strips

• The maximum number of vertices expected to be produced by a single invocation of the geometry shader

All of these attributes are specified as arguments to OpExecutionMode instructions in the SPIR-V shader. In GLSL, the first is specified by using an input layout qualifier, and the second two are specified by using output layout qualifiers. The shader shown in Listing 9.12 is a minimal GLSL geometry shader, which is legal, but it will throw away all of the geometry that passes down the pipe.

Listing 9.12: Minimal Geometry Shader (GLSL)

Click here to view code image

#version 450 core

layout (triangles) in;

layout (triangle_strip) out;

layout (max_vertices = 3) out;

void main(void)

{

 // Do nothing.

}

As you can see, Listing 9.12 contains only the required input and output layout definitions, while its main function is empty. When compiled to SPIR-V, the shader shown in Listing 9.13 is produced.

Listing 9.13: Minimal Geometry Shader (SPIR-V)

Click here to view code image

;; This is a geometry shader written in GLSL 450.

 OpCapability Geometry

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

;; Declare the main entry point.

 OpEntryPoint Geometry %5663 "main"

;; Triangles input, triangle strip output, maximum vertex count is 3.

 OpExecutionMode %5663 Triangles

 OpExecutionMode %5663 Invocations 1

 OpExecutionMode %5663 OutputTriangleStrip

 OpExecutionMode %5663 OutputVertices 3

;; Start of main

 %8 = OpTypeVoid

 %1282 = OpTypeFunction %8

 %5663 = OpFunction %8 None %1282

 %16103 = OpLabel

;; End of empty main

 OpReturn

 OpFunctionEnd

In Listing 9.13, the main entry point is decorated using three OpExecutionMode instructions. The first uses Triangles to indicate that the shader expects triangles as input. The second, OutputTriangleStrip, specifies that the shader produces triangle strips. Finally, OutputVertices is used to specify that each shader invocation will produce a maximum of 3 vertices—a single triangle. The Invocations decoration is also specified, but it is set to 1, which is the default, and could therefore have been omitted.

The maximum number of vertices that a single geometry shader can produce is device-dependent. To determine the limit for your device, check the maxGeometryOutputVertices field of the device’s VkPhysicalDeviceLimits structure, which you can retrieve by calling vkGetPhysicalDeviceProperties(). The OutputVertices argument to the execution mode instruction must be less than or equal to this value. maxGeometryOutputVertices is guaranteed to be at least 256.

The maximum number of components that a geometry shader can produce for each vertex it outputs is also device-dependent and is determined by checking the maxGeometryOutputComponents field of the device’s VkPhysicalDeviceLimits structure. This is guaranteed to be at least 64.

In addition to the limit on the number of vertices that the shader can produce, the number of components that the shader can produce is subject to a device-dependent limit. This is stored in the maxGeometryTotalOutputComponents field of the VkPhysicalDeviceLimits structure. This is guaranteed to be at least 1,024—enough for 256 vertices (the minimum guarantee for maxGeometryOutputVertices), each consisting of a single vec4. Some devices may advertise a higher value for one or both limits. Note that the minimum guarantees aren’t a simple product of one another. That is, the gaurantee for maxGeometryTotalOutputComponents (1,024) is not equal to the product of maxGeometryOutputComponents (64) and maxGeometryOutputVertices (256). Many devices will support producing a large number of small vertices or a small number of larger vertices.

The inputs to the geometry shader come from two places:

• Built-in inputs that are declared inside a gl_PerVertex input block declaration

• User-defined inputs that match the corresponding output declaration in the next-earlier shader stage (tessellation evaluation or vertex, depending on whether tessellation is enabled)

To declare the gl_PerVertex input block, declare an input block called gl_PerVertex and include in it all of the built-in per-vertex input variables that your shader needs to use. For example, Listing 9.14 shows the input block declared containing gl_Position, which corresponds to gl_Position as written by the previous stage. This block is declared as an array of instances called gl_in[], which is implicitly sized given the primitive type.

Listing 9.14: Declaring gl_PerVertex in a GLSL Geometry Shader

in gl_PerVertex

{

 vec4 gl_Position;

} gl_in[];

When a shader containing the declaration shown in Listing 9.14 and performing a read from gl_Position is compiled to SPIR-V, the disassembly shown in Listing 9.15 is produced.

Listing 9.15: Reading gl_PerVertex in a SPIR-V Geometry Shader

Click here to view code image

...

;; Decorate the first member of our block with the BuiltIn Position.

 OpMemberDecorate %1017 0 BuiltIn Position

 OpDecorate %1017 Block

...

;; Declare an array of structures, with a pointer to this array as an input.

 %1017 = OpTypeStruct %29

 %557 = OpTypeArray %1017 %2573

 %1194 = OpTypePointer Input %557

 %5305 = OpVariable %1194 Input

 %666 = OpTypePointer Input %29

...

;; Access the input using OpLoad.

 %7129 = OpAccessChain %666 %5305 %2571 %2571

 %15646 = OpLoad %29 %7129

As with other shader stages, declaring an input in the geometry shader that does not include a BuiltIn decoration means that it will read its value from those produced in the vertex shader that precedes it. The total number of components across all inputs to the geometry shader is subject to a device-dependent limit. This can be determined by checking the maxGeometryInputComponents member of the device’s VkPhysicalDeviceLimits structure. This is guaranteed to be at least 64 components.

Unless a geometry shader explicitly produces output data, it effectively does nothing. The shader can produce individual vertices one at a time, and the vertices will then be assembled into primitives after the shader has executed. To produce a vertex, the shader should execute the OpEmitVertex instruction, which is produced by the GLSL built-in function EmitVertex().

When the OpEmitVertex instruction is executed, the current values of all output variables are used to create a new vertex and pushed down the pipeline. The values of the output variables become undefined at this point, so for each output vertex, it is necessary to rewrite all of the outputs of the shader. Before OpEmitVertex is useful, then, we must declare some outputs in our shader.

Outputs are declared in GLSL using an output-block declaration. For example, to produce a vec4 and pass it to the subsequent fragment shader, declare a block as shown in Listing 9.16.

Listing 9.16: Declaring an Output Block in GLSL

out gs_out

{

 vec4 color;

};

Again, compiling this fragment to SPIR-V produces a declaration of a block with a single member containing a vector of four floating-point values. When this variable is written to in the shader, an OpStore operation is performed to write into the block.

A complete, pass-through geometry shader is shown in Listing 9.17, and the resulting SPIR-V is shown in Listing 9.18.

Listing 9.17: Pass-Through GLSL Geometry Shader

Click here to view code image

#version 450 core

layout (points) in;

layout (points) out;

layout (max_vertices = 1) out;

in gl_PerVertex

{

 vec4 gl_Position;

} gl_in[];

out gs_out

{

 vec4 color;

};

void main(void)

{

 gl_Position = gl_in[0].gl_Position;

 color = vec4(0.5, 0.1, 0.9, 1.0);

 EmitVertex();

}

Listing 9.18: Pass-Through SPIR-V Geometry Shader

Click here to view code image

 OpCapability Geometry

 OpCapability GeometryPointSize

 OpCapability ClipDistance

 OpCapability CullDistance

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint Geometry %5663 "main" %22044 %5305 %4930

 OpExecutionMode %5663 InputPoints

 OpExecutionMode %5663 Invocations 1

 OpExecutionMode %5663 OutputPoints

 OpExecutionMode %5663 OutputVertices 1

 OpMemberDecorate %2935 0 BuiltIn Position

 OpMemberDecorate %2935 1 BuiltIn PointSize

 OpMemberDecorate %2935 2 BuiltIn ClipDistance

 OpMemberDecorate %2935 3 BuiltIn CullDistance

 OpDecorate %2935 Block

 OpMemberDecorate %1017 0 BuiltIn Position

 OpDecorate %1017 Block

 OpDecorate %1018 Block

 %8 = OpTypeVoid

 %1282 = OpTypeFunction %8

 %13 = OpTypeFloat 32

 %29 = OpTypeVector %13 4

 %11 = OpTypeInt 32 0

 %2573 = OpConstant %11 1

 %554 = OpTypeArray %13 %2573

 %2935 = OpTypeStruct %29 %13 %554 %554

 %561 = OpTypePointer Output %2935

 %22044 = OpVariable %561 Output

 %12 = OpTypeInt 32 1

 %2571 = OpConstant %12 0

 %1017 = OpTypeStruct %29

 %557 = OpTypeArray %1017 %2573

 %1194 = OpTypePointer Input %557

 %5305 = OpVariable %1194 Input

 %666 = OpTypePointer Input %29

 %667 = OpTypePointer Output %29

 %1018 = OpTypeStruct %29

 %1654 = OpTypePointer Output %1018

 %4930 = OpVariable %1654 Output

 %252 = OpConstant %13 0.5

 %2936 = OpConstant %13 0.1

 %1364 = OpConstant %13 0.9

 %138 = OpConstant %13 1

 %878 = OpConstantComposite %29 %252 %2936 %1364 %138

 %5663 = OpFunction %8 None %1282

 %23915 = OpLabel

 %7129 = OpAccessChain %666 %5305 %2571 %2571

 %15646 = OpLoad %29 %7129

 %19981 = OpAccessChain %667 %22044 %2571

 OpStore %19981 %15646

 %22639 = OpAccessChain %667 %4930 %2571

 OpStore %22639 %878

 OpEmitVertex

 OpReturn

 OpFunctionEnd

As you can see in Listing 9.18, the shader enables the Geometry capability and then simply copies its input to its output. You can see the call to the OpEmitVertex instruction toward the end of the shader, immediately before the main function ends.

Cutting Primitives

You may have noticed that the only output primitive types available in a geometry shader are points, line strips, and triangle strips. It is not possible to directly output individual lines or triangles. A geometry shader can output any number of vertices, up to an implementation-defined limit, so long as the maximum output vertex count is properly declared. However, just calling EmitVertex() many times will produce a single long strip.

In order to output several smaller strips and (within the limit) individual lines or triangles, the EndPrimitive() function is available. This function ends the current strip and starts a new one when the next vertex is emitted. The current strip is automatically ended when the shader exits, so if your maximum vertex count is 3, and the output primitive type is triangle_strip, then it’s not necessary to explicitly call EndPrimitive(). However, if you want to produce several independent lines or triangles from a single geometry shader invocation, call EndPrimitive() between each strip.

The geometry shaders shown in previous listings use point primitives as both input and output to sidestep this issue. Listing 9.19 shows a shader that uses the triangle_strip output primitive type to output triangle strips. However, this shader produces six output vertices, each group of three representing a separate triangle. The EndPrimitive() function is used to cut the triangle strip after each triangle in order to produce two separate strips of one triangle each.

Listing 9.19: Cutting Strips in a Geometry Shader

Click here to view code image

#version 450 core

layout (triangles) in;

layout (triangle_strip, max_vertices = 6) out;

void main(void)

{

 int i, j;

 vec4 scale = vec4(1.0f, 1.0f, 1.0f, 1.0f);

 for (j = 0; j < 2; j++)

 {

 for (i = 0; i < 3; i++)

 {

 gl_Position = gl_in[i].gl_Position * scale;

 EmitVertex();

 }

 EndPrimitive();

 scale.xy = -scale.xy;

 }

}

In the shader shown in Listing 9.19, the first iteration of the outer loop produces a first triangle by simply copying all three vertices’ positions (in the inner loop) into the output position, multiplying by a scale factor, and then calling EmitVertex(). After the inner loop has completed, the shader calls EndPrimitive() to cut the strip at that point. It then inverts the x and y axes of the scale, rotating the triangle 180 degress around the z axis and iterates a second time. This produces a second triangle.

Geometry Shader Instancing

Chapter 8, “Drawing,” covered instancing, which is a technique to quickly draw many copies of the same geometry using a single drawing command. The number of instances is passed as a parameter to vkCmdDraw() or vkCmdDrawIndexed(), or through a structure in memory to vkCmdDrawIndirect() or vkCmdDrawIndexedIndirect(). With draw-level instancing, the entire draw is effectively executed many times. This includes fetching data from index and vertex buffers that does not change, checking for primitive restart indices (if enabled), and so on.

When a geometry shader is enabled, a special mode of instancing is available that runs the pipeline from the geometry shader onward multiple times, leaving all of the stages behind the geometry shader (including tessellation, for example) running only once. While it may not be worth introducing a geometry shader simply to use this form of instancing, when a geometry shader is required anyway, this can be a very efficient mechanism to quickly render multiple copies of a piece of geometry, with the properties of each instance controlled by the geometry shader.

You may have noticed that some of the SPIR-V listings shown earlier in this chapter include a declaration of the following form at the front of all of the geometry shaders:

Click here to view code image

OpExecutionMode %n Invocations 1

This Invocations execution mode tells Vulkan how many times to run the geometry shader—which is the number of instances2 to run.

2. In references to an instanced geometry shader, the term invocation is often used to mean instance because an invocation of the geometry shader is run for each instance. This disambiguates the instance used in instanced draws from the invocation being the execution of the geometry shader. In fact, both can be used at the same time to have an instanced draw using a geometry shader with multiple invocations.

Setting the invocation count to 1 simply means that the shader will run once as expected. This is the default and is inserted by the GLSL compiler if you don’t instruct it otherwise. To control the number of invocations of the geoemtry, use the invocations input layout qualifier in the GLSL shader. For example, the following declaration sets the invocation count for the shader to 8:

layout (invocations = 8) in;

When this layout qualifier is included in a GLSL shader, the compiler will insert the appropriate OpExecutionMode instruction to set the invocation count for the entry point to the value you specified. While the invocation count is hard-coded into the shader rather than passed as a parameter, as it is in draw instancing, you can use a specialization constant to set its value. This allows you to customize a single geometry shader to run in a number of different scenarios.

As the shader executes, the invocation number is made available to it through the GLSL gl_InvocationID built-in variable. In SPIR-V, this is translated into a decoration attaching the built-in InvocationId to an input variable.

The GLSL shader shown in Listing 9.20 is a complete example of running two instances with each sourcing a separate object-to-world matrix in order to draw two copies of an object, each with a different transform. By using the gl_InvocationID (which turns into the InvocationId decoration), we can index into an array of matrices in order to get a different transform for each invocation.

Listing 9.20: Instanced GLSL Geometry Shader

Click here to view code image

#version 450 core

layout (triangles, invocations = 2) in;

layout (triangle_strip, max_vertices = 3) out;

layout (set = 0, binding = 0) uniform

{

 mat4 projection;

 mat4 objectToWorld[2];

} transforms;

void main(void)

{

 int i;

 mat4 objectToWorld = transforms.objectToWorld[gl_InvocationID];

 mat4 objectToClip = objectToWorld * transforms.projection;

 for (i = 0; i < 3; i++)

 {

 gl_Position = gl_in[i].gl_Position * objectToClip;

 EmitVertex();

 }

}

The maximum number of geometry shader invocations is implementation-dependent but is guaranteed to be at least 32. Some implementations support more invocations than this, and the limit for a particular implementation can be determined by checking the maxGeometryShaderInvocations field of the device’s VkPhysicalDeviceLimits structure as returned from a call to vkGetPhysicalDeviceProperties().

Programmable Point Size

When you are rendering points, by default, a single vertex produces a point that is exactly 1 pixel wide. On modern high-resolution displays, a single pixel is extremely small, so it is often the case that you wish to render points that are much larger than this. When the primitives are rasterized as points, it is possible to set the point size by using the last stage of the geometry-processing pipeline.

Points are rasterized in one of three ways:

• Rendering with only a vertex and fragment shader, and setting the primitive topology to VK_PRIMITIVE_TOPOLOGY_POINT_LIST

• Enabling tessellation and setting the tessellation mode to points by decorating the tessellation shader’s entry point with the SPIR-V PointMode execution mode

• Using a geometry shader that produces points

The last stage in the geometry pipeline (vertex, tessellation evaluation, or geometry) can specify the size of points by decorating a floating-point output with the PointSize parameter to the BuiltIn decoration. The value written to this output will be used as the diameter of the rasterized points.

In GLSL, such a decorated output can be produced by writing to the gl_PointSize built-in output. An example vertex shader that writes to gl_PointSize is shown in Listing 9.21, and the resulting SPIR-V output is shown in Listing 9.22.

Listing 9.21: Use of gl_PointSize in GLSL

Click here to view code image

#version 450 core

layout (location = 0) in vec3 i_position;

layout (location = 1) in float i_pointSize;

void main(void)

{

 gl_Position = vec4(i_position, 1.0f);

 gl_PointSize = i_pointSize;

}

The shader in Listing 9.21 declares two inputs: i_position and i_pointSize. Both are passed through to their respective outputs. Simply writing to gl_PointSize causes the GLSL compiler to automatically declare an output variable in the SPIR-V shader and decorate it with the PointSize decoration, as you can see in Listing 9.22, which has been manually edited and commented.

Listing 9.22: Decorating an Output with PointSize

Click here to view code image

 ...

 ;; GLSL compiler automatically declares per-vertex output block.

 OpName %11 "gl_PerVertex"

 OpMemberName %11 0 "gl_Position"

 OpMemberName %11 1 "gl_PointSize"

 OpMemberName %11 2 "gl_ClipDistance"

 OpMemberName %11 3 "gl_CullDistance"

 OpName %13 ""

 ;; Naming inputs

 OpName %18 "i_position"

 OpName %29 "i_pointSize"

 ;; Decorating members of the default output block

 OpMemberDecorate %11 0 BuiltIn Position

 OpMemberDecorate %11 1 BuiltIn PointSize ;; gl_PointSize

 OpMemberDecorate %11 2 BuiltIn ClipDistance

 OpMemberDecorate %11 3 BuiltIn CullDistance

 OpDecorate %11 Block

 OpDecorate %18 Location 0

 OpDecorate %29 Location 1

 ...

 %4 = OpFunction %2 None %3

 ;; Start of "main"

 %5 = OpLabel

 ;; Load i_position.

 %19 = OpLoad %16 %18

 %21 = OpCompositeExtract %6 %19 0

 %22 = OpCompositeExtract %6 %19 1

 %23 = OpCompositeExtract %6 %19 2

 ;; Construct vec4 and write to gl_Position.

 %24 = OpCompositeConstruct %7 %21 %22 %23 %20

 %26 = OpAccessChain %25 %13 %15

 OpStore %26 %24

 ;; Load from i_pointSize (%29).

 %30 = OpLoad %6 %29

 ;; Use access chain to dereference built-in output.

 %32 = OpAccessChain %31 %13 %27

 ;; Store to output decorated with PointSize.

 OpStore %32 %30

 OpReturn

 OpFunctionEnd

The size produced by the shader and written to the output decorated as PointSize must fall within the range of point sizes supported by the device. This can be determined by inspecting the pointSizeRange member of the device’s VkPhysicalDeviceLimits structure, which you can obtain through a call to vkGetPhysicalDeviceProperties(). This is an array of two floating-point values, the first being the smallest point that can be rasterized and the second being the diameter of the largest point that can be rasterized.

The pixel size of a point will be quantized to a device-dependent scale. The delta between supported point sizes can be determined from the pointSizeGranularity field of the VkPhysicalDeviceLimits structure. For example, if an implementation can render points at any size in quarter-pixel increments, then pointSizeGranularity will be 0.25. All devices must be able to render any supported point size with at least single-pixel accuracy, though many devices will provide much more precision than this.

The largest guaranteed value for the minimum point size is a single pixel. That is, some implementations may be able to accurately rasterize points smaller than a single pixel, but all implementations must be able to rasterize single-pixel points. The smallest guaranteed point size, in pixels, is 64.0 minus one unit of the device’s granularity as given in pointSizeGranularity. So if the device renders points in quarter-pixel increments, the maximum point size will be 63.75 pixels.

If none of the geometry processing shaders writes a variable decorated as PointSize, then the default point size of 1 pixel will be assumed. Many implementations may be more efficient when a compile-time constant is written to PointSize, often removing the executable code from the shader and instead programming the point size as the state of the rasterizer. It is possible to set the point size through a specialization constant to produce a shader that writes a compile-time constant to the point size but is still configurable at pipeline build time, much as the line width is.

Line Width and Rasterization

Optionally, Vulkan is able to rasterize lines that are greater than a single pixel wide. The width of lines to be rasterized can be specified when a graphics pipeline is created by setting the lineWidth of the VkPipelineRasterizationStateCreateInfo structure used to create the pipeline. Lines greater than a single pixel wide are known as wide lines. Wide lines are supported by the implementation if the wideLines field of its VkPhysicalDeviceFeatures is VK_TRUE. In this case, the range of supported line widths is contained in the lineWidthRange member of the device’s VkPhysicalDeviceLimits structure, which can be retrieved with a call to vkGetPhysicalDeviceProperties().

A given Vulkan implementation may render lines in one of two ways: strict or nonstrict. Which method the device uses is reported in the strictLines field of its VkPhysicalDeviceLimits structure. If this is VK_TRUE, then strict line rasterization is implemented; otherwise, only nonstrict rasterization is supported by the device. There is no way to choose which method is used; a device will implement only one method.

In general, strict or nonstrict line rasterization does not affect single-pixel wide lines, so it really applies only to wide lines. When wide lines are in use, a strict line is essentially rasterized as though it were a rectangle centered on the line running from the starting point to the ending point of each segment. As a result, the square end caps of the line are perpendicular to the direction of the line. This is illustrated in Figure 9.6, which shows a line segment from {xa, ya, za} to {xb, yb, zb} rotated onto the diagonal. The original line is shown as a dotted line, and the outline of the rasterized line is solid. You should be able to see from Figure 9.6 that as the line rotates away from horizontal or vertical, the width of its cross-section does not change. It is effectively rasterized as a rectangle whose long edge is the length of the line and whose short edge is the width of the line.

[image: Image]

Figure 9.6: Rasterization of Strict Lines

Meanwhile, nonstrict lines are rasterized as a series of horizontal or vertical columns of fragments, depending on the major axis of the line. The major axis of a line is the axis (either x or y) in which it moves the farthest. If the change in x coordinate along the line is greatest, then it is an x-major line and will be rasterized as a sequence of vertical columns of fragments. Conversely, if it moves farthest in y, then it is a y-major line and will be rasterized as a sequence of horizontal rows of fragments.

As a consequence, the end of the line is no longer square unless the line is perfectly horizontal or vertical. Instead, it is wedge-shaped, with the endcap of the line perpendicular to the line’s major axis rather than to the line itself. For small line widths up to a few pixels, this may not be noticeable. For larger line widths, however, this can be visually distracting. Figure 9.7 illustrates nonstrict line rasterization. As you can see in the figure, as the line rotates away from the horizontal or vertical, it becomes a parallelogram, with the short side length being the line width. The farther the line becomes from the horizontal or vertical, the narrower it will appear as its perpendicular width decreases.

[image: Image]

Figure 9.7: Rasterization of Nonstrict Lines

The width of lines used for rasterization can also be marked as a dynamic state. To do this, include the VK_DYNAMIC_STATE_LINE_WIDTH token in the list of dynamic states passed through the pDynamicStates member of the VkPipelineDynamicStateCreateInfo structure used to create the graphics pipeline. Once the line width is marked as dynamic, the lineWidth field of VkPipelineRasterizationStateCreateInfo is ignored, and the line width is instead set by calling vkCmdSetLineWidth(), whose prototype is

Click here to view code image

void vkCmdSetLineWidth (

 VkCommandBuffer commandBuffer,

 float lineWidth);

The lineWidth parameter sets the width of lines, in pixels. Any line primitive rendered will take this thickness, whether it is the result of drawing with one of the line topologies or whether a tessellation or geometry shader turns another type of primitive into lines. The new line-width parameter must be between the minimum and maximum line widths supported by the Vulkan implementation. This can be determined by checking the lineWidthRange member of the device’s VkPhysicalDeviceLimits structure. The first element of lineWidthRange is the minimum width, and the second element is the maximum. Support for lines is optional, so some implementations will return 1.0 for both elements. However, if wide lines are supported, the Vulkan implementation will support a range of line widths that includes 1.0 to 8.0 pixels.

User Clipping and Culling

In order to ensure that no geometry is rendered outside the viewport, Vulkan performs clipping of geometry against the viewport bounds. A typical method for doing this is to determine the distance of each vertex to the planes, defining the viewport as a signed quantity. Positive distances are on the “inside” of the volume, and negative distances are “outside” the volume. The distance to each plane is computed separately for each vertex. If all of the vertices belonging to a primitive are on the outside of a single plane, then the whole primitive can be discarded. Conversely, if all of the vertices have a positive distance to all planes, that means that they are all inside the volume, so the entire primitive can be safely rendered.

If there is a mix of “inside” and “outside” that make up the primitive, then it must be clipped, which normally means breaking it down into a set of smaller primitives. Figure 9.8 illustrates this. As you can see in the figure, four triangles have been sent into the pipeline. Triangle A is entirely contained within the viewport and is rendered directly. Triangle B, on the other hand, lies entirely outside the viewport and can be trivially discarded. Triangle C penetrates a single edge of the viewport and is therefore clipped against it. The smaller triangle is produced by the clipper, and this is the one that is rasterized. Finally, triangle D presents a more complex scenario. It lies partially inside the viewport but penetrates two of the viewport’s edges. In this case, the clipper breaks the triangle into several smaller triangles and rasterizes those. The resulting polygon is shown in bold, and the generated interior edges are shown as dotted lines.

[image: Image]

Figure 9.8: Clipping Against a Viewport

In addition to being able to clip a primitive against the edges of the viewport, it is possible to supply other distance values generated in your shaders that contribute to this clipping procedure. These are known as clip distances and, once assigned, are treated exactly as the distances computed to the viewport planes. Positive values are treated as being inside the view volume, and negative values are treated as being outside the view volume.

To generate a clip distance in your shader, decorate an output variable by using the ClipDistance decoration. This variable must be declared as an array of 32-bit floating-point values, each element of which is a separate clip distance. Vulkan will aggregate all of the clip distances written by your shaders when performing clipping on the generated primitives.

Not all devices support clip distances. If clip distance is supported by a device, then the maximum number of clip distances supported by that device is guaranteed to be at least 8. Some devices may support more distances than this. You can check how many distances are supported by the device by inspecting the maxClipDistances field of its VkPhysicalDeviceLimits structure. You can retrieve this by calling vkGetPhysicalDeviceProperties(). If clip distances are not supported or are not enabled at device-creation time, then this field will be 0.

The last geometry-processing stage (vertex, tessellation evaluation, or geometry shader) produces the clip distances that will be used by the clipping stage to clip the generated primitives. In any stage after the clip distances have been declared as outputs, the produced distances can be made available as inputs. Therefore, in the tessellation control, tessellation evaluation, or geometry shader stages, you can read (and rewrite) the values produced in the previous stage if you need to.

The clip distance is also available as an input to the fragment shader. While clipping will be performed at the primitive level by most implementations, another way to implement clipping by using the clip distance is to interpolate the clip distances applied to the vertices across the primitive. Fragments to which are assigned any negative clip distance values are discarded before fragment processing completes. Even if an implementation doesn’t implement clip distances this way, the interpolated value of each clip distance is made available to the fragment shader should it decorate an input variable with the ClipDistance decoration.

Listing 9.24 shows an example of decorating an output variable with ClipDistance in SPIR-V, and Listing 9.23 shows the GLSL fragment that was used to generate this SPIR-V. As you can see, in GLSL, the built-in variable gl_ClipDistance is used to write clip distances and is translated to an output variable with the appropriate decorations by the GLSL compiler.

Listing 9.23: Use of gl_ClipDistance in GLSL

Click here to view code image

#version 450 core

// Redeclare gl_ClipDistance to explicitly size it.

out float gl_ClipDistance[1];

layout (location = 0) in vec3 i_position;

// Push constant from which to assign clip distance

layout (push_constant) uniform push_constants_b

{

 float clip_distance[4];

} push_constant;

void main(void)

{

 gl_ClipDistance[0] = push_constant.clip_distance[0];

 gl_Position = vec4(i_position, 1.0f);

}

The shader in Listing 9.23 simply assigns the value of a push constant directly to the gl_ClipDistance output. A more practical use of gl_ClipDistance would compute a distance to a plane for each vertex and assign that to the clip-distance output. This rather simple shader serves to demonstrate how the SPIR-V result is generated. This is shown in Listing 9.24.

Listing 9.24: Decorating Outputs with ClipDistance

Click here to view code image

 OpCapability Shader

;; The shader requires the ClipDistance capability.

 OpCapability ClipDistance

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint Vertex %4 "main" %13 %29

 OpSource GLSL 450

 OpName %4 "main"

 OpName %11 "gl_PerVertex"

 OpMemberName %11 0 "gl_Position"

 OpMemberName %11 1 "gl_PointSize"

;; Redeclaration of gl_ClipDistance built-in

 OpMemberName %11 2 "gl_ClipDistance"

 OpMemberName %11 3 "gl_CullDistance"

 OpName %13 ""

 OpName %19 "push_constants_b"

 OpMemberName %19 0 "clip_distance"

 OpName %21 "push_constant"

 OpName %29 "i_position"

 OpMemberDecorate %11 0 BuiltIn Position

 OpMemberDecorate %11 1 BuiltIn PointSize

;; Decorate the built-in variable as ClipDistance.

 OpMemberDecorate %11 2 BuiltIn ClipDistance

 OpMemberDecorate %11 3 BuiltIn CullDistance

 OpDecorate %11 Block

 OpDecorate %18 ArrayStride 4

 OpMemberDecorate %19 0 Offset 0

 OpDecorate %19 Block

 OpDecorate %29 Location 0

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeVector %6 4

 %8 = OpTypeInt 32 0

 %9 = OpConstant %8 1

 %10 = OpTypeArray %6 %9

;; This creates the built-in output structure containing gl_ClipDistance.

 %11 = OpTypeStruct %7 %6 %10 %10

 %12 = OpTypePointer Output %11

;; Instantiate the built-in outputs.

 %13 = OpVariable %12 Output

 ...

;; Beginning of main()

 %5 = OpLabel

;; Load from the push-constant array.

 %23 = OpAccessChain %22 %21 %16 %16

 %24 = OpLoad %6 %23

;; Store to clip distance.

 %26 = OpAccessChain %25 %13 %15 %16

 OpStore %26 %24

 ...

;; End of main()

 OpReturn

 OpFunctionEnd

There is no reason that your shader should assign values to the ClipDistance outputs by computing distance to a plane. You could assign the distance to an analytic function, to a higher-order surface, or even to a displacement map read from a texture, for example. However, bear in mind that because the primitives are clipped as though the distance was computed from a flat plane, the resulting edges will be a piecewise linear approximation of the function used to compute those distances. If your function represents tight curves or detailed surfaces, you will need quite a bit of geometry to make the resulting edges appear smooth.

While the tessellation control and geometry shading stages have access to entire primitives, the vertex and tessellation evaluation shaders do not. Therefore, if you wish to discard an entire primitive from one of these stages, it is hard to coordinate the shader invocations corresponding to that primitive in order to assign a negative clip distance to all of them. For this purpose, you can instead use the cull distance for each vertex. The cull distance works very similarly to the clip distance. The difference is that the entire primitive is discarded if any vertex it contains has a negative cull distance, regardless of the values of the cull distances for the other vertices.

To use cull distance, decorate an output variable with the CullDistance decoration. The cull distance is also available as in input to subsequent shader stages, just as ClipDistance is. Also, if CullDistance is used as an input in the fragment shader, its content will be the interpolated value of the distance assigned in the geometry-processing stages. Listings 9.25 and 9.26 show minor modifications to Listings 9.23 and 9.24, respectively, to show assignment to variables decorated with CullDistance rather than ClipDistance.

Listing 9.25: Use of gl_CullDistance in GLSL

Click here to view code image

#version 450 core

out float gl_CullDistance[1];

layout (location = 0) in vec3 i_position;

layout (push_constant) uniform push_constants_b

{

 float cull_distance[4];

} push_constant;

void main(void)

{

 gl_CullDistance[0] = push_constant.cull_distance[0];

 gl_Position = vec4(i_position, 1.0f);

}

As you can see, Listing 9.25 is almost identical to Listing 9.23 except that we have used gl_CullDistance in place of gl_ClipDistance. As you might expect, the resulting SPIR-V shader shown in Listing 9.26 is also almost identical to that in Listing 9.24, which uses the ClipDistance decoration.

Listing 9.26: Decorating Outputs with CullDistance

Click here to view code image

 OpCapability Shader

;; The shader requires the CullDistance capability.

 OpCapability CullDistance

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint Vertex %4 "main" %13 %29

 OpSource GLSL 450

 OpName %4 "main"

 OpName %11 "gl_PerVertex"

 OpMemberName %11 0 "gl_Position"

 OpMemberName %11 1 "gl_PointSize"

 OpMemberName %11 2 "gl_ClipDistance"

;; Redeclaration of gl_CullDistance built-in

 OpMemberName %11 3 "gl_CullDistance"

 OpName %13 ""

 OpName %19 "push_constants_b"

 OpMemberName %19 0 "cull_distance"

 OpName %21 "push_constant"

 OpName %29 "i_position"

 OpMemberDecorate %11 0 BuiltIn Position

 OpMemberDecorate %11 1 BuiltIn PointSize

 OpMemberDecorate %11 2 BuiltIn ClipDistance

;; Decorate the built-in variable as CullDistance.

 OpMemberDecorate %11 3 BuiltIn CullDistance

 OpDecorate %11 Block

 OpDecorate %18 ArrayStride 4

 OpMemberDecorate %19 0 Offset 0

 OpDecorate %19 Block

 OpDecorate %29 Location 0

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeVector %6 4

 %8 = OpTypeInt 32 0

 %9 = OpConstant %8 1

 %10 = OpTypeArray %6 %9

;; This creates the built-in output structure containing gl_CullDistance.

 %11 = OpTypeStruct %7 %6 %10 %10

 %12 = OpTypePointer Output %11

;; Instantiate the built-in outputs.

 %13 = OpVariable %12 Output

 ...

;; Beginning of main()

 %5 = OpLabel

;; Load from the push-constant array.

 %23 = OpAccessChain %22 %21 %16 %16

 %24 = OpLoad %6 %23

;; Store to cull distance.

 %26 = OpAccessChain %25 %13 %15 %16

 ...

;; End of main()

 OpReturn

 OpFunctionEnd

As you can see in Listing 9.25, outputs decorated with CullDistance are produced by writing to the GLSL built-in variable gl_CullDistance.

Whenever ClipDistance or CullDistance is used in the fragment shader, you should only see positive values for those inputs. This is because any fragment that would have had a negative clip or cull distance should have been discarded. The only possible exception to this is helper invocations, which are invocations of the fragment shader that are used to generate deltas during the computation of gradients. If your fragment shader is sensitive to negative values of ClipDistance, then this may be a case you care about.

As with clip distances, cull distances are declared in your shaders as arrays of floating-point values, and the number of elements in those arrays is device-dependent. Some devices do not support cull distances, but if they do, they are guaranteed to support at least 8. To determine the number of distances supported, check the maxCullDistances field of the device’s VkPhysicalDeviceLimits structure. If cull distances are not supported, then this field will be 0.

Before cull distances can be used in a SPIR-V shader, the shader must enable the CullDistance capability using an OpCapability instruction. You can check whether the device supports the CullDistance capability in SPIR-V shaders by inspecting the shaderCullDistance member of the device’s VkPhysicalDeviceFeatures structure obtained through a call to vkGetPhysicalDeviceProperties(). You must also enable this feature when the device is created by setting shaderCullDistance to VK_TRUE in the VkPhysicalDeviceFeatures structure used to create the device. Likewise, for clip distances, the capability is enabled by executing OpCapability with the ClipDistance argument, and checked and enabled through the shaderClipDistance field of VkPhysicalDeviceFeatures.

Because clip and cull distances may consume similar resources, in addition to the maxClipDistances and maxCullDistances limits, many devices have a combined limit for the number of distances that you can use at once. This often precludes you from using the maximum number of both at the same time. To check the combined limit, look at the maxCombinedClipAndCullDistances field of the device’s VkPhysicalDeviceLimits structure.

The Viewport Transformation

The final transformation in the pipeline before rasterization is the viewport transformation. The coordinates produced by the last stage in the geometry pipeline (or produced by the clipper) are in homogeneous clip coordinates. First, the homogeneous coordinates are all divided through by their own w components, producing normalized device coordinates.

[image: Image]

Here, the vertex’s clip coordinates are represented by {xc, yc, zc, wc}, and the normalized device coordinates are represented by {xd, yd, zd}. Because the vertex’s w component is divided by itself, it always becomes 1.0 and so can be discarded at this point, and the normalized device coordinate is considered to be a 3D coordinate.

Before the primitive can be rasterized, it needs to be transformed into framebuffer coordinates, which are coordinates relative to the origin of the framebuffer. This is performed by scaling and biasing the vertex normalized device coordinates by the selected viewport transform.

One or more viewports are configured as part of the graphics pipeline. This was briefly introduced in Chapter 7, “Graphics Pipelines.” Most applications will use a single viewport at a time. When there are multiple viewports configured, each behaves the same way; only the selection of viewport is controlled by the geometry shader if it is present. If there is no geometry shader, then only the first configured viewport is accessible.

Each viewport is defined by an instance of the VkViewport structure, the definition of which is

typedef struct VkViewport {

 float x;

 float y;

 float width;

 float height;

 float minDepth;

 float maxDepth;

} VkViewport;

The transformation from normalized device coordinates to framebuffer coordinates is performed as

[image: Image]

Here, xf, yf, and zf are the coordinates of each vertex in framebuffer coordinates. The x and y fields of VkViewport are ox and oy, respectively, and minDepth is oz. The width and height fields are used for px and py. pz is formed from the expression (maxDepth - minDepth).

The maximum size of a viewport is a device-dependent quantity, although it is guaranteed to be at least 4,096 × 4,096 pixels in size. If all of your color attachments are smaller than this (or if the width and height of all of your viewports are smaller), then there is no reason to query the upper limit of viewport size. If you want to render into an image that is larger than this, you can determine the upper limit on viewport size by inspecting the maxViewportDimensions member of the device’s VkPhysicalDeviceLimits structure, which you can retrieve by calling vkGetPhysicalDeviceFeatures().

maxViewportDimensions is an array of two floating-point values. The first element is the maximum supported viewport width, and the second is the maximum supported viewport height. The width and height members of VkViewport must be less than or equal to these values.

Although the width and height of each viewport must be within the limits reported in maxViewportDimensions, it is possible to offset the viewport within a larger set of attachments. The maximum extent to which the viewport can be offset is determined by checking the viewportBoundsRange field of the device’s VkPhysicalDeviceLimits structure. So long as the left, right, top, and bottom of the viewport lie within the range of viewportBoundsRange[0] and viewportBoundsRange[1], then the viewport can be used.

Although the outputs of the vertex shader and the parameters of the viewport are all floating-point quantities, the resulting framebuffer coordinates are generally converted to fixed-point representation before rasterization. The range supported by the viewport coordinates must obviously be large enough to represent the maximum viewport size. The number of fractional bits determines the accuracy at which vertices are snapped to pixel coordinates.

This precision is device-dependent, and some devices might snap directly to pixel centers. However, this is uncommon, and most devices employ some subpixel precision. The amount of precision a device uses in its viewport coordinate representation is contained in the viewportSubPixelBits field of its VkPhysicalDeviceLimits structure.

As well as specifying the bounds of the viewports when the graphics pipeline is created, the viewport state can be made dynamic. To do this, include VK_DYNAMIC_STATE_VIEWPORT in the list of dynamic states when the pipeline is created. When this token is included, the values of the viewport bounds specified at pipeline-creation time are ignored. Only the number of viewports is relevant. To set the viewport bounds dynamically, call vkCmdSetViewport(), the prototype of which is

Click here to view code image

void vkCmdSetViewport (

 VkCommandBuffer commandBuffer,

 uint32_t firstViewport,

 uint32_t viewportCount,

 const VkViewport* pViewports);

Any subset of the active viewports can be updated with vkCmdSetViewport(). The firstViewport parameter specifies the first viewport to update, and the viewportCount parameter specifies the number of viewports (starting from firstViewport) to update. The dimensions of the viewports is specified in pViewports, which is a pointer to an array of viewportCount VkViewport structures.

The number of viewports supported by the current pipeline is specified in the viewportCount field of VkPipelineViewportStateCreateInfo and is always considered to be static. Unless the pipeline disables rasterization, there must be at least one viewport in the pipeline. You can set viewports outside the number supported by the current pipeline and then switch to a pipeline with more viewports, and it will use the state you specified.

Usually, you will use a single viewport that covers all of the framebuffer attachments. However, in some cases you might want to render to a smaller window within the framebuffer. Further, you may want to render to multiple windows. For example, in a CAD-type application, you may have a top, side, front, and perspective view of an object being modeled. It is possible to render to multiple viewports simultaneously with a single graphics pipeline.

Support for multiple viewports is optional. The total number of viewports supported by a device can be determined by checking the maxViewports member of its VkPhysicalDeviceLimits structure, as returned from a call to vkGetPhysicalDeviceProperties(). If multiple viewports are supported, then this will be at least 16 and may be higher. If multiple viewports are not supported, then this field will be 1.

When you are creating the graphics pipeline, the number of viewports the pipeline will use is specified in the viewportCount field of the VkPipelineViewportStateCreateInfo structure passed through pViewportState in VkGraphicsPipelineCreateInfo. When the viewports are configured as static state, their parameters are passed through the pViewports member of the same structure.

Once a pipeline is in use, its geometry shader can select the viewport index by decorating one of its outputs with the ViewportIndex decoration. You can generate this code by writing to the gl_ViewportIndex built-in output in a GLSL shader.

All of the vertices in a primitive produced by the geometry shader should have the same viewport index. When the primitive is rasterized, it will use the viewport parameters from the selected viewport. Because geometry shaders can run instanced, a simple way to broadcast geometry to multiple viewports is to run the geometry shader with as many instances as there are viewports in the pipeline, and then, for each viewport, assign the invocation index to the viewport index, causing the version of the geometry to be rendered into the appropriate viewport. Listing 9.27 shows an example of how to do this.

Listing 9.27: Using Multiple Viewports in a Geometry Shader (GLSL)

Click here to view code image

 #version 450 core

 layout (triangles, invocations = 4) in;

 layout (triangle_strip, max_vertices = 3) out;

 layout (set = 0, binding = 0) uniform transform_block

 {

 mat4 mvp_matrix[4];

 };

 in VS_OUT

 {

 vec4 color;

 } gs_in[];

 out GS_OUT

 {

 vec4 color;

 } gs_out;

 void main(void)

 {

 for (int i = 0; i < gl_in.length(); i++)

 {

 gs_out.color = gs_in[i].color;

 gl_Position = mvp_matrix[gl_InvocationID]*

 gl_in[i].gl_Position;

 gl_ViewportIndex = gl_InvocationID;

 EmitVertex();

 }

 EndPrimitive();

}

In Listing 9.27, the transformation matrix to be applied to the geometry for each shader invocation is stored in a uniform block called transform_block. The number of invocations is set to 4, using an input layout qualifier, and then the gl_InvocationID built-in variable is used to index into the array of matrices. The invocation index is also used to specify the viewport index.

Summary

This chapter discussed the optional geometry processing stages of the Vulkan graphics pipeline: tessellation and geometry. You saw that the tessellation stage is made up of a pair of shaders surrounding a fixed-function, configurable block that breaks large patches into many smaller points, lines, or triangles. After the tessellation stage is the geometry shading stage, which receives primitives from the previous stage and can process entire primitives, discard them, or create new ones, decimating or amplifying geometry as it passes down the pipeline.

You also saw how geometry can be clipped and culled using per-vertex controls and how selection of the viewport index in a geometry shader can be used to confine geometry to user-specified regions.

Chapter 10. Fragment Processing

What You’ll Learn in This Chapter

• What happens after a primitive is rasterized

• How your fragment shaders determine the color of fragments

• How the results of your fragment shaders are merged into the final picture

The previous chapters covered everything that occurs in the Vulkan graphics pipeline up until the point of rasterization. The rasterizer takes your primitives and breaks them into many fragments, which ultimately come together to form the final pixels that will be shown to your users. In this chapter, you will see what happens to those fragments as they undergo per-fragment tests, shading and then blending into color attachments used by your application.

Scissor Testing

The scissor test is a stage in fragment processing that operates before any other testing is performed. This test simply ensures that fragments are within a specified rectangle on the framebuffer. While this is somewhat similar to viewport transformations, there are two important differences between using a viewport that is not the full size of the framebuffer and the scissor test:

• The viewport transformation changes the locations of primitives in the framebuffer; as the viewport rectangle moves, so do the primitives inside it. The scissor rectangles have no effect on the the position of primitives and operate after they have been rasterized.

• While the viewport rectangles affect clipping and in some cases may produce new primitives, the scissor rectangle operates directly on rasterized fragments, discarding them before fragment shading.

The scissor test always runs before the fragment shader, so if your fragment shader produces side effects, those side effects will not be seen for fragments that are scissored away. The scissor test is always enabled. However, in most implementations, setting the scissor rectangle to the full size of the framebuffer effectively disables it.

The number of scissor rectangles is specified in the scissorCount field of the VkPipelineViewportStateCreateInfo structure used to create the graphics pipeline. This must be the same as the viewportCount field. As discussed in Chapter 9, “Geometry Processing,” the viewport to use for the viewport transformation is chosen by writing to an output in the geometry shader decorated with the ViewportIndex decoration. This same output is used to select the scissor rectangle used for the scissor test. As such, it’s not possible to select an arbitrary combination of scissor rectangle and viewport. If you want to use multiple viewports and disable the scissor test, then you need to specify as many scissor rectangles as you do viewports, but set all of the scissor rectangles to the full size of the framebuffer.

Each scissor rectangle is represented by an instance of the VkRect2D structure, the definition of which is

typedef struct VkRect2D {

 VkOffset2D offset;

 VkExtent2D extent;

} VkRect2D;

A rectangle is made up of an origin and a size, stored in the offset and extent fields of VkRect2D. These are VkOffset2D and VkExtent2D structures, the definitions of which are

typedef struct VkOffset2D {

 int32_t x;

 int32_t y;

} VkOffset2D;

and

typedef struct VkExtent2D {

 uint32_t width;

 uint32_t height;

} VkExtent2D;

The x and y fields of offset contain the coordinates, in pixels, of the origin of each scissor rectangle, and the width and height fields of extent contain its size.

As with the viewport rectangles, the number of rectangles accessible to a pipeline is always considered to be static state, but the sizes of the rectangles may be made dynamic. If VK_DYNAMIC_STATE_SCISSOR is included in the list of dynamic states when the pipeline is created, then the scissor rectangle state becomes dynamic and can be modified using vkCmdSetScissor().

Click here to view code image

void vkCmdSetScissor (

 VkCommandBuffer commandBuffer,

 uint32_t firstScissor,

 uint32_t scissorCount,

 const VkRect2D* pScissors);

The index of the first scissor rectangle to update is passed in firstScissor, and the number of scissor rectangles to update is passed in scissorCount. The range of scissor rectangles can be a subset of the scissor rectangles supported by Vulkan. However, it’s important to set all the scissor rectangles that the current pipeline might use before rendering into them. The extent of the scissor rectangles is contained in an array of VkRect2D structures, the address of which is passed in pScissors.

The scissor test is essentially always enabled. Setting one or more of the scissor rectangles to cover the entire renderable area effectively disables the test for that rectangle. The number of scissor rectangles used by a pipeline is always considered to be part of the pipeline’s static state. This number is set through the scissorCount member of the VkPipelineViewportStateCreateInfo structure used to create the pipeline. The range of scissor rectangles specified in vkCmdSetScissor() can extend outside the number of scissor rectangles supported by the currently bound pipeline. If you switch to another pipeline with more scissor rectangles, the rectangles you set will be used.

Depth and Stencil Operations

The depth and stencil buffers are special attachments that allow fragments to be evaluated against information already contained in them either before or after the fragment shader runs. Chapter 7, “Graphics Pipelines,” introduced the depth state. Additional state in the rasterization state also controls how rasterized fragments interact with the depth and stencil buffers.

Logically, the depth and stencil operations run after the fragment shader has executed. In practice, most implementations will execute the depth and stencil operations before1 running the fragment shader wherever they can prove that execution of the fragment shader has no visible side effects, so the result of running tests (and potentially rejecting fragments) will have no visible effect on the rendered scene. In the following sections, we will discuss operation in logical terms—that is, assuming that tests occur after shading—but mention explicitly where this is not the case or where some caveat may preclude an implementation from running tests early.

1. An entire class of rendering hardware—deferred shading hardware—will attempt to run the depth test for every fragment in the scene before running any fragment shading. Configuring state to preclude this can have serious performance consequences on this type of hardware.

During testing against the depth and stencil buffers, those buffers can be optionally updated with new data. In fact, writing to depth or stencil buffers is so much considered to be part of the test that the tests must be enabled in order to see writes to depth or stencil buffers occur. This is a common omission for developers new to graphics programming, so it’s important to mention it here.

As introduced in Chapter 7, “Graphics Pipelines,” depth and stencil operation state is configured using the VkPipelineDepthStencilStateCreateInfo structure passed through the VkGraphicsPipelineCreateInfo structure used to create the graphics pipeline. For reference, the definition of VkPipelineDepthStencilStateCreateInfo is

Click here to view code image

typedef struct VkPipelineDepthStencilStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineDepthStencilStateCreateFlags flags;

 VkBool32 depthTestEnable;

 VkBool32 depthWriteEnable;

 VkCompareOp depthCompareOp;

 VkBool32 depthBoundsTestEnable;

 VkBool32 stencilTestEnable;

 VkStencilOpState front;

 VkStencilOpState back;

 float minDepthBounds;

 float maxDepthBounds;

} VkPipelineDepthStencilStateCreateInfo;

As you can see, this structure is rather large and contains several substructures that define properties of the depth and stencil tests. We necessarily glossed over much of this detail in Chapter 7, “Graphics Pipelines,” but dig into more of it here. Each of the substructures is discussed in the following sections.

Depth Testing

The first operation performed after rasterization is the depth test. The depth test compares the depth value for the fragment with the value stored in the current depth-stencil attachment using an operation chosen when the pipeline is created. The fragment’s depth value can come from one of two places:

• It may be interpolated as part of rasterization using the depth values at each of the primitive’s vertices.

• It may be generated in the fragment shader and output along with other color attachments.

Of course, generating the depth value in the fragment shader is one of the cases in which an implementation would be forced to run the shader before performing the depth test.

The depth value interpolated by rasterization is taken from the result of the viewport transformation. Each vertex has a depth value in the range 0.0, 1.0 as produced from the last stage in the geometry-processing pipeline. This is then scaled and biased using the parameters of the selected viewport to yield a framebuffer depth.

The depth test must be enabled by setting the depthTestEnable field of the VkPipelineDepthStencilStateCreateInfo structure to VK_TRUE.

When enabled, the operation used to compare the fragment’s computed depth value (either interpolated during rasterization or produced by your fragment shader) is specified in the depthCompareOp field of the pipeline’s VkPipelineDepthStencilStateCreateInfo. This is one of the standard VkCompareOp tokens, and their meanings when applied to depth testing are shown in Table 10.1.

If the depth test passes, the resulting depth (whether interpolated or produced by the fragment shader) may be written to the depth buffer. To do this, set depthWriteEnable to VK_TRUE. If depthWriteEnable is VK_FALSE, then the depth buffer is not written to, regardless of the outcome of the depth test.

[image: Image]

Table 10.1: Depth Comparison Functions

It is important to note that the depth buffer is not updated unless the depth test is enabled, regardless of the state of depthWriteEnable. Therefore, if you want to unconditionally write the fragment’s depth value into the depth buffer, you need to enable the test (set depthTestEnable to VK_TRUE), enable depth writes (set depthWriteEnable to VK_TRUE), and configure the depth test to always pass (set depthCompareEnable to VK_COMPARE_OP_ALWAYS).

Depth-Bounds Testing

The depth-bounds test is a special, additional test that can be performed as part of depth testing. The value stored in the depth buffer for the current fragment is compared with a specified range of values that is part of the pipeline. If the value in the depth buffer falls within the specified range, then the test passes; otherwise, it fails. What’s interesting about the depth-bounds test is that it is not in any way dependent on the depth value of the fragment being tested. This means that it can be quickly evaluated at the same time as or even before depth interpolation or fragment shading executes.

A use case for the depth-bounds test is to intersect volumetric geometry with an existing depth buffer. For example, if we prerender the depth buffer for a scene, we can project a light’s sphere of influence into the scene. We then set the depth bounds to the minimum and maximum distance from the light’s center and enable the test. When we render the light geometry (using a fragment shader that will perform deferred shading computations), the depth-bounds test will quickly reject fragments that will not be influenced by the light.

To enable the depth-bounds test, set the depthBoundsTestEnable member of VkPipelineDepthStencilStateCreateInfo to VK_TRUE, and configure the minimum and maximum depth-bounds values in minDepthBounds and maxDepthBounds, respectively. Perhaps more usefully, though, the minimum and maximum extents for the depth-bounds test can be configured as dynamic state.

To do this, include VK_DYNAMIC_STATE_DEPTH_BOUNDS as one of the dynamic states in the pipeline’s VkPipelineDynamicStateCreateInfo structure. Once the depth-bounds test is set to dynamic, the minimum and maximum extents for the test are set with vkCmdSetDepthBounds(), the prototype of which is

Click here to view code image

void vkCmdSetDepthBounds (

 VkCommandBuffer commandBuffer,

 float minDepthBounds,

 float maxDepthBounds);

Again, for the depth-bounds test to take effect, it must be enabled by setting the depthBoundsTestEnable member of the VkPipelineDepthStencilStateCreateInfo structure used to create the pipeline to VK_TRUE. The minDepthBounds and maxDepthBounds parameters take similar meaning to the similarly named parameters in the VkPipelineDepthStencilStateCreateInfo structure. Whether the depth-bounds test is enabled or not is always static state, even if the depth-bounds values themselves are marked as dynamic.

Note that the depth-bounds test is an optional feature, and not all Vulkan implementations support it. To determine whether the Vulkan implementation supports the depth-bounds test, check the depthBounds member of the device’s VkPhysicalDeviceFeatures structure. In order to use the depth-bounds test, you should also set the depthBounds field of the VkPhysicalDeviceFeatures structure used to create the device to VK_TRUE.

Depth Bias

When two primitives are rendered on top of each other or very close to it, their interpolated depth values may be the same or very close. If the primitives are exactly coplanar, then their interpolated depth values should be identical. If there is any deviation, then their depth values will differ by a very small amount. As the interpolated depth values are subject to floating-point imprecision, this can result in depth testing producing inconsistent and implementation-dependent results. The visual artifact that results is known as depth fighting.

To counteract this, and to enable predictable results from depth testing generally, a programmable bias value can be applied to the interpolated depth values to force them to be offset toward or away from the viewer. This is known as depth bias and is actually part of rasterization state because it is the rastrerizer that produces the interoplated depth values.

To enable depth bias, set the depthBiasEnable field of the VkPipelineRasterizationStateCreateInfo structure used to create the rasterizer state in the graphics pipeline to VK_TRUE. For reference, the definition of VkPipelineRasterizationStateCreateInfo is

Click here to view code image

typedef struct VkPipelineRasterizationStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineRasterizationStateCreateFlags flags;

 VkBool32 depthClampEnable;

 VkBool32 rasterizerDiscardEnable;

 VkPolygonMode polygonMode;

 VkCullModeFlags cullMode;

 VkFrontFace frontFace;

 VkBool32 depthBiasEnable;

 float depthBiasConstantFactor;

 float depthBiasClamp;

 float depthBiasSlopeFactor;

 float lineWidth;

} VkPipelineRasterizationStateCreateInfo;

When depthBiasEnable is VK_TRUE, the next three fields—depthBiasConstantFactor, depthBiasClamp, and depthBiasSlopeFactor—configure the depth-bias equations used to compute an offset that is applied to the interpolated depth values.

First, the maximum depth slope of the polygon m is computed as

[image: Image]

This is often approximated as

[image: Image]

In both equations, xf, yf, and zf represent a point on the triangle.

Once m is computed, the offset o is computed as

[image: Image]

The term r is the minimum resolvable delta in depth values for the primitive. For fixed-point depth buffers, this is a constant that depends only on the number of bits in the depth buffer. For floating-point depth buffers, this depends on the range of depth values spanned by the primitive.

If depthBiasClamp in VkPipelineRasterizationStateCreateInfo is 0.0 or NaN, then the computed value of o is used to directly bias the interpolated depth values. However, if depthBiasClamp is positive, then it forms an upper bound on o, and if it is negative, it forms a lower bound on o.

By biasing the depth value toward or away from the viewer slightly, it’s possible to ensure that for a given pair of coplanar (or almost coplanar) primitives, one always “wins” the depth test. This can essentially eliminate depth fighting.

The depth-bias parameters can either be static state contained in the rasterization state of the graphics pipeline or configured to be dynamic state. To enable the depth-bias state to be dynamic, include VK_DYNAMIC_STATE_DEPTH_BIAS in the list of dynamic states passed in the pDynamicStates member of the VkPipelineDynamicStateCreateInfo structure used to create the graphics pipeline.

Once depth bias is configured to be dynamic, the parameters for depth-bias equations can be set by calling vkCmdSetDepthBias(), the prototype of which is

Click here to view code image

void vkCmdSetDepthBias (

 VkCommandBuffer commandBuffer,

 float depthBiasConstantFactor,

 float depthBiasClamp,

 float depthBiasSlopeFactor);

The command buffer to set the depth-bias state for is specified in commandBuffer. The depthBiasConstantFactor, depthBiasClampFactor, and depthBiasSlopeFactor have the same meanings as the similarly named members of VkPipelineRasterizationStateCreateInfo. Note that while the depth bias parameters can be made part of a pipeline’s dynamic state, the depth bias must still be enabled by setting the depthBiasEnable flag to VK_TRUE in the VkPipelineRasterizationStateCreateInfo structure used to create the pipeline. The depthBiasEnable flag is always considered to be static state, although setting the depth-bias factors to 0.0 effectively disables it.

Stencil Testing

The stencil test is enabled by setting the stencilTestEnable field of VkPipelineDepthStencilStateCreateInfo to VK_TRUE.

The stencil test can actually be different for front- and back-facing primitives. The state of the stencil test is represented by an instance of the VkStencilOpState structure, and there is one for each of the front- and back-facing states. The definition of VkStencilOpState is

Click here to view code image

typedef struct VkStencilOpState {

 VkStencilOp failOp;

 VkStencilOp passOp;

 VkStencilOp depthFailOp;

 VkCompareOp compareOp;

 uint32_t compareMask;

 uint32_t writeMask;

 uint32_t reference;

} VkStencilOpState;

There are three possible outcomes between the depth and stencil tests. If the depth test fails, then the operation specified in depthFailOp is performed, and the stencil test is skipped. If the depth test passes, however, then the stencil test is performed, producing one of two further outcomes: If the stencil test fails, then the operation specified in failOp is performed, and if the stencil test passes, the operation specified in passOp is performed. Each of depthFailOp, failOp, and passOp is a member of the VkStencilOp enumeration. The meaning of each operation is shown in Table 10.2.

If enabled, the stencil test compares the stencil reference value with that of the current content of the stencil buffer. The operator used to compare the two values is specified in the compareOp field of the VkStencilOpState structure. This is the same set of values used for depth testing, only comparing the stencil reference with the content of the stencil buffer.

[image: Image]

Table 10.2: Stencil Operations

The reference value, compare mask value, and write mask value can also be made dynamic. To mark these states as dynamic, include VK_DYNAMIC_STATE_STENCIL_REFERENCE, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, and VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, respectively, in the list of dynamic states passed in the pDynamicStates member of the VkPipelineDynamicStateCreateInfo structure used to create the graphics pipeline.

Parameters of the stencil test can be set using three functions: vkCmdSetStencilReference(), vkCmdSetStencilCompareMask(), and vkCmdSetStencilWriteMask(). They set the stencil reference value and the compare and write masks, respectively. Their prototypes are

Click here to view code image

void vkCmdSetStencilReference (

 VkCommandBuffer commandBuffer,

 VkStencilFaceFlags faceMask,

 uint32_t reference);

void vkCmdSetStencilCompareMask (

 VkCommandBuffer commandBuffer,

 VkStencilFaceFlags faceMask,

 uint32_t compareMask);

void vkCmdSetStencilWriteMask (

 VkCommandBuffer commandBuffer,

 VkStencilFaceFlags faceMask,

 uint32_t writeMask);

Each of these three states can be independently made either static or dynamic. All three functions take a faceMask parameter, which determines whether the new state applies to front-facing primitives, back-facing primitives, or both. To specify each of these, set faceMask to VK_STENCIL_FACE_FRONT_BIT, VK_STENCIL_FACE_BACK_BIT, or VK_STENCIL_FRONT_AND_BACK, respectively. Note that VK_STENCIL_FRONT_AND_BACK has the same numeric value as VK_STENCIL_FACE_FRONT_BIT and VK_STENCIL_FACE_BACK_BIT added together.

Early Fragment Tests

Normally, the depth and stencil tests are configured to run after the fragment shader has run. Because updating the depth buffer occurs as part of the test—the test is considered to be an indivisible read-modify-write operation—this has three primary consequences that are visible to the application:

• The fragment shader can update the depth value of the fragment by writing to a floating-point output decorated with the BuiltIn FragDepth decoration. In this case, the depth test executes after the fragment shader and uses the value produced by the shader rather than the value generated by interpolation.

• The fragment shader has side effects such as storing into an image. In this case, the side effects from shader execution will be visible, even for fragments that later fail the depth test.

• If the fragment shader throws away the fragment by executing the OpKill SPIR-V instruction (produced by calling the discard() function in GLSL), then the depth buffer is not updated.

If none of these conditions can occur, Vulkan implementations are permitted to detect this case and reorder testing such that the depth and stencil tests occur before the fragment shader executes. This saves the work of executing the fragment shader for fragments that would fail the tests.

Because the default logical order of the pipeline specifies that the depth and stencil tests occur after the fragment shader has executed, when any of the conditions hold, the implementation must run operations in that order. You can, however, force the shader to run after the depth and stencil tests even when one of these conditions is true. There are two ways to do this.

First, you can force the fragment shader to run early regardless of any other condition detected by the Vulkan implementation. To do this, decorate the SPIR-V entry point for the fragment shader with the EarlyFragmentTests decoration. This will cause execution of the fragment shader to be delayed (or at least appear to be delayed) until after the depth and stencil tests have been executed. Should the depth test fail, then the fragment shader will not be executed, and any side effects that it may have produced, such as updates to an image via image stores, will not be visible.

This first mode is useful, for example, to run depth tests against a prerendered depth image produced, say, in an earlier subpass of a renderpass, but to produce output from the fragment shader using image stores rather than normal fragment shader outputs. Because the number of fixed-function outputs from the fragment shader is limited but the number of stores it may perform to images is effectively unlimited, this is a good way to increase the amount of data that a fragment shader can produce for a single fragment.

The second mechanism for running the fragment shader after depth testing is more subtle. It interacts specifically with the case where the fragment shader writes to the fragment’s depth value. Under normal circumstances, the implementation must assume that the fragment shader may write any arbitrary value to the fragment’s depth unless it can definitively prove otherwise.

In cases where you know that the fragment shader will move the depth value in only one direction (toward or away from the viewer), you can apply the SPIR-V DepthGreater or DepthLess execution modes to the fragment shader’s entry point with the OpExecutionMode instruction.

When DepthGreater is applied, then Vulkan knows that no matter what your shader does, the resulting depth values produced by the fragment shader will only be greater than the values produced by interpolation. Therefore, if the depth test is VK_COMPARE_OP_GREATER or VK_COMPARE_OP_GREATER_OR_EQUAL, then the fragment shader cannot negate the result of a depth test that’s already passed.

Likewise, when DepthLess is applied, then Vulkan knows that the fragment shader will only make the resulting depth value less than it would have been and therefore cannot negate the result of a passing VK_COMPARE_OP_LESS or VK_COMPARE_OP_LESS_OR_EQUAL test.

Finally, the SPIR-V DepthUnchanged execution mode tells Vulkan that no matter what the fragment shader appears to do to the depth value of the fragment shader, it should treat it as though it did not update the value at all. Therefore, any optimizations it might make if the shader did not write to the fragment’s depth remain valid and can be enabled where appropriate.

Multisample Rendering

Multisample rendering is a method to improve image quality by storing multiple depth, stencil, or color values for each pixel. As the image is rendered, multiple samples within each pixel are generated (hence the term multisample rendering) and when the image is to be displayed to the user, the samples are merged using a filter to produce a final, single value per pixel.

There are two general ways to produce a multisample image:

• Multisampling: Determining which samples within a pixel are covered, computing a single color value for that pixel, and then broadcasting that value to all covered samples within the pixel

• Supersampling: Computing unique color values for each and every sample within a pixel

Obviously, supersampling comes at significantly higher cost than multisampling because potentially many more color values are computed and stored.

To create a multisample image, set the samples field of the VkImageCreateInfo structure used to create the image to one of the values of the VkSampleCountFlagBits enumeration. The samples field is a one hot encoding of the sample count to be used in the image. The numeric value for the enumeration is simply n, where n is the number of samples in the image. Only power-of-two sample counts are supported.

While the current Vulkan header defines enumerants from VK_SAMPLE_COUNT_1_BIT to VK_SAMPLE_COUNT_64_BIT, most Vulkan implementations will support sample counts between 1 and 8 or maybe 16. Further, not every sample count between 1 and the maximum sample count supported by an implementation will be supported for every image format. In fact, support for different sample counts varies per format and even per tiling mode and should be queried using vkGetPhysicalDeviceFormatProperties(). As discussed in Chapter 2, “Memory and Resources,” vkGetPhysicalDeviceImageFormatProperties() returns information about a particular format. For reference, its prototype is

Click here to view code image

VkResult vkGetPhysicalDeviceImageFormatProperties (

 VkPhysicalDevice physicalDevice,

 VkFormat format,

 VkImageType type,

 VkImageTiling tiling,

 VkImageUsageFlags usage,

 VkImageCreateFlags flags,

 VkImageFormatProperties* pImageFormatProperties);

The format to be queried is passed along with the image type, tiling mode, usage flags and other information, and vkGetPhysicalDeviceImageFormatProperties() writes the support information about the format into the VkImageFormatProperties structure pointed to by pImageFormatProperties. The sampleCounts field of this structure then contains the supported sample counts for an image in the specified format with the configuration described by the remaining parameters.

As a primitive is rasterized, the rasterizer computes coverage information for the pixels hit by it. When multisample rendering is off, rasterization works by simply determining whether the center of each pixel is inside the primitive and, if so, considering the pixel hit. The depth and stencil tests are then performed at the center of the pixel, and the fragment shader is executed to determine the resulting shading information for that pixel.

When multisample rendering is enabled, coverage is determined for each sample in each pixel. For each sample that is considered to be inside the pixel, the depth and stencil tests are computed individually. If any sample is determined to be visible, then the fragment shader is run once to determine the output color for the fragment. That output color is then written into every visible sample in the image.

By default, the samples are distributed evenly within a pixel at a set of standard locations. These locations are illustrated in Figure 10.1. The standard sample locations shown in the figure are supported if the standardSampleLocations field of the device’s VkPhysicalDeviceLimits structure is VK_TRUE. In this case, the sample locations shown in Figure 10.1 are used for 1-, 2-, 4-, 8-, and 16-sample images (if supported). Even if the device supports 32, 64, or higher sample count images, there are no defined standard sample locations for those sample counts.

[image: Image]

Figure 10.1: Standard Sample Locations

If standardSampleLocations is VK_FALSE in the VkPhysicalDeviceLimits structure, then those sample counts may be supported with nonstandard sample locations. Determining the sample locations used by a device in this scenario would likely require a device extension.

Sample Rate Shading

Usually, when a multisample image is bound to the framebuffer, multisampling is used to render into it. As described earlier, coverage is determined at each of the sample locations in each pixel, and if any of them is covered by the primitive, the fragment shader is run once to determine the values of its outputs. Those values are then broadcast to all covered samples in the pixel.

For even higher image quality, we can use supersampling, which causes the fragment shader to be executed for each covered sample and the unique output values it produces to be written directly to the pixel’s samples.

While multisampling can improve the appearance of the edges of primitives, it can do nothing to prevent aliasing artifacts resulting from high spacial frequencies produced by the fragment shader. However, by running a fragment shader at sample rate, high frequencies produced by the fragment shader can be antialiased along with primitive edges.

To enable sample rate shading, set the sampleShadingEnable member of the VkPipelineMultisampleStateCreateInfo structure used to create the graphics pipeline to VK_TRUE. When sampleShadingEnable is enabled, the minSampleShading field further controls the frequency at which the shader will be executed. This is a floating-point value between 0.0 and 1.0. At least this fraction of the samples in the pixel will receive a unique set of values as produced by a separate invocation of the fragment shader.

If minSampleShading is 1.0, then every sample in the pixel is guaranteed to receive its own data from a separate invocation of the fragment shader. Any value less than 1.0 causes the device to compute colors for at least that many samples and then distribute the values to the samples in a device-dependent manner. For example, if minSampleShading is 0.5, then a fully covered 8-sample pixel would cause the fragment shader to execute at least 4 times and for the 4 sets of outputs to be distributed to the 8 samples in the pixel in a device-dependent manner.

It is possible to configure the pipeline to update only a subset of the samples in the framebuffer. You can specify a sample mask, which is a bitmask with a single bit corresponding to each of the samples in the framebuffer. This mask is specified by passing an array of unsigned 32-bit integers through the pSampleMask member of VkPipelineMultisampleStateCreateInfo. The array divides the arbitrarily long bitmask into 32-bit chunks, each chunk being an element of the array. If the framebuffer has 32 or fewer samples, then the array becomes a single element long.

The Nth sample is represented by the (N%32)th bit of the (N/32)th element of the array. When the bit is set, the sample may be updated by the pipeline. If the bit is cleared, then the pipeline will not modify the content of samples at that index. In effect, the sample mask is logically ANDed with the coverage computed during rasterization. If pSampleMask is nullptr, then all samples are enabled for writing.

In addition to generating coverage during rasterization, it is possible for a fragment shader to produce a pseudo-coverage value by writing into the alpha channel of its output. By setting the alphaToCoverage field of VkPipelineMultisampleStateCreateInfo to VK_TRUE, the alpha value written into the fragment shader’s first output is used to create a new coverage value for the fragment. A fraction of the samples in the temporarily created sample mask are enabled in an implementation-defined order, according to the value written by the shader into the alpha channel. This is then logically ANDed with the coverage mask computed during rasterization. This allows simple transparency and coverage effects to be implemented by simply exporting alpha values from the shader.

The question then remains what to do with the actual alpha channel in the framebuffer. If the shader writes a fraction of coverage into the alpha channel, it may not make sense to write this value directly into the framebuffer along with the RGB color data. Instead, you can ask Vulkan to subsitute a value of 1.0 for alpha for the other alpha-related operations, as though the shader had not produced an alpha value at all. To do this, set the alphaToOneEnable field to VK_TRUE.

Multisample Resolves

When rendering to a multisample image is completed, it can be resolved to a single sample image. This process aggregates all of the values stored in the multiple samples for each pixel into a single value, producing a nonmultisampled image. There are two ways to resolve an image.

The first is to include a nonmultisampled image in the pResolveAttachments array passed to through the VkSubpassDescription used to create a subpass that would render to the original multisample color attachments. The subpass will produce a multisample image into the corresponding color attachment, and when the subpass ends (or at least by the time the renderpass ends), Vulkan will automatically resolve the multisample image into the corresponding nonmultisampled image in pResolveAttachments.

You can then set the storeOp for the multisample image to VK_ATTACHMENT_STORE_OP_DONT_CARE to discard the original multisampled data, assuming that it is not needed for something else. This is likely the most efficient way of resolving a multisample image, as many implementations will be able to fold the resolve operation into some other internal operations that are already part of the renderpass, or at least perform the resolve operation while the original multisample data is in caches rather than writing it all into memory and reading it back later.

It’s also possible to explicitly resolve a multisample image into a single sample image by calling vkCmdResolveImage(), the prototype of which is

Click here to view code image

void vkCmdResolveImage (

 VkCommandBuffer commandBuffer,

 VkImage srcImage,

 VkImageLayout srcImageLayout,

 VkImage dstImage,

 VkImageLayout dstImageLayout,

 uint32_t regionCount,

 const VkImageResolve* pRegions);

The command buffer that will perform the resolve operation is passed in commandBuffer. The source image and its expected layout at the time of the resolve operation are passed in srcImage and srcImageLayout, respectively. Likewise, the destination image and its expected layout are passed in dstImage and dstImageLayout. vkCmdResolveImage() behaves much like the blit and copy operations discussed in Chapter 4, “Moving Data.” As such, the layout of the source image should be either VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, and the layout of the destination image should be VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

As with the other blit and copy commands, vkCmdResolveImage() can resolve only parts of an image if needed. The number of regions to resolve is passed in regionCount, and pRegions points to an array of VkImageResolve structures, each defining one of the regions. The definition of VkImageResolve is

Click here to view code image

typedef struct VkImageResolve {

 VkImageSubresourceLayers srcSubresource;

 VkOffset3D srcOffset;

 VkImageSubresourceLayers dstSubresource;

 VkOffset3D dstOffset;

 VkExtent3D extent;

} VkImageResolve;

Each region to resolve is represented by one instance of the VkImageResolve structure. Each structure contains a description of the regions in the source and destination regions. The subresource from which source data is to be taken is in the srcSubresource field, and the subresource to which the resolved image data is to be written is in the dstSubresource field. vkCmdResolveImage() cannot rescale the multisample image, so the sizes of the source and destination regions are the same. This is stored in the extent member of the VkImageResolve structure. However, the region in the source and destination image does not need to be at the same location in the two images. The origin of the region in the source image is stored in the srcOffset field, and the origin of the output region is stored in the dstOffset field.

When an image is resolved by specifying it as one of the resolve attachments in the renderpass, the entire region is resolved at the end of the subpass that references it—at least the region that is included in the renderArea passed to vkCmdBeginRenderPass(). With vkCmdResolveImage(), however, it’s possible to resolve parts of an image. Although explicitly calling vkCmdResolveImage() is likely to be less efficient than resolving attachments at the end of a renderpass, it may be that you need to resolve only part of the image, so vkCmdResolveImage() is the more appropriate choice in that case.

Logic Operations

Logic operations allow logical operations such as AND and XOR to be applied between the output of the fragment shader and the content of a color attachment. Logical operations are supported on most integer formats that can be used as color attachments. Logical operations are enabled by setting the logicOpEnable field of the VkPipelineColorBlendStateCreateInfo used to create a color blend state object to VK_TRUE. Introduced in Chapter 7, “Graphics Pipelines,” the definition of VkPipelineColorBlendStateCreateInfo is

Click here to view code image

typedef struct VkPipelineColorBlendStateCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkPipelineColorBlendStateCreateFlags flags;

 VkBool32 logicOpEnable;

 VkLogicOp logicOp;

 uint32_t attachmentCount;

 const VkPipelineColorBlendAttachmentState* pAttachments;

 float blendConstants[4];

} VkPipelineColorBlendStateCreateInfo;

When logical operations are enabled, the logical operation specified by logicOp, is performed between each of the fragment shader’s outputs and the corresponding color attachment. The same logical operation is used for every attachment—that is, it is not possible to use a different logical operation for different attachments. The available logical operations, represented by members of the VkLogicOp, are shown in Table 10.3.

[image: Image]

Table 10.3: Logic Operations

In Table 10.3, Source refers to the value(s) produced by the fragment shader, and Destination refers to the values already in the color attachment.

Although the selected logical operation is global (if enabled) and applies to all color outputs, logical operations are applied only to color attachments with formats that support them. If the format used for one of the color attachments does not support logical operations, then the selected logic operation is ignored for that attachment, and the value is written directly to the attachment.

Fragment Shader Outputs

Each fragment shader may have one or more outputs. It is possible to construct a fragment shader that has no outputs and produces visible side effects by performing image store operations. However, in the majority of cases, fragment shaders produce outputs by writing them to special variables declared as outputs.

To declare an output in a GLSL fragment, simply create a variable at global scope with the out storage qualifier. This produces a SPIR-V declaration of an output variable, which in turn is used by Vulkan to connect the fragment shader’s output to subsequent processing. Listing 10.1 shows a simple GLSL fragment shader that declares a single output and writes an opaque red color into it. The resulting SPIR-V shader is shown in Listing 10.2.

Listing 10.1: Declaring an Output in a Fragment Shader (GLSL)

Click here to view code image

#version 450 core

out vec4 o_color;

void main(void)

{

 o_color = vec4(1.0f, 0.0f, 0.0f, 1.0f);

}

When the code in Listing 10.1 is used to create the SPIR-V shader in Listing 10.2, you can see that the o_color output is translated into an output variable (%9) of type vector of four floating-point values (%7). The OpStore instruction is then used to write to it.

Listing 10.2: Declaring an Output in a Fragment Shader (SPIR-V)

Click here to view code image

; SPIR-V

; Version: 1.0

; Generator: Khronos Glslang Reference Front End; 1

; Bound: 13

; Schema: 0

 OpCapability Shader

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint Fragment %4 "main" %9

 OpExecutionMode %4 OriginUpperLeft

 OpSource GLSL 450

 OpName %4 "main"

 OpName %9 "o_color"

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeVector %6 4

 %8 = OpTypePointer Output %7

 %9 = OpVariable %8 Output

 %10 = OpConstant %6 1

 %11 = OpConstant %6 0

 %12 = OpConstantComposite %7 %10 %11 %11 %10

 %4 = OpFunction %2 None %3

 %5 = OpLabel

 OpStore %9 %12

 OpReturn

 OpFunctionEnd

When the framebuffer color attachment is floating-point, or signed- or unsigned-normalized format, the fragment shader output should be declared using a floating-point variable. When the color attachment is a signed or unsigned integer format, then the fragment shader output should be declared as a signed or unsigned integer type too. The number of components in the fragment shader output should be at least as many as the number of components in the corresponding color attachment.

As you saw in Chapter 7, “Graphics Pipelines,” a single graphics pipeline can have many color attachments and access these attachments through attachment references in each subpass. Each subpass can reference several output attachments, which means that a fragment shader can write to several attachments. To do this, we declare multiple outputs in our fragment shader and, in GLSL, specify an output location using a location layout qualifier.

Listing 10.3 shows a GLSL fragment shader that declares multiple outputs, writing a different constant color to each one. Each is assigned a different location using a location layout qualifier.

Listing 10.3: Several Outputs in a Fragment Shader (GLSL)

Click here to view code image

#version 450 core

layout (location = 0) out vec4 o_color1;

layout (location = 1) out vec4 o_color2;

layout (location = 5) out vec4 o_color3;

void main(void)

{

 o_color1 = vec4(1.0f, 0.0f, 0.0f, 1.0f);

 o_color2 = vec4(0.0f, 1.0f, 0.0f, 1.0f);

 o_color3 = vec4(0.0f, 0.0f, 1.0f, 1.0f);

}

The result of compiling the shader in Listing 10.3 to SPIR-V is shown in Listing 10.4.

Listing 10.4: Several Outputs in a Fragment Shader (SPIR-V)

Click here to view code image

; SPIR-V

; Version: 1.0

; Generator: Khronos Glslang Reference Front End; 1

; Bound: 17

; Schema: 0

 OpCapability Shader

 %1 = OpExtInstImport "GLSL.std.450"

 OpMemoryModel Logical GLSL450

 OpEntryPoint Fragment %4 "main" %9 %13 %15

 OpExecutionMode %4 OriginUpperLeft

 OpSource GLSL 450

 OpName %4 "main"

 OpName %9 "o_color1"

 OpName %13 "o_color2"

 OpName %15 "o_color3"

 OpDecorate %9 Location 0

 OpDecorate %13 Location 1

 OpDecorate %15 Location 5

 %2 = OpTypeVoid

 %3 = OpTypeFunction %2

 %6 = OpTypeFloat 32

 %7 = OpTypeVector %6 4

 %8 = OpTypePointer Output %7

 %9 = OpVariable %8 Output

 %10 = OpConstant %6 1

 %11 = OpConstant %6 0

 %12 = OpConstantComposite %7 %10 %11 %11 %10

 %13 = OpVariable %8 Output

 %14 = OpConstantComposite %7 %11 %10 %11 %10

 %15 = OpVariable %8 Output

 %16 = OpConstantComposite %7 %11 %11 %10 %10

 %4 = OpFunction %2 None %3

 %5 = OpLabel

 OpStore %9 %12

 OpStore %13 %14

 OpStore %15 %16

 OpReturn

 OpFunctionEnd

As you can see in Listing 10.4, the outputs are declared as normal but are decorated using OpDecorate instructions with the locations assigned in the original GLSL shader of Listing 10.3.

The locations assigned in the fragment shader do not have to be contiguous. That is, you can leave gaps. The shader in Listing 10.3 assigns to outputs at locations 0, 1, and 5, leaving locations 2, 3, and 4 (and locations beyond 5) unwritten. However, it is best practice to tightly assign locations to fragment shader outputs.

Further, the maximum location that can be assigned to a fragment shader output is device-dependent. All Vulkan devices support writing to at least four color attachments from a fragment shader. The actual maximum supported by a device can be determined by checking the maxFragmentOutputAttachments member of the device’s VkPhysicalDeviceLimits structure as returned from a call to vkGetPhysicalDeviceProperties(). Most desktop-class hardware will support writing to eight or possibly more color attachments.

Fragment shader outputs may also be aggregated into arrays. Of course, all elements in the array have the same type, so this method is suitable only for writing to multiple color attachments with the same types. When a fragment shader declares an output as an array, the first element in that array consumes the location assigned by the location layout qualifier, and each subsequent element in the array consumes a consecutive location. In the resulting SPIR-V shader, this produces a single output variable declared as an array with a single OpDecorate instruction. When writing to the outputs, an OpAccessChain instruction is used to dereference the appropriate element of the array, the result of which is passed to the OpStore instruction as normal.

Color Blending

Blending is the process of merging the outputs of the fragment shader into the corresponding color attachments. When blending is disabled, the outputs of the fragment shader are simply written into the color attachment unmodified, and the original content of the attachment is overwritten. However, when blending is enabled, the value written into the color attachment becomes a function of the value produced by the shader, some configurable constants, and the value already in the color attachment. This allows effects such as transparency, accumulation, translucency, and so on to be implemented using fast, often fixed-function hardware acceleration rather than shader code. Blending also happens entirely in order, whereas read-modify-write operations in a fragment shader may execute out of order with respect to the primitives that they are part of.

Blending, whether it’s enabled, and the parameters of the equation are controlled on a per-attachment basis using the VkPipelineColorBlendAttachmentState structure passed for the attachment in the VkPipelineColorBlendStateCreateInfo structure used to create a color blend state object. Introduced in Chapter 7, “Graphics Pipelines,” the definition of VkPipelineColorBlendAttachmentState is

Click here to view code image

typedef struct VkPipelineColorBlendAttachmentState {

 VkBool32 blendEnable;

 VkBlendFactor srcColorBlendFactor;

 VkBlendFactor dstColorBlendFactor;

 VkBlendOp colorBlendOp;

 VkBlendFactor srcAlphaBlendFactor;

 VkBlendFactor dstAlphaBlendFactor;

 VkBlendOp alphaBlendOp;

 VkColorComponentFlags colorWriteMask;

} VkPipelineColorBlendAttachmentState;

If the colorBlendEnable member of each VkPipelineColorBlendAttachmentState structure is VK_TRUE, then blending is applied to the corresponding color attachment. The outputs of the fragment shader are considered to be the source, and the existing content of the color attachment is considered to be the destination. First, the source color (R, G, and B) channels are multiplied by a factor specified in the srcColorBlendFactor. Likewise, the destination color channels are multiplied by factors specified by dstColorBlendFactor. The results of these multiplications are then combined using an operation specified by colorBlendOp.

[image: Image]

Table 10.4: Blend Equations

The blend operations are specified with members of the VkBlendOp enumeration, and their effects are listed in Table 10.4. In the table, Srgb and Drgb are the the source and destination color factors, Sa and Da are the source and destination alpha factors, RGBs and RGBd are the source and destination RGB values, and As and Ad are the source and destination alpha values.

Note that the VK_BLEND_FACTOR_MIN and VK_BLEND_FACTOR_MAX modes do not include the source or destination factors (Srgb, Sa, Drgb or Da), only the source and destination colors or alpha values. These modes can be used to find the maximum or minumum values produced at a particular pixel for the attachment.

The available blend factors for use in srcColorBlendFactor, dstColorBlendFactor, srcAlphaBlendFactor, and dstAlphaBlendFactor are represented by members of the VkBlendFactor enumeration. Table 10.5 shows its members and their meanings.

In the table, Rs0, Gs0, Bs0, and As0 are the R, G, B, and A channels of the first color output from the fragment shader, and Rs1, Gs1, Bs1, and As1 are the R, G, B, and A channels of the secondary color output from the fragment shader. These are used for dual-source blending, which is explained in more detail in the next section.

[image: Image]

Table 10.5: Blend Factors

In the entries VK_BLEND_FACTOR_CONSTANT_COLOR and VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR in Table 10.5, the term CONSTANT_COLOR refers to the (Rc, Gc, Bc, Ac) constant color, which is a constant that is part of the pipeline. This can be any arbitrary set of floating-point values and can be used, for example, to scale the content of the framebuffer by a fixed amount.

When this state is static, it is specified in the blendConstants field of the VkPipelineColorBlendStateCreateInfo structure used to create the color blend state object. When the color blend constant state is configured as dynamic, the vkCmdSetBlendConstants() function is used to change the blend constants. The prototype of vkCmdSetBlendConstants() is

Click here to view code image

void vkCmdSetBlendConstants (

 VkCommandBuffer commandBuffer,

 const float blendConstants[4]);

The command buffer to set the blend constant state for is specified in commandBuffer, and the new blend constants are specified in blendConstants. This is an array of four floating-point values that take the place of the blendConstants member of the VkPipelineColorBlendStateCreateInfo structure used to initialize the graphics pipeline’s blend state.

As discussed in Chapter 7, “Graphics Pipelines,” to set the constant blend color as part of the dynamic state for a pipeline, include VK_DYNAMIC_STATE_BLEND_CONSTANTS in the list of dynamic states passed through the VkPipelineDynamicStateCreateInfo structure when creating the graphics pipeline.

In Table 10.5, you notice that the last few factor tokens include the terms SRC1_COLOR or SRC1_ALPHA, which correspond to RGBs1 and As1, respectively. These are the second source-blending values taken from the fragment shader. The fragment shader can output two terms for a single color attachment, and these terms can be used in the blending stage to implement slightly more advanced blending modes than are achievable with a single color output.

For example, it is possible to multiply the destination color (the values already in the color attachment) by one set of values produced by the fragment shader and then add a second set of values produced by the same shader invocation. To implement this, set srcColorBlendFactor to VK_BLEND_FACTOR_ONE and dstColorBlendFactor to VK_BLEND_FACTOR_SRC1_COLOR.

When dual-source blending is in use, the two source colors produced by the fragment shader are both directed to the same attachment location, but with different color indices. To specify the color index in SPIR-V, decorate the output from the fragment shader with the Index decoration using the OpDecorate or OpMemberDecorate instruction. Index 0 (which is the default if the decoration is missing) corresponds to the first color output, and index 1 corresponds to the second color output.

Dual-source blending may not be supported by all Vulkan implementations. To determine whether your Vulkan drivers and hardware supports dual-source blending, check the dualSrcBlend member of the device’s VkPhysicalDeviceFeatures structure, which you can retrieve by calling vkGetPhysicalDeviceFeatures(). When dual-source blending is supported and enabled, the total number of color attachments that can be referenced by a subpass in the pipeline using that mode may be limited. This limit is stored in maxFragmentDualSrcAttachments. If there is any support at all, then at least one attachment can be used in dual-source blending mode.

Summary

This chapter covered the operations that occur as part of fragment processing, after rasterization. These operations include depth and stencil tests, scissor testing, fragment shading, blending, and logic operations. Together, these operations compute the final colors of the pixels produced by your application. They determine visibility and ultimately produce the image that will be shown to your users.

Chapter 11. Synchronization

What You’ll Learn in This Chapter

• How to synchronize the host and the device

• How to synchronize work on different queues on the same device

• How to synchronize work conducted at different points in the pipeline

Vulkan is designed to run work asynchronously, in parallel, with multiple queues on a device working together with the host to keep physical resources busy and in use. At various points in your application, you will need to keep the host and the various parts of the device in sync. In this chapter, we discuss the multiple synchronization primitives that are available to Vulkan applications for this purpose.

Synchronization in Vulkan is accomplished through the use of various synchronization primitives. There are several types of synchronization primitives and they are intended for different uses in an application. The three main types of synchronization primitives are

• Fences: Used when the host needs to wait for the device to complete execution of large pieces of work represented by a submission, usually with the assistance of the operating system.

• Events: Represent a fine-grained synchronization primitive that can be signaled either by the host or the device. It can be signaled mid-command buffer when signaled by the device, and it can be waited on by the device at specific points in the pipeline.

• Semaphores: Synchronization primitives that are used to control ownership of resources across different queues on a single device. They can be used to synchronize work executing on different queues that would otherwise operate asynchronously.

We’ll cover each of these three synchronization primitives in the following few sections.

Fences

A fence is a medium-weight synchronization primitive that is generally implemented with the help of the operating system. A fence is given to commands that interact with the operating system, such as vkQueueSubmit(), and when the work that these commands provoke is completed, the fence is signaled.

Because the fence often corresponds to a native synchronization primitive provided by the operating system, it is generally possible to put threads to sleep while they wait on fences, which saves power. However, this is intended for operations in which waiting may take some time, such as waiting for the completion of the execution of a number of command buffers or the presentation of a completed frame to the user.

To create a new fence object, call vkCreateFence(), the prototype of which is

Click here to view code image

VkResult vkCreateFence (

 VkDevice device,

 const VkFenceCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkFence* pFence);

The device that will create the fence object is specified in device, and the remaining parameters of the fence are passed through a pointer to an instance of the VkFenceCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkFenceCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkFenceCreateFlags flags;

} VkFenceCreateInfo;

The sType field of the VkFenceCreateInfo structure should be set to VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, and pNext should be set to nullptr. The only remaining field, flags, specifies a set of flags that controls the behavior of the fence. The only flag defined for use here is VK_FENCE_CREATE_SIGNALED_BIT. If this bit is set in flags, then the initial state of the fence is signaled; otherwise, it is unsignaled.

If vkCreateFence() is successful, a handle to the new fence object is placed in the variable pointed to by pFence. If pAllocator is not nullptr, it should point to a host memory allocation structure that will be used to allocate any host memory required by the fence.

As with most other Vulkan objects, when you are done with the fence, you should destroy it in order to free its resources. To do this, call vkDestroyFence(), the prototype of which is

Click here to view code image

void vkDestroyFence (

 VkDevice device,

 VkFence fence,

 const VkAllocationCallbacks* pAllocator);

The device that owns the fence object is specified in device, and the handle to the fence to be destroyed is passed in fence. If a host memory allocator was used with vkCreateFence(), then pAllocator should point to a host memory allocation structure compatible with the one used to allocate the object; otherwise, pAllocator should be nullptr.

The fence may be used in any command that takes a fence parameter. These commands usually operate on queues and provoke work to be executed on that queue. For example, here is the prototype of vkQueueSubmit():

Click here to view code image

VkResult vkQueueSubmit (

 VkQueue queue,

 uint32_t submitCount,

 const VkSubmitInfo* pSubmits,

 VkFence fence);

Notice that the last parameter to vkQueueSubmit() is a VkFence handle. When all of the work provoked on queue is complete, the fence specified in fence will be set to signaled. In some cases, the device can signal the fence directly. In other cases, the device will signal the operating system through an interrupt or other hardware mechanism, and the operating system will change the state of the fence.

The application can determine the state of the fence at any time by calling vkGetFenceStatus(), the prototype of which is

Click here to view code image

VkResult vkGetFenceStatus (

 VkDevice device,

 VkFence fence);

The device that owns the fence is specified in device, and the fence whose status to query is passed in fence. The value returned from vkGetFenceStatus() indicates the state of the fence. On success, vkGetFenceStatus() can be one of the following values:

• VK_SUCCESS: The fence is currently signaled.

• VK_NOT_READY: The fence is currently unsignaled.

If there was some problem retrieving the status of the fence, vkGetFenceStatus() may return an error code. It can be tempting to poll the state of a fence by spinning in a loop until vkGetFenceStatus() returns VK_SUCCESS. However, this is extremely inefficient and bad for performance, especially if there is any chance that the application could wait for a long time. Rather than spin, your application should call vkWaitForFences(), which allows the Vulkan implementation to provide a more optimal mechanism for waiting on one or more fences.

The prototype of vkWaitForFences() is

Click here to view code image

VkResult vkWaitForFences (

 VkDevice device,

 uint32_t fenceCount,

 const VkFence* pFences,

 VkBool32 waitAll,

 uint64_t timeout);

The device that owns the fences that will be waited on is passed in device. vkWaitForFences() can wait on any number of fences. The number of fences upon which it should wait is passed in fenceCount, and pFences should point to an array of this many VkFence handles to the fences to wait on.

vkWaitForFences() can either wait for all the fences in the pFences array to become signaled or can return as soon as any fence in the array becomes signaled. If waitAll is VK_TRUE, then vkWaitForFences() will wait for all of the fences in pFences to become signaled; otherwise, it will return as soon as any of them becomes signaled. In this case, you can use vkGetFenceStatus() to determine which fences are signaled and which are unsignaled.

Because vkWaitForFences() could end up waiting for a very long time, it is possible to ask it to time out. The timeout parameter specifies the time, in nanoseconds, that vkWaitForFences() should wait for the termination condition (at least one of the fences becomes signaled) to be met. If timeout is zero, then vkWaitForFences() will simply check the status of the fences and return immediately. This is similar to vkGetFenceStatus() except for two differences:

• vkWaitForFences() can check the status of multiple fences, possibly more efficiently than multiple calls to vkGetFenceStatus().

• If the fences in the pFences array are not signaled, then vkWaitForFences() indicates a timeout rather than a not-ready condition.

There is no way to ask vkWaitForFences() to wait forever. However, because timeout is a 64-bit value measured in nanoseconds and 264 − 1 nanoseconds is a little over 584 years, the value ~0ull is probably a sufficient proxy for infinity.

The result of the wait operation is represented by the value returned from vkWaitForFences(). It may be one of the following values:

• VK_SUCCESS: The condition being waited on was met. If waitAll was VK_FALSE, then at least one fence in pFences was signaled. If waitAll was VK_TRUE, then all of the fences in pFences became signaled.

• VK_TIMEOUT: The condition being waited on was not met before the timeout period occurred. If timeout was zero, this represents an instantaneous polling of the fences.

If an error occurs, such as one of the handles in the pFences array being invalid, then vkWaitForFences() will return an appropriate error code.

Once a fence has become signaled, it will remain in that state until it is reset to an unsignaled state explicitly. When a fence is no longer signaled, it can be reused in commands such as vkQueueSubmit(). There are no commands that cause the device to reset a fence, and there are no commands that can wait for a fence to become unsignaled. To reset one or more fences to an unsignaled state, call vkResetFences(), the prototype of which is

Click here to view code image

VkResult vkResetFences (

 VkDevice device,

 uint32_t fenceCount,

 const VkFence* pFences);

The device that owns the fences is passed in device; the number of fences to reset is passed in fenceCount; and a pointer to an array of VkFence handles is passed in pFences. Take care that you don’t try waiting on a fence that has been reset without calling another function that will eventually signal that fence.

A primary use case for fences is to prevent the host from overwriting data that might be in use by the device—or, more accurately, data that might be about to be used by the device. When a command buffer is submitted, it does not execute immediately, but is placed in queue and executed by the device in turn. It also does not execute infinitely quickly, but takes some time to execute. Therefore, if you place data in memory and then submit a command buffer that references that data, you must be careful to ensure that the data remains valid and in place until the command buffer has executed. The fence supplied to vkQueueSubmit() is the means to determine this.

In this example, we create a buffer, map it, and place some data in it using the host; then we submit a command buffer that references that data. Three mechanisms are provided to perform synchronization between the host and device and to ensure that the host does not overwrite the data in the buffer before it’s used by the device.

In the first method, we call vkQueueWaitIdle() to ensure that all work submitted to the queue (including our work that consumes the data in the buffer) has completed. In the second method, we use a single fence, associated with the submission that consumes the data, and we wait on that fence before overwriting the content of the buffer. In the third method, we subdivide the buffer into four quarters, associate a fence with each quarter, and wait for the fence associated with that section of the buffer before overwriting it.

In addition, a method with no synchronization at all is provided. This method simply overwrites the data in the buffer without waiting at all. In this method, we invalidate the data in the buffer before overwriting it with new, valid data. This should demonstrate the kind of corruption that can occur in the absence of proper synchronization.

The code for the first two methods—brute-force idle of the queue and waiting for a single fence (which is essentially equivalent in this scenario)—is somewhat trivial and is therefore not shown here. Listing 11.1 shows the initialization sequence for the method using four separate fences.

Listing 11.1: Setup for Four-Fence Synchronization

Click here to view code image

// kFrameDataSize is the size of the data consumed in a single frame.

// kRingBufferSegments is the number of frames' worth of data to keep.

// Create a buffer large enough to hold kRingBufferSegments copies

// of kFrameDataSize.

static const VkBufferCreateInfo bufferCreateInfo =

{

 VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, nullptr, // sType,pNext

 0, // flags

 kFrameDataSize*kRingBufferSegments, // size

 VK_BUFFER_USAGE_TRANSFER_SRC_BIT, // usage

 VK_SHARING_MODE_EXCLUSIVE, // sharingMode

 0, // queueFamilyIndexCount

 nullptr // pQueueFamilyIndices

};

result = vkCreateBuffer(device,

 &bufferCreateInfo,

 nullptr,

 &m_buffer);

// Create kRingBufferSegments fences, all initially in signaled state.

static const VkFenceCreateInfo fenceCreateInfo =

{

 VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,nullptr,

 VK_FENCE_CREATE_SIGNALED_BIT

};

for (int i = 0;i < kRingBufferSegments; ++i)

{

 result = vkCreateFence(device,

 &fenceCreateInfo,

 nullptr,

 &m_fence[i]);

}

As you can see, in Listing 11.1 we create a buffer that is four times the size of the data to be used by the device; then we create four fences, each guarding one quarter of the total buffer size. The fences are created in the signaled state. This is so we can simply enter our loop that waits on the fence guarding the current section of the buffer to be signaled, fills the buffer, and generates a new command buffer referencing that section of the buffer. The first time this loop executes, the fence is already signaled because it was created in that state, and no special case is required for the first entry into the loop.

Listing 11.2 shows the inner loop that waits for each fence to be signaled, fills the appropriate section of the buffer, resets the fence, generates a command buffer to consume the data, submits it to the queue, and specifies the fence.

Listing 11.2: Loop Waiting on Fences for Synchronization

Click here to view code image

// Beginning of frame - compute the segment index.

static int framesRendered = 0;

const int segmentIndex = framesRendered % kRingBufferSegments;

// Use a ring of command buffers indexed by segment.

const VkCommandBuffer cmdBuffer = m_cmdBuffer[segmentIndex];

// Wait for the fence associated with this segment.

result = vkWaitForFences(device,

 1,

 &m_fence[segmentIndex],

 VK_TRUE,

 UINT64_MAX);

// It's now safe to overwrite the data. m_mappedData is an array of

// kRingBufferSegments pointers to persistently mapped backing store for

// the source buffer.

fillBufferWithData(m_mappedData[segmentIndex]);

// Reset the command buffer. We always use the same command buffer to copy

// from a given segment of the the staging buffer, so it's safe to reset it

// here because we've already waited for the associated fence.

vkResetCommandBuffer(cmdBuffer, 0);

// Rerecord the command buffer.

static const VkCommandBufferBeginInfo beginInfo =

{

 VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, // sType

 nullptr, // pNext

 VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, // flags

 nullptr // pInheritanceInfo

};

vkBeginCommandBuffer(cmdBuffer, &beginInfo);

// Copy from the staging buffer at the appropriate segment index into

// the final destination buffer.

VkBufferCopy copyRegion =

{

 segmentIndex * kFrameDataSize, // srcOffset

 0, // dstOffset

 kFrameDataSize // size

};

vkCmdCopyBuffer(cmdBuffer,

 m_stagingBuffer,

 m_targetBuffer,

 1,

 ©Region);

vkEndCommandBuffer(cmdBuffer);

// Reset the fence for this segment before submitting this chunk of work to

// the queue.

vkResetFences(device, 1, &m_fence[segmentIndex]);

// Note that this example doesn't use any submission semaphores. In a real

// application, you would submit many command buffers in a single submission

// and protect that submission using wait and signal semaphores.

VkSubmitInfo submitInfo =

{

 VK_STRUCTURE_TYPE_SUBMIT_INFO, nullptr, // sType, pNext

 0, // waitSemaphoreCount

 nullptr, // pWaitSemaphores

 nullptr, // pWaitDstStageMask

 1, // commandBufferCount

 &cmdBuffer, // pCommandBuffers

 0, // signalSemaphoreCount

 nullptr // pSignalSemaphores

};

vkQueueSubmit(m_queue,

 1,

 &submitInfo,

 m_fence[segmentIndex]);

framesRendered++;

Note that the code in Listing 11.2 is incomplete and serves only to demonstrate the use of fences to protect shared data. In particular, the example omits several things that a real application will need:

• It does not include any pipeline barriers to protect the target buffer (m_targetBuffer) from being overwritten or to move the source buffer from host writable to the source for transfers.

• It does not use any semaphores to protect the submission. Semaphores will be needed if this is part of a larger frame that includes presentation or submission to other queues.

• It does not include any calls to vkFlushMappedMemoryRanges(), which will be required unless the memory backing the buffer was allocated with the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT set.

Events

Event objects represent a fine-grained synchronization primitive that can be used to accurately delimit operations occurring within a pipeline. An event exists in one of two states: signaled and unsignaled. Unlike a fence, which is typically moved from state to state by the operating system, events can be signaled or reset explicitly by the device or host. Not only can the device directly manipulate the state of an event, but it can do this at specific points in the pipeline.

Unlike a fence, where only the host can wait on the object, the device can wait on event objects. When waiting, the device can wait at a specific point in the pipeline. Because the device can signal an event at one part of the pipeline and wait for it at another, events provide a way to synchronize execution occurring at different parts of the same pipeline.

To create an event object, call vkCreateEvent(), the prototype of which is

Click here to view code image

VkResult vkCreateEvent (

 VkDevice device,

 const VkEventCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkEvent* pEvent);

The device which is to create the event is specified in device, and the remaining parameters describing the event are passed through a pointer to an instance of the VkEventCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkEventCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkEventCreateFlags flags;

} VkEventCreateInfo;

The sType field of VkEventCreateInfo should be set to VK_STRUCTURE_TYPE_EVENT_CREATE_INFO, and pNext should be set to nullptr. The flags field of VkEventCreateInfo specifies additional behavior of the event. However, there are currently no event creation flags defined, and flags should be treated as reserved and set to zero.

If vkCreateEvent() is successful, it will place the VkEvent handle to the newly created object in the variable pointed to by pEvent. If vkCreateEvent() requires host memory, then it will use the allocator specified in pAllocator. A compatible allocator should be used when the event is destroyed.

When you are done with the event, you should free its resources by destroying the object. To destroy an event object, call vkDestroyEvent(), the prototype of which is

Click here to view code image

void vkDestroyEvent (

 VkDevice device,

 VkEvent event,

 const VkAllocationCallbacks* pAllocator);

The device that owns the event object should be passed in device, and the event object to be destroyed should be passed in event. You should make sure that the event is not accessed again after it has been destroyed. This includes direct access to the event on the host by passing its handle to a function call, and also implied access to the event through the execution of a command buffer that may contain a reference to it.

The initial state of an event is unsignaled or reset. Either the host or the device can change the state of the event. To change the state of an event to set on the host, call vkSetEvent(), the prototype of which is

Click here to view code image

VkResult vkSetEvent (

 VkDevice device,

 VkEvent event);

The device that owns the event object should be passed in device, and the event object to set is specified in event. Access to the event object should be externally synchronized. Attempting to set or reset the event from multiple threads concurrently will result in a race condition and produce an undefined result. When an event object is set by the host, its state immediately changes to set. If another thread is waiting on the event through a call to vkCmdWaitEvents(), then that thread will immediately be unblocked, assuming that other waiting conditions are satisfied.

Events can also be moved from set to reset state on the host by calling vkResetEvent(). The prototype of vkResetEvent is

Click here to view code image

VkResult vkResetEvent (

 VkDevice device,

 VkEvent event);

Again, the device that owns the event is passed in device, and the event object to reset is passed in event. Again, access to the event must be externally synchronized. The specified event is immediately moved to the reset state. The vkSetEvent() and vkResetEvent() commands have no effect if the specified event is already in the set or reset state, respectively. That is, it is not an error to call vkSetEvent() on an event that is already set or vkResetEvent() on an event that is already reset, although it might not be what you intended to do.

You can determine the immediate state of an event with vkGetEventStatus(), the prototype of which is

Click here to view code image

VkResult vkGetEventStatus (

 VkDevice device,

 VkEvent event);

The device that owns the event is passed in device, and the event whose state to query is passed in event. Unlike with vkSetEvent() and vkResetEvent(), vkGetEventStatus() can be called on an event object without synchronization. In fact, this is the intended use case.

The return value of vkGetEventStatus() reports the state of the event. The possible return values include

• VK_EVENT_SET: The specified event is in the set or signaled state.

• VK_EVENT_RESET: The specified event is in the reset or unsignaled state.

If anything goes wrong, such as the event parameter not being a handle to a valid event, vkGetEventStatus() will return an appropriate error code.

There is no way for the host to wait on an event besides spinning in a loop waiting for vkGetEventStatus() to return VK_EVENT_SET. This is not particularly efficient, and you should be sure to cooperate with the system in the case that you need to do this by, for example, sleeping the current thread or doing other useful work in between queries of the event object status.

Event objects may also be manipulated by the device. As with almost any other work executed by the device, this is done by placing commands in a command buffer and then submitting the command buffer to one of the device’s queues for execution. The command for setting an event is vkCmdSetEvent(), the prototype of which is

Click here to view code image

void vkCmdSetEvent (

 VkCommandBuffer commandBuffer,

 VkEvent event,

 VkPipelineStageFlags stageMask);

The command buffer that will eventually set the event is specified in commandBuffer, and a handle to the event object that will be signaled is passed in event. Unlike vkSetEvent(), vkCmdSetEvent() takes a pipeline stage at which to signal the event. This is passed in stageMask, which is a bitfield made up of members of the VkPipelineStageFlagBits enumeration. If multiple bits are set in stageMask, then the event will be set when execution of the command passes each of the specified stages. This may seem redundant, but if there are calls to vkCmdResetEvent(), it may be possible to observe the state of the event object toggle between set and reset as the commands pass down the pipeline.

The corresponding command to reset an event is vkCmdResetEvent(), the prototype of which is

Click here to view code image

void vkCmdResetEvent (

 VkCommandBuffer commandBuffer,

 VkEvent event,

 VkPipelineStageFlags stageMask);

Again, the command buffer that is to reset the event is passed in commandBuffer; the event to reset is passed in event; and as with vkCmdSetEvent(), the vkCmdResetEvent() command takes a stageMask parameter that contains a bitfield representing the stages at which the event will assume the reset state.

While it is possible on the host to retrieve the immediate state of an event object using vkGetEventStatus() but it is not possible to directly wait on the event, the converse is true on the device; there is no command to directly retrieve the state of an event on the device, but it is possible to wait on one or more events. To do this, call vkCmdWaitEvents(), the prototype of which is

Click here to view code image

void vkCmdWaitEvents (

 VkCommandBuffer commandBuffer,

 uint32_t eventCount,

 const VkEvent* pEvents,

 VkPipelineStageFlags srcStageMask,

 VkPipelineStageFlags dstStageMask,

 uint32_t memoryBarrierCount,

 const VkMemoryBarrier* pMemoryBarriers,

 uint32_t bufferMemoryBarrierCount,

 const VkBufferMemoryBarrier* pBufferMemoryBarriers,

 uint32_t imageMemoryBarrierCount,

 const VkImageMemoryBarrier* pImageMemoryBarriers);

The vkCmdWaitEvents() command takes many parameters and behaves much as a barrier does. The command buffer whose execution will be stalled waiting for the events is specified in commandBuffer; the number of events to wait on is specified in eventCount; and a pointer to an array of VkEvent handles to the events to be waited on is passed in pEvents.

The srcStageMask and dstStageMask specify the pipeline stages in which the events may have been signaled and the stages that will wait for the events to become signaled, respectively. Waiting will always occur at the stages specified in dstStageMask. The stages specified in srcStageMask allow a Vulkan implementation to synchronize pairs of stages rather than all work in the pipeline, which can be somewhat more efficient.

Once all of the events contained in the pEvents array have become signaled, the device will execute all of the memory, buffer, and image barriers specified in pMemoryBarriers, pBufferMemoryBarriers, and pImageMemoryBarriers before resuming execution of the work in the pipeline. The number of elements in the array pointed to by pMemoryBarriers is memoryBarrierCount; the number of elements in the array pointed to by pBufferMemoryBarriers is bufferMemoryBarrierCount; and the number of elements in the array pointed to by pImageMemoryBarriers is imageMemoryBarrierCount.

Although the flags contained in VkPipelineStageFlagBits are quite fine-grained, most Vulkan implementations will be able to perform a wait operation at only some of them. It is always legal for an implementation to wait at an earlier point in the pipeline. It is still guaranteed that work executed at later points in the pipeline will happen after the events in pEvents have become signaled.

Semaphores

The final type of synchronization primitive supported in Vulkan is the semaphore. Semaphores represent flags that can be atomically set or reset by the hardware, the views of which are coherent across queues. When you are setting the semaphore, the device will wait for it to be unset, set it, and then return control to the caller. Likewise, when resetting the semaphore, the device waits for the semaphore to be set, resets it, and then returns to the caller. This all happens atomically. If multiple agents are waiting on a semaphore, only one of them will “see” the semaphore as unset or set and receive control. The rest will continue to wait.

Semaphores cannot be explicitly signaled or waited on by the device. Rather, they are signaled and waited on by queue operations such as vkQueueSubmit().

To create a semaphore object, call vkCreateSemaphore(), the prototype of which is

Click here to view code image

VkResult vkCreateSemaphore (

 VkDevice device,

 const VkSemaphoreCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkSemaphore* pSemaphore);

The device that will create the semaphore is passed in device, and additional parameters of the semaphore are passed through pCreateInfo, which is a pointer to an instance of the VkSemaphoreCreateInfo structure. The definition of VkSemaphoreCreateInfo is

Click here to view code image

typedef struct VkSemaphoreCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkSemaphoreCreateFlags flags;

} VkSemaphoreCreateInfo;

The sType field of VkSemaphoreCreateInfo should be set to VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved and should be set to zero.

If vkCreateSemaphore() is successful, the resulting semaphore object is written into the variable pointed to by pSemaphore.

When you are done with the semaphore object, you should destroy it in order to free any resources associated with it. To destroy a semaphore, call vkDestroySemaphore(), the prototype of which is

Click here to view code image

void vkDestroySemaphore (

 VkDevice device,

 VkSemaphore semaphore,

 const VkAllocationCallbacks* pAllocator);

The device that owns the semaphore object should be passed in device, and the semaphore that is to be destroyed should be passed in semaphore. Access to the semaphore must be externally synchronized. In particular, a semaphore must not be destroyed while it may be accessed from another thread. If a host memory allocator was used to create the semaphore, a pointer to a compatible allocator should be passed in pAllocator.

Unlike the other synchronization primitives, events and fences, semaphore objects do not allow you to explicitly set, reset, or wait on them. Instead, you use these objects to synchronize access to resources across queues and form an integral part of submission of work to the device. Recall that the prototype of vkQueueSubmit() is

Click here to view code image

VkResult vkQueueSubmit (

 VkQueue queue,

 uint32_t submitCount,

 const VkSubmitInfo* pSubmits,

 VkFence fence);

vkQueueSubmit() takes an array of VkSubmitInfo structures, the definition of which is

Click here to view code image

typedef struct VkSubmitInfo {

 VkStructureType sType;

 const void* pNext;

 uint32_t waitSemaphoreCount;

 const VkSemaphore* pWaitSemaphores;

 const VkPipelineStageFlags* pWaitDstStageMask;

 uint32_t commandBufferCount;

 const VkCommandBuffer* pCommandBuffers;

 uint32_t signalSemaphoreCount;

 const VkSemaphore* pSignalSemaphores;

} VkSubmitInfo;

Each entry of the pSubmits array passed to vkQueueSubmit() contains a pWaitSemaphores and a pSignalSemaphores member, which are pointers to arrays of semaphore objects. Before executing the commands in pCommandBuffers, the queue will wait for all of the semaphores in pWaitSemaphores. In doing so, it will take “ownership” of the semaphores.

It will then execute the commands contained in each of the command buffers in the pCommandBuffers array, and when it is done, it will signal each of the semaphores contained in pSignalSemaphores.

Access to the semaphores referenced by the pWaitSemaphores and pSignalSemaphores arrays must be externally synchronized. In practice, this means that if you submit command buffers to two different queues from two different threads (which is perfectly legal), you need to be careful that the same semaphore doesn’t end up in the wait list for one submission and the signal list for the other.

This mechanism can be used to synchronize access to resources that is performed by work submitted to two or more different queues. For example, we can submit a number of command buffers to a compute-only queue, which then signals a semaphore upon completion. That same semaphore appears in the wait list for a second submission to a graphics queue. Listing 11.3 shows an example of this.

Listing 11.3: Cross-Queue Submission with Semaphores

Click here to view code image

// First, perform a submission to the compute queue. The compute submission

// includes the compute -> graphics semaphore (m_computeToGfxSemaphore) in

// the pSignalSemaphores list. This sempaphore will become signaled once the

// compute queue finishes processing the command buffers in the submission.

VkSubmitInfo computeSubmitInfo =

{

 VK_STRUCTURE_TYPE_SUBMIT_INFO, nullptr, // sType, pNext

 0, // waitSemaphoreCount

 nullptr, // pWaitSemaphores

 nullptr, // pWaitDstStageMask

 1, // commandBufferCount

 &computeCmdBuffer, // pCommandBuffers

 1, // signalSemaphoreCount

 &m_computeToGfxSemaphore // pSignalSemaphores

};

vkQueueSubmit(m_computeQueue,

 1,

 &computeSubmitInfo,

 VK_NULL_HANDLE);

// Now perform a submission to the graphics queue. This submission includes

// m_computeToGfxSemaphore in the pWaitSemaphores list passed to the

// submission. We need to wait at a specific stage. Here, we just use

// VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, but if you know that the data produced

// on the source queue will be consumed at a later stage of the pipeline in

// the destination queue, you could place the wait point later.

static const VkFlags waitStages = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;

VkSubmitInfo graphicsSubmitInfo =

{

 VK_STRUCTURE_TYPE_SUBMIT_INFO, nullptr, // sType, pNext

 1, // waitSemaphoreCount

 &m_computeToGfxSemaphore, // pWaitSemaphores

 &waitStages, // pWaitDstStageMask

 1, // commandBufferCount

 &graphicsCmdBuffer, // pCommandBuffers

 0, // signalSemaphoreCount

 nullptr // pSignalSemaphores

};

vkQueueSubmit(m_graphicsQueue,

 1,

 &graphicsSubmitInfo,

 VK_NULL_HANDLE);

In Listing 11.3, you can see that a single semaphore object is used in both submissions. The first time, it appears in the signal list for work performed on the compute queue. When the work is complete, the compute queue signals the semaphore. The same semaphore then appears in the wait list for the submission on the graphics queue. The graphics queue will wait for this semaphore to become signaled before proceeding to execute the command buffers submitted to it. This ensures that work executed on the compute queue to produce data is completed before work executing on the graphics queue that consumes that data begins.

The same synchonization mechanism using semaphores is employed by the sparse memory binding commands that also operate at the queue level. The vkQueueBindSparse() function was introduced in the “Sparse Resources” section of Chapter 2, “Memory and Resources.” To recap, the prototype of vkQueueBindSparse() is

Click here to view code image

VkResult vkQueueBindSparse (

 VkQueue queue,

 uint32_t bindInfoCount,

 const VkBindSparseInfo* pBindInfo,

 VkFence fence);

Each binding operation is represented as an instance of the VkBindSparseInfo structure, and each of those operations also has a pWaitSemaphores and pSignalSemaphores array that behaves similarly to the parameters passed to vkQueueSubmit(). Again, access to those semaphores must be externally synchronized, meaning that you must ensure that no two threads attempt to access the same semaphores at the same time.

Summary

This chapter taught you about the synchronization primitives available in Vulkan: fences, events, and semaphores. Fences provide a mechanism for the operating system to signal your application when it has completed operations requested of it, such as submission of command buffers or presentation of images via the window system. Events provide a fine-grained signaling mechanism that can be used to control flow of data through the pipeline and allow different points within the pipeline to synchronize. Finally, semaphores provide a primitive that can be signaled and waited on different queues on the same device, allowing synchronization and transfer of ownership of resources across queues.

Together, these primitives provide a powerful toolbox. As Vulkan is an asynchronous API with work occurring in parallel across the host and device, and across multiple queues on a single device, synchronization primitives and their correct use are key to the operation of an efficient application.

Chapter 12. Getting Data Back

What You’ll Learn in This Chapter

• Gather information about the execution of your application on the device

• Time operations performed by the device

• Read data produced by the device on the host

For the most part, graphics and compute operations supported by Vulkan are “fire and forget,” in that you build a command buffer and submit it, and eventually, data is displayed to the user. Your application has very little feedback or input from Vulkan. However, there are reasons to want to retrieve data from Vulkan. This chapter covers topics related to reading data and information back from Vulkan. This data includes statistics about the operations your application performs, timing information, and reading data produced directly by your application.

Queries

The primary mechanism for reading statistical data back from Vulkan is the query object. Query objects are created and managed in pools, and each object is effectively one slot in a pool rather than a discrete object that is managed alone. There are several types of query objects, each measuring a different aspect of the device’s operation as it executes work you submit to it. All types of queries are managed in pools, so the first step in using queries is creating a pool object to store them in.

Most queries execute by wrapping commands contained inside a command buffer with a pair of commands to start and stop the query. The exception to this is the timestamp query, which takes an instantaneous snapshot of the device time and therefore doesn’t really have a duration. For other query types, while they execute, statistics about the operation of the device are gathered, and when the query is stopped, the results are written into device memory represented by the pool. At some later time, your application can gather the results of any number of queries contained in the pool and read them back.

A query pool is created by callingvkCreateQueryPool(), the prototype of which is

Click here to view code image

VkResult vkCreateQueryPool (

 VkDevice device,

 const VkQueryPoolCreateInfo* pCreateInfo,

 const VkAllocationCallbacks* pAllocator,

 VkQueryPool* pQueryPool);

The device that will create the pool is specified in device. The remaining parameters of the pool are passed through a pointer to an instance of the VkQueryPoolCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkQueryPoolCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkQueryPoolCreateFlags flags;

 VkQueryType queryType;

 uint32_t queryCount;

 VkQueryPipelineStatisticFlags pipelineStatistics;

} VkQueryPoolCreateInfo;

The sType field of VkQueryPoolCreateInfo should be set to VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO, and pNext should be set to nullptr. The flags field is reserved for future use and should be set to zero. The type of query to be stored in the pool is specified in the queryType field, which is a member of the VkQueryType enumeration.

Each pool can contain only one type of query, although it is possible to create as many pools as you wish and to run several queries at the same time.

The types of query are

• VK_QUERY_TYPE_OCCLUSION: Occlusion queries count the number of samples that pass the depth and stencil tests.

• VK_QUERY_TYPE_PIPELINE_STATISTICS: Pipeline statistics queries count various statistics generated by operations of the device.

• VK_QUERY_TYPE_TIMESTAMP: Timestamp queries measure the amount of time the execution of commands in a command buffer takes.

Each type of query is discussed in more detail later in this chapter.

The number of queries that can be stored in the pool is specified in queryCount. When the pool is used to execute queries, the individual queries are referenced by their index within the pool.

Finally, when the query type is VK_QUERY_TYPE_PIPELINE_STATISTICS, some additional flags controlling how those statistics are gathered is specified in pipelineStatistics.

IfvkCreateQueryPool() is successful, a handle to the new query pool object will be written into the variable pointed to by pQueryPool. If pAllocator is a pointer to a valid host memory allocator, then that allocator will be used to allocate any host memory needed by the pool object. Otherwise, pAllocator should be nullptr.

As with any other object in Vulkan, when you are done with it, you should destroy the query pool to free its resources. To do this, call vkDestroyQueryPool(), the prototype of which is

Click here to view code image

void vkDestroyQueryPool (

 VkDevice device,

 VkQueryPool queryPool,

 const VkAllocationCallbacks* pAllocator);

The device that owns the pool should be passed in device, and the pool to be destroyed should be passed in queryPool. If a host memory allocator was used when the pool was created, a pointer to a compatible allocator should be passed in pAllocator; otherwise, pAllocator should be nullptr.

Each query in the query pool is marked as available or unavailable. Initially, all queries in the pool are in an undefined state, and before any query can be used, you need to reset the pool. As the only agent that can write into the pool is the device, you need to execute a command on the device to reset the pool. The command to do this is vkCmdResetQueryPool(), the prototype of which is

Click here to view code image

void vkCmdResetQueryPool (

 VkCommandBuffer commandBuffer,

 VkQueryPool queryPool,

 uint32_t firstQuery,

 uint32_t queryCount);

The command buffer that will execute the reset command is specified in commandBuffer, and the pool containing the queries is specified in queryPool. It is possible to reset only a selection of queries within a pool. The firstQuery parameter specifies the index of the first query to reset, and queryCount is the number of queries to reset. You must submit the command buffer containingvkCmdResetQueryPool() to an appropriate queue before the pool can be used for anything else.

Executing Queries

Queries are executed by wrapping commands contained inside a command buffer in a pair of additional commands to start and stop the query:vkCmdBeginQuery() and vkCmdEndQuery(), respectively.

The prototype for vkCmdBeginQuery() is

Click here to view code image

void vkCmdBeginQuery (

 VkCommandBuffer commandBuffer,

 VkQueryPool queryPool,

 uint32_t query,

 VkQueryControlFlags flags);

The command buffer that contains the commands to gather statistics about and that will execute the query is specified in commandBuffer. Queries are referred to by their index within the pool that contains them. The pool is specified in queryPool, and the index of the query within the pool is specified in query.

Additional flags that control the execution of the query can be specified in flags. The only defined flag is VK_QUERY_CONTROL_PRECISE_BIT. If this flag is set, then the results gathered by the query will be precise (the meaning of precise varies by query type); otherwise, Vulkan might produce approximate results. In some cases, gathering precise results may reduce performance, so you should set this flag only when you require exact results.

Be aware, however, that if there is no performance penalty to running an exact query, an implementation might ignore this flag and always return exact results. You should be sure to test your application on multiple Vulkan implementations to make sure that it really is tolerant of inexact results.

Once the query has begun, place the commands to gather statistics about in the command buffer, and after you have executed those commands, end the query by callingvkCmdEndQuery(). The prototype ofvkCmdEndQuery() is

Click here to view code image

void vkCmdEndQuery (

 VkCommandBuffer commandBuffer,

 VkQueryPool queryPool,

 uint32_t query);

The command buffer containing the currently executing query is specified in commandBuffer. The pool containing the query is passed in queryPool, and the index of the query within the pool is specified in query.

Before you begin a query, the query must be reset. The queries in a pool are reset by thevkCmdResetQueryPool() command, as discussed earlier. This command must be executed when the queue is created and also between each use of a query object.

Calls tovkCmdBeginQuery() andvkCmdEndQuery() must appear in pairs. If you begin a query and forget to end it, the result will never become available to your application. If you end a query more than once or without beginning it first, the result of the query will be undefined.

To retrieve the results of one or more queries from a pool, callvkGetQueryPoolResults(). Its prototype is

Click here to view code image

VkResult vkGetQueryPoolResults (

 VkDevice device,

 VkQueryPool queryPool,

 uint32_t firstQuery,

 uint32_t queryCount,

 size_t dataSize,

 void* pData,

 VkDeviceSize stride,

 VkQueryResultFlags flags);

The device that owns the pool from which to retrieve results is passed in device, and the pool is passed in queryPool. The index of the first query to retrieve results for is passed in firstQuery, and the number of queries is passed in queryCount.

vkGetQueryPoolResults() places the results of the requested queries in host memory pointed to by pData. The size of the memory region is passed in dataSize. Vulkan will not write more than this amount of data into memory. The result of each query is written to memory stride bytes apart. If stride is not at least as large as the amount of data produced by each query, the results may overwrite one another, and the result is undefined.

What is written to memory depends on the query type. flags provides additional information to Vulkan about how the queries should be reported. The flags available for use in flags are

• VK_QUERY_RESULT_64_BIT: If this bit is set, results are returned as 64-bit quantities; otherwise, results are returned as 32-bit quantities.

• VK_QUERY_RESULT_WAIT_BIT: If this bit is set, thenvkGetQueryPoolResults() will wait until results of the queries are available. Otherwise,vkGetQueryPoolResults() returns a status code to report whether the commands contributing to the results of the queries were ready.

• VK_QUERY_RESULT_WITH_AVAILABILITY_BIT: If this bit is set, then Vulkan will write a zero result for queries that were not ready whenvkGetQueryPoolResults() was called. Any query that was ready will have a nonzero result.

• VK_QUERY_RESULT_PARTIAL_BIT: If this bit is set, Vulkan might write the current value of a query into the result buffer even if the commands surrounded by the query have not finished executing.

It is also possible to write the results of queries directly into a buffer object. This allows results to be gathered asynchronously by the device, depositing results into a buffer for later use. The buffer can then either be mapped and accessed by the host or used as the source of data in subsequent graphics or compute operations.

To write the results of queries into a buffer object, callvkCmdCopyQueryPoolResults(), the prototype of which is

Click here to view code image

void vkCmdCopyQueryPoolResults (

 VkCommandBuffer commandBuffer,

 VkQueryPool queryPool,

 uint32_t firstQuery,

 uint32_t queryCount,

 VkBuffer dstBuffer,

 VkDeviceSize dstOffset,

 VkDeviceSize stride,

 VkQueryResultFlags flags);

The command buffer that will execute the copy operation is specified in commandBuffer. This does not need to be the same command buffer that executed the queries. The queryPool parameter specifies the pool containing the queries that will be summarized into the buffer, and firstQuery and queryCount specify the index of the first query and the number of queries to copy, respectively. They have the same meanings as the similarly named parameters tovkGetQueryPoolResults().

Rather than taking a pointer to host memory asvkGetQueryPoolResults() does,vkCmdCopyQueryPoolResults() takes a buffer object handle in dstBuffer and an offset into that buffer, measured in bytes, where the results will be written in dstOffset. The stride parameter is the number of bytes between each result in the buffer, and flags is a bitfield made up of the same flags as the flags parameter tovkGetQueryPoolResults().

AftervkCmdCopyQueryPoolResults() executes, access to the resulting values written to the buffer object must be synchronized using a barrier where the source is VK_PIPELINE_STAGE_TRANSFER_BIT and the access is VK_ACCESS_TRANSFER_WRITE_BIT.

Occlusion Queries

If the query type of the pool is VK_QUERY_TYPE_OCCLUSION, then the count is the number of fragments that pass the depth and stencil tests. This can be used to determine visibility or even to measure the area of geometry, in pixels. If the depth and stencil tests are disabled, then the result of the occlusion query is simply the area of the rasterized primitives.

A common use case is to render a view of part of a scene—for example, buildings or terrain—only to the depth buffer. Then render a simplified version of characters or other high-detail geometry—such as trees and vegetation, objects, or building details—with an occlusion query surrounding each. Such low-detail stand-ins are often referred to as proxies. Finally, make the decision as to whether to render the full-detail version of the object based on the result of each query. Because the query also tells you the approximate area of the object, you can perhaps render different versions of the final geometry based on its expected size onscreen. As an object gets farther away, you can substitute a version with lower geometric detail, substitute simplified shaders, or reduce tessellation levels, for example.

If you don’t care too much about the visible area of an object but only about whether the object is visible, be sure not to set the VK_QUERY_CONTROL_PRECISE_BIT flag in the flags parameter when you create the query pool. If this flag is not set (indicating that you’re interested only in approximate results), then the results of the queries should be treated as Boolean values. That is, they will be zero if the object was not visible and nonzero if it was. The actual value is not defined.

Pipeline Statistics Queries

Pipeline statistics queries allow your application to measure various aspects of the operation of the graphics pipeline. Each query can measure a number of different counters that are updated by the device as it executes the command buffer. The set of counters to enable is a property of the query pool and is specified at pool-creation time in the pipelineStatistics parameter.

The counters available and the flags that need to be set in pipelineStatistics are VK_QUERY_PIPELINE_STATISTIC_...

• ...INPUT_ASSEMBLY_VERTICES_BIT: When enabled, the pipeline statistics query will count the number of vertices assembled by the vertex assembly stage of the graphics pipeline.

• ...INPUT_ASSEMBLY_PRIMITIVES_BIT: When enabled, the pipeline statistics query will count the number of complete primitives assembled by the primitive assembly stage of the graphics pipeline.

• ...VERTEX_SHADER_INVOCATIONS_BIT: When enabled, the pipeline statistics query will count the total number of invocations of the vertex shader produced in the graphics pipeline. Note that this may not be the same as the number of vertices assembled because Vulkan can sometimes skip vertex shader execution if a vertex is determined not to be part of a primitive or if it is part of multiple primitives and its result can be reused.

• ...GEOMETRY_SHADER_INVOCATIONS_BIT: When enabled, the pipeline statistics query will count the total number of invocations of the geometry shader produced by the graphics pipeline.

• ...GEOMETRY_SHADER_PRIMITIVES_BIT: When enabled, the pipeline statistics query will count the total number of primitives produced by the geometry shader.

• ...CLIPPING_INVOCATIONS_BIT: When enabled, the pipeline statistics query will count the number of primitives that enter the clipping stage of the graphics pipeline. If a primitive can be trivially discarded without clipping, this counter does not increment.

• ...CLIPPING_PRIMITIVES_BIT: When enabled, the pipeline statistics query will count the number of primitives produced when clipping. If the clipping stage of a Vulkan implementation breaks primitives that clip against the viewport or a user-defined plane into multiple smaller primitives, this query will count those smaller primitives.

• ...FRAGMENT_SHADER_INVOCATIONS_BIT: When enabled, the pipeline statistics query will count the total number of invocations of the fragment shader. This includes helper invocations and invocations of a fragment shader that produce a fragment that is ultimately discarded due to late depth or stencil tests.

• ...TESSELLATION_CONTROL_SHADER_PATCHES_BIT: When enabled, the pipeline statistics query will count the total number of patches processed by the tessellation control shader. This is not the same as the number of tessellation control shader invocations because the tessellation control shader runs an invocation for each output control point in each patch, whereas this counter increments once for each patch.

• ...TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT: When enabled, the pipeline statistics query will increment each time the tessellation evaluation shader is invoked during tessellation processing. This is not necessarily the same as the number of vertices produced by the tessellator as, depending on the implementation, the tessellation evaluation shader may be invoked more than once for some tessellated vertices.

• ...COMPUTE_SHADER_INVOCATIONS_BIT: When enabled, the pipeline statistics query will count the total number of compute shader invocations. This is the only counter that will count when dispatches are passed down the pipeline.

When reading the results of a pipeline statistics query, the number of counters written into memory (either host memory usingvkGetQueryPoolResults() or buffer memory usingvkCmdCopyQueryPoolResults()) depends on the number of enabled counters—i.e., the number of set bits in pipelineStatistics. Each result is written into consecutive 32- or 64-bit unsigned integers, and the start of each block of results is separated by stride bytes, as specified to the relevant command.

The counters are written into memory in the order of the lowest-valued member of the VkQueryPipelineStatisticFlagBits enumeration to the highest.

For a given set of enabled pipeline statistics queries and bitness of results, it is therefore possible to construct a C structure that represents the results. For example, the C structure shown in Listing 12.1 represents the full set of counters available when every defined bit is set in pipelineStatistics for 64-bit queries.

Listing 12.1: C Structure for All Pipeline Statistics

Click here to view code image

// Example structure containing all available pipeline statistics counters

typedef struct VkAllPipelineStatistics {

 uint64_t inputAssemblyVertices;

 uint64_t inputAssemblyPrimitives;

 uint64_t vertexShaderInvocations;

 uint64_t geometryShaderInvocations;

 uint64_t geometryShaderPrimitives;

 uint64_t clipperInvocations;

 uint64_t clipperOutputPrimitives;

 uint64_t fragmentShaderInvocations;

 uint64_t tessControlShaderPatches;

 uint64_t tessEvaluationShaderInvocations;

 uint64_t computeShaderEvaluations;

} VkAllPipelineStatistics;

Note that there may be a performance penalty for accumulating the statistics queries or gathering their results. You should enable only the counters you actually need.

Because the results of some of the counters may be approximate, and because their exact values are generally implementation-dependent—for example, how many output primitives the clipping stage produces depends on how the clipper is implemented—you shouldn’t use the results of these queries to compare Vulkan implementations. However, you can use these queries to get a measure of the relative complexity of different parts of your application, which can help you find bottlenecks while performance tuning.

Also, comparing different counters can give you insight into the operation of Vulkan. For example, by comparing the number of primitives produced by the primitive assembler with the number of clipper invocations and the number of clipper output primitives, you can determine some details of how clipping is implemented by a particular Vulkan device and how that device handles the geometry rendered by your application.

Timing Queries

A timing query measures the amount of time taken to execute commands in a command buffer. If the type of query in the query pool is VK_QUERY_TYPE_TIMESTAMP, then the values written into the output buffer are the number of nanoseconds taken to execute the commands in the command buffer betweenvkCmdBeginQuery() andvkCmdEndQuery().

You can also retrieve an instantaneous measure of time from the pipeline by using thevkCmdWriteTimestamp() command to write the current device time into a slot in a query pool. The prototype ofvkCmdWriteTimestamp() is

Click here to view code image

void vkCmdWriteTimestamp (

 VkCommandBuffer commandBuffer,

 VkPipelineStageFlagBits pipelineStage,

 VkQueryPool queryPool,

 uint32_t query);

The command buffer that will write a timestamp into the pool is specified in commandBuffer, and the pool and the index within it where the timestamp should be written are specified in queryPool and query, respectively. When the device executes the vkCmdWriteTimestamp() command, it writes the current device time into the specified query at the pipeline stage specified in pipelineStage. This is a single member of the VkPipelineStageFlagBits enumeration, each bit representing a single logical pipeline stage.

In theory, it’s possible to ask the device to write multiple timestamps from different stages of the pipeline. However, not all devices are capable of writing a timestamp from every stage of the pipeline. If a device cannot write a timestamp from a particular stage, it will write it at the next logical stage of the pipeline after the one requested. Therefore, the results might not reflect the actual time taken to process the commands between timestamps if they are not written from the same stage.

For example, if you perform a draw with tessellation enabled, request a timestamp after vertex processing by using VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, and then request another after the tessellation evaluation shader has executed by using VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT, you might expect that the measured time delta would be the amount of time taken to execute the tessellation control shader, the fixed-function tessellation, and the tessellation evaluation shader for that draw. However, if the implementation cannot write timestamps in the middle of geometry processing, it may honor your timestamps at some later stage in the pipeline, possibly even after fragment processing is complete. Hence, the time measured will be very small.

The units of measure used for timestamps are device-dependent. The timestamp will always be monotonically increasing, but each increment of the timestamp value represents a device-dependent number of nanoseconds. You can determine the number of nanoseconds represented by a single increment of the device timestamp by inspecting the timestampPeriod member of the device’s VkPhysicalDeviceProperties structure, which you can retrieve by callingvkGetPhysicalDeviceProperties().

To determine the absolute time delta between two timestamps, therefore, you should take the two integer timestamp values, subtract the first from the second to compute a delta in “ticks,” and then multiply this integer delta by the floating-point timestampPeriod value in order to get a time in nanoseconds.

Reading Data with the Host

In some cases, it may be necessary to read data produced by the device into your application. Example uses of this include reading image data to take screen shots or, in compute applications, to save the results of compute shaders to disk. The primary mechanism for this is to issue commands to copy data into a buffer that is mapped and then read the data from the mapping using the host.

Memory allocations are mapped into host address space by callingvkMapMemory(). This function was introduced in Chapter 2, “Memory and Resources.” You can map memory and leave it mapped indefinitely. This is known as a persistent mapping. When you are performing a read from a mapped memory region, data is typically written to the memory by the device with a command such asvkCmdCopyBuffer() or vkCmdCopyImageToBuffer(). Before the host reads the memory, it must do two things:

• Ensure that the device has executed the command. This is normally accomplished by waiting on a fence that is signaled when the command buffer containing the copy command completes execution.

• Ensure that the host memory system’s view of the data is the same as the device’s.

If the memory mapping was made using a memory object allocated from a memory type that exposes the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property, then the mapping between the host and device is always coherent. That is, the host and device communicate in order to ensure that their respective caches are synchronized and that any reads or writes to shared memory are seen by the other peer.

If memory is not allocated from a memory type exposing the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property, then you must execute a pipeline barrier to move the resource into a host-readable state. To do this, make sure that the destination access mask includes VK_ACCESS_HOST_READ_BIT. Listing 12.2 shows an example of how to construct a pipeline barrier that moves a buffer resource (and therefore the memory backing it) into a host-readable state after being written to by a vkCmdCopyImageToBuffer() command.

Listing 12.2: Moving a Buffer to Host-Readable State

Click here to view code image

VkBufferMemoryBarrier bufferMemoryBarrier =

{

 VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, // sType

 nullptr, // pNext

 VK_ACCESS_TRANSFER_WRITE_BIT, // srcAccessMask

 VK_ACCESS_HOST_READ_BIT, // dstAccessMask

 VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex

 VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex

 buffer, // buffer

 0, // offset

 VK_WHOLE_SIZE // size

};

vkCmdPipelineBarrier(

 cmdBuffer, // commandBuffer

 VK_PIPELINE_STAGE_TRANSFER_BIT, // srcStageMask

 VK_PIPELINE_STAGE_HOST_BIT, // dstStageMask

 0, // dependencyFlags

 0, // memoryBarrierCount

 nullptr, // pMemoryBarriers

 1, // bufferMemoryBarrierCount

 &bufferMemoryBarrier, // pBufferMemoryBarriers

 0, // imageMemoryBarrierCount

 nullptr); // pImageMemoryBarriers

In Listing 12.2, we insert a pipeline barrier after the vkCmdCopyImageToBuffer() command (not shown in the listing), which is considered to be a transfer command. Therefore, the source pipeline stage is VK_PIPELINE_STAGE_TRANSFER_BIT, and as the host will read the data, the destination pipeline stage is VK_PIPELINE_STAGE_HOST_BIT. These stages are virtual pipeline stages that do not participate in normal graphics operations but potentially represent points in internally created pipelines that perform copy operations.

In addition to the pipeline stages, which is what the barrier synchronizes, we specify the access mask for each end of the barrier. The source of data is writes by the transfer operation, so we specify VK_ACCESS_TRANSFER_WRITE_BIT, and the destination of the data is reads performed by the host, so we specify VK_ACCESS_HOST_READ_BIT. These bits are used to ensure that any caches that need to be synchronized are correctly made coherent between device and host.

Summary

In this chapter, you read about the two ways that Vulkan can produce information that your application can consume: queries and explicit data reads.

Queries provide a series of counters that can be enabled and will increment when events occur inside the graphics pipeline. You learned about occlusion queries, which count fragments that pass the depth and stencil tests. You learned about pipeline statistics queries, which can provide insight into the inner operation of Vulkan graphics and compute pipelines. You saw how timing queries allow you to measure the amount of time taken to execute commands inside a command buffer, as well as how to ask Vulkan to write immediate timestamps into buffers that you can read.

Finally, you learned about reading data from mapped buffers and correctly synchronizing access to buffers from the device and the host.

Chapter 13. Multipass Rendering

What You’ll Learn in This Chapter

• How to use renderpass objects to accelerate multipass rendering

• How to fold clears and barriers into renderpass objects

• How to control how and when data gets saved to memory

Many graphics applications make multiple passes over each frame or are otherwise able to subdivide rendering into multiple logical phases. Vulkan brings this into the core of its operation, exposing the concept of multipass rendering within a single object. This object was briefly introduced in Chapter 7, “Graphics Pipelines,” but we skimmed over many of the details, instead going only into enough depth to enable basic single-pass rendering to be achieved. In this chapter, we dig deeper into the topic to explain how multipass rendering algorithms can be implemented in a few renderpass objects or even a single one.

When we introduced the renderpass object back in Chapter 7, “Graphics Pipelines,” we covered it in only enough detail to explain how a framebuffer can be attached to a command buffer at the beginning of a renderpass and how the renderpass could be configured to allow drawing into a single set of color attachments. A renderpass object, however, can contain many subpasses, each performing some of the operations required to render the final scene. Dependency information can be introduced, allowing a Vulkan implementation to build a directed acyclic graph (DAG) and determine where data flows, who produces it and who consumes it, what needs to be ready by when, and so on.

Input Attachments

Recall the VkRenderPassCreateInfo structure, the definition of which is

Click here to view code image

typedef struct VkRenderPassCreateInfo {

 VkStructureType sType;

 const void* pNext;

 VkRenderPassCreateFlags flags;

 uint32_t attachmentCount;

 const VkAttachmentDescription* pAttachments;

 uint32_t subpassCount;

 const VkSubpassDescription* pSubpasses;

 uint32_t dependencyCount;

 const VkSubpassDependency* pDependencies;

} VkRenderPassCreateInfo;

Within this structure, we have pointers to arrays of attachments, subpasses, and dependency information. Each subpass is defined by a VkSubpassDescription structure, the definition of which is

Click here to view code image

typedef struct VkSubpassDescription {

 VkSubpassDescriptionFlags flags;

 VkPipelineBindPoint pipelineBindPoint;

 uint32_t inputAttachmentCount;

 const VkAttachmentReference * pInputAttachments;

 uint32_t colorAttachmentCount;

 const VkAttachmentReference * pColorAttachments;

 const VkAttachmentReference * pResolveAttachments;

 const VkAttachmentReference * pDepthStencilAttachment;

 uint32_t preserveAttachmentCount;

 const uint32_t* pPreserveAttachments;

} VkSubpassDescription;

In the example renderpass we set up in Chapter 7, we used a single subpass with no dependencies and a single set of outputs. However, each subpass can have one or more input attachments, which are attachments from which you can read in your fragment shaders. The primary difference between an input attachment and a normal texture bound into a descriptor set is that when you read from an input attachment, you read from the current fragment.

Each subpass may write to one or more output attachments. These are either the color attachments or the depth-stencil attachment (of which there is only one). By inspecting the subpasses, which output attachments they write to and input attachments they read from, Vulkan can build up a graph of where data flows within a renderpass.

In order to demonstrate this, we will construct a simple three-pass renderpass object that performs deferred shading. In the first pass, we render only to a depth attachment in order to produce what is known as a depth prepass.

In a second pass, we render all the geometry with a special shader that produces a g-buffer, which is a color attachment (or set of color attachments) that stores a normal diffuse color, specular power, and other parameters needed for shading. In this second pass, we test against the depth buffer we just generated, so we do not write out the large amounts of data for geometry that will not be visible in the final output. Even when the geometry is visible, we do not run complex lighting shaders; we simply write out data.

In our third pass, we perform all of our shading calculations. We read from the depth buffer in order to reconstruct the view-space position, which allows us to create our eye and view vectors. We also read from our normal, specular, and diffuse buffers, which supply parameters for our lighting computation. Note that in the third pass, we don’t actually need the real geometry, and we instead render a single triangle that, after clipping, covers the entire viewport.

Figure 13.1 shows this schematically. As you can see from the figure, the first subpass has no inputs and only a depth attachment. The second subpass uses the same depth attachment for testing but also has no inputs, producing only outputs. The third and final pass uses the depth buffer produced by the first pass and the g-buffer attachments produced by the second pass as input attachments. It can do this because the lighting calculations at each pixel require only the data computed by previous shader invocations at the same location.

[image: Image]

Figure 13.1: Data Flow for a Simple Deferred Renderer

Listing 13.1 shows the code required to construct a renderpass that represents these three subpasses and their attachments.

Listing 13.1: Deferred Shading Renderpass Setup

Click here to view code image

enum

{

 kAttachment_BACK = 0,

 kAttachment_DEPTH = 1,

 kAttachment_GBUFFER = 2

};

enum

{

 kSubpass_DEPTH = 0,

 kSubpass_GBUFFER = 1,

 kSubpass_LIGHTING = 2

};

static const VkAttachmentDescription attachments[] =

{

 // Back buffer

 {

 0, // flags

 VK_FORMAT_R8G8B8A8_UNORM, // format

 VK_SAMPLE_COUNT_1_BIT, // samples

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // loadOp

 VK_ATTACHMENT_STORE_OP_STORE, // storeOp

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // stencilLoadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // stencilStoreOp

 VK_IMAGE_LAYOUT_UNDEFINED, // initialLayout

 VK_IMAGE_LAYOUT_PRESENT_SRC_KHR // finalLayout

 },

 // Depth buffer

 {

 0, // flags

 VK_FORMAT_D32_SFLOAT, // format

 VK_SAMPLE_COUNT_1_BIT, // samples

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // loadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // storeOp

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // stencilLoadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // stencilStoreOp

 VK_IMAGE_LAYOUT_UNDEFINED, // initialLayout

 VK_IMAGE_LAYOUT_UNDEFINED // finalLayout

 },

 // G-buffer 1

 {

 0, // flags

 VK_FORMAT_R32G32B32A32_UINT, // format

 VK_SAMPLE_COUNT_1_BIT, // samples

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // loadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // storeOp

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // stencilLoadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // stencilStoreOp

 VK_IMAGE_LAYOUT_UNDEFINED, // initialLayout

 VK_IMAGE_LAYOUT_UNDEFINED // finalLayout

 }

};

// Depth prepass depth buffer reference (read/write)

static const VkAttachmentReference depthAttachmentReference =

{

 kAttachment_DEPTH, // attachment

 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL // layout

};

// G-buffer attachment references (render)

static const VkAttachmentReference gBufferOutputs[] =

{

 {

 kAttachment_GBUFFER, // attachment

 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // layout

 }

};

// Lighting input attachment references

static const VkAttachmentReference gBufferReadRef[] =

{

 // Read from g-buffer.

 {

 kAttachment_GBUFFER, // attachment

 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL // layout

 },

 // Read depth as texture.

 {

 kAttachment_DEPTH, // attachment

 VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL // layout

 }

};

// Final pass-back buffer render reference

static const VkAttachmentReference backBufferRenderRef[] =

{

 {

 kAttachment_BACK, // attachment

 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // layout

 }

};

static const VkSubpassDescription subpasses[] =

{

 // Subpass 1 - depth prepass

 {

 0, // flags

 VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint

 0, // inputAttachmentCount

 nullptr, // pInputAttachments

 0, // colorAttachmentCount

 nullptr, // pColorAttachments

 nullptr, // pResolveAttachments

 &depthAttachmentReference, // pDepthStencilAttachment

 0, // preserveAttachmentCount

 nullptr // pPreserveAttachments

 },

 // Subpass 2 - g-buffer generation

 {

 0, // flags

 VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint

 0, // inputAttachmentCount

 nullptr, // pInputAttachments

 vkcore::utils::arraysize(gBufferOutputs), // colorAttachmentCount

 gBufferOutputs, // pColorAttachments

 nullptr, // pResolveAttachments

 &depthAttachmentReference, // pDepthStencilAttachment

 0, // preserveAttachmentCount

 nullptr // pPreserveAttachments

 },

 // Subpass 3 - lighting

 {

 0, // flags

 VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint

 vkcore::utils::arraysize(gBufferReadRef), // inputAttachmentCount

 gBufferReadRef, // pInputAttachments

 vkcore::utils::arraysize(backBufferRenderRef),// colorAttachmentCount

 backBufferRenderRef, // pColorAttachments

 nullptr, // pResolveAttachments

 nullptr, // pDepthStencilAttachment

 0, // preserveAttachmentCount

 nullptr // pPreserveAttachments

 },

};

static const VkSubpassDependency dependencies[] =

{

 // G-buffer pass depends on depth prepass.

 {

 kSubpass_DEPTH, // srcSubpass

 kSubpass_GBUFFER, // dstSubpass

 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, // srcStageMask

 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // dstStageMask

 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, // srcAccessMask

 VK_ACCESS_SHADER_READ_BIT, // dstAccessMask

 VK_DEPENDENCY_BY_REGION_BIT // dependencyFlags

 },

 // Lighting pass depends on g-buffer.

 {

 kSubpass_GBUFFER, // srcSubpass

 kSubpass_LIGHTING, // dstSubpass

 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, // srcStageMask

 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // dstStageMask

 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, // srcAccessMask

 VK_ACCESS_SHADER_READ_BIT, // dstAccessMask

 VK_DEPENDENCY_BY_REGION_BIT // dependencyFlags

 },

};

static const VkRenderPassCreateInfo renderPassCreateInfo =

{

 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr,

 0, // flags

 vkcore::utils::arraysize(attachments), // attachmentCount

 attachments, // pAttachments

 vkcore::utils::arraysize(subpasses), // subpassCount

 subpasses, // pSubpasses

 vkcore::utils::arraysize(dependencies), // dependencyCount

 dependencies // pDependencies

};

result = vkCreateRenderPass(device,

 &renderPassCreateInfo,

 nullptr,

 &m_renderPass);

As you can see, Listing 13.1 is quite long. However, the code complexity is relatively low; most of the listing is simply definitions of static data structures describing the renderpass.

The attachments[] array contains a list of all of the attachments used in the renderpass. This is referenced by index by the arrays of VkAttachmentReference structures, depthAttachmentReference, gBufferOutputs, gBufferReadRef, and backBufferRenderRef. These reference the depth buffer, the g-buffer as an output, the g-buffer as an input, and the back buffer, respectively.

The subpasses[] array is a description of the subpasses contained in the renderpass. Each is desribed by an instance of the VkSubpassDescription structure, and you can see there is one for each of the depth prepass, g-buffer generation, and lighting passes.

Note that for the lighting pass, we include the g-buffer read references and the depth buffer as input attachments to the pass. This is so that the lighting computations performed in the shader can read the g-buffer content and the pixels’ depth value.

Finally, we see the dependencies between the passes described in the dependencies[] array. There are two entries in the array, the first describing the dependency of the g-buffer pass on the depth prepass, and the second describing the dependency of the lighting pass on the g-buffer pass. Note that there is no reason to have a dependency between the lighting pass and the depth prepass even though one technically exists, because there is already an implicit depencency through the g-buffer generation pass.

The subpasses inside a renderpass are logically executed in the order in which they are declared in the array of subpasses referenced by the VkRenderPassCreateInfo structure used to create the renderpass object. When vkCmdBeginRenderPass() is called, the first subpass in the array is automatically begun. In simple renderpasses with a single subpass, this is sufficient to execute the entire renderpass. However, once we have multiple subpasses, we need to be able to tell Vulkan when to move from subpass to subpass.

To do this, we call vkCmdNextSubpass(), the prototype of which is

Click here to view code image

void vkCmdNextSubpass (

 VkCommandBuffer commandBuffer,

 VkSubpassContents contents);

The command buffer in which to place the command is specified in commandBuffer. The contents parameter specifies where the commands for the subpass will come from. For now, we’ll set this to VK_SUBPASS_CONTENTS_INLINE, which indicates that you will continue to add commands to the same command buffer. It’s also possible to call other command buffers, in which case we’d set this to VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS. We’ll cover this scenario later in this chapter.

When vkCmdNextSubpass() is called, the current command buffer moves to the next subpass in the current renderpass. Correspondingly, you can call vkCmdNextSubpass() only between calls to vkCmdBeginRenderPass() and vkCmdEndRenderPass(), and only until you have exhausted the subpasses within the renderpass.

With renderpasses containing multiple subpasses, we still must call vkCmdEndRenderPass() to terminate the current renderpass and finalize rendering.

Attachment Contents

Each color and depth-stencil attachment associated with a renderpass has a load operation and a store operation that determine how its contents are loaded from and stored to memory as the renderpass is begun and ended.

Attachment Initialization

When the renderpass is begun, the operations that should be performed on each of the attachments are specified in the loadOp field of the VkAttachmentDescription structure describing the attachment. There are two possible values for this field.

VK_ATTACHMENT_LOAD_OP_DONT_CARE means that you don’t care about the initial contents of the attachment. This means that Vulkan can do whatever it needs to do to get the attachment ready to render into (including doing nothing), without worrying about the actual values in the attachment. For example, if it has a super-fast clear that clears only to purple, then purple it shall be.

Setting loadOp for the attachment to VK_ATTACHMENT_LOAD_OP_CLEAR means that the attachment will be cleared to a value you specify at vkCmdBeginRenderPass() time. While logically, this operation happens at the very start of the renderpass, in practice, implementations may delay the actual clear operation to the beginning of the first pass that uses the attachment. This is the preferred method of clearing color attachments.

It’s also possible to explicitly clear one or more color or depth-stencil attachments inside a renderpass by calling vkCmdClearAttachments(), the prototype of which is

Click here to view code image

void vkCmdClearAttachments (

 VkCommandBuffer commandBuffer,

 uint32_t attachmentCount,

 const VkClearAttachment* pAttachments,

 uint32_t rectCount,

 const VkClearRect* pRects);

The command buffer that will execute the command is specified in commandBuffer. vkCmdClearAttachments() will clear the contents of several attachments. The number of attachments to clear is specified in attachmentCount, and pAttachments should be a pointer to an array of attachmentCount VkClearAttachment structures, each defining one of the attachments to clear. The definition of VkClearAttachment is

Click here to view code image

typedef struct VkClearAttachment {

 VkImageAspectFlags aspectMask;

 uint32_t colorAttachment;

 VkClearValue clearValue;

} VkClearAttachment;

The aspectMask field of VkClearAttachment specifies the aspect or aspects of the attachment to be cleared. If aspectMask contains VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_ASPECT_STENCIL_BIT, or both, then the clear operation will be applied to the depth-stencil attachment for the current subpass. Each subpass can have at most one depth-stencil attachment. If aspectMask contains VK_IMAGE_ASPECT_COLOR_BIT, then the clear operation will be applied to the color attachment at index colorAttachment in the current subpass. It is not possible to clear a color attachment and a depth-stencil attachment with a single VkClearAttachment structure, so aspectMask should not contain VK_IMAGE_ASPECT_COLOR_BIT along with VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT.

The values to clear the attachment with are specified in the clearValue field, which is an instance of the VkClearValue union. This was introduced in Chapter 8, “Drawing,” and its definition is

Click here to view code image

typedef union VkClearValue {

 VkClearColorValue color;

 VkClearDepthStencilValue depthStencil;

} VkClearValue;

If the referenced attachment is a color attachment, then the values from the color field of the VkClearAttachment structure will be used. Otherwise, the values contained in the depthStencil field of the structure will be used.

In addition to clearing multiple attachments, a single call to vkCmdClearAttachments() can clear rectangular regions of each attachment. This provides additional functionality over setting the loadOp for the attachment to VK_ATTACHMENT_LOAD_OP_CLEAR. If an attachment is cleared with VK_ATTACHMENT_LOAD_OP_CLEAR (which is what you want in the majority of cases), the whole attachment is cleared, and there is no opportunity to clear only part of the attachment. However, when you use vkCmdClearAttachments(), multiple smaller regions can be cleared.

The number of regions to clear is specified in the rectCount parameter to vkCmdClearAttachments(), and the pRects parameter is a pointer to an array of rectCount VkClearRect structures, each defining one of the rectangles to clear. The definition of VkClearRect is

Click here to view code image

typedef struct VkClearRect {

 VkRect2D rect;

 uint32_t baseArrayLayer;

 uint32_t layerCount;

} VkClearRect;

The VkClearRect structure defines more than a rectangle. The rect field contains the actual rectangle to clear. If the attachment is an array image, then some or all of its layers can be cleared by specifying the range of layers in baseArrayLayer and layerCount, which contain, respectively, the index of the first layer to clear and the number of layers to clear.

In addition to containing more information and providing more functionality than the attachments load operation, vkCmdClearAttachments() also potentially provides more convenience than vkCmdClearColorImage() or vkCmdClearDepthStencilImage(). Both of these commands require that the image be in VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL layout and therefore may require a pipeline barrier around them to ensure this. Also, these commands cannot be called inside a renderpass. On the other hand, vkCmdClearAttachments() takes advantage of the fact that the attachments are already bound for rendering and are considered to be part of the renderpass content, almost like a special kind of draw. Therefore, no barrier or special handling is needed beyond ensuring that the command is executed inside a renderpass.

That said, it is still recommended that you use the VK_ATTACHMENT_LOAD_OP_CLEAR load operation when you need the entirety of an attachment to be cleared as part of a renderpass, and the VK_ATTACHMENT_LOAD_OP_DONT_CARE operation when you will guarantee that you will overwrite every pixel in the attachment by the time the renderpass has completed.

Render Areas

When a renderpass instance is executed, it is possible to tell Vulkan that you’re going to update only a small area of the attachments. This area is known as the render area and can be specified when vkCmdBeginRenderPass() is called. We introduced this briefly in Chapter 8, “Drawing,” and the renderArea member of the VkRenderPassBeginInfo structure is passed to vkCmdBeginRenderPass().

If you are rendering to the entire framebuffer, set the renderArea field to cover the entire area of the framebuffer. However, if you want to update only a small part of the framebuffer, you can set the renderArea rectangle accordingly. Any part of the renderpass’s attachments that are not contained inside this render area are not affected by any of the operations in the renderpass including the renderpass’s load and store operations for those attachments.

When you are using a render area smaller than the entire attachment, it is the application’s responsibility to ensure that it doesn’t render outside this area. Some implementations may ignore the render area entirely and trust your application to stick within it; some may round the render area up to some multiple of an internal rectangular region; and some may strictly adhere to the area you’ve specified. The only way to get well-defined behavior is to make sure you render only inside this area, using a scissor test if needed.

Rendering to a smaller render area than the entire attachment may also come at some performance cost unless the area matches the granularity of the supported render areas for the implementation. Consider the framebuffer to be tiles in a grid that are potentially rendered one at a time. Completely covering and redefining the content of a single tile should be fast, but updating only part of a tile may cause Vulkan to do extra work to keep the untouched parts of the tile well defined.

To acheive maximum performance, you should ensure that the render areas you use match the render area granularity supported by the implementation. This can be queried using vkGetRenderAreaGranularity(), the prototype of which is

Click here to view code image

void vkGetRenderAreaGranularity (

 VkDevice device,

 VkRenderPass renderPass,

 VkExtent2D* pGranularity);

For a renderpass specified in renderPass, vkGetRenderAreaGranularity() returns, in the variable pointed to by pGranularity, the dimensions of a tile used for rendering. The device that owns the renderpass should be passed in device.

To ensure that the render area you pass to vkCmdBeginRenderPass() performs optimally, you should ensure two things: First, that the x and y components of its origin are integer multiples of the width and height of the render-area granularity; and second, that the width and height of the render area are either integer multiples of that granularity or extend to the edge of the framebuffer. Obviously, a render area that completely covers the attachments trivially meets these requirements.

Preserving Attachment Content

In order to preserve the contents of the attachment, we need to set the attachment’s store operation (contained in the storeOp field of the VkAttachmentDescription structure used to create the renderpass) to VK_ATTACHMENT_STORE_OP_STORE. This causes Vulkan to ensure that after the renderpass has completed, the contents of the image used as the attachment accurately reflect what was rendered during the renderpass.

The only other choice for this field is VK_ATTACHMENT_STORE_OP_DONT_CARE, which tells Vulkan that you don’t need the content of the attachment after the renderpass has completed. This is used, for example, when an attachment is used to store intermediate data that will be consumed by some later subpass in the same renderpass. In this case, the content doesn’t need to live longer than the renderpass itself.

In some cases, you need to produce content in one subpass, execute an unrelated subpass, and then consume the content created more than one subpass ago. In this case, you should tell Vulkan that it cannot discard the content of an attachment over the course of rendering another subpass. In practice, a Vulkan implementation should be able to tell by inspecting the input and output attachments for the subpasses in a renderpass which ones produce and which ones consume data and will do the right thing. However, to be fully correct, every live attachment should appear as an input, an output, or a preserve attachment in each subpass. Furthermore, by including an attachment in the preserve attachment array for a subpass, you are telling Vulkan that you are about to use the attachment content in an upcoming subpass. This may enable it to keep some of the data in cache or some other high-speed memory.

The list of attachments to preserve across a subpass is specified using the pPreserveAttachments field of the VkSubpassDescription structure describing each subpass. This is a pointer to an array of uint32_t indices into the renderpass’s attachment list, and the number of integers in this array is contained in the preserveAttachmentCount field of VkSubpassDescription.

To demonstrate this, we extend our example further to render transparent objects. We render a depth buffer, then render a g-buffer containing per-pixel information, and finally we render a shading pass that calculates lighting information. Because we have only 1 pixel’s worth of information, this deferred shading approach cannot render transparent or translucent objects. Therefore, these objects must be rendered separately. The traditional approach is to simply render all the opaque geometry in one pass (or passes) and then composite the translucent geometry on top at the end. This introduces a serial dependency, causing rendering of the translucent geometry to wait for opaque geometry to complete rendering.

This serial dependency is shown in the DAG illustrated in Figure 13.2.

[image: Image]

Figure 13.2: Serial Dependency of Translucent on Opaque Geometry

Rather than introduce a serial dependency, which would preclude Vulkan from rendering any of the translucent geometry in parallel with opaque geometry, we take another approach: Render the translucent geometry to another color attachment (using the same depth prepass information for depth rejection) and the opaque geometry into a second temporary attachment. After both the opaque and transparent geometry have been rendered, we perform a composition pass that blends the translucent geometry on top of the opaque geometry. This pass can also perform other per-pixel operations, such as color grading, vignetting, film-grain application, and so on. The new DAG for this is shown in Figure 13.3.

[image: Image]

Figure 13.3: Parallel Rendering of Translucent and Opaque Geometry

As you can see from the updated DAG in Figure 13.3, first the depth information is rendered and then the g-buffer generation pass executes, followed by the lighting pass. The translucency buffer generation pass has no dependency on the g-buffer or the result of the lighting pass, so it is able to run in parallel, depending only on the depth information from the depth prepass. The new composite pass now depends on the result of the lighting pass and the translucent pass.

As the subpasses in the renderpass are expressed serially, regardless of the serial ordering of the opaque g-buffer pass and the translucency pass in the renderpass, we need to preserve the content of the first pass’s outputs until the shading pass is able to execute. Because there is less data to store, we render the translucent objects first and preserve the translucency buffer across the g-buffer generation pass. The g-buffer and translucency buffer are then used as input attachments to the shading pass.

The code to set all this up is shown in Listing 13.2.

Listing 13.2: Translucency and Deferred Shading Setup

Click here to view code image

enum

{

 kAttachment_BACK = 0,

 kAttachment_DEPTH = 1,

 kAttachment_GBUFFER = 2,

 kAttachment_TRANSLUCENCY = 3,

 kAttachment_OPAQUE = 4

};

enum

{

 kSubpass_DEPTH = 0,

 kSubpass_GBUFFER = 1,

 kSubpass_LIGHTING = 2,

 kSubpass_TRANSLUCENTS = 3,

 kSubpass_COMPOSITE = 4

};

static const VkAttachmentDescription attachments[] =

{

 // Back buffer

 {

 0, // flags

 VK_FORMAT_R8G8B8A8_UNORM, // format

 VK_SAMPLE_COUNT_1_BIT, // samples

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // loadOp

 VK_ATTACHMENT_STORE_OP_STORE, // storeOp

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // stencilLoadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // stencilStoreOp

 VK_IMAGE_LAYOUT_UNDEFINED, // initialLayout

 VK_IMAGE_LAYOUT_PRESENT_SRC_KHR // finalLayout

 },

 // Depth buffer

 {

 0, // flags

 VK_FORMAT_D32_SFLOAT, // format

 VK_SAMPLE_COUNT_1_BIT, // samples

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // loadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // storeOp

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // stencilLoadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // stencilStoreOp

 VK_IMAGE_LAYOUT_UNDEFINED, // initialLayout

 VK_IMAGE_LAYOUT_UNDEFINED // finalLayout

 },

 // G-buffer 1

 {

 0, // flags

 VK_FORMAT_R32G32B32A32_UINT, // format

 VK_SAMPLE_COUNT_1_BIT, // samples

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // loadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // storeOp

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // stencilLoadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // stencilStoreOp

 VK_IMAGE_LAYOUT_UNDEFINED, // initialLayout

 VK_IMAGE_LAYOUT_UNDEFINED // finalLayout

 },

 // Translucency buffer

 {

 0, // flags

 VK_FORMAT_R8G8B8A8_UNORM, // format

 VK_SAMPLE_COUNT_1_BIT, // samples

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // loadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // storeOp

 VK_ATTACHMENT_LOAD_OP_DONT_CARE, // stencilLoadOp

 VK_ATTACHMENT_STORE_OP_DONT_CARE, // stencilStoreOp

 VK_IMAGE_LAYOUT_UNDEFINED, // initialLayout

 VK_IMAGE_LAYOUT_UNDEFINED // finalLayout

 }

};

// Depth prepass depth buffer reference (read/write)

static const VkAttachmentReference depthAttachmentReference =

{

 kAttachment_DEPTH, // attachment

 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL // layout

};

// G-buffer attachment references (render)

static const VkAttachmentReference gBufferOutputs[] =

{

 {

 kAttachment_GBUFFER, // attachment

 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // layout

 }

};

// Lighting input attachment references

static const VkAttachmentReference gBufferReadRef[] =

{

 // Read from g-buffer.

 {

 kAttachment_GBUFFER, // attachment

 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL // layout

 },

 // Read depth as texture.

 {

 kAttachment_DEPTH, // attachment

 VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL // layout

 }

};

// Lighting pass - write to opaque buffer.

static const VkAttachmentReference opaqueWrite[] =

{

 // Write to opaque buffer.

 {

 kAttachment_OPAQUE, // attachment

 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // layout

 }

};

// Translucency rendering pass - translucency buffer write

static const VkAttachmentReference translucentWrite[] =

{

 // Write to translucency buffer.

 {

 kAttachment_TRANSLUCENCY, // attachment

 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // layout

 }

};

static const VkAttachmentReference compositeInputs[] =

{

 // Read from translucency buffer.

 {

 kAttachment_TRANSLUCENCY, // attachment

 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL // layout

 },

 // Read from opaque buffer.

 {

 kAttachment_OPAQUE, // attachment

 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL // layout

 }

};

// Final pass - back buffer render reference

static const VkAttachmentReference backBufferRenderRef[] =

{

 {

 kAttachment_BACK, // attachment

 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // layout

 }

};

static const VkSubpassDescription subpasses[] =

{

 // Subpass 1 - depth prepass

 {

 0, // flags

 VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint

 0, // inputAttachmentCount

 nullptr, // pInputAttachments

 0, // colorAttachmentCount

 nullptr, // pColorAttachments

 nullptr, // pResolveAttachments

 &depthAttachmentReference, // pDepthStencilAttachment

 0, // preserveAttachmentCount

 nullptr // pPreserveAttachments

 },

 // Subpass 2 - g-buffer generation

 {

 0, // flags

 VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint

 0, // inputAttachmentCount

 nullptr, // pInputAttachments

 vkcore::utils::arraysize(gBufferOutputs), // colorAttachmentCount

 gBufferOutputs, // pColorAttachments

 nullptr, // pResolveAttachments

 &depthAttachmentReference, // pDepthStencilAttachment

 0, // preserveAttachmentCount

 nullptr // pPreserveAttachments

 },

 // Subpass 3 - lighting

 {

 0, // flags

 VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint

 vkcore::utils::arraysize(gBufferReadRef), // inputAttachmentCount

 gBufferReadRef, // pInputAttachments

 vkcore::utils::arraysize(opaqueWrite), // colorAttachmentCount

 opaqueWrite, // pColorAttachments

 nullptr, // pResolveAttachments

 nullptr, // pDepthStencilAttachment

 0, // preserveAttachmentCount

 nullptr // pPreserveAttachments

 },

 // Subpass 4 - translucent objects

 {

 0, // flags

 VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint

 0, // inputAttachmentCount

 nullptr, // pInputAttachments

 vkcore::utils::arraysize(translucentWrite), // colorAttachmentCount

 translucentWrite, // pColorAttachments

 nullptr, // pResolveAttachments

 nullptr, // pDepthStencilAttachment

 0, // preserveAttachmentCount

 nullptr // pPreserveAttachments

 },

 // Subpass 5 - composite

 {

 0, // flags

 VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint

 0, // inputAttachmentCount

 nullptr, // pInputAttachments

 vkcore::utils::arraysize(backBufferRenderRef), // colorAttachmentCount

 backBufferRenderRef, // pColorAttachments

 nullptr, // pResolveAttachments

 nullptr, // pDepthStencilAttachment

 0, // preserveAttachmentCount

 nullptr // pPreserveAttachments

 }

};

static const VkSubpassDependency dependencies[] =

{

 // G-buffer pass depends on depth prepass.

 {

 kSubpass_DEPTH, // srcSubpass

 kSubpass_GBUFFER, // dstSubpass

 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, // srcStageMask

 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // dstStageMask

 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, // srcAccessMask

 VK_ACCESS_SHADER_READ_BIT, // dstAccessMask

 VK_DEPENDENCY_BY_REGION_BIT // dependencyFlags

 },

 // Lighting pass depends on g-buffer.

 {

 kSubpass_GBUFFER, // srcSubpass

 kSubpass_LIGHTING, // dstSubpass

 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, // srcStageMask

 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // dstStageMask

 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, // srcAccessMask

 VK_ACCESS_SHADER_READ_BIT, // dstAccessMask

 VK_DEPENDENCY_BY_REGION_BIT // dependencyFlags

 },

 // Composite pass depends on translucent pass.

 {

 kSubpass_TRANSLUCENTS, // srcSubpass

 kSubpass_COMPOSITE, // dstSubpass

 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, // srcStageMask

 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // dstStageMask

 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, // srcAccessMask

 VK_ACCESS_SHADER_READ_BIT, // dstAccessMask

 VK_DEPENDENCY_BY_REGION_BIT // dependencyFlags

 },

 // Composite pass also depends on lighting.

 {

 kSubpass_LIGHTING, // srcSubpass

 kSubpass_COMPOSITE, // dstSubpass

 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, // srcStageMask

 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // dstStageMask

 VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, // srcAccessMask

 VK_ACCESS_SHADER_READ_BIT, // dstAccessMask

 VK_DEPENDENCY_BY_REGION_BIT // dependencyFlags

 }

};

static const VkRenderPassCreateInfo renderPassCreateInfo =

{

 VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr,

 0, // flags

 vkcore::utils::arraysize(attachments), // attachmentCount

 attachments, // pAttachments

 vkcore::utils::arraysize(subpasses), // subpassCount

 subpasses, // pSubpasses

 vkcore::utils::arraysize(dependencies), // dependencyCount

 dependencies // pDependencies

};

result = vkCreateRenderPass(device,

 &renderPassCreateInfo,

 nullptr,

 &m_renderPass);

Again, the code in Listing 13.2 is extremely long but is mostly a set of constant data structures. Here, we’ve added the translucent pass and the composite pass to the list of passes in subpasses[]. The final pass is now the composite pass, so it is the one that references the back buffer in its pColorAttachments array. The result of the lighting pass is now written to the temporary opaque buffer, indexed by kAttachment_OPAQUE.

Although this appears to consume a significant amount of memory, we can note several redeeming points about this configuration:

• There are likely to be at least two or three back buffers, while you can use the same buffer every frame for intermediate results. The additional overhead of one extra buffer is not that large.

• The lighting pass consumes the g-buffer, after which it is no longer needed. You can either write the opaque result back into the g-buffer or mark the attachment as transient and hope that the Vulkan implementation does this for you.

• If you are rendering high dynamic range, then you may want your rendering results to be in a higher-precision format than the back buffer anyway and then perform tone mapping or other processing during the composition pass. In this case, you’ll need the intermediate buffers.

Secondary Command Buffers

Secondary command buffers are command buffers that can be called from primary command buffers. Although not directly related to multipass rendering, they are used primarily to allow the commands contributing to a render consisting of many subpasses to be built up in multiple command buffers. As you know, a renderpass must begin and end in the same command buffer. That is, the call to vkCmdEndRenderPass() must appear in the same command buffer as its corresponding vkCmdBeginRenderPass().

Given this requirement, it’s very difficult to render a large amount of the scene in a single renderpass and still build command buffers in parallel. In the ideal case (from an implementation point of view), the entire scene will be rendered in a single large renderpass, with potentially many subpasses. Without secondary command buffers, this would require most, if not all, of a scene to be rendered using a single long command buffer, precluding parallelized command generation.

To create a secondary command buffer, create a command pool and then from it allocate one or more command buffers. In the VkCommandBufferAllocateInfo structure passed to vkAllocateCommandBuffers(), set the level field to VK_COMMAND_BUFFER_LEVEL_SECONDARY. We then record commands into the command buffer as usual, but with certain restrictions as to which commands can be executed. A table listing which commands may and may not be recorded in secondary command buffers is shown in the Appendix, “Vulkan Functions.”

When the secondary command buffer is ready to execute from another primary command buffer, call vkCmdExecuteCommands(), the prototype of which is

Click here to view code image

void vkCmdExecuteCommands (

 VkCommandBuffer commandBuffer,

 uint32_t commandBufferCount,

 const VkCommandBuffer* pCommandBuffers);

The command buffer from which to call the secondary command buffers is passed in commandBuffer. A single call to vkCmdExecuteCommands() can execute many secondary-level command buffers. The number of command buffers to execute is passed in commandBufferCount, and pCommandBuffers should point to an array of this many VkCommandBuffer handles to the command buffers to execute.

Vulkan command buffers contain a certain amount of state. In particular, the currently bound pipeline, the various dynamic states, and the currently bound descriptor sets are effectively properties of each command buffer. When multiple command buffers are executed back to back, even when sent to the same call to vkQueueSubmit(), no state is inherited from one to the next. That is, the initial state of each command buffer is undefined, even if the previously executed command buffer left everything as it needs to be for the next.

When you are executing a large, complex command buffer, it’s probably fine to begin with an undefined state because the first thing you’ll do in the command buffer is set up everything required for the first few drawing commands. That cost is likely to be small relative to the cost of the whole command buffer, even if it’s partially redundant with respect to previously executed command buffers.

When a primary command buffer calls a secondary command buffer, and especially when a primary command buffer calls many short secondary command buffers back to back, it can be costly to reset the complete state of the pipeline in each and every secondary command buffer. To compensate for this, some state can be inherited from primary to secondary command buffers. This is done using the VkCommandBufferInheritanceInfo structure, which is passed to vkBeginCommandBuffer(). The definition of this structure is

Click here to view code image

typedef struct VkCommandBufferInheritanceInfo {

 VkStructureType sType;

 const void* pNext;

 VkRenderPass renderPass;

 uint32_t subpass;

 VkFramebuffer framebuffer;

 VkBool32 occlusionQueryEnable;

 VkQueryControlFlags queryFlags;

 VkQueryPipelineStatisticFlags pipelineStatistics;

} VkCommandBufferInheritanceInfo;

The VkCommandBufferInheritanceInfo provides a mechanism for your application to tell Vulkan that you know what the state will be when the secondary command buffer is executed. This allows the properties of the command buffer to begin in a well-defined state.

The sType field of VkCommandBufferInheritanceInfo should be set to VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO, and pNext should be set to nullptr.

The renderpass and subpass fields specify the renderpass and the subpass of the render that the command buffer will be called inside, respectively. If the framebuffer to which the renderpass will be rendering is known, then it can be specified in the framebuffer field. This can sometimes result in better performance when the command buffer is executed. However, if you don’t know which framebuffer will be used, then you should set this field to VK_NULL_HANDLE.

The occlusionQueryEnable field should be set to VK_TRUE if the secondary command buffer will be executed while the primary command buffer is executing an occlusion query. This tells Vulkan to keep any counters associated with occlusion queries consistent during execution of the secondary command buffer. If this flag is VK_FALSE, then the secondary command buffer should not be executed while occlusion queries are active in the calling command buffer. While the behavior is technically undefined, the most likely outcome is that the results of the occlusion queries are garbage.

You can execute occlusion queries inside secondary command buffers regardless of the value of occlusionQueryEnable. You will need to begin and end the query inside the same secondary command buffer if you don’t inherit the state from a calling primary.

If occlusion query inheritance is enabled, then the queryFlags field contains additional flags that control the behavior of occlusion queries. The only flag defined for use here is VK_QUERY_CONTROL_PRECISE_BIT, which, if set, indicates that precise occlusion-query results are needed.

The pipelineStatistics field includes flags that tell Vulkan which pipeline statistics are being gathered by calling the primary command buffer. Again, you can gather pipeline statistics during the execution of a secondary command buffer, but if you want the operation of the pipeline invoked by a secondary command buffer to contribute counters accumulated by the primary command buffer, you need to set these flags accurately. The available bits are members of the VkQueryPipelineStatisticFlagBits enumeration.

Summary

This chapter delved deeper into the renderpass, a fundamental feature of Vulkan that enables efficient multipass rendering. You saw how to construct a nontrivial renderpass that contains many subpasses and how to build the contents of those subpasses as separate command buffers that can be called from your main command buffer. We discussed some potential optimizations that Vulkan implementations could make to improve the performance of rendering when they are given all the information about what will come in the frame. You also saw how many of the functions performed by barriers and clears can be folded into the renderpass, sometimes making them close to free. The renderpass is a powerful feature and, if possible, you should endeavor to make use of it in your applications.

Appendix. Vulkan Functions

This appendix contains a table of the Vulkan command buffer building commands. It provides a quick reference to what can and cannot be used inside and outside a renderpass, as well as to what is legal inside a primary or secondary command buffer.

[image: Image]

[image: Image]

Command Buffer Building Functions

Glossary

adjacency primitive One of the primitive topologies that includes, for each primitive, additional vertex data representing adjacent primitives in the original geometry. Examples include triangles and lines with adjacency.

aliasing Technically, the loss of signal information in an image reproduced at some finite resolution. It is most often characterized by the appearance of sharp, jagged edges along points, lines, or polygons due to the nature of having a limited number of fixed-size pixels.

alpha A fourth color value added to provide a degree of transparency to the color of an object. An alpha value of 0.0 means complete transparency; 1.0 denotes no transparency (opaque).

ambient light Light in a scene that doesn’t come from any specific point source or direction. Ambient light illuminates all surfaces evenly and on all sides.

antialiasing A rendering method used to smooth lines, curves, and polygon edges. This technique averages the color of pixels adjacent to the line. It has the visual effect of softening the transition from the pixels on the line and those adjacent to the line, thus providing a smoother appearance.

Apple An apple is a piece of fruit. Fruit does not support Vulkan.

ARB Acronym for the Architecture Review Board, the committee body consisting of 3D graphics hardware vendors, previously charged with maintaining the OpenGL Specification. This function has since been assumed by the Khronos Group. See Khronos Group.

aspect When applied to an image, a logical part of that image, such as the depth or stencil component of a combined depth-stencil image.

aspect ratio The ratio of the width of a window to the height of the window—specifically, the width of the window in pixels divided by the height of the window in pixels.

associativity A sequence of operations in which changing the order of the operations (but not the order of the arguments) does not affect the result. For example, addition is associative because a + (b + c) = (a + b) + c.

atomic operation A sequence of operations that must be indivisible for correct operation. The term usually refers to a read-modify-write sequence on a single memory location.

attachment An image associated with a renderpass that can be used as the input or output of one or more of its subpasses.

barrier A point in a computer program that serves as a marker across which operations may not be reordered. Between barriers, certain operations may be exchanged if their movement does not logically change the operation of the program. Barriers operate on resources or memory and can also be used to change the layout of images.

Bézier curve A curve whose shape is defined by control points near the curve rather than by the precise set of points that define the curve itself.

bitplane An array of bits mapped directly to screen pixels.

blending The process of merging a new color value into an existing color attachment using an equation and parameters that are configured as part of a graphics pipeline.

blit Short for block image transfer—an operation that copies image data from one place to another, potentially processing it further as it is copied. In Vulkan, a blit is used to scale image data and to perform basic operations such as format conversion.

branch prediction An optimization strategy used in processor design whereby the processor tries to guess (or predict) the outcome of some conditional code and start executing the more likely branch before it is certain that it is required. If the processor is right, it gets ahead by a few instructions. If the processor is wrong, it needs to throw away the work and start again with the other branch.

buffer An area of memory used to store image information. This information can be color, depth, or blending information. The red, green, blue, and alpha buffers are often collectively referred to as the color buffers.

Cartesian A coordinate system based on three directional axes placed at a 90° orientation to one another. These coordinates are labeled x, y, and z.

clip coordinates The 2D geometric coordinates that result from the model-view and projection transformation.

clip distance A distance value assigned by a shader that is used by fixed-function clipping to allow primitives to be clipped against an arbitrary set of planes before rasterization.

clipping The elimination of a portion of a single primitive or group of primitives. The points that would be rendered outside the clipping region or volume are not drawn. The clipping volume is generally specified by the projection matrix. Clipped primitives are reconstructed such that the edges of the primitive do not lie outside the clipping region.

command buffer A list of commands that can be executed by the device.

commutative An operation in which changing the order of its operands does not change its result. For example, addition is commutative, whereas subtraction is not.

compute pipeline A Vulkan pipeline object consisting of a compute shader and related state that is used to execute computational work on a Vulkan device.

compute shader A shader that executes a work item per invocation as part of a local work group, a number of which may be grouped into a global work group.

concave A reference to the shape of a polygon. A polygon is said to be concave if a straight line through it will enter and subsequently exit the polygon more than once.

contention A term used to describe the condition in which two or more threads of execution attempt to use a single shared resource.

convex A reference to the shape of a polygon. A convex polygon has no indentations, and no straight line can be drawn through the polygon that intersects it more than twice (once entering, once leaving).

CRT Cathode ray tube.

cull distance A value applied to a vertex within a primitive that will cause the entire primitive to be discarded if any of its vertices are assigned a negative value.

culling The elimination of graphics primitives that would not be seen if rendered. Back-face culling eliminates the front or back face of a primitive so that the face isn’t drawn. Frustum culling eliminates whole objects that would fall outside the viewing frustum.

depth fighting A visual artifact caused by primitives with very close depth values being rendered on top of one another and producing inconsistent depth-test results.

depth test A test performed between a depth value computed for a fragment and a value stored in a depth buffer.

descriptor A data structure containing an implementation-specific description of a resource such as a buffer or an image.

destination color The stored color at a particular location in the color buffer. This terminology is usually used when describing blending operations to distinguish between the color already present in the color buffer and the color coming into the color buffer (source color).

device memory Memory that is accessible to a Vulkan device. This may be dedicated memory that’s physically attached to the device, or some or all of the host’s memory that is accessible to the device.

dispatch A command that begins the execution of compute shaders.

displacement mapping The act of taking a flat surface and displacing it along a normal by an amount determined by a texture or other source of data.

dithering A method used to simulate a wider range of color depth by placing different-colored pixels together in patterns that create the illusion of shading between the two colors.

double buffering A drawing technique used to present stable images. The image to be displayed is assembled in memory and then placed on the screen in a single update operation rather than built primitive by primitive onscreen. Double buffering is a much faster and smoother update operation and can produce animations.

event A synchronization primitive used within a Vulkan command buffer to synchronize the execution of different parts of the pipeline.

extruding The process of taking a 2D image or shape and adding a third dimension uniformly across the surface. This process can transform 2D fonts into 3D lettering.

eye coordinates The coordinate system based on the position of the viewer. The viewer’s position is placed along the positive z axis, looking down the negative z axis.

fence An object used to synchronize execution on the host with completion of command buffers executed by the device.

FMA Acronym for fused multiply add, an operation commonly implemented in a single piece of hardware that multiplies two numbers together and adds a third, with the intermediate result generally computed at higher precision than a stand-alone multiplication or addition operation.

fragment A single piece of data that may eventually contribute to the color of a pixel in an image.

fragment shader A shader that executes once per fragment and generally computes the final color of that fragment.

framebuffer An object containing references to images that will be used as the attachments during rendering with graphics pipelines.

frustum A pyramid-shaped viewing volume that creates a perspective view. (Near objects are large; far objects are small.)

gamma correction The process of transforming a linear value through a gamma curve to produce nonlinear output. Gamma (γ) can be greater or less than one to move from linear to gamma space and back again, respectively.

garbage Uninitialized data that is read and consumed by a computer program, often resulting in corruption, crashes, or other undesired behavior.

geometry shader A shader that executes once per primitive, having access to all vertices making up that primitive.

gimbal lock A state in which a sequence of rotations can essentially become stuck on a single axis. This occurs when one of the rotations early in the sequence rotates one Cartesian axis onto another. After this, rotation around either of the axes results in the same rotation, making it impossible to escape from the locked position.

GLSL Acronym for OpenGL Shading Language, a high-level C-like shading language.

GPU Acronym for graphics processing unit—a specialized processor that does most of the heavyweight lifting for Vulkan.

graphics pipeline A Vulkan pipeline object constructed using one or more graphics shaders (vertex, tessellation, geometry, and fragment) and related state that is capable of processing drawing commands and rendering graphics primitives on a Vulkan device. See also pipeline and compute pipeline.

handle An opaque variable used to refer to another object. In Vulkan, all handles are 64-bit integers.

hazard In reference to memory operations, a situation in which undefined order of transactions in memory may lead to undefined or undesired results. Typical examples include read-after-write (RAW), write-after-write (WAW), and write-after-read (WAR) hazards.

helper invocation An invocation of a fragment shader that does not represent a fragment that lies inside a primitive, but is executed in order to produce derivatives or other information required to correctly process shader invocations for fragments that do lie inside the primitive.

host memory Memory that is dedicated for use by the host and inaccessible to the device. This type of memory is generally used to store data for use by the CPU.

implementation A software- or hardware-based device that performs Vulkan rendering operations.

index buffer A buffer bound for use as the source of indices for an indexed draw.

indexed draw A drawing command that chooses vertices by using indices read from a buffer rather than simply counting them monotonically.

indirect draw A drawing command that sources its parameters from device memory accessed through a buffer object rather than reading them directly from a command buffer.

instance Applied to drawing commands, the process of drawing the same set of data many times, potentially with different parameters applied.

instancing See instance.

invocation A single execution of a shader. The term is most commonly used to describe compute shaders but is applicable to any shader stage.

Khronos Group The industry consortium that manages the maintenance and promotion of the Vulkan specification.

linked list A list of data elements joined by pointers or indices stored or associated with each element in the list.

literal A value, not a variable name. A literal is a specific string or numeric constant embedded directly in source code.

mapping See memory mapping.

matrix A 2D array of numbers. Matrices can be operated on mathematically and are used to perform coordinate transformations.

memory mapping Obtaining a pointer to a region of device memory that is usable by the host.

mipmapping A technique that uses multiple levels of detail for a texture. This technique selects among the different sizes of an image available or possibly combines the two nearest matches to produce the final fragments used for texturing.

model-view matrix The matrix that transforms position vectors from model (or object) space to view (or eye) space

multisample An image in which each pixel has more than one sample. Multisample images are typically used in antialiasing. See antialiasing.

multisampling The act of rendering to a multisample image.

normal A directional vector that points perpendicularly to a plane or surface. When used, normals must be specified for each vertex in a primitive.

normalize The reduction of a normal to a unit normal. A unit normal is a vector that has a length of exactly 1.0.

normalized device coordinate The coordinate space produced by taking a homogeneous position and dividing it through by its own w component.

occlusion query A graphics operation whereby visible (or more accurately potentially visible) pixels are counted and the count is returned to the application.

one hot A method of encoding a number or state using a single bit of a binary number. For example, a state machine or enumeration with 32 states would require only 5 bits using regular encoding but an entire 32-bit value to encode as one hot. In hardware, one hot is often simpler to decode, and multiple one-hot flags can be included in a single integer value.

orthographic A drawing mode (also called parallel projection) in which no perspective or foreshortening takes place. The lengths and dimensions of all primitives are undistorted regardless of orientation or distance from the viewer.

out-of-order execution The ability of a processor to determine interinstruction dependencies and start executing those instructions whose inputs are ready before other instructions that may have preceded them in program order.

overloading In computer languages, the practice of creating two or more functions that share a name but have different function signatures.

perspective A drawing mode in which objects farther from the viewer appear smaller than nearby objects.

perspective divide The transformation applied to homogeneous vectors to move them from clip space into normalized device coordinates by dividing them through by their w components.

pipeline An object representing the state of a large part of the device that is used to execute work.

pixel Condensed from the words picture element, the smallest visual division available on the computer screen. Pixels are arranged in rows and columns and are individually set to the appropriate color to render any given image.

pixmap A 2D array of color values that comprise a color image. Pixmaps are so called because each picture element corresponds to a pixel onscreen.

polygon A 2D shape drawn with any number of sides (but must have at least three sides).

presentation The act of taking an image and displaying it to the user.

primitive A group of one or more vertices formed into a geometric shape by Vulkan, such as a line, point, or triangle. All objects and scenes are composed of various combinations of primitives.

primitive topology The arrangement of vertices into a single primitive or group of primitives. This arrangement includes points, lines, strips, and triangles, as well as adjoined primives such as line strips, triangle strips, and adjacency primitives.

projection The transformation of lines, points, and polygons from eye coordinates to clipping coordinates onscreen.

push constant A uniform constant accessible to a shader that can be updated directly from a command buffer by calling vkCmdPushConstants() without synchronization, avoiding the need for memory backing or barriers associated with the update of small uniform buffers. In some implementations, these constants may be accelerated in hardware.

quadrilateral A polygon with exactly four sides.

query object An object used to retrieve statistical data about the operation of your application as it runs on the device.

queue A construct within a device that can execute work, potentially in parallel with work submitted to other queues on the same device.

queue family Queues with identical properties grouped into families within a device. Queues within a family are considered to be compatible, and command buffers built for a particular family may be submitted to any member of that family.

race condition A state in which multiple parallel processes such as threads in a program or invocations of a shader attempt to communicate or otherwise depend on one another in some way, but no ensurance of ordering is performed.

rasterization The process of converting projected primitives and bitmaps into pixel fragments in the framebuffer.

render The conversion of primitives in object coordinates to an image in the framebuffer. The rendering pipeline is the process by which Vulkan commands and statements become pixels onscreen.

renderpass An object representing one or more subpasses over a common set of framebuffer attachments.

sample A component of a pixel or texel that, when resolved, will contribute to the final output color. Sampling an image is the process of gathering one or more samples from it and resolving that group of samples to produce a final color.

scintillation A sparkling or flashing effect produced on objects when a nonmipmapped texture map is applied to a polygon that is significantly smaller than the size of the texture being applied.

scissor A fragment ownership test that rejects fragments that lie outside a window-aligned rectangle.

semaphore A synchronization primitive that can be used to synchronize work executed by different queues on a single device.

shader A small program that is executed by the graphics hardware, often in parallel, to operate on individual vertices or pixels.

single static assignment A form of writing a program in which any variable, often represented as a register for a virtual machine, is written to or assigned only once. This makes data-flow resolution simple and facilitates a number of common optimizations in compilers and other code generation applications.

source color The color of the incoming fragment, as opposed to the color already present in the color buffer (destination color). This term is usually used to describe how the source and destination colors are combined during a blending operation.

specification The design document that specifies Vulkan operation and fully describes how an implementation must work.

spline A general term used to describe any curve created by placing control points near the curve that have a pulling effect on the curve’s shape. This effect is similar to the reaction of a piece of flexible material when pressure is applied at various points along its length.

sRGB Nonlinear encoding used for image data using a gamma curve that matches phosphor-based CRTs of the late 1990s.

SSA See single static assignment.

stipple A binary bit pattern used to mask out pixel generation in the framebuffer. This is similar to a monochrome bitmap, but 1D patterns are used for lines and 2D patterns are used for polygons.

submission See submit.

submit When applied to work executed by devices, the act of sending the work in the form of command buffers to one of the device’s queues.

subpass A single pass of rendering contained within a renderpass object.

super scalar A processor architecture that is capable of executing two or more independent instructions at the same time on multiple processor pipelines, which may or may not have the same capabilities.

supersampling The process of computing multiple color, depth, and stencil values for every sample within a multisample image.

surface An object representing an output for presentation. This type of object is generally platform-specific and is provided using the VK_KHR_surface extension.

swap chain An object representing a sequence of images that can be presented into a surface for viewing by the user.

tessellation The process of breaking down a complex polygon or analytic surface into a mesh of convex polygons. This process can also be applied to separate a complex curve into a series of less-complex lines.

tessellation control shader A shader that runs before fixed-function tessellation occurs. The shader executes once per control point in a patch primitive, producing tessellation factors and a new set of control points as an output primitive.

tessellation evaluation shader A shader that runs after fixed-function tessellation occurs. The shader executes once per vertex generated by the tessellator.

tessellation shader A term used to describe either a tessellation control shader or a tessellation evaluation shader.

texel A texture element. A texel represents a color from a texture that is applied to a pixel fragment in the framebuffer.

texture An image pattern of colors applied to the surface of a primitive.

texture mapping The process of applying a texture image to a surface. The surface does not have to be planar (flat). Texture mapping is often used to wrap an image around a curved object or to produce a patterned surface, such as wood or marble.

transformation The manipulation of a coordinate system. This can include rotation, translation, scaling (both uniform and nonuniform), and perspective division.

translucence A degree of transparency of an object. In Vulkan, this is represented by an alpha value ranging from 1.0 (opaque) to 0.0 (transparent).

unified memory architecture A memory architecture in which multiple devices in the system, such as a Vulkan device and the host processor, have equal access to a common pool of memory rather than accessing physically segmented memory.

vector A directional quantity usually represented by x, y, and z components.

vertex A single point in space. Except when used for point and line primitives, the term also defines the point at which two edges of a polygon meet.

vertex buffer A buffer being used as the source of data for vertex shader inputs.

vertex shader A shader that executes once per incoming vertex.

view Applied to a resource, another object that references the same underlying data in a different manner from the object of which it is a view, allowing that data to be reinterpreted or sectioned as required by an application.

viewing volume The area in 3D space that can be viewed in the window. Objects and points outside the viewing volume are clipped (cannot be seen).

viewport The area within a window that is used to display a Vulkan image. Usually, this area encompasses the entire client area. Stretched viewports can produce enlarged or shrunken output within the physical window.

wireframe The representation of a solid object by a mesh of lines rather than solid shaded polygons. Wireframe models are usually rendered faster and can be used to view both the front and back of an object at the same time.

Index

Enumerations

VkAccessFlagBits, 116, 119

VkBlendFactor, 363

VkBlendOp, 362

VkBorderColor, 221

VkBufferUsageFlagBits, 43

VkColorComponentFlagBits, 263

VkColorSpaceKHR, 145

VkCommandBufferUsageFlagBits, 102

VkCommandPoolCreateFlagBits, 98

VkCompareOp, 222, 261, 342

VkComponentSwizzle, 67

VkCompositeAlphaFlagBitsKHR, 145, 148

VkDescriptorType, 191, 201, 204

VkDisplayPlaneAlphaFlagBitsKHR, 155

VkDynamicState, 264, 265

VkFilter, 216

VkFormat, 50, 231

VkFormatFeatureFlagBits, 45

VkFrontFace, 259

VkImageAspectFlagBits, 68, 130

VkImageCreateFlagBits, 50

VkImageLayout, 53

VkImageTiling, 52

VkImageType, 66, 69

VkImageUsageFlags, 52, 145

VkImageViewType, 66, 70

VkIndexType, 273

VkLogicOp, 263, 357

VkMemoryPropertyFlagBits, 11

VkPipelineStageFlagBits, 113, 119, 379, 380, 397

VkPrimitiveTopology, 251

VkQueryPipelineStatisticFlagBits, 396, 423

VkQueryType, 388

VkQueueFlagBits, 13

VkResult, 162

VkSampleCountFlagBits, 52, 88, 351

VkSamplerMipmapMode, 218

VkShaderStageFlagBits, 213, 214

VkStencilOp, 347

VkSurfaceTransformFlagBitsKHR, 145, 148, 158

VkSurfaceTransformsFlagsKHR, 153

VkSystemAllocationScope, 37

Functions

vkAcquireNextImageKHR, 151, 162

vkAllocateCommandBuffers, 99, 100, 105, 420

vkAllocateDescriptorSets, 201, 202, 208

vkAllocateMemory, 76, 83, 85

vkBeginCommandBuffer, 102, 422

vkBindBufferMemory, 85, 91

vkBindImageMemory, 85, 91

vkCmdBeginQuery, 390, 391, 397

vkCmdBeginRenderPass, 268, 270, 356, 408, 409, 411, 412, 420

vkCmdBindDescriptorSets, 207, 208

vkCmdBindIndexBuffer, 273

vkCmdBindPipeline, 186

vkCmdBindVertexBuffers, 271

vkCmdBlitImage, 133–135

vkCmdClearAttachments, 409–411

vkCmdClearColorImage, 125–127, 411

vkCmdClearDepthStencilImage, 127, 411

vkCmdCopyBuffer, 103–105, 112, 115, 117, 124, 125, 399

vkCmdCopyBufferToImage, 73, 117, 128, 131, 132

vkCmdCopyImage, 115, 117, 131, 132, 134

vkCmdCopyImageToBuffer, 130–132, 399, 400

vkCmdCopyQueryPoolResults, 393, 396

vkCmdDispatchIndirect, 116, 188

vkCmdDispatch, 187, 188

vkCmdDraw, 229, 268, 273, 280–282, 286, 316

vkCmdDrawIndexed, 116, 273, 274, 276, 280, 281, 283, 316

vkCmdDrawIndexedIndirect, 116, 283–285, 317

vkCmdDrawIndirect, 116, 282–286, 317

vkCmdEndQuery, 390, 391, 397

vkCmdEndRenderPass, 270, 408, 420

vkCmdExecuteCommands, 421

vkCmdFillBuffer, 123–125, 284

vkCmdNextSubpass, 408

vkCmdPipelineBarrier, 113, 116, 119, 120

vkCmdPushConstants, 212, 214, 215

vkCmdResetEvent, 379

vkCmdResetQueryPool, 390, 391

vkCmdResolveImage, 355, 356

vkCmdSetBlendConstants, 265, 365

vkCmdSetDepthBias, 265, 346

vkCmdSetDepthBounds, 265, 343

vkCmdSetEvent, 379

vkCmdSetLineWidth, 265, 323

vkCmdSetScissor, 265, 339, 340

vkCmdSetStencilCompareMask, 265, 348

vkCmdSetStencilReference, 265, 348

vkCmdSetStencilWriteMask, 265, 348

vkCmdSetViewport, 265, 333

vkCmdUpdateBuffer, 124, 125

vkCmdWaitEvents, 377, 380

vkCmdWriteTimestamp, 397

vkCreateBufferView, 64, 65

vkCreateBuffer, 42

vkCreateCommandPool, 97–99, 101, 107

vkCreateComputePipelines, 177, 178, 180, 181, 186, 199, 240

vkCreateDescriptorPool, 200, 202, 203

vkCreateDescriptorSetLayout, 190, 194, 199

vkCreateDevice, 16, 18, 96, 285, 309

vkCreateDisplayModeKHR, 157, 158

vkCreateDisplayPlaneSurfaceKHR, 158

vkCreateEvent, 376, 377

vkCreateFence, 368, 369

vkCreateFramebuffer, 238, 239

vkCreateGraphicsPipelines, 181, 240

vkCreateImage, 49

vkCreateImageView, 66

vkCreateInstance, 4, 7, 30, 33, 36, 38

vkCreatePipelineCache, 182

vkCreatePipelineLayout, 194

vkCreateQueryPool, 388, 389

vkCreateRenderPass, 230, 268

vkCreateSampler, 216

vkCreateSemaphore, 381

vkCreateShaderModule, 173–175, 181

vkCreateSwapchainKHR, 143

vkCreateWin32SurfaceKHR, 139, 144

vkCreateXcbSurfaceKHR, 142, 143

vkCreateXlibSurfaceKHR, 141, 144

vkDestroyBuffer, 73

vkDestroyBufferView, 73

vkDestroyCommandPool, 101

vkDestroyDescriptorPool, 203

vkDestroyDescriptorSetLayout, 199

vkDestroyDevice, 33

vkDestroyEvent, 377

vkDestroyFence, 369

vkDestroyFramebuffer, 239

vkDestroyImage, 74

vkDestroyImageView, 74

vkDestroyInstance, 33

vkDestroyPipeline, 181

vkDestroyPipelineCache, 185

vkDestroyPipelineLayout, 199

vkDestroyQueryPool, 389

vkDestroyRenderPass, 237

vkDestroySampler, 224

vkDestroySemaphore, 382

vkDestroyShaderModule, 174

vkDestroySwapchainKHR, 162

vkDeviceWaitIdle, 32, 108, 162

vkEndCommandBuffer, 105

vkEnumerateDeviceExtensionProperties, 30

vkEnumerateDeviceLayerProperties, 26

vkEnumerateInstanceExtensionProperties, 28–30

vkEnumerateInstanceLayerProperties, 25, 26

vkEnumeratePhysicalDevices, 7–9, 14, 34, 38

vkFlushMappedMemoryRanges, 81, 82, 376

vkFreeCommandBuffers, 100, 105

vkFreeDescriptorSets, 202, 203

vkFreeMemory, 77, 78

vkGetBufferMemoryRequirements, 82, 83, 85

vkGetDeviceMemoryCommitment, 78

vkGetDeviceProcAddr, 31, 32

vkGetDeviceQueue, 97

vkGetDisplayModePropertiesKHR, 156, 158

vkGetDisplayPlaneCapabilitiesKHR, 155

vkGetDisplayPlaneSupportedDisplaysKHR, 154

vkGetEventStatus, 378, 379

vkGetFenceStatus, 370, 371

vkGetImageMemoryRequirements, 82, 83, 85

vkGetImageSparseMemoryRequirements, 86

vkGetImageSubresourceLayout, 56, 57

vkGetInstanceProcAddr, 30

vkGetPhysicalDeviceDisplayPlanePropertiesKHR, 154

vkGetPhysicalDeviceDisplayPropertiesKHR, 152

vkGetPhysicalDeviceFeatures, 10, 18, 51, 285, 309, 332, 366

vkGetPhysicalDeviceFormatProperties, 45, 47, 65, 351

vkGetPhysicalDeviceImageFormatProperties, 47, 48, 90, 351, 352

vkGetPhysicalDeviceMemoryProperties, 10, 12, 77

vkGetPhysicalDeviceProperties, 9, 17, 61, 65, 77, 80, 176, 184, 188, 194, 195, 205, 216, 222, 234, 247, 248, 257, 274, 289, 297, 300, 311, 318, 320, 321, 325, 330, 334, 361, 398

vkGetPhysicalDeviceQueueFamilyProperties, 12, 14, 17, 96

vkGetPhysicalDeviceSparseImageFormatProperties, 90, 95

vkGetPhysicalDeviceSurfaceCapabilitiesKHR, 144, 145, 147, 150, 159

vkGetPhysicalDeviceSurfaceFormatsKHR, 150

vkGetPhysicalDeviceSurfaceSupportKHR, 159, 160

vkGetPhysicalDeviceWin32PresentationSupportKHR, 139

vkGetPhysicalDeviceXcbPresentationSupportKHR, 142

vkGetPhysicalDeviceXlibPresentationSupportKHR, 140

vkGetPipelineCacheData, 182, 183, 185, 186

vkGetQueryPoolResults, 391–393, 396

vkGetRenderAreaGranularity, 412

vkGetSwapchainImagesKHR, 148, 149, 151

vkInvalidateMappedMemoryRanges, 82

vkMapMemory, 79–81, 399

vkMergePipelineCaches, 185

vkQueueBindSparse, 91, 94, 384

vkQueuePresentKHR, 161, 162

vkQueueSubmit, 107, 108, 368, 370, 372, 381, 382, 384, 421

vkQueueWaitIdle, 108, 373

vkResetCommandBuffer, 105, 106

vkResetCommandPool, 106

vkResetDescriptorPool, 202, 203

vkResetEvent, 378

vkResetFences, 372

vkSetEvent, 377–379

vkUnmapMemory, 80

vkUpdateDescriptorSets, 203, 206, 207

vkWaitForFences, 370–372

Objects

VkBuffer, 44, 84, 271

VkCommandBuffer, 18, 100, 268, 421

VkCommandBufferAllocateInfo, 99

VkDescriptorPool, 201

VkDescriptorSet, 202, 208

VkDescriptorSetLayout, 194, 195, 202

VkDevice, 18

VkDeviceMemory, 75, 76

VkDisplayModeKHR, 156

VkEvent, 377, 380

VkFence, 370–372

VkFramebuffer, 239

VkImage, 84, 149, 161

VkImageView, 238

VkInstance, 18

VkNullHandle, 238

VkPhysicalDevice, 7, 18, 47

VkPipelineCache, 38, 185

VkPipelineLayout, 194

VkQueue, 18, 97

VkSurface, 141, 152

VkSurfaceKHR, 138, 143, 158

Structures and Unions

VkAllocationCallbacks, 36, 37, 65

VkApplicationInfo, 5, 8

VkAttachmentDescription, 231, 409, 413

VkAttachmentReference, 234, 407

VkBindSparseInfo, 89–92, 384

VkBufferCopy, 103, 104

VkBufferCreateInfo, 42–44, 49, 52, 53, 65, 85

VkBufferImageCopy, 128, 131, 132

VkBufferMemoryBarrier, 119

VkBufferViewCreateInfo, 64

VkClearAttachment, 409, 410

VkClearColorValue, 126, 270

VkClearDepthStencilValue, 127, 128, 270

VkClearRect, 410

VkClearValue, 269, 270, 410

VkCommandBufferAllocateInfo, 99, 420

VkCommandBufferBeginInfo, 102, 103

VkCommandBufferInheritanceInfo, 103, 422

VkCommandPoolCreateInfo, 98, 99, 107

VkComponentMapping, 67, 68

VkComputePipelineCreateInfo, 177, 198, 242

VkCopyDescriptorSet, 204, 206

VkDescriptorBufferInfo, 205

VkDescriptorImageInfo, 204

VkDescriptorPoolCreateInfo, 200

VkDescriptorPoolSize, 200, 201

VkDescriptorSetAllocateInfo, 201

VkDescriptorSetCreateInfo, 202

VkDescriptorSetLayoutBinding, 191

VkDescriptorSetLayoutCreateInfo, 190, 305

VkDeviceCreateInfo, 15, 16, 25, 29, 96, 97, 309

VkDeviceQueueCreateInfo, 15, 16, 96, 97

VkDispatchIndirectCommand, 188

VkDisplayModeCreateInfoKHR, 157

VkDisplayModeParametersKHR, 157

VkDisplayModePropertiesKHR, 156

VkDisplayPlaneCapabilitiesKHR, 155

VkDisplayPlanePropertiesKHR, 154

VkDisplayPropertiesKHR, 152, 153

VkDisplaySurfaceCreateInfoKHR, 155, 158

VkDrawIndexedIndirectCommand, 283, 284

VkDrawIndirectCommand, 282, 284

VkEventCreateInfo, 376, 377

VkExtensionProperties, 28, 29

VkExtent2D, 339

VkExtent3D, 48, 50, 134

VkFenceCreateInfo, 369

VkFormatProperties, 45

VkFramebufferCreateInfo, 238, 239

VkGraphicsPipelineCreateInfo, 240–242, 246, 251, 255–257, 260–262, 264, 271, 278, 288, 308, 309, 334, 340

VkImageBlit, 134

VkImageCopy, 131–134

VkImageCreateInfo, 49, 50, 69–71, 77, 85, 351

VkImageFormatProperties, 48, 352

VkImageMemoryBarrier, 120, 121

VkImageResolve, 356

VkImageSubresource, 56, 92

VkImageSubresourceLayers, 129

VkImageSubresourceRange, 68, 121, 126, 127

VkImageViewCreateInfo, 66, 71, 72

VkInstanceCreateInfo, 5, 6, 8, 25, 29

VkLayerProperties, 24, 25

VkMappedMemoryRange, 80, 81

VkMemoryAllocateInfo, 75

VkMemoryBarrier, 116, 119

VkMemoryHeap, 12

VkMemoryRequirements, 82

VkMemoryType, 11, 12

VkOffset2D, 339

VkOffset3D, 134

VkPhysicalDeviceFeatures, 10, 16, 17, 61–63, 285, 288, 309, 321, 330, 344, 366

VkPhysicalDeviceLimits, 10, 13, 16, 51, 65, 76, 79, 176, 188, 194, 195, 205, 215, 216, 222, 234, 239, 247–249, 257, 260, 274, 285, 289, 297, 300, 304, 311, 313, 318, 320–322, 324, 325, 330, 332–334, 352, 361

VkPhysicalDeviceMemoryProperties, 11, 12

VkPhysicalDeviceProperties, 9, 10, 184, 398

VkPhysicalDeviceSparseProperties, 10

VkPipelineCacheCreateInfo, 182

VkPipelineColorBlendAttachmentState, 263, 362

VkPipelineColorBlendStateCreateInfo, 262, 263, 357, 362, 364, 365

VkPipelineDepthStencilCreateInfo, 262

VkPipelineDepthStencilStateCreateInfo, 261, 340–344, 346

VkPipelineDynamicStateCreateInfo, 264, 323, 343, 346, 348, 365

VkPipelineInputAssemblyStateCreateInfo, 251, 255, 278

VkPipelineLayoutCreateInfo, 194, 212

VkPipelineLayout, 194

VkPipelineMultisampleStateCreateInfo, 260, 353, 354

VkPipelineRasterizationStateCreateInfo, 257, 258, 293, 321, 323, 344–346

VkPipelineShaderStageCreateInfo, 177, 178, 242, 309

VkPipelineTessellationStateCreateInfo, 255, 256, 288, 295

VkPipelineVertexInputStateCreateInfo, 246, 247, 271

VkPipelineViewportStateCreateInfo, 256, 257, 333, 334, 338, 340

VkPresentInfoKHR, 161

VkPushConstantRange, 212, 213

VkQueryPoolCreateInfo, 388

VkQueueFamilyProperties, 13, 96

VkRect2D, 257, 338, 339

VkRenderPassBeginInfo, 269, 270, 411

VkRenderPassCreateInfo, 230, 231, 235, 402, 408

VkSamplerCreateInfo, 216, 219, 222

VkSemaphoreCreateInfo, 381

VkShaderModuleCreateInfo, 174

VkSparseBufferMemoryBindInfo, 90, 91

VkSparseImageFormatProperties, 86–89

VkSparseImageMemoryBind, 92, 93

VkSparseImageMemoryBindInfo, 92

VkSparseImageMemoryRequirements, 85–87

VkSparseImageOpaqueMemoryBindInfo, 91

VkSparseMemoryBind, 90, 91

VkSpecializationInfo, 178, 180

VkSpecializationMapEntry, 180

VkStencilOpState, 347

VkSubmitInfo, 90, 107, 382

VkSubpassDependency, 235

VkSubpassDescription, 233, 355, 402, 407, 413

VkSubresourceLayout, 57

VkSurfaceCapabilitiesKHR, 147, 148

VkSurfaceFormatKHR, 150, 151

VkSwapchainCreateInfoKHR, 144, 147, 150

VkVertexInputAttributeDescription, 247–249

VkVertexInputBindingDescription, 246–248

VkViewport, 256, 331–333

VkWin32SurfaceCreateInfoKHR, 140

VkWriteDescriptorSet, 204, 205

VkXcbSurfaceCreateInfoKHR, 142

VkXlibSurfaceCreateInfoKHR, 141

adjacency primitive, 253

antialiasing, 435

aspect, 68

attachment, 231

color, 117

input, 117

barrier, 113, 380, 393

blending, 361

blit, 133, 135

cache, 119

clip distance, 324

clipping, 23

command buffer, xxii, 97

compute pipeline, xxii

compute shader, 431

cull distance, 328

depth fighting, 344

descriptor, 199

device memory, 19

dispatch, 187

displacement mapping, 304

event, xxiii

fence, xxiii

framebuffer, 237

gamma correction, 59

graphics pipeline, xxii

handle, 7, 18

hazard, 118

helper invocation, 330, 395

host memory, 19

index buffer, 273

indexed draw, 273, 434

indirect draw, 282

instance, 229, 280, 435

instancing, 229, 280, 316

invocation, 175

layout, 112

image, 121

layout qualifier, 292

linked list, 5

mapping, 78

memory mapping, 435

mipmap, 121

multisample, 350, 435

multisampling, 231

normalized device coordinate, 23, 331

one hot, 351

perspective divide, 23

pipeline, xxii

presentation, 137

primitive, 229

primitive topology, 251

push constant, 169, 212, 277

query object, 388

queue, xxii

queue family, 96

renderpass, 102, 230, 430, 439

sample, 215

semaphore, xxiii

shader, 165

shading sample rate, 352

single static assignment, 172, 439

specialization constant, 321

sRGB, 57

SSA, 172

submit, 97, 439

subpass, 230

supersampling, 353

surface, 138

swap chain, 143

unified memory architecture, 75

vertex, 229

vertex buffer, 271

vertex shader, 226

view, 63

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

graphics/213lis01.jpg
Layout (push_constant) uniform my_push_constants_t

int bourbon;
int scotch;
int beer;

} my push constants:

graphics/131pro01.jpg
void vkCmdCopyImage (

VkCommandBuffer commandBuffer,
VkInage srcImage,
VkImageLayout srcImagelayout,
VkInage dstImage,
VkImageLayout dstImagelayout,
uint32_t regionCount,

const VkImageCopy* pRegions);

graphics/246pro-02.jpg
typedet struct VkVertexlnputBindinglescription 1
uint32_t binding;
uint32_t stride;
VkVertexInputRate inputRate;

} VkVertexInputBindingDescription;

graphics/131pro02.jpg
typedef struct VkImageCopy {
VkInageSubresourcelayers
VKOffset3D
VkImageSubresourcelayers
Vkoffset3D
VkExtent3D

} VkImageCopy;

srcSubresource;
srcOffset;
dstSubresource;
dstOffset;
extent;

graphics/246pro-01.jpg
typedef struct VkPipelineVertexInputStateCreatelnfo {

VkstructureType sType;
const voids plext;
VkPipelineVertexInputStateCreateFlags flags;

uint32_t vertexBindingDescriptionCount;
const VKVertexInputBindingDescription« pVertexBindingDescriptions;
uint32 t vertexAttributeDescriptionCount;

const VKVertexInputAttributeDescriptions pVertexAttributeDescriptions;
} VkPipelineVertexInputStateCreateInfo:

graphics/159pro01.jpg
VKkResult vkGetPhysicalDeviceSurtaceSupportkrR(

VkPhysicalDevice physicalDevice,
uint32_t queueFami lyIndex,
VkSurfaceKHR surface,

VkBool32x pSupported) ;

graphics/294fig01.jpg

graphics/14lis01.jpg
uint32_t queueFamilyPropertyCount;
std: :vector<VkQueueFamilyProperties> queueFamilyProperties;
VkPhysicalDeviceMemoryProperties physicalDeviceMemoryProperties;

// Get the memory properties of the physical device.
vkGetPhysicalDeviceflemoryProperties (m_physicalDevices[deviceIndex],
&physicalDeviceMenoryProperties);

// First determine the number of queue families supported by the physical

// device.

vkGetPhysicalDeviceQueueFamilyProperties (n_physicalDevices[8],
&queueFamilyPropertyCount,
nullptr);

// Allocate enough space for the queue property structures.
queueFamilyProperties. resize (queueFamilyPropertyCount);

// Now query the actual properties of the queue families.

vkGetPhysicalDeviceQueueFamilyProperties (n_physicalDevices[8],
&queueFami lyPropertyCount,
queueFamilyProperties.data());

graphics/377pro-02.jpg
VkResult vkSetEvent (
VkDevice device,
VKEvent event):

graphics/351pro-01.jpg
VkResult vkGetPhysicalDevicelmageFormatProperties {

VkPhysicalDevice physicalDevice,
VkFormat format,
VkInageType type,
VkImageTiling tiling,
VkInageUsageFlags usage,
VkImageCreateFlags flags,

VkImageFormatPropertiess pImageFormatProperties);

graphics/402pro-01.jpg
typedet struct VkRenderPass(reatelnfo {

VkStructureType
const voids
VkRenderPassCreateFlags
uint32_t
const VKAttachmentDescription«
uint32_t
const VKSubpassDescriptions
uint32_t
const VkSubpassbependency+

} VkRenderPassCreateInfo;

SType;
pNext ;

flags ;
attachmentCount;
pAttachments;
subpassCount;
pSubpasses ;
dependencyCount;
pbependencies;

graphics/402pro-02.jpg
typedef struct VkSubpassDescription {

VkSubpassDescriptionFlags
VkPipelineBindPoint
uint32_t
const VkAttachmentReferencex
uint32_t
const VkAttachmentReferencex
const VkAttachmentReferencex
const VkAttachmentReferencex
uint32 t
const uint32 tx

} VKSubpassDescription:

flags;
pipelineBindPoint;
inputAttachmentCount;
pInputAttachments;
colorAttachmentCount;
pColorAttachments;
pResolveAttachments;
pDepthStencilAttachment;
preserveAttachmentCount;
pPreserveAttachments;

graphics/377pro-01.jpg
void vkDestroyEvent (
VkDevice device,
VkEvent event,
const VkAllocationCallbacks# pAllocator);

graphics/40lis01a.jpg
return static cast<allocators>(pUserData) ->Reallocation(pOriginal,

size,
alignment,
allocationscope);
}
void allocator::Free(
voids pMemory)
aligned_free(pMemory);
}
void VKAPLCALL allocator::Free(
voids pUserData,
voids pMemory)
{

return static_cast<allocators>(pUserData) ->Free(pMemory) ;

graphics/230lis01.jpg
typede? struct VkRenderPass(reatelnto {

VkStructureType sType;

const voids pNext;
VkRenderPassCreateFlags flags;

uint32_t attachmentCount;
const VkAttachmentDescription+ pAttachments;
uint32_t subpassCount ;
const VkSubpassDescriptions pSubpasses ;
uint32 t dependencyCount;
const VkSubpassDependency+ pDependencies;

} VkRenderPassCreateInfo:

graphics/78pro01.jpg
VkResult vkMapMemory (

VkDevice device,
VkDeviceMemory memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags flags,

void** ppData)

graphics/329list-01a.jpg
OpTypeVoid
OpTypeFunction %2
OpTypeFloat 32
OpTypeVector %6 4
OpTypeInt 32 O
OpConstant %8 1
OpTypeArray %6 %9
;; This creates the built-in output structure containing gl CullDistance
%11 = OpTypeStruct %7 %6 %10 %10
%12 = OpTypePointer Output %11
Instantiate the built-in outputs
%13 = OpVariable %12 Output

;; Beginning of main()
%5 = OpLabel
Load from the push-constant array
%23 = OpAccessChain %22 %21 %16 %16
%24 = OpLoad %6 %23
;; Store to cull distance
%26 = OpAccessChain %25 %13 %15 %16

End’of main()
OpReturn
BoFanet: iitind

graphics/39lis01a.jpg
// Now declare the nonstatic member functions that will actually perform
// the allocations.
voidx Allocation(

size t size,

size t alignment,

VkSystemAllocationScope allocationscope) ;
voidx Reallocation(

voids pOriginal,

size t size,

size t alignment,

VkSystemAllocationScope allocationscope) ;
void Free(

void+ pMemory) ;

graphics/188pro02.jpg
typedef struct vkDispatchlndirectCommand {
uint32 t x;
uint32 t y;
uint32 t -

} VkDispatchIndirectCommand;

graphics/188pro01.jpg
void vkCmdDispatchIndirect (
VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset):

graphics/49pro01.jpg
VkResult vk(reatelmage (
VkDevice

device,
const VkImageCreateInfos pCreatelnfo,
const VkAllocationCallbacks+ pAllocator,

VkImages* pImage):

graphics/49pro02.jpg
typedef struct VkimageCreatelnfo {

VkStructureType sType;
const voidx pNext;
VkImageCreateFlags flags;

VkImageType imageType;

VkFormat format ;

VkExtent3D extent;

uint32_t mipLevels;

uint32_t arraylayers;
VkSampleCountFlagBits samples;

VkInageTiling tiling;
VkImageUsageFlags usage;

VksharingMode sharingMode;

uint32_t queueFami lyIndexCount;
const uint32 ts pQueueFamilyIndices;
VkInageLayout initiallayout;

} VkImageCreateInfo;

graphics/260pro-01.jpg
typedef struct VkPlpelineMultisampleState(Createlnfo {

VkStructureType
const voidx
VkPipelineMultisampleStateCreateFlags
VksampleCountFlagBits
VkBool32
float
const VkSampleMask+
VkBool32
VkBool32

} VkPipelineMultisampleStateCreateInfo

sType;

phext;

flags;
rasterizationSamples;
sampleShadingEnable
minSampleShading;
pSampleMask;
alphaToCoverageEnable;
alphaToOneEnable;

graphics/126pro01.jpg
typedef union VkClearColorValue {
float float32[4];
int32_t int32[4];
uint32 t uint32(4];

} VkClearColorValue:

graphics/126pro02.jpg
typedef struct VkImageSubresourceRange {
VkImageAspectFlags aspectMask;

uint32_t baseMipLevel;
uint32_t TevelCount ;
uint32 t baseArrayLayer
uint32_t layerCount ;

} VkImageSubresourceRange:

graphics/203pro01.jpg
VkResult vkResetDescriptorrool (
VkDevice device,
VkDescriptorPool descriptorPool,
VkDescriptorPoolResetFlags flags)

graphics/203pro02.jpg
void vkDestroyDescriptorPool (
VkDevice device,
VkDescriptorPool descriptorPool,
const VkAllocationCallbacks# pAllocator);

graphics/181pro01.jpg
void vkDestroyPipeline (
VkDevice device,
VkPipeline pipeline,
const VKAllocationCallbacks# pAllocator);

graphics/369pro-02.jpg
void vkDestroyFence (
VkDevice device,
VkFence fence,
const VKAllocationCallbackss pAllocator);

graphics/369pro-01.jpg
typedet struct VkFence(reatelnfo {
VkStructureType sType;
const voids pNext;
VkFenceCreateFlags flags;

} VkFenceCreateInfo:

graphics/91pro01.jpg
typedef struct VkSparselmageOpaquelemoryBindInfo {
VkInage inage;
uint32 t bindCount;
const VKSparseMemoryBind+ pBinds;

} VkSparseImageOpagueMemoryBindInfo:

graphics/66pro02.jpg
typedef struct VklmageViewCreatelnto {

VkStructureType
const voids
VkImageViewCreateFlags
VkImage
VkImageViewType
VkFormat
VkComponentMapping
VkImageSubresourceRange
} VkImageViewCreateInfo;

sType;

pNext;

flags;

inage;

viewType;

format;
components;
subresourceRange;

graphics/66pro01.jpg
VKResult vk(reatelmageView (

VkDevice device,
const VkImageViewCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,

VKImageViews pView):

graphics/421pro-01.jpg
void vkCmdExecuteCommands (
VkCommandBuffer commandBuffer,
uint32_t commandBuf ferCount,
const VkCommandBuffers pCommandBuffers);

graphics/7pro01.jpg
VkResult vkEnumeratePhysicalDevices (
VkInstance instance,
uint32_te pPhysicalDeviceCount,
VkPhysicalDevices pPhysicalDevices);

graphics/241pro-01.jpg
typedef struct VkGraphicsPipelineCreatelnfo {
VkStructureType

const

void*

VkPipelineCreateFlags
uint32_t

const
const
const
const
const
const
const
const
const
const

VkPipelineShaderStageCreateInfox
VkPipelineVertexInputStateCreateInfox
VkPipelineInputAssemblyStateCreateInfox
VkPipelineTessellationStateCreateInfox
VkPipelineViewportStateCreateInfox
VkPipelineRasterizationStateCreateInfox
VkPipelineMultisampleStateCreateInfox
VkPipelineDepthStencilStateCreateInfox
VkPipelineColorBlendStateCreateInfox
VkPipelineDynamicStateCreateInfox

VkPipelineLayout
VkRenderPass
uint32 t
VkPipeline

int32 -

1

} VKGraphicsPipelineCreateInfo:

sType;

pNext;

flags !

stageCount;

pStages;
pVertexInputState;
pInputAssemblyState;
pTessellationState;
pViewportState;
pRasterizationState;
pMultisampleState;
pDepthStencilState;
pColorBlendState;
pDynamicState;
layout;

renderPass;

subpass;
basePipelineHandle;
basePipelineIndex;

graphics/102pro01.jpg
VkResult vkBeginCommandBuffer (
VkCommandBuf fer commandBuffer,
const VkCommandBufferBeginInfos pBeginInfo):

graphics/102pro02.jpg
typedet struct VkCommandBufterBegininfo {

VkstructureType sType;
const voidx phext ;
VkCommandBuf ferUsageFlags flags;
const VkCommandBufferInheritanceInfos pInheritancelnfo;

} VkCommandBufferBeginInfo;

graphics/155pro01.jpg
VkResult vkGetDisplayPlaneCapabilitieskHR(

VkPhysicalDevice physicalDevice,
VkDisplayModeKHR mode,
uint32_t planeIndex,

VkDisplayPlaneCapabilitiesKHR+ pCapabilities);

graphics/155pro02.jpg
typedef struct VkDisplayPlaneCapabilitieskHR {

VkDisplayPlaneAlphaFlagskHR
Vkoffset2D
VkOffset2D
VKExtent2D
VKExtent2D
Vkoffset2D
Vkoffset2D
VkExtent2D
VKExtent2D
} VkDisplayPlaneCapabilitieskHR

supportedAlpha;
minSrcPosition:
maxSrcPosition;
minSrcExtent;
maxSrcExtent;
minDstPosition;
maxDstPosition;
minDstExtent;
maxDstExtent;

graphics/28pro01.jpg
typedet struct VkbxtensionProperties {
char extensionName [VK_MAX_EXTENSION NAME_SIZE];
uint32_t specVersion;

} VKExtensionProperties:

graphics/152pro01.jpg
VkResult vkGetPnysicalDeviceDisplayPropertieskHR(
physicalDevice,

VkPhysicalDevice
pPropertyCount,

uint32_tx
VkDisplayPropertiesKHR+ pProperties)

graphics/37pro01.jpg
vold+ VKAPI_CALL Allocation(

voids pUserData,
size t size,

size t alignment,
VkSystemAllocationScope allocationScope);

voids VKAPI_CALL Reallocation(

voids pUserData,

voids poriginal,

size t size,

size t alignment,
VkSystemAllocationScope allocationScope);

void VKAPT CALL Free(
voids pUserData,
void* pMemory) ;

graphics/410pro-02.jpg
typedef struct VkClearRect {
VkRect2D rect;
uint32 t baseArraylayer;
uint32 t layerCount;

} VkClearRect;

graphics/170lis01.jpg
SPIR-V

Version: 1.
Generator:
Bound: 6
Schema: 0
%1
%2
%3
%4
%5

0

Khronos Glslang Reference Front End; 1

OpCapability Shader
OpExtInstImport “GLSL.std.450"
OpMenoryModel Logical GLSL456
OpEntryPoint GLCompute %4 “main"
OpExecutionMode %4 LocalSize 111
OpSource GLSL 450

OpName %4 "main"

0pTypeVoid

OpTypeFunction %2

OpFunction %2 None %3

OpLabel

OpReturn

OpFunctionEnd

graphics/410pro-01.jpg
typedef union VkClearValue {
VkClearColorValue color;
VkClearDepthStencilvalue depthStencil;
i ViClearValie:

graphics/55lis01.jpg
Vkilmage 1mage = VK_NULL _HANDLE;
VkResult result = VK SUCCESS;

static const
VkImageCreateInfo imageCreateInfo =

VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType
nullptr, 7/ phext

. 7/ flags
VK_IMAGE_TYPE_2D, 7/ imageType
VK_FORMAT_R8G8B8AS_UNORM , 7/ format
{ 1024, 1024, 1 }, 7/ extent

1o, 7/ mipLevels

1, 7/ arraylayers
VK_SAMPLE_COUNT_1 BIT, // samples
VK_IMAGE_TILING_OPTIMAL, 7/ tiling
VK_IMAGE_USAGE_SAMPLED_BIT, 7/ usage
VK_SHARING_MODE_EXCLUSIVE, 7/ sharinghode
o, 7/ queueFamilyIndexCount
nullptr, // pQueueFamilyIndices
VK_IMAGE_LAYOUT_UNDEFINED 7/ initiallayout

i

result = vkCreateImage(device, &imageCreateInfo, nullptr, &image):

graphics/391pro-01.jpg
void vkCmdEndQuery (
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32 t query);

graphics/357fig01.jpg
Operation

(VK_LOGIC_OP_...

Result

CLEAR

AND
AND_REVERSE
CcopY
AND_INVERTED
NOOP

XOR

OR

NOR

EQUIV

INVERT
OR_REVERSE
COPY_INVERTED
OR_INVERTED
NAND

SET

Set all values to O
Source & Destination
Source & ~Destination
Source

~Source & Destination
Destination

Source "Destination
Source | Destination
~(Source | Destination)
~(Source "Destination)
~Destination

Source | ~Destination
~Source

~Source | Destination
~(Source & Destination)
Set all values to 1

graphics/143pro01.jpg
VKResult vk(reateSwapchalnKHR(

Vkbevice device,
const VkSwapchainCreateInfokHRe pCreatelnfo,
const VkAllocationCallbacks+ pAllocator,
VKSwapchainKHR#

pSwapchain) ;

graphics/391pro-02.jpg
VkResult vkGetQueryPoolResults (
VkDevice
VkQueryPool
uint32_t
uint32 t
size t
voids
VkDeviceSize
VkQueryResultFlags

device,
queryPool,
firstQuery,
queryCount,
dataSize,
pbata,
stride,
flags):

graphics/12pro02.jpg
void vkGetPhysicalDeviceQueueFamilyProperties (
VkPhysicalDevice physicalDevice,
uint32 tx pQueueFani lyPropertyCount,
VkQueueFamilyPropertiess pQueueFamilyProperties);

graphics/12pro01.jpg
typedet struct VkFemoryheap {
VkDeviceSize size;
VkMemoryHeapFlags flags;
} VkMemoryHeap:

graphics/106pro01.jpg
VkResult vkResetCommandPool (
VkDevice device,
VkCommandPool commandPool,
VkCommandPoolResetFlags flags);

graphics/183lis01a.jpg
if (result == VK SUCCESS)
{

// Open the file and write the data to it.
pOutputFile = fopen(fileName, “wb");

if (pOutputFile != nullptr)

{
furite(pData, 1, cacheDataSize, pOutputFile);
fclose(pOutputFile);

free(pData) ;

¥

return result;

graphics/195tab01.jpg
Field Limit Guaranteed
Minimum

maxDescriptorSetSamplers

Maximum number of samplers in a single pipeline 96

maxDescriptorSetUniformBuffers

Maximum number of uniform buffers in a single pipeline | 72

maxDescriptorSetUniformBuffersDynamic

Maximum number of dynamic uniform buffers in a 8

single pipeline

maxDescriptorSetStorageBuffers

Maximum number of shader storage buffers in a single 24

pipeline

maxDescriptorSetStorageBuffersDynamic

Maximum number of dynamic shader storage buffersina | 4

single pipeline

maxDescriptorSetSampledImages

Maximum number of sampled images in a single pipeline | 96

maxDescriptorSetStorageImages

Maximum number of storage images in a single pipeline | 24

maxDescriptorSetInputAttachments

Maximum number of input attachments in a single 4

pipeline

maxPerStageDescriptorSamplers

Maximum number of samplers in a single stage 16

maxPerStageDescriptorUniformBuffers

Maximum number of uniform buffers in a single stage 12

maxPerStageDescriptorStorageBuffers

Maximum number of shader storage buffers in a single 4

stage

maxPerStageDescriptorSampledImages

Maximum number of sampled images in a single stage 16

maxPerStageDescriptorStorageImages

Maximum number of storage images in a single stage 4

maxPerStageDescriptorInputAttachments

Maximum number of input attachments in a single stage | 4

maxPerStageResources

Maximum total resources used in a single stage 128

graphics/183lis01.jpg
VkResult SaveCacheloFile(VkDevice device, VkPlpellneCache cache,
const charx fileName)
{

size t cacheDataSize;
VkResult result = VK SUCCESS;

// Determine the size of the cache data.

result = vkGetPipelineCacheData(device,
cache,
&cacheDataSize,
nullptr);

if (result == VK SUCCESS && cacheDataSize != 0)
{

FILE+ pOutputFile;
void+ pData;

// Allocate a temporary store for the cache data.
result = VK_ERROR OUT OF HOST MEMORY;
pData = malloc(cacheDataSize);

if (pbata != nullptr)
{

// Retrieve the actual data from the cache.
result = vkGetPipelineCacheData(device,
cache,
&cacheDataSize,
pbata) ;

graphics/86pro02.jpg
typedef struct VkSparselmageFormatProperties {
VkImageAspectFlags aspectMask;
VkExtent3D inageGranularity;
VkSparseImageFormatFlags flags;

} VKSparseImageFormatProperties;

graphics/24pro02.jpg
typedef struct VkLayerProperties {
char layerName [VK MAX_EXTENSION NAME SIZE];
uint32 t specVersion;
uint32.t implementationVersion;
char description[VK MAX DESCRIPTION SIZE];
} VKLayerProperties;:

graphics/24pro01.jpg
VkResult vkEnumeratelnstancelayerProperties (
uint32_te pPropertyCount,
VkLayerPropertiesx pProperties);

graphics/262pro-01.jpg
typedef struct VkPipelineColorBlendStateCreatelnfo {

VkStructureType sType;

const void pNext;
VkPipelineColorBlendStateCreateFlags flags;

VkBool32 logicOpEnable;
VkLogicOp TogicOp;

uint32_t attachmentCount;
const VkPipelineColorBlendAttachmentStates pAttachments;
float blendConstants[4];

} VkPipelineColorBlendStateCreateInf

graphics/74fig01.jpg
Visible to DEVICE

- ~

System Memory

-

Visible to HOST

GPU Memory

graphics/105pro02.jpg
VkResult vkResetCommandBuffter (
VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags);

graphics/105pro01.jpg
VkResult vkiEndCommandBuffer (
VkCommandBuffer commandBuffer) :

graphics/86pro01.jpg
typedet struct VkSparselmageliemoryRequirements i

VkSparseImageFormatProperties formatProperties;
uint32_t imageMipTailFirstLod;
VkDeviceSize imageMipTailSize
VkDeviceSize imageMipTailoffset
VkDeviceSize imageMipTailStride

} VkSparseImageMemoryRequirements:

graphics/248lis-01.jpg
typedet struct vertex-t

vmath::vec4 position;
vmath: :vec3 normal;
vmath: :vec2 texcoord;
} vertex;

static const
VkVertexInputBindingDescription vertexInputBindings[] =
{

}i

{ 0, sizeof(vertex), VK VERTEX INPUT_RATE VERTEX } // Buffer

static const
VkVertexInputAttributeDescription vertexAttributes[] =

{
{0, 0, VK FORMAT R32632B32A32 SFLOAT, 0 }, // Position
{ 1, 8, VK FORMAT R32G32B32 SFLOAT, offsetof(vertex, normal) }, // Normal
{ 2, 0, VK FORMAT R32632 SFLOAT, offsetof(vertex, texcoord) } ~ // Tex Coord
}i

static_const
VkPipelineVertexInputStateCreateInfo vertexInputStateCreateInfo =

{
VK_STRUCTURE_TYPE PIPELINE VERTEX INPUT STATE CREATE INFO, // sType
nullptr, // pNext
0, 7/ flags
vkcore: :utils: :arraysize(vertexInputBindings), // vertexBindingDescriptionCount
vertexInputBindings, // pVertexBindingDescriptions
vkcore: :utils: :arraysize(vertexAttributes), // vertexAttributeDescriptionCount

vertexAttributes // pVertexAttributeDescriptions

graphics/345pro-01.jpg
typede? struct VkPipellneRasterizatlionStateCreatelnfo {

VkStructureType
const voids
VkPipelineRasterizationStateCreateFlags
VkBool32
VkBool32
VkPolygonMode
VkCullModeFlags
VkFrontFace
VkBool32
float
float
float
float

} VkPipelineRasterizationStateCreateInfo

sType;

pext;

flags
depthClampEnable;
rasterizerDiscardEnable;
polygonMode;

cullHode;

frontFace;
depthBiasEnable;
depthBiasConstantFactor;
depthBiasClamp;
depthBiasSlopeFactor;
lineWidth;

graphics/393pro-01.jpg
void vkCmdCopyQueryPoolResults (
VkCommandBuffer
VkQueryPool
uint32.t
uint32_t
VKkBuffer
VkDeviceSize
VKkDeviceSize
VKkQueryResultFlags

commandBuffer,
queryPool,
firstQuery,
queryCount ,
dstBuffer,
dstoffset,
stride,
flags):

graphics/303list-01.jpg
#version 450 core
layout (quads) in;
void main(void)

£
gl Position = vec(gl TessCoord, 1.0);

graphics/314list-01.jpg
OpCapability Geometry
OpCapability GeometryPointSize
OpCapability Clipbistance
OpCapability CullDistance

%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Geometry %5663 "main" %22044 %5305 %4930
OpExecutiontode %5663 InputPoints
OpExecutiontode %5663 Invocations 1
OpExecutionMode %5663 OutputPoints
OpExecutionMode %5663 OutputVertices 1
OpMemberDecorate %2935 @ BuiltIn Position
OpMemberDecorate %2935 1 BuiltIn PointSize
OpMemberDecorate %2935 2 BuiltIn ClipDistance
OpMemberDecorate %2935 3 BuiltIn CullDistance
Opbecorate %2935 Block
OpMemberDecorate %1017 @ BuiltIn Position
OpDecorate %1017 Block
Opbecorate %1018 Block

%8 = OpTypeVoid

%1282 = OpTypeFunction %8

%13 = OpTypeFloat 32

%29 = OpTypeVector %13 4

511 = OpTypeInt 32 0
%2573 = OpConstant %11 1

%554 = OpTypeArray %13 %2573
%2935 = OpTypeStruct %29 %13 %554 %554

%561 = OpTypePointer Output %2935
%22044 = OpVariable %561 Output

%12 = OpTypeInt 32 1
%2571 = OpConstant %12 @
%1017 = OpTypeStruct %29

%557 = OpTypeArray %1017 %2573
%1194 = OpTypePointer Input %557
%5305 = OpVariable %1194 Input

%666 = OpTypePointer Input %29

graphics/303list-02.jpg
This is

%1 =

; Declare

Declare

; This is

%8
%1282
%13
%29
%11
%2573
%554
%2935
%561
%4930
%12
%2571

a GLSL 450 tessellation shader; enable capabilities
OpCapability Tessellation

OpCapability TessellationPointSize
OpCapability ClipDistance

OpCapability CullDistance

OpExtInstImport “GLSL.std.450"

OpMemoryModel Logical GLSL450

the entry point and decorate it appropriately
OpEntryPoint TessellationEvaluation %5663 "main" %4930 %3944
OpExecutionMode %5663 Quads

OpExecutionMode %5663 SpacingEqual
OpExecutionMode %5663 VertexOrderCow

GLSL built-in outputs

OpMemberDecorate %2935 8 BuiltIn Position
OpMemberDecorate %2935 1 BuiltIn PointSize
OpMemberDecorate %2935 2 BuiltIn ClipDistance
OpMemberDecorate %2935 3 BuiltIn CullDistance
Opbecorate %2935 Block

the decoration of gl TessCoord.

OpDecorate %3944 BuiltIn TessCoord

0pTypeVoid

OpTypeFunction %8

OpTypeFloat 32

OpTypeVector %13 4

OpTypelnt 32 0

OpConstant %11 1

OpTypeArray %13 %2573

0pTypeStruct %29 %13 %554 %554

OpTypePointer Output %2935

OpVariable %561 Output

OpTypelnt 32 1

OpConstant %12 ©

Vector of 3 components, as input, decorated with BuiltIn TessCoord

%24
%661
%3944

OpTypeVector %13 3
OpTypePointer Input %24
OpVariable %661 Input

graphics/278pro-01.jpg
typedel struct VkPlpelinelnputAssemblyStatelCreatelnfo {

VkStructureType sType;
const voids plext;
VkPipelineInputAssemblyStateCreateFlags flags;
VkPrimitiveTopology topology;

VkBool32 primitiveRestartEnable;

} VkPipelineInputAssemblyStateCreateInf

graphics/370pro-01.jpg
VKResult vkQueueSubmit (

VkQueue queue,
uint32_t submitCount,
const VkSubmitInfox pSubmits,

VkFence fence):

graphics/370pro-02.jpg
VkResult vkGetFenceStatus (
VkDevice device,
VkFence fence):

graphics/305list-01a.jpg
// Define a push constant range
static const VkPushConstantRange pushConstantRange[] =

// Push data into the evaluation shader.

VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
SEoeofibiticanstarbatal

b %

VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo =

{
VK_STRUCTURE_TYPE_PIPELINE LAYOUT_CREATE_INFO, nullptr,

0,
1;
&n_descriptorSetLayout,
vkcore: :utils: :arraysize(pushConstantRange) ,
pushConstantRange
by
result = vkCreatePipelineLayout (getDevice(),
&pipelinelayoutCreatelnfo,
nullptr,
&m_pipelinelayout);

graphics/388pro-02.jpg
typedef struct VkQueryPoolCreatelnto {

VkStructureType
const voidx
VkQueryPoolCreateFlags
VkQueryType
uint32 t
VkQueryPipelineStatisticFlags

} VkQueryPoolCreateInfo:

SType;

plext;

flags;

queryType;
queryCount ;
pipelineStatistics;

graphics/342fig01.jpg
Function

VK_COMPARE_OP_. . .

Meaning

ALWAYS

NEVER

LESS

LESS_OR_EQUAL

EQUAL

NOT_EQUAL

GREATER

GREATER_OR_EQUAL

The depth test always passes; all
fragments are considered to have passed
the depth test.

The depth test never passes; all
fragments are considered to have failed
the depth test.

The depth test passes if the new
fragment’s depth value is less than the
old fragment’s depth value.

The depth test passes if the new
fragment’s depth value is less than or
equal to the old fragment’s depth value.
The depth test passes if the new
fragment’s depth value is equal to the
old fragment’s depth value.

The depth test passes if the new
fragment’s depth value is not equal to
the old fragment’s depth value.

The depth test passes if the new
fragment’s depth value is greater than
the old fragment’s depth value.

The depth test passes if the new
fragment's depth value is greater than or
equal to the old fragment’s depth value.

graphics/134pro01.jpg
void vkCmdBlitImage (
VkCommandBuf fer
VkImage
VkImageLayout
VkImage
VkImageLayout
uint32_t
const VkImageBlits
VKFilter

commandBuffer,
srcInage,
srcInagelayout,
dstInage,
dstInagelayout,
regionCount,,
pRegions,
Filterts

graphics/57pro01.jpg
typedef struct VkSubresourcelayout
VkDeviceSize offset;
VkDeviceSize size;
VkDeviceSize rowPitch;
VkDeviceSize arrayPitch;
VkDeviceSize depthPitch;

} VkSubresourceLayout;

graphics/388pro-01.jpg
VkResult vkCreateQueryPool (

VkDevice device,
const VkQueryPoolCreateInfox pCreatelInfo,
const VkAllocationCallbacks* pAllocator,

VkQueryPools pQueryPool) ;

graphics/426tab01a.jpg
vkCmdFillBuffer
vkCmdNextSubpass
vkCmdPipelineBarrier
vkCmdPushConstants
vkCmdResetEvent
vkCmdResetQueryPool
vkCmdResolveImage
vkCmdSetBlendConstants
vkCmdSetDepthBias
vkCmdSetDepthBounds
vkCmdSetEvent
vkCmdSetLinewidth
vkCmdSetScissor
vkCmdSetStencilCompareMask
vkCmdSetStencilReference
vkCmdSetStencilWriteMask
vkCmdSetViewport
vkCmdUpdateBuffer
vkCmdwWaitEvents
vkCmdwWriteTimestamp

AN N N N N Y AN

ANAN

N

AN N N N T T N N N N N T NN

AN N N T T N N N N U T N N N N N

<

AN N N N N T N N N N N N Y NN

graphics/134pro02.jpg
typedef struct VkImageBlit {
VkImageSubresourcelayers — srcSubresource;

VkOffset3D srcOffsets(2];
VkInageSubresourcelayers dstSubresource
VkOffset3D dstOffsets[2];

} VkImageBlit;

graphics/353fig01.jpg

graphics/13pro01.jpg
typedef struct VkQueueFamilyProperties {
VkQueueFlags queueFlags;

uint32_t queueCount ;
uint32_t timestampValidBits;
VkExtent3D minInageTransferGranularity;

} VkQueueFamilyProperties;

graphics/292tab01.jpg
GLSL | SPIR-V

layout (triangles) in; OpExecutionMode %n Triangles
layout (quads) in; OpExecutionMode %n Quads
layout (isolines) in; OpExecutionMode %n IsoLines

graphics/248pro01.jpg
typedef struct VkVertexInputAttributeDescription
uint32.t location;
uint32 t binding;
VkFormat format;
uint32_t offset;
} VkVertexInputAttributeDescription;

graphics/173pro01.jpg
VKkResult vkCreateShaderModule (

VkDevice device,
const VkShaderModuleCreateInfox pCreatelnfo,
const VkAllocationCallbacks# pAllocator,

VkShaderModules pShaderModule) :

graphics/372pro-01.jpg
VKResult vkResetrences (
VkDevice device,
uint32_t fenceCount,
const VkFences pFences) ;

graphics/345math03.jpg

graphics/339pro-03.jpg
void vkCmdSetScissor (
VkCommandBuf fer
uint32 t
uint32_t
const VKRect2D#

commandBuffer,
firstScissor,
scissorCount,
pScissors);

graphics/345math01.jpg
(10.1)

graphics/345math02.jpg
} (10.2)

graphics/239pro01.jpg
void vkDestroyFramebuffer (
VkDevice device,
VkFramebuffer framebuffer,
const VkAllocationCallbacks# pAllocator):

graphics/274fig01.jpg
buffer

vertex0ffset —

graphics/308list-01.jpg
VkP1ipelineTessellationStateCreatelnfo tessellationStateCreatelnfo =

{

VK_STRUCTURE_TYPE_PIPELINE TESSELLATION_STATE CREATE_INFO, // sType
nullptr, // pNext
0, 7/ flags
4 // patchControlPoints

graphics/44lis01.jpg
static const VkBufferCreateInfo bufferCreatelnfo =
{
VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, nullptr,
9,
1024 * 1024,
VK_BUFFER_USAGE TRANSFER_SRC_BIT | VK_BUFFER USAGE_TRANSFER DST_BIT,
VK SHARING_MODE EXCLUSTVE,
0, nullptr
bi

VkBuffer buffer = VK_NULL_HANDLE;

vkCreateBuffer(device, &bufferCreateInfo, &buffer):

graphics/42pro01.jpg
VkResult vkCreateBuffer (

VkDevice device,
const VKkBufferCreateInfox pCreateInfo,
const VkAllocationCallbacks* pAllocator,

VkBuffers pBuffer):

graphics/29pro01.jpg
VkResult vkEnumerateDeviceExtensionProperties (

VkPhysicalDevice physicalDevice,
const_charx pLayerNane,
uint32_te pPropertyCount,

VkExtensionPropertiess pProperties);

graphics/319list-01.jpg
#version 450 core

layout (location
layout (location

0) in vec3 i position;
1) in float i pointSize

void main(void)

{
gl Position = vecd(i position, 1.0f);
gl_PointSize = i_pointSize;

graphics/48pro01.jpg
typedef struct VkimagerormatProperties {

VkExtent3D maxExtent;
uint32_t maxMipLevels;
uint32_t maxArrayLayers ;
VksampleCountFlags ~ sampleCounts;
VkDeviceSize maxResourceSize;

} VkImageFormatProperties;

graphics/48pro02.jpg
typedef struct vkbxtent3D 1
uint32 t width;
uint32 t height;
uint32 t depth;

} VKExtent3I

graphics/374list-01.jpg
// Beginning of frame - compute the segment index.
static int framesRendered = 0;
const int segmentIndex = framesRendered % kRingBufferSegments;

// Use a ring of command buffers indexed by segment.
const VkCommandBuffer cmdBuffer = m_cmdBuffer[segmentIndex];

// Wait for the fence associated with this segment.
result = vkWaitForFences(device,

1,
&n_fencelsegmentIndex],
VK_TRUE,
UINT64_HAX) ;

// It's now safe to overwrite the data. m_mappedData is an array of

7/ kRingBufferSegments pointers to persistently mapped backing store for
7/ the source buffer.

fillBufferWithData(m mappedData[segmentIndex]);

// Reset the command buffer. We always use the same command buffer to copy
7/ from a given segment of the the staging buffer, so it’s safe to reset it
7/ here because we’ve already waited for the associated fence.
vkResetCommandBuffer (cmdBuffer, ©);

// Rerecord the command buffer.
static const VkCommandBufferBeginInfo beginInfo =

VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, // sType
nullptr, 7/ pNext
VK_COMMAND_ BUFFER USAGE ONE TIME SUBMIT BIT, // flags
nullptr // pInheritanceInfo

graphics/42pro02.jpg
typedef struct VkBufferCreatelnfo {

VkStructureType sType;
const voids plext;
VkBufferCreateFlags flags:

VkDeviceSize size;
VkBufferUsageFlags usage;

VksharingMode sharingMode;

uint32_t queueFamilyIndexCount;
const uint32_tx pQueueFamilyIndices;

} VkBufferCreateInfo;

graphics/223pro01.jpg
void vkDestroySampler (
VkDevice device,
VkSampler sampler,
const VKAllocationCallbacks# pAllocator);

graphics/450fig01.jpg
REGISTER YOUR PRODUCT at informit.com/register
Access Additional Benefits and SAVE 35% on Your Next Purchase

* Download available product updates.

* Access bonus material when applicable.

* Receive exclusive offers on new editions and related products.

(Just check the box to hear from us when setting up your account.)

* Geta coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT.com-The Trusted Technology Learning Source
InformlIT is the online home of information technology brands at Pearson, the world's foremost
education company. At InformIT.com you can

* Shop our books, eBooks, software, and video training.

+ Take advantage of our special offers and promotions (informit.com/promotions).

* Sign up for special offers and content newsletters (informit.com/newsletters).

* Read free articles and blogs by information technology experts.

* Access thousands of free chapters and video lessons.

Connect with InformIT-Visit informit.com/community
Learn about InformIT community events and programs.

noBen
informit.com

the trusted technology learning source

Addison-Wesley + Cisco Press + IBM Press « Microsoft Press + Pearson IT Certification « Prentice Hall » Que » Sams + VMware Press

ALWAYS LEARNING PEARSON

graphics/396list-01.jpg
// Example structure containing all avalilable pipeline statistics counters

typedef struct VKAULPipelineStatistics {
uint64_t inputAssemblyVertices;
uint64_t inputAssemblyPrimitives
uint64_t vertexShaderInvocations;
uint64_t geometryShaderInvocations;
uint64_t geometryShaderPrimitives;
uint64_t clipperInvocations;
uint64_t clipperOutputPrimitives;
uint64_t fragmentShaderInvocations;
uint64_t tessControlShaderPatches;
uint64_t tessEvaluationShaderInvocations;
uint64_t computeShaderEvaluations;

} VKALlPipelineStatistics;

graphics/331equ-01.jpg
Te
Ye

0

Td
Ya
za
1.0

9.1)

graphics/51fig01.jpg
/--Level 0 (base)

o pe-levell

Level 2

graphics/200pro01.jpg
VkResult vk(reateDescriptorPool (

VkDevice device,
const VKDescriptorPoolCreateInfos pCreatelnfo,
const VkAllocationCallbacks* pAllocator,

VkDescriptorPools pDescriptorPool):

graphics/200pro02.jpg
typeded Struct Veescriprorrnotlreatelnia 4
VkStructureType
const voids
VkDescriptorPoolCreateFlags
uint32 t maxSets;
uint32 t poolSizeCount;
const VkDescriptorPoolSizex pPoolSizes;

} VkDescriptorPoolCreateInfo;

graphics/272list-01.jpg
typedet struct vertex t

vmath: :vec3 normal;
vmath: :vec2 texcoord;
} vertex;

static const
VkVertexInputBindingDescription vertexInputBindings[] =

{ 0, sizeof(vmath::vec4), VK VERTEX INPUT RATE VERTEX }, // Buffer
{ 1, sizeof(vertex), VK VERTEX INPUT_RATE VERTEX } // Buffer 2

static const
VkVertexInputAttributeDescription vertexAttributes[] =
{

{ 0, 0, VK FORMAT_R32G32B32A32_SFLOAT, © }, // Position
{ 1, 1, VK_FORMAT R32G32B32_SFLOAT, 0 '}, 7/ Normal
{ 2, 1, VK FORMAT R32632 SFLOAT, sizeof(vmath::vec3) } // Tex Coord

static_const
VkPipelineVertexInputStateCreateInfo vertexInputStateCreateInfo =

VK_STRUCTURE_TYPE_PIPELINE VERTEX INPUT_STATE CREATE_INFO, // sType

nullptr, // pNext
0, // flags
vkcore: :utils::arraysize(vertexInputBindings), // vertexBindingDescription:
// Count
vertexInputBindings, 7/ pVertexBinding-
// Descriptions
vkcore: :utils::arraysize(vertexAttributes), // vertexAttribute-
// DescriptionCount
vertexAttributes // pVertexAttribute-

7/ Descriptions

graphics/363fig01.jpg
Operation

(VK_BLEND_OP_...) RGB Alpha
ADD Sygb * RGB,+ Sa* Ast
Dy * RGBy Dy x Ag
SUBTRACT Sygy * RGB,— Sax Ag—
Dy * RGBy Dy x Ag
REVERSE_SUBTRACT Dy * RGBy— Dy x Ag—
Syqp % RGB, Sa* Ay

MIN

MAX

min(RGB,, RGBy)

max(RGB,, RGBy)

min(4,, Agq)

min(A,, As)

graphics/332equ-01.jpg
Pz
p)
Py

2
Pz

X &g+ 0z
X Ya + 0y
X zg+0;

9.2)

graphics/256pro-01.jpg
typedef struct VkPipelineViewportStateCreatelnfo {

VkStructureType sType;
const voids plext;
VkPipelineViewportStateCreateFlags flags;
uint32_t viewportCount;
const_VKViewports pViewports;
uint32 t scissorCount;
const VKRect2D+ pScissors;

} VkPipelineViewportStateCreateInfo:

graphics/77pro01.jpg
void vkGetDeviceMemoryCommitment (
VkDevice device,
VkDeviceMemory memory,
VkDeviceSizex pCommittedMemoryInBytes);

graphics/347pro-01.jpg
typedef struct VkStencilOpState {
VkstencilOp failOp;
VKStencilOp passOp:
VkStencilp depthFailOp;
VkCompareOp compare0p;

uint32_t compareMask;
uint32.t writeMask;
uint32_t reference;

} VkStencilOpState:

graphics/412pro-01.jpg
void vkGetRenderAreaGranularity (
VkDevice device,
VkRenderPass renderpass,
VKExtent2Dx pGranularity);

graphics/177pro03.jpg
typedef struct VkPipelineShaderStageCreatelnfo {

VkStructureType sType;
const voids plext;
VkPipelineShaderStageCreateFlags flags
VkShaderStageFlagBits stage
VkshaderModule module;

const charx pName;

const VkSpecializationInfox pSpecializationInfo;

} VkPipelineShaderStageCreateInfo:

graphics/144pro01.jpg
typedef struct VkSwapchainCreateInfokHR {

VkStructureType
const voids
VkSwapchainCreateFlagskHR
VkSurfacekHR
uint32_t
VkFormat
VkColorSpacekHR
VkExtent2D
uint32_t
VkImageUsageFlags
VkSharingMode
uint32_t
const uint32_tx
VkSurfaceTransformFlagBitskHR
VkComposi teAlphaF lagBitskHR
VkPresentModeKHR
VkBool32
VkSwapchainkHR

} VKSwapchainCreateInfoKH

sType;
plext;

flags:

surface;
minImageCount;
imageFormat;
imageColorSpace;
imageExtent;
imageArraylLayers;
inageUsage ;
imageSharingMode ;
queueFamilyIndexCount;
pQueueFamilyIndices;
preTransform;
compositeAlpha;
presentMode;

clipped;

oldSwapchain;

graphics/177pro01.jpg
VkResult vkCreateComputePipelines (
VkbDevice
VkPipelineCache
uint32_t
const VkComputePipelineCreateInfox
const VkAllocationCallbacks+
VkPipelinex

device,
pipelineCache,
createInfoCount,
pCreateInfos,
pAllocator,
pPipelines);:

graphics/327list-01.jpg
OpCapability Shader

;; The shader requires the ClipDistance capability

%1 =

OpCapability ClipDistance
OpExtInstInport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %4 "main" %13 %29
OpSource GLSL 450

OpName %4 "main"

OpName %11 "gl_PerVertex"
OpMemberName %11 © “gl_Position
OpMemberName %11 1 “gl_PointSiz

;; Redeclaration of gl ClipDistance built-in

OpMenberName %11 2 "gl_Clipbistance"
OpMenberName %11 3 "gl_Cullbistance"
OpName %13 "

OpNare %19 “push_constants_b"
OpemberName %19 0 "clip_distance"
OpName %21 “push_constant"

OpName %29 “i_position"

OpMemberDecorate %11 @ BuiltIn Position
OpMenberDecorate %11 1 BuiltIn PointSize

;; Decorate the built-in variable as ClipDistance.

OpMemberDecorate %11 2 BuiltIn ClipDistance
OpMemberDecorate %11 3 BuiltIn CullDistance
Opbecorate %11 Block

Opbecorate %18 ArrayStride 4
OpMemberDecorate %19 6 Offset 0

OpDecorate %19 Block

OpDecorate %29 Location 0

graphics/177pro02.jpg
typedef struct VkComputePipelineCreatelInfo {

VkStructureType
const void«
VkPipelineCreateFlags
VkPipelineShaderStageCreateInfo
VkPipelineLayout
VkPipeline
int32_t

} VkComputePipelineCreateInfo;

sType;
pNext;

flags:

stage;

Tayout;
basePipelineHandle;
basePipelineIndex;

graphics/79pro01.jpg
void vkUnmapMemory (
VkDevice device,
VkDeviceMemory memory)

graphics/180pro01.jpg
typedef struct VkSpecializationlnfo {
uint32 t

mapEntryCount;
const VkSpecializationMapEntrys pMapEntries
size t datasize;
const voids pbata;

} VkSpecializationInfo;

graphics/180pro02.jpg
typedef struct VkSpecializationMapEntry {
uint32_t constantID;
uint32 t offset;
size t size;

} VkSpecializationMapEntr

graphics/360list-01.jpg
#version 450 core

Layout (location
layout (location
Layout (location

out vecd o_colorl;
out vecd o_color2;
out vecd o_color3;

void main(void)

{
o_colorl = vec4(1.0f, 0.0f, 0.0f, 1.0f);
o_color2 = vec4(0.0f, 1.0f, 0.0f, 1.0f);
o_color3 = vec4(0.0f, 0.0f, 1.0f, 1.0f);

graphics/360list-02.jpg
SPIR-V
Version: 1.0
Generator: Khronos Glslang Reference Front End; 1
Bound: 17
Schema: @
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMenoryModel Logical GLSL456
OpEntryPoint Fragment %4 “main® %9 %13 %15
OpExecutionMode %4 OriginUpperLeft
OpSource GLSL 450
OpName %4 "main
Opiame %9 “o_colorl"
OpName %13 "o_color2"
OpName %15 "o_color3"
Opbecorate %9 Location 0
OpDecorate %13 Location 1
OpDecorate %15 Location 5

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32

%7 = OpTypeVector %6 4

OpTypePointer Output %7
OpVariable %8 Output

%10 = OpConstant %6 1
%11 = OpConstant %6 0

%12 = OpConstantComposite %7 %10 %11 %11 %10
%13 = OpVariable %8 Output

%14 = OpConstantComposite %7 %11 %10 %11 %10
%15 = OpVariable %8 Output

%16 = OpConstantComposite %7 %11 %11 %10 %10
%4 = OpFunction %2 None %3

%5 = OpLabel

OpStore %9 %12
OpStore %13 %14
OpStore %15 %16
OpReturn
OpFunctionEnd

graphics/243lis01.jpg
VkPlpelineShaderstage(reatelnfo shaderStageCreatelnfo =
{

VK_STRUCTURE_TYPE_PIPELINE_SHADER STAGE_CREATE_INFO, 7/ sType
nullptr, 7/ pNext

0, 7/ flags
VK_SHADER_STAGE_VERTEX_BIT, // stage

module, // module

"main, // pName

nullptr 7/ pSpecializationInfo

i3]

static_const
VkPipelineVertexInputStateCreateInfo vertexInputStateCreateInfo =
{

VK_STRUCTURE_TYPE_PIPELINE VERTEX_INPUT_STATE CREATE_INFO, // sType

nullptr, /7 pNext
0, 7/ flags
0, 7/ vertexBindingDescriptionCount
nullptr, // pVertexBindingDescriptions

A 7/ vertexAttributeDescriptionCount
nullptr // pVertexAttributeDescriptions

b

static const
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCreateInfo =
{

VK_STRUCTURE_TYPE_PIPELINE INPUT_ASSEMBLY_STATE_CREATE_INFO,// sType

nuliptr, 7/ pNext
o, // flags
VK_PRIMITIVE TOPOLOGY_POINT_LIST, 77 topology

VK_FALSE // primitiveRestartEnable

graphics/92pro03.jpg
typedef struct VkImageSubresource {
VkImageAspectFlags aspectMask;
uint32_t mipLevel;
uint32 t arraylayer;
} VkImageSubresource;

graphics/92pro02.jpg
typedef struct VkSparselmageMemoryBind {

VkImageSubresource subresource;
VKOFfset3D offset;
VkExtent3D extent;
VkDeviceMemory memory ;
VkDeviceSize memory0ffset;

VkSparseMemoryBindFlags flags;
} VkSparseImageMemoryBind;

graphics/92pro01.jpg
typedef struct VksparselmagefiemoryBindlnto {
VkImage image;
uint32_t bindCount;
const VkSparseImageMemoryBind+ pBinds;

} VkSparseImageMemoryBindInfo;

graphics/129pro01.jpg
typedeT struct VklmagesubresourceLayers {
VkImageAspectFlags aspectMask;

uint32_t mipLevel;
uint32_t baseArraylayer;
uint32 t layerCount;

} VkImageSubresourcelayers:

graphics/129fig01.jpg
bufferRowlLength

—_—
Wb1aHabew YN

graphics/187pro01.jpg
void vkCmdDispatch (

VkCommandBuffer commandBuffer,
uint32_t X,
uint32 t Vi

uint32_t 7))

graphics/120pro01.jpg
typedeT struct VklmageMemoryBarrier {

VkStructureType
const voidx
VkAccessFlags
VkAccessFlags
VkImageLayout
VkInageLayout
uint32 t
uint32_t
VkImage
VkImageSubresourceRange

} VkImageMemoryBarrier;

sType;

pNext;
srcAccessMask;
dstAccessMask;
oldLayou
newLayout ;
srcQueueFamilyIndex
dstQueueFamilyIndex;
image;
subresourceRange;

graphics/243lis01c.jpg
b

result = vkCreateGraphicsPipelines(device,
VK_NULL_HANDLE,

13
&graphicsPipelineCreatelnfo,
nullptr,

&pipeline);

graphics/362pro-01.jpg
typedef struct VkPipelineColorBlendAttachmentState {

VkBool32 blendEnable;
VkBlendFactor srcColorBlendFactor;
VkBlendFactor dstColorBlendFactor;
VkBlendOp colorBlendOp;
VkBlendFactor srcAlphaBlendFactor;
VkBlendFactor dstAlphaBlendFactor;
VkBlendOp alphaBlendOp;

VkColorComponentFlags colorWriteMask
} VkPipelineColorBlendAttachmentState:

graphics/243lis01a.jpg
static const
VkViewport dummyViewport =

0.ef, 0.0f,

1.0f, 1.0f

0.1f, 1000.0f
b

static_const
VkRect2D dummyScissor =

{0,0},
{1, 1}
b

static const

1/
vig

//
17

X,y
width, height
minDepth, maxDepth

offset
extent

VkPipelineViewportStateCreateInfo viewportStateCreateInfo =

{
VK_STRUCTURE_TYPE_PIPELINE VIEWPORT STATE CREATE INFO, /1 sType
nullptr, / pNext
o, 7/ flags
y // viewportCount
&dummyViewport, 7/ pViewports
B // scissorCount
&dummyScissor 7/ pScissors
b

static_const

VkPipelineRasterizationStateCreateInfo rasterizationStateCreateInfo =

graphics/346pro-01.jpg
void vkCmdSetDepthBias (

VkCommandBuffer commandBuffer,
float depthBiasConstantFactor,
float depthBiasClamp,

float depthBiasSlopeFactor);

graphics/243lis01b.jpg
VK_STRUCTURE_TYPE_PIPELINE RASTERIZATION STATE CREATE_INFO, // sType
/)

nullptr, 7 pNext
0, 7/ flags

VK_FALSE, 7/ depthClampEnable
VK_TRUE, // rasterizerbiscardenable
VK_POLYGON_MODE FILL, 7/ polygontode

VK CULL_MODE_NONE, 7/ culllode
VK_FRONT_FACE_COUNTER_CLOCKWISE, // frontFace

VK_FALSE, // depthBiasEnable

0.0f, // depthBiasConstantFactor
0.0f, 7/ depthBiasClamp

0.0f, 7/ depthBiasSlopeFactor
0.0f 7/ lineWidth

}i

static const

VkGraphicsPipelineCreateInfo graphicsPipelineCreateInfo =

VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE CREATE_INFO, // sType
/ plext

nuliptr,
1,

&shaderStageCreateInfo,
&vertexInputStateCreatelInfo,
&inputAssemblyStateCreateInfo,
nullptr,
&viewportStateCreatelnfo,
&rasterizationStateCreateInfo,
nullptr,

nullptr,

nullptr,

nullptr,

VK_NULL HANDLE,

renderpass,

)
VK_NULL_HANDLE,

/7
//
1/
/7
/1
1/
//
1/
/7
//
/7
//
1/
/7
//
/7
&

Flags
stageCount

pStages
pVertexInputState
pInputAssemblyState
pTessellationState
pViewportState
PRasterizationState
pMultisampleState
pDepthStencilState
pColorBlendState
pbynamicState
layout

renderPass

subpass
basePipelineHandle
basePipelineIndex

graphics/139pro02.jpg
VKkResult vkCreatewin3ZsourtaceKhR(

VkInstance instance,
const VKWin32SurfaceCreateInfokHR+ pCreateInfo,
const VkAllocationCallbacks# pAllocator,

VKSurfaceKHR pSurface) ;

graphics/139pro01.jpg
VkBool32 vkGetPhysicalDeviceWin32PresentationSupportKHR(
VkPhysicalDevice physicalDevice,
wint32_t queueFamilyIndex):

graphics/17lis01.jpg
VkResult result;
VkPhysicalDeviceFeatures supportedFeatures;
VkPhysicalDeviceFeatures requiredFeatures = {};

vkGetPhysicalDeviceFeatures (m_physicalDevices (0],
&supportedFeatures);

supportedFeatures.nultiDrawIndirect;
VK_ TRUE;
VK_TRUE;

requiredFeatures.multiDrawIndirect
requiredFeatures. tessellationShader
requiredFeatures . geomet ryShader

const VkDeviceQueueCreateInfo deviceQueueCreateInfo =

{
VK_STRUCTURE_TYPE DEVICE QUEUE CREATE_INFO, // sType
nullptr, 7/ plext
0, // flags
o, 7/ queueFamilyIndex
1 7/ queueCount
nullptr 7/ pQueuePriorities
Hi
const VkDeviceCreateInfo deviceCreateInfo =
{
VK_STRUCTURE_TYPE DEVICE CREATE_INFO, // sType
nullptr, 7/ phext
9, // flags
1, // queueCreateInfoCount
&deviceQueueCreateInfo, // pQueueCreateInfos
9, // enabledLayerCount
nullptr, 7/ ppEnabledLayerNames
0, // enabledExtensionCount
nullptr, // ppEnabledExtensionNames
&requiredFeatures // pEnabledFeatures
b
result = vkCreateDevice(m_physicalDevices[0],
&deviceCreatelnfo,
nullptr,

&m_logicalDevice) :

graphics/82pro01.jpg
void vkGetImageMemoryRequirements (
VkDevice device,
VkImage image,
VkMemoryRequi rementss pMemoryRequi rements) ;

graphics/190pro01.jpg
VkResult vk(reateDescriptorsetlayout (

VkDevice device,
const VkDescriptorSetLayoutCreateInfox pCreateInfo,
const VkAllocationCallbacks+ pAllocator,

VkDescriptorSetLayouts pSetLayout) ;

graphics/82pro02.jpg
typedef struct VkMemoryRequirements {

VkDeviceSize size;
VkDeviceSize alignment;
uint32_t memoryTypeBits;

} VkMemoryRequirements;

graphics/190pro02.jpg
typedel struct VkDescriptorsetlLayout(reatelnfo {

VkStructureType
const voids
VkDescriptorSetLayoutCreateFlags
uint32_t
const VkDescriptorSetLayoutBindings

} VkDescriptorSetLayoutCreateInfo;

sType;

plext ;

flags;
bindingCount;
pBindings;

graphics/202pro01.jpg
VkResult vkFreeDescriptorsets (
VkDevice
VkDescriptorPool
uint32_t
const VkDescriptorSets

device,
descriptorPool,
descriptorSetCount,
pDescriptorsets):

graphics/127pro01.jpg
void vkCmdClearDepthStencilImage (
VkCommandBuf fer
VkInage
VkInageLayout
const_VkClearDepthStencilValues
uint32_t
const VkImageSubresourceRangex

commandBuffer,
inage,
imagelayout,
pDepthStencil,
rangeCount,
pRanges) ;

graphics/127pro02.jpg
typedet struct VkClearDepthStencilValue {
float depth;
uint32.t stenci’
} VkClearDepthStencilValue;

graphics/39lis01.jpg
class allocator

{
public:
// Operator that allows an instance of this class to be used as a
7/ VkAllocationCallbacks structure
inline operator VkAllocationCallbacks() const
{
VkALlocationCallbacks result;
result.pUserData = (voids)this;
result.pfnAllocation = &Allocation;
result.pfnReallocation = &Reallocation;
result.pfnFree = &Free;
result.pfnInternalAllocation = nullptr;
result.pfnInternalFree = nullpt
return result;
}
private:

// Declare the allocator callbacks as static member functions.
static voids VKAPI_CALL Allocation(

voidx pUserData,
size t size,
size t alignment,
VkSystemAllocationScope allocationscope) ;
static voids VKAPI_CALL Reallocation(
voidx pUserData,
void« pOriginal,
size t size,
size t alignment,
VkSystemAllocationScope allocationscope) ;

static void VKAPI_CALL Free(
voidx pUserData,
voidx pMemory) ;

graphics/82lis01a.jpg
if (selectedType != ~0u)
for (memoryType = 0; memoryType < 32; ++memoryType)
{

if (memoryRequirements.memoryTypeBits & (1 << memoryType))

const VkMemoryType& type =
deviceMemoryProperties.memoryTypes [memoryTypel ;

// If it has all my required properties, it’ll do.
if ((type.propertyFlags & requiredFlags) == requiredFlags)

selectedType = memoryType;
break;

}

return selectedType;

graphics/227tab01.jpg
Framebuffer

Depth-Stencil
Attachment
Input
Attachments
Color
Attachments

g
®
2
g

Input Assembly i‘\
Vertex Shader l‘——-\

Tessellation
Control Shader

Tessellation
Evaluation Shader|~—>

Geometry Shader [«

Primitive
Assembly

Clip and Cull b J
1

Rasterizer r
Prefragment
Operations
Fragment Shader }-—»

]

Postfragment
Operations

Color Blending

Index Buffer

Vertex Buffers

il

Descriptors

Push Constants

Images

Uniform and
Storage Buffers

Texel Buffers

AL {df

graphics/130pro01.jpg
void vkCmdCopyImageToBuffer (

VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImagelayout,
VkBuffer dstBuffer,
uint32 t regionCount,

const VkBufferImageCopyx pRegions) ;

graphics/56pro02.jpg
typedef struct VkImageSubresource {
VkInageAspectFlags aspectMask;
uint32 t mipLevel;
uint32 t arraylayer;
} VKImageSubresource;

graphics/56pro01.jpg
void vkGetImageSubresourcelayout (

VkDevice device,
VkImage image,
const VkImageSubresources pSubresource,

VkSubresourcelLayout# pLayout):

graphics/8lis01.jpg
VkResult vkapp
{

nit()

VkResult result = VK SUCCESS;
VkApplicationInfo appInfo = { };
VkInstanceCreateInfo instanceCreateInfo = { };

// A generic application info structure
appInfo.sType = VK STRUCTURE_TYPE APPLICATION.INFO;
appInfo. pApplicationhame = “Application";
appInfo.applicationVersion
appInfo.apiversion = VK MAKE_ \/ERSION(l 0, 0);

// Create the instance.
instanceCreateInfo.sType = VK STRUCTURE_TYPE_ INSTANCE CREATE INFO
instanceCreateInfo.pApplicationInfo = &appInfo;

result = vkCreateInstance(&instanceCreateInfo, nullptr, &m instance);

if (result =
{

VK_SUCCESS)

// First figure out how many devices are in the system

uint32_t physicalDeviceCount =

vkEnumeratePhysicalDevices(m instance, &physicalDeviceCount, nullptr);

if (result == VK SUCCESS)

{
// Size the device array appropriately and get the physical
7/ device handles.
m_physicalDevices. resize(physicalDeviceCount);
vkEnumeratePhysicalDevices(m_instance,
&physicalbeviceCount,
, &m_physicalbevices[0]);

}

return result;

graphics/322fig01.jpg
Line Width -

graphics/325fig01.jpg

graphics/347tab01.jpg
Function | Result

KEEP Do not modify the stencil buffer.

ZERO Set stencil buffer value to 0.

REPLACE Replace stencil value with reference
value.

INCR_AND_CLAMP Increment stencil with saturation.

DECR_AND_CLAMP Decrement stencil with saturation.

INVERT Bitwise-invert stencil value.

INCR_AND_WRAP Increment stencil without saturation.

DECR_AND_WRAP Decrement stencil without saturation.

graphics/288pro-01.jpg
typedef struct VkPipelineTessellationStateCreatelnfo {

VkStructureType sType;
const voids plext;
VkPipelineTessellationStateCreateFlags flags;
uint32_t patchControlPoints;

} VkPipelineTessellationStateCreateInfo;

graphics/170pro01.jpg
glslangvalidator simple.comp -0 simple.spv

graphics/295tab01.jpg
GLSL | SPIR-V

layout (cw) in; OpExecutionMode %n VertexOrderCw
layout (ccw) in; OpExecutionMode %n VertexOrderCcw

graphics/374list-01b.jpg
b
vkQueueSubmit (m_queue,

SsubmitInfo,
n_fence[segnentIndex]);

framesRendered++:

graphics/374list-01a.jpg
vkBeginCommandBuffer (cmdBuffer, &beginInfo);

// Copy from the staging buffer at the appropriate segment index into
// the final destination buffer.
VkBufferCopy copyRegion =

{
segmentIndex = kFrameDataSize, // srcOffset
o, // dstOffset
kFrameDataSize /1 size

b

vkCmdCopyBuffer (cmdBuffer,
m_stagingBuffer,
m_targetBuffer,
1;
©Region) ;

vkEndCommandBuf fer (cmdBuffer) ;

// Reset the fence for this segment before submitting this chunk of work to
// the queue.
vkResetFences (device, 1, &m_fence[segmentIndex]);

// Note that this example doesn’t use any submission semaphores. In a real
// application, you would submit many command buffers in a single submission
// and protect that submission using wait and signal semaphores.
VksubmitInfo submitInfo =

{
VK_STRUCTURE_TYPE_SUBMIT_INFO, nullptr, // sType, phext
0, // waitSemaphoreCount
nullptr, 7/ pWaitSemaphores
nullptr, // pWaitDstStageMask
1, // commandBufferCount
&cmdBuffer, // pCommandBuffers
0 // signalSemaphoreCount

nullptr 77 psignalSemaphores

graphics/409pro-02.jpg
typedet struct Vk(learAttachment {
VkImageAspectFlags aspectMask;
uint32_t colorAttachment ;
VkClearValue clearValue;

} VkClearAttachment;

graphics/310list-02.jpg
77 This 1s a geometry shader written 1n GLSL 450.

OpCapability Geometry
1 = OpExtInstImport "GLSL.std.450"

OpMemoryModel Logical GLSL450

;; Declare the main entry point.
OpEntryPoint Geometry %5663 "main"

;; Triangles input, triangle strip output, maximum vertex count is 3.
OpExecutionMode %5663 Triangles
OpExecutionMode %5663 Invocations 1
OpExecutionMode %5663 OutputTriangleStrip
OpExecutionMode %5663 OutputVertices 3

Start of main
%8 = OpTypeVoid

%1282 = OpTypeFunction %8

%5663 = OpFunction %8 None %1282

%16103 = OpLabel

;; End of empty main

OpReturn

OpFunctionEnd

graphics/409pro-01.jpg
void vkCmdClearAttachments (
VkCommandBuf fer
uint32_t
const VkClearAttachmentsx
uint32_t
const VkClearRectx

commandBuffer,
attachmentCount,
pAttachments,
rectCount,
pRects);

graphics/185pro01.jpg
VkResult vkMergePipelineCaches (

VkDevice device,
VkPipelineCache dstCache,
uint32_t srcCacheCount,

const VkPipelineCaches pSrcCaches) ;

graphics/240pro01.jpg
VkResult vk(reateGraphicsFipelines (
VkDevice
VkPipelineCache
uint32_t
const VkGraphicsPipelineCreateInfox
const VkAllocationCallbacks*
VkPipeline*

device,
pipelineCache,
createInfoCount,
pCreateInfos,
pAllocator,
pPipelines):

graphics/274list-01a.jpg
0. -0.25f,
=8, -0.25f,
-0. 8.258,
8 -0.25f,

0. -0.25f,

0. 0.25f,

0. 0.25f,
=B 0.25f,
-0. -0.25f

i

static const uint32.t vertex count = sizeof (vertex positions) /
(3 * sizeof(float));

// Indexed vertex data
static const float indexed_vertex_positions[] =
{

-0.25f, -0.25f, -0.25f,

~8.258; 6.25%. -0.251,
8.25f, -8.25f, -8.25f,
0.25f, 0.25f, -0.25f,
0.25f, -0.25f, 0.25f,
0.25f, 0.25f, 0.25f,
~8.251, -8.251, ©.231,
=8.25F, ©.25f, 0.25f1,

i

// Index buffer
static const uintl6-t vertex indices[] =

graphics/140pro01.jpg
typedet struct VkWin3Zsurface(reatelntokHR {

VkStructureType
const voids
VkWin32SurfaceCreateFlagskHR
HINSTANCE
HUND

} VkWin32SurfaceCreateInfoKHI

sType;
pNext;
flags;
hinstance;
hwnd;

graphics/140pro02.jpg
VkBool32 vkGetPhysicalDeviceXlibPresentationSupportKHR(

VkPhysicalDevice physicalDevice,
uint32 t queueFamilyIndex,
Displayx dpy,

VisuallD visualID):

graphics/185pro02.jpg
void vkDestroyPipelineCache (
VkDevice device,
VkPipelineCache pipelineCache,
const VKAllocationCallbacks# pAllocator);

graphics/299list-02.jpg
;i Declare a tessellation control shader.

OpCapability Tessellation

= OpExtInstImport "GLSL.std.450"

OpMemoryModel Logical GLSL450
OpEntryPoint TessellationControl %5663 "main" %3227 %4585

;; 4 output vertices per patch, declare InvocationId built-in

%8
%1282
%13
%11
%2582
%549
%1186
%3227
%12 =

OpExecutionMode %5663 OutputVertices 4
OpDecorate %4585 BuiltIn InvocationId
0pTypeVoid

OpTypeFunction %8

OpTypeFloat 32

OpTypelnt 32 6

OpConstant %11 4

OpTypeArray %13 %2582

OpTypePointer Output %549

OpVariable %1186 Output

OpTypelnt 32 1

;; This declares the InvocationId input.

%649 =
%4585

%37
%650

OpTypePointer Input %12
OpVariable %649 Input
OpConstant %13 19
OpTypePointer Output %13

;; Beginning of main
%5663 = OpFunction %8 None %1282
%24683 = OpLabel

;; Load the invocation ID.

%20081 = OpLoad %12 %4585
;; Define a reference to output variable
%13546 = OpAccessChain %650 %3227 %20081

;; Store into it at invocation ID.

OpStore %13546 %37

;i End of main

OpReturn
OpFunctionEnd

graphics/58fig01.jpg
T 901§ Aetry ¢ 1§ Aetry

rowritch
width

<
-

-

height

< >

arrayPitch

graphics/299list-01.jpg
#version 450 core

layout (vertices = 4) out;
out float o_outputData[4];

void main(void)

{

o_outputData[gl InvocationId] = 19.0f;
}

graphics/274list-01b.jpg
SNNTTOCTONNN

:arraysize(vertex indices);

utils:

vkcore:

static const uint32_t index_count

graphics/235pro01.jpg
typedef struct VksubpassbDependency {

uint32_t
uint32_t
VkPipelineStageFlags
VkPipelineStageFlags
VkAccessFlags
VkAccessFlags
VkDependencyFlags

} VkSubpassDependency;

srcSubpass;
dstSubpass;
srcStageMask;
dstStageMask
srcAccessMask;
dstAccesshask;
dependencyFlags;

graphics/11pro01.jpg
typedef struct VkPhysicalDeviceMemoryProperties {

uint32_t memoryTypeCount ;
VkMemoryType memoryTypes [VK_MAX_MEMORY_TYPES]
uint32_t memoryHeapCount ;

VkMemoryHeap memoryHeaps [VK_MAX_MEMORY_HEAPS]
} VKPhysicalDeviceMemoryProperties;

graphics/310list-01.jpg
#version 450 core

layout (triangles) in;

layout (triangle_strip) out;
layout (max_vertices = 3) out;

void main(void)

// Do nothing.

graphics/11pro02.jpg
typedef struct VkMemorylype {
VkMemoryPropertyFlags propertyFlags;
uint32_t heapIndex;

} VkMemoryType;

graphics/123lis01.jpg
void FilibutrierwithFloats{vkLommandourier cmabuiier,
VkBuffer dstBuffer,
VkDeviceSize offset,
VkDeviceSize length,
const float value)

vkCmdFillBuffer(cmdBuffer,
dstBuffer,
0,

1024,

#(const uint32_ tx)&value);

graphics/40lis01.jpg
size,
alignment,
allocationscope)

pUserData,

size,
alignment,
allocationscope)

alignment,
allocationScope) ;

pOriginal,
size,
alignment,
allocationscope)

pUserData,
pOriginal,
size,

void+ allocator::Allocation(
size t
size t
VkSystemAllocationScope
{
return aligned_malloc(size, alignment);
}
voidx VKAPI_CALL allocator::Allocation(
void*
size t
size t
VkSystemAllocationScope
{
return static_cast<allocators>(pUserData)->Allocation(size,
3
voide allocator::Reallocation(
void*
size t
size t
VkSystemAllocationScope
{
return aligned_realloc(pOriginal, size, alignment);
}
voidx VKAPI_CALL allocator::Reallocation(
void*
void*
size t
size t

VkSystemAllocationScope

alignment,
allocationScope)

graphics/84pro02.jpg
VkResult vkBindlmageMemory (

VkDevice device,
VkImage image,
VkDeviceMemory memory,

VkDeviceSize memory0ffset):

graphics/84pro01.jpg
VkResult vkBindBufferMemory (

VkDevice device,
VkBuffer buffer,
VkDeviceMemory memory,

VkDeviceSize memoryOffset);

graphics/142pro02.jpg
VKResult vkCreateXcbSurfacekHR(
VkInstance
const VkXcbSurfaceCreateInfokHRs
const VkAllocationCallbacks*
VkSurfaceKHR*

instance,
pCreateInfo,
pAllocator,
pSurface);

graphics/142pro01.jpg
VkBool32 vkGetPhysicalDeviceXcbPresentationSupportKHR(
VkPhysicalDevice physicalDevice,
uint32_t queueFailyIndex,
xcb_connection_tx connection,
ek At sitid. 8 visual id):

graphics/142pro03.jpg
typedet struct VkAcbsurtacelreatelnToRHR {

VkStructureType sType;
const voidx pNext;
VkXcbSurfaceCreateFlagskHR flags:
xcb_connection_t* connection;
xcb_window_t window;

} VkXcbSurfaceCreateInfoKHR;

graphics/348pro-01.jpg
void vkCmdSetStencilReference (

VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t reference) ;

void vkCmdSetStencilCompareMask (

VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32.t compareMask) ;

void vkCmdSetStencilWriteMask (
VkCommandBuffer commandBuffer,
VkstencilFaceFlags faceMask,
uint32 t writeMask):

graphics/189fig01.jpg
TEXTURE
SAMPLER

BUFFER
BUFFER

SET
LAYOUT 1

TEXTURE
TEXTURE
TEXTURE
TEXTURE

PIPELINE

LAYOUT

SET
LAYOUT 2

SAMPLER
SAMPLER

BUFFER
BUFFER
BUFFER

graphics/252fig01.jpg
"_,:04

graphics/356pro-01.jpg
typedeT struct VklmageResolve {
VkImageSubresourceLayers srcSubresource;

VkOffset3D srcOffset;
VkImageSubresourcelayers dstSubresource;
VkOffset3D dstOffset;
VkExtent3D extent;

} VkImageResolve;

graphics/359list-02.jpg
Version: 1.

Generator:
Bound: 13
Schema: 0

%1

%2
%3
%6

%8
%9
%10
%11
%12

%5

0

Khronos Glslang Reference Front End; 1

OpCapability Shader
OpExtInstImport “GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %4 “main‘ %9
OpExecutionMode %4 OriginUpperLeft
OpSource GLSL 450

OpName %4 “main"

OpName %9 “o_color"

OpTypeVoid

OpTypeFunction %2

OpTypeFloat 32

OpTypeVector %6 4

OpTypePointer Output %7
Opvariable %8 Output

OpConstant %6 1

OpConstant %6 0
OpConstantComposite %7 %10 %11 %11 %10
OpFunction %2 None %3

OpLabel

OpStore %9 %12

OpReturn

OpFunctionEnd

graphics/359list-01.jpg
#version 450 core

out vecd o_color;
void main(void)

{

o_color = veca(1.0f, 0.0f, 0.0f, 1.0f);
}

graphics/251pro-01.jpg
typedef struct VkPipelinelnputAssemblyStateCreatelnfo {

VkstructureType sType;

const voids plext;
VkPipelineInputAssemblyStateCreateFlags flags;
VkPrimitiveTopology topology

VkBool32 primitiveRestartEnable

} VkPipelineInputAssemblyStateCreateInfo:

graphics/147pro02.jpg
} VKSurfaceCapabilitieskHi

uint32 t

uint32_t

VKExtent2D

VkExtent2D

VkExtent2D

uint32 t

VksurfaceTrans formFlagskHR

VkSurfaceTransformFlagBitskHR

VkComposi teAlphaF lagskHR
VkInageUsageFlags

typede? struct VkourfaceCapabilitiesknR {

minImageCount;
maxImageCount ;
currentExtent;
minImageExten
maxImageExtent ;
maxImageArrayLayers;
supportedTransforms;
currentTransform;
supportedComposi teAlpha;
supportedUsageFlags;

graphics/290fig02.jpg
+

TessLevelOuter[1]

(0,1,0)

+

TessLevellnner[0]

TessLevelOuter([2]

graphics/147pro01.jpg
VKResult vkGetPhysicalDeviceSurfaceCapabilitieskKHR(
VkPhysicalDevice physicalDevice,
VkSurfaceKHR surface,
VKSurfaceCapabilitieskHR+ pSurfaceCapabilities)

graphics/290fig01.jpg
TessLevelOuter(0]

(0,1)

(0,0

TessLevellnner(0]

N

TessLevelOuter(1]

(1,1)

TessLevellnner(1]

1,0

TessLevelOuter[2]

graphics/36pro02.jpg
typedet struct VkAllocationCallbacks {

voidx pUserData;
PFN_vkAllocationFunction pfnAllocation;
PFN_vkReal locationFunction pfnReallocation;
PEN_vKFreeFunction pfnFree;
PFN_vkInternalAllocationNotification pfnInternalAllocation;
PFN_vkInternalFreeNotification pfnInternalFree;

} VkAllocationCallbacks:

graphics/71fig01.jpg

graphics/89pro01.jpg
VKRe:

sult vkQueueBindSparse (
VkQueue

uint32_t

const VkBindSparseInfox
VKFence

queue,
bindInfoCount,
pBindInfo,
fence):

graphics/36pro01.jpg
VkResult vk(reatelnstance (
const VkInstanceCreateInfox pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstances pInstance);

graphics/89pro02.jpg
typedef struct VkBindSparselnfo {
VkStructureType
const voidx
uint32_t
const VkSemaphore+
uint32_t
const VkSparseBufferMemoryBindInfos
uint32_t
const _VkSparseImageOpaqueMemoryBindInfox
uint32_t
const_VkSparseImageMemoryBindInfox
uint32_t
const VkSemaphores

} VkBindSparseInfo;

sType;

phext;
waitSemaphoreCount;
pWaitSemaphores;
bufferBindCount ;
pBufferBinds;
imageOpaqueBindCount;
pImageOpaqueBinds;
imageBindCount;
pImageBinds;
signalSemaphoreCount;
pSignalSemaphores;

graphics/326list-01.jpg
#version 450 core

// Redeclare gl ClipDistance to explicitly size it
out float gl Clipbistance[1];

layout (location = @) in vec3 i_position;

// Push constant from which to assign clip distance
Layout (push_constant) uniform push_constants_b

float clip distancel4];
} push_constan

void main(void)

gl_ClipDistance[0] = push_constant.clip_distance[0];
gl _Position = vec4(i position, 1.0f

graphics/355pro-01.jpg
void vkCmdResolvelmage (
VkCommandBuffer
VkImage
VkInageLayout
VkImage
VkImageLayout
uint32_t
const VkImageResolves

commandBuffer,
srcImage,
srcImagelayout,
dstImage,
dstInagelayout,
regionCount,
pRegions);

graphics/119pro01.jpg
typede? struct VkButferMemoryBarrier {
VkStructureType sType;

const voids pNext;
VkAccessFlags srcAccessMask;
VkAccessFlags dstAccesshask;
uint32_t srcQueueFanilyIndex;
uint32_t dstQueueFamilyIndex;
VkBuffer buffer;
VkDeviceSize offset;
VkDeviceSize size;

} VkBufferMemoryBarrier:

graphics/157pro01.jpg
typedef struct VkDisplayflodeParameterskhR {
VkExtent2D visibleRegion;
uint32_t refreshRate;

} VkDisplayModeParameterskHR;

graphics/157pro02.jpg
VkResult vkCreateDisplayModeKHR(
VkPhysicalDevice
VkDisplaykHR
const VkDisplayModeCreateInfokHRe
const VkAllocationCallbacks«
VKDisplayModeKHR#

physicalDevice,
display,
pCreatelnfo,
pAllocator,
pMode) ;

graphics/157pro03.jpg
typedef struct VkDisplayModeCreateInfoKHR {

VkstructureType sType;
const voids plext;
VkDisplayModeCreateFlagskHR flags;
VkDisplayModeParameterskHR parameters;

} VkDisplayModeCreateInfoKHR;

graphics/408pro-01.jpg
void vkCmdNextSubpass (
VkCommandBuffer commandBuffer,
VkSubpassContents contents);

graphics/99pro01.jpg
VkResult vkAllocateCommanaButfers (
VkDevice device,
const VkCommandBufferAllocateInfox pAllocatelnfo,
VkCommandBuffers pCommandBuffers) ;

graphics/415fig01.jpg
TRANSLUCENT TRANSLUCENT

BUFFER

DEPTH
F3 BUFFER

¥
G-BUFFER LIGHTING COMPOSITE
il L e FRAMEBUFFER

- -»| opaaue
G-BUFFER o BUFFER

graphics/5pro02.jpg
typedef struct VkApplicationlnfo {

VkStructureType
const voidx
const _charx
uint32_t
const_charx
uint32_t
uint32_t

} VkApplicationInfo:

sType;
pNext ;
pApplicationName;
applicationVersion;
pEngineName;
engineVersion;
apiVersion;

graphics/5pro01.jpg
typedef struct VkInstanceCreatelInfo {

VkStructureType
const voidx
VkInstanceCreateFlags
const VkApplicationInfos
uint32_t
const _charx consts
uint32_t
const charx consts

} VkInstanceCreateInfo;

sType;

plext;

flags;

pApplicationInfo;
enabledLayerCount;
ppEnabledLayerNames;
enabledExtensionCount;
ppEnabledExtensionNames;

graphics/99pro02.jpg
typede? struct VkCommandBufferAllocatelnto {

VkStructureType sType;
const voids pNext;
VkCommandPool commandPool ;
VkCommandBufferLevel — level;

uint32_t commandBuf ferCount;

} VkCommandBufferAllocateInfo:

graphics/207pro01.jpg
void vkCmdBindDescriptorSets (
VkCommandBuffer
VkPipelineBindPoint
VkPipelineLayout
uint32.t
uint32_t
const VkDescriptorSets
uint32_t
const uint32 t+

commandBuffer,
pipelineBindPoint,
layout,

firstSet,
descriptorSetCount,
pDescriptorSets,
dynamicOffsetCount,
pDynamicOffsets);

graphics/250list-02.jpg
SPIR-V
Version: 1.0
Generator: Khronos Glslang Reference Front End; 1
Bound: 30
Schema: @
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %4 "main" %13 %18 %29
OpSource GLSL 450
OpName %18 "i_position"
OpName %29 "i_uv’
OpDecorate %18 Location 0

; Name of i_position
; Name of i_uv
; Location of i_position

OpDecorate %29 Location 1 :; Location of i uv
= OpTypeFloat 32 ;i % is 32-bit floating-point type

%16 = OpTypeVector %6 3 77 %16 is a vector of 3 32-bit floats (vec3)
%17 = OpTypePointer Input %16

%18 = OpVariable %17 Input ;; %18 is i position - input pointer to vec3
%27 = OpTypeVector %6 2 }: %27 is a vector of 2 32-bit floats

%28 = OpTypePointer Input %27

%29 = OpVariable %28 Input ;i %29 is i_uv - input pointer to vec2

graphics/250list-01.jpg
#version 450 core

layout (location
layout (location

) in vec3 i position;
1) in vec2 i uv;

void main(void)

gl Position = vecd(i position, 1.0f);

graphics/100pro01.jpg
void vkFreeCommandBuffers (
VkDevice
VkCommandPool
uint32 t
const VkCommandBuffer+

device,
commandPool ,
commandBufferCount,
pCommandBuffers);

graphics/162pro01.jpg
void vkDestroySwapchainKHR(
VkDevice device,
VkSwapchainkHR swapchain,
const VKAllocationCallbacks* pAllocator):

graphics/160lis01.jpg
const VkImageMemoryBarrier barrie
{

VK STRUCTURE_TYPE_THAGE MEMORY_BARRIER, // sType
nullpt /1 phext
UK ACCESS COLOR ATTACHMENT WRITE BIT, // srcAccessMask
VK_ACCESS_MEMORY_READ_BIT, // dstAccessMask
VK_IMAGE_LAYOUT_COLOR ATTACHMENT OPTIMAL, ~ // oldLayout
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, // newLayout
0, // srcQueueFamilyIndex
9, // dstQueueFamilyIndex
sourceImage, 7/ image
{ /1 subresourceRange

VK_IMAGE_ASPECT_COLOR BIT, // aspectMask

0, // baseMipLevel

1, // levelCount

0, // baseArrayLayer

1 /7 layerCount
¥

vkCmdPipelineBarrier(cmdBuffer,
VK_PIPELINE STAGE COLOR ATTACHMENT OUTPUT BIT,
VK,PIPELIME STAGE_BOTTOM_OF_PIPE_BIT,

3, nullptr,
e, nullptr,
1 ERRFTRarYs

graphics/303list-02a.jpg
%138 = OpConstant %13 1

%666 = OpTypePointer Output %29
%5663 = OpFunction %8 None %1282
424987 = OpLabel

;; Read from gl_TessCoord
%17674 = OpLoad %24 %3944
;i Extract the three elements.
%22014 = OpCompositeExtract %13 %17674 0
%23496 = OpCompositeExtract %13 %17674 1
%7529 = OpCompositeExtract %13 %17674 2
;; Construct the new vecd.
%18260 = OpCompositeConstruct %29 %22014 %23496 %7529 %138
;; Write to gl_Postion
%12055 = OpAccessChain %666 %4930 %2571
OpStore %12055 %18260
;; End of main
OpReturn
OpFunctionEnd

graphics/64pro02.jpg
typedet struct VkbuTferView(reatelnfo {
VkStructureType sType
const voids plext;
VkBufferViewCreateFlags flags
VkBuffer
VkFormat
VkDeviceSize
VkDeviceSize

L UkButPerVieet rentalntos

graphics/422pro-01.jpg
typedet struct VkCommandBufferlnheritancelnfo {

VkStructureType

const voids

VkRenderPass

uint32 t

VkFramebuffer

VkBool32

VkQueryControlFlags

VkQueryPipelineStatisticFlags
} VkCommandBufferInheritanceInfo:

sType;

pNext;

renderPass;

subpass;

framebuffer;
occlusionQueryEnable;
queryFlags;
pipelineStatistics;

graphics/64pro01.jpg
VKkResult vk(reateBufferView (

VkDevice device,
const VKkBufferViewCreateInfox pCreateInfo,
const VkAllocationCallbacks* pAllocator,

VKBufferViews pView):

graphics/128pro01.jpg
void vkCmdCopyBufferToImage (

VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,

const VkBufferImageCopy* pRegions);

graphics/357pro-01.jpg
typedef struct VkPipelineColorBlendStateCreatelnfo {

VkStructureType sType;

const void« plext;
VkPipelineColorBlendStateCreateFlags flags

VkBool32 LlogicOpEnable;
VkLogicOp Togicop;

uint32_t attachmentCount;
const VkPipelineColorBlendAttachmentStates pAttachments;
float blendConstants[4];

1 VkPipelineColorBlendStateCreateInfo:

graphics/128pro02.jpg
typedef struct VkBufferlImageCopy {

VkDeviceSize
uint32_t
uint32_t
VkInageSubresourcelLayers
Vkoffset3D
VKExtent3D

} VkBufferImageCopy:

bufferOffset;
bufferRowLength;
bufferInageHeight
imageSubresource;
image0ffset;
imageExtent;

graphics/328list-01.jpg
#version 450 core

out float gl CullDistance(1];

layout (location = @) in vec3 i_position;
layout (push_constant) uniform push_constants_b

float cull distance[4];
} push_constan

void main(void)

gl _CullDistance[0] = push_constant.cull distance[0];
gl Position = vecd(i position, 1.0f);

graphics/397pro-01.jpg
void vkCmdWriteTimestamp (
VkCommandBuffer
VkPipelineStageFlagBits
VkQueryPool
uint32_t

commandBuf fer,
pipelineStage,
queryPool,
query);

graphics/213pro01.jpg
typedef struct VkPushConstantRange {
VkShaderStageFlags stageFlags;
uint32 t offset;
uint32.t size;

} VkPushConstantRange;

graphics/47pro01.jpg
VkResult vkGetPhysicalDevicelImageFormatProperties (

VkPhysicalDevice physicalDevice,
VkFormat format,
VkImageType type,
VkInageTiling tiling,
VkInageUsageFlags usage,
VkImageCreateFlags flags,

VkImageFormatProperties* pImageFormatProperties):

graphics/384pro-01.jpg
VKResult vkQueueBindSparse (

VkQueue queue,
uint32_t bindInfoCount,
const VkBindSparseInfox pBindInfo,

VkFence fence):

graphics/344pro-01.jpg
void vkCmdSetDepthBounds (
VkCommandBuf fer commandBuffer,
float minDepthBounds,
float maxDepthBounds) ;

graphics/279fig01.jpg
4 OWFFFFFFFF 8

VA Y

graphics/76pro01.jpg
void vkFreeMemory (
VkDevice device,
VkDeviceMemory memory,
const VkAllocationCallbacks# pAllocator);

graphics/317pro-01.jpg
OpExecutionMode %n Invocations 1

graphics/191pro01.jpg
typedeT struct VkDescriptorsetlLayoutBinding {

uint32 t binding;
VKDescriptorType descriptorType
uint32 t descriptorCount;
VkshaderStageFlags stageFlags;

const VkSamplers pInmutableSamplers;

} VkDescriptorSetLayoutBinding;

graphics/230pro01.jpg
VkResult vk(reateRenderPass (

VkDevice device,
const VkRenderPassCreateInfox pCreateInfo,
const VkAllocationCallbacks* pAllocator,

VKRenderPass* pRenderPass) ;

graphics/87tab01.jpg
Texel Size

| 2D Block Shape

| 3D Block Shape

8-bit
16-bit
32-bit
64-bit
128-bit

256 x 256
256 x 128
128 x 128
128 x 64
64 x 64

64 x 32 x 32
32 x32x32
32 x32x16
32 x 16 x 16
16 x 16 x 16

graphics/364fig01.jpg
Blend Factor

(VK_BLEND_FACTOR_. ..) RGB Alpha
ZERO (0,0,0) 0
ONE 1,1,1) 1
SRC_COLOR (Rs0, G0, Bso) Aso
ONE_MINUS_SRC_COLOR (1,1, 1) - (Rso, Gs0, Bso) 1-Agp
DST_COLOR (Ra, Ga, Ba) Ad
ONE_MINUS_DST_COLOR (1,1, 1) - (Ra, Ga, Ba) 1-Aq
SRC_ALPHA (As0, Aso, Aso) Aso
ONE_MINUS_SRC_ALPHA (1,1, 1) - (As0, Aso, Aso) 1- Ay
DST_ALPHA (Aa) Aa, Aa) Aa
ONE_MINUS_DST_ALPHA (1,1, 1) - (Ag, Aq, Ag) 1-Aq
CONSTANT_COLOR (Re, Ge, Be) Ac
ONE_MINUS_CONSTANT_COLOR (1,1,1) - (Re, G, Bo) 1-4,
CONSTANT_ALPHA (Ac) Ac, Ac) Ac
ONE_MINUS_CONSTANT_ALPHA (1,1, 1) - (A, A, A) 1- A
ALPHA_SATURATE £ 0 1
f=min(A4,1- A,)
SRC1_COLOR (Rs1, Gs1, Bs1) As
ONE_MINUS_SRC1_COLOR (1,1,1) - (Re1, Gs1, Bar) 1- A
SRC1_ALPHA (A1, Aar, As) A
ONE_MINUS_SRC1_ALPHA (1,1, 1) - (A1, As1, As1) 1-Aqa

graphics/415list-01g.jpg
b

static const VkRenderPassCreateInfo renderPassCreateInfo =

{
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr,

0, 77
vkcore: :utils: :arraysize(attachments) 7/
attachments, 7
vkcore: :utils: :arraysize(subpasses), 7/
subpasses, 7/
vkcore: :utils: :arraysize(dependencies), 7
dependencies Va

Y

result = vkCreateRenderPass (device,
&renderPassCreateInfo,
nullptr,
&m_renderPass) ;

flags
attachmentCount
pAttachments
subpassCount
pSubpasses
dependencyCount
pDependencies

graphics/415list-01f.jpg
G-buffer pass depends on depth prepass.

kSubpass_DEPTH,
kSubpass_GBUFFER,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_QUTPUT_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_DEPENDENCY_BY_REGION_BIT

Lighting pass depends on g-buffer.

KSubpass_GBUFFER,

KSubpass_LIGHTING,

VK_PIPELINE STAGE COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_DEPENDENCY_BY_REGION_BIT

Composite pass depends on translucent pass.

KSubpass_TRANSLUCENTS,

KSubpass_COMPOSITE,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_DEPENDENCY_BY_REGION_BIT

Composite pass also depends on lighting.

KSubpass_LIGHTING,

KSubpass_COMPOSITE,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_DEPENDENCY_BY_REGION_BIT

/!
/7
/!
/!
/!
/7
/7

/7
/!
/!
/!
/!
/1
/!

/!
/7
/1
/1
/!
/!

/!
/7
/7
/7
/7
/1

srcSubpass
dstSubpass
srcStageMask
dstStageMask
srcAccessMask
dstAccessMask
dependencyFlags

srcSubpass
dstSubpass
srcStageMask
dstStageMask
srcAccessMask
dstAccessMask
dependencyFlags

srcSubpass
dstSubpass
srcStageMask
dstStageMask
srcAccessMask
dstAccessMask
dependencyFlags

srcSubpass
dstSubpass
srcStageMask
dstStageMask
srcAccessMask
dstAccessMask
dependencyFlags

graphics/277list-01.jpg
#version 450 core

vec3 unpackA2R10G10B10_snorm(uint value)
{

int val_signed = int(value);

vec3 result;

const float scale = (1.8f / 512.6f);

result.x
result.y
result.z

float(bitfieldExtract(val signed, 20, 10));
float(bitfieldExtract(val signed, 10, 10));
float(bitfieldExtract(val signed, 0, 10));

return result * scale;
}

void main(void)
{
gl Position = vecd(unpackA2R10610B10_snorm(gl VertexIndex), 1.0f);

graphics/415list-01e.jpg
Y

1
// Subpass 4 - translucent objects
{
0,
VK_PIPELINE_BIND_POINT_GRAPHICS,
0,
nullptr,
vkcore: :util:
translucentWri:
nullptr,
nullptr,
0,
nullptr

e,

T

7/ Subpass 5 - composite

{
0,
VK_PIPELINE_BIND_POINT_GRAPHICS,
0,
nullptr,
vkcore: :util
backBuf ferRenderRef,
nullptr,
nullptr,
0,
nullptr

}

// flags
7/ pipelineBindPoint
7/ inputAttachmentCount
7/ pInputAttachments

arraysize(translucentWrite), // colorAttachmentCount

// pColorAttachments

// pResolveAttachments

// pbepthStencilAttachment
// preserveAttachmentCount
// pPreserveAttachments

// flags
7/ pipelineBindPoint
7/ inputAttachmentCount
// pInputAttachments

:arraysize(backBufferRenderRef), // colorAttachmentCount

// pColorAttachments

// pResolveAttachments

// pbepthStencilAttachment
// preserveAttachmentCount
// pPreserveAttachments

static const VkSubpassDependency dependencies(] =

£

graphics/415list-01d.jpg
static const VkSubpassDescription subpasses[] =

{

// Subpass 1 - depth prepass

{
0, // flags
VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint
0, 7/ inputAttachmentCount
nullptr, 7/ pInputAttachments
0, 7/ colorAttachmentCount
nullptr, 7/ pColorAttachments
nullptr, // pResolveAttachments
&depthAttachmentReference, // pDepthStencilAttachment
0, // preserveAttachmentCount
nullptr 7/ pPreserveAttachments

T

// Subpass 2 - g-buffer generation

{
0, // flags
VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint
0, 7/ inputAttachmentCount
nullptr, 7/ pInputAttachments
vkcore: :utils: :arraysize(gBufferOutputs), // colorAttachmentCount
gBufferOutputs, // pColorAttachments
nullptr, 7/ pResolveAttachments
&depthAttachmentReference, // pDepthStencilAttachment
0, 7/ preserveAttachmentCount
nullptr 7/ pPreserveAttachments

T

// Subpass 3 - lighting

{
0, // flags
VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint
vkcore: :utils: :arraysize(gBufferReadRef), // inputAttachmentCount
gBufferReadRef, // pInputAttachments
vkcore: :utils: :arraysize(opaqueWrite), // colorAttachmentCount
opaquelirite, // pColorAttachments
nullptr, 7/ pResolveAttachments
nullptr, // pDepthStencilAttachment
0, 7/ preserveAttachmentCount

nullptr // pPreserveAttachments

graphics/415list-01c.jpg
// Write to opaque buffer.

kAttachment_OPAQUE, //
VK_IMAGE_LAYOUT_COLOR ATTACHMENT_OPTIMAL V2

// Translucency rendering pass - translucency buffer write
static const VkAttachmentReference translucentwWrite[] =

// Write to translucency buffer.

KAttachment_TRANSLUCENCY, 1/
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL V2

static const VkAttachmentReference compositeInputs(] =

{

// Read from translucency buffer.

KAttachment_TRANSLUCENCY, 1/
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL V2

3
// Read from opaque buffer.

kAttachment_OPAQUE, a
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL /7
}

b

// Final pass - back buffer render reference
static const VkAttachmentReference backBufferRenderRef[] =

{

KAttachment_BACK, /7
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL /7

attachment
layout

attachment
layout

attachment
layout

attachment
layout

attachment
layout

graphics/415list-01b.jpg
// Depth prepass depth buffer reference (read/write)
static const VKAttachmentReference depthAttachmentReference =

KkAttachment_DEPTH, // attachment
VK_IMAGE_LAYOUT_DEPTH_STENCIL ATTACHMENT_OPTIMAL // layout

b

// G-buffer attachment references (render)
static const VkAttachmentReference gBufferOutputs[]
{

KkAttachment_GBUFFER, // attachment
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL /1 layout

// Lighting input attachment references
static const VkAttachmentReference gBufferReadRef[]

{
// Read from g-buffer.
{
KkAttachment_GBUFFER, // attachment
VK_IMAGE_LAYOUT_SHADER READ_ONLY_OPTIMAL /1 layout
T
// Read depth as texture.
KAttachment_DEPTH, // attachment
VK_IMAGE_LAYOUT_DEPTH_STENCIL READ_ONLY_OPTIMAL // layout
}
b

// Lighting pass - write to opaque buffer.
static const VkAttachmentReference opaqueWrite[] =

{

graphics/415list-01a.jpg
+

// Depth buffer

{

h

0,

VK_FORMAT_D32_SFLOAT,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_UNDEFINED

// G-buffer 1

{

Y

0,

VK_FORMAT_R32G32B32A32_UINT,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_UNDEFINED

// Translucency buffer

{

0,

VK_FORMAT_R8G8BBAB_UNORM,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_UNDEFINED

/7
£
i
/1
/!
/!
/7
/!
/!

/!
/!
/7
£l
/1
/!
/!
/7
/!

/1
/!
/!
/7
£l
/1
/!
/!
/!

flags
format

samples

loadop

store0p
stencilloadOp
stencilStore0p
initiallayout
finalLayout

flags
format

samples

loadop

store0p
stencilloadOp
stencilStore0p
initiallayout
finalLayout

flags
format

samples

1oadop

storeOp
stencilloadOp
stencilStore0p
initiallayout
finalLayout

graphics/81pro01.jpg
VkResult vklnvalidateMappediemoryRanges (
VkDevice device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange# pMemoryRanges) ;

graphics/150pro01.jpg
VKAPL_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceFormatskHR(

VkPhysicalDevice physicalDevice,
VkSurfaceKHR surface,
uint32_t= pSurfaceFormatCount,

VkSurfaceFormatKHR+ pSurfaceFormats);

graphics/81pro02.jpg
void vkGetBufferMemoryRequirements (
VkDevice device,
VkBuffer buffer,
VkMemoryRequirements# pMemoryRequirements) ;

graphics/150pro02.jpg
typedet struct VkSurtaceFormatkHR {
VkFormat format;
VkColorSpaceKHR colorSpace;
} VKSurfaceFormatKHR:

graphics/399list-01.jpg
VkBufferMemoryBarrier bufferMemoryBarrier =
{

VILSTRUCTURE TYPE_BUFFER_MEMORY_BARRIER, // sType

nullpt // pNext
VK ACCESS. TRANSFER WRITE BIT, /1 srcAccessMask
VK_ACCESS_HOST_READ_BIT, // dstAccessMask
VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex
VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex
buffer, // buffer
0, 7/ offset
VK_WHOLE_STZE // size

b

vkCmdPipelineBarrier(
cmdBuffer, // commandBuffer
VK_PIPELINE_STAGE_TRANSFER BIT, // srcStageMask
VK_PIPELINE_STAGE_HOST_BIT, // dstStageMask
0, 7/ dependencyFlags
o, // memoryBarrierCount
nullptr, 7/ pMemoryBarriers
1, // bufferMemoryBarrierCount
&bufferMemoryBarrier, // pBufferMemoryBarriers

0, 7/ imageMemoryBarrierCount
nullptr); 7/ pImageMemoryBarriers

graphics/97pro01.jpg
void vkGetDeviceQueue (

VkDevice device,
uint32_t queueFamilyIndex,
uint32_t queueIndex,

VkQueue* pQueue) ;

graphics/376pro-02.jpg
typedef struct vkevent(reatelnfo {
VkStructureType sType;
const voids pNext;
VkEventCreateFlags flags;

} VkEventCreateInfo:

graphics/376pro-01.jpg
VkResult vk(CreateEvent (
VkDevice

device,
const VKEventCreateInfox pCreateInfo,
const VkAllocationCallbacks* pAllocator,

VKEvents pEvent):

graphics/320list-01.jpg
;i GLSL compiler automatically declares per-vertex output block
OpName %11 “gl_PerVertex"

OpMemberName %11 © "gl_Position"

OpMemberName %11 1 "gl_PointSize"

OpMemberName %11 1_ClipDistance”

OpMemberName %11 3 "gl_CullDistance"

OpName %13 "

i Naming inputs

OpName %18 "i_position"

OpName %29 "i_pointSize"

;; Decorating members of the default output block
OpMemberDecorate %11 © BuiltIn Position
OpMemberDecorate %11 1 BuiltIn PointSize ;; gl PointSize
OpMemberDecorate %11 2 BuiltIn ClipDistance
OpMemberDecorate %11 3 BuiltIn CullDistance

OpDecorate %11 Block

OpDecorate %18 Location 0

OpDecorate %29 Location 1

%4 = OpFunction %2 None %3
Start of "main"
%5 = OpLabel

;; Load i position.

%19 = OpLoad %16 %18
521 = OpCompositeExtract %6 %19 O
%22 = OpCompositeExtract %6 %19 1
%23 = OpCompositeExtract %6 %19 2
;; Construct vecd and write to gl_Position
%24 = OpCompositeConstruct %7 %21 %22 %23 %20

%26 = OpAccessChain %25 %13 %15
OpStore %26 %24
;; Load from i_pointSize (%29).
%30 = OpLoad %6 %29
;; Use access chain to dereference built-in output.
%32 = OpAccessChain %31 %13 %27
;; Store to output decorated with PointSize.
OpStore %32 %30
OpReturn
OpFunctionEnd

graphics/174pro02.jpg
void vkDestroyShaderModule (
VkDevice device,
VkShaderModule shaderModule,
const VkAllocationCallbacks# pAllocator):;

graphics/174pro01.jpg
typedef struct VkShaderModuleCreatelnfo {

VkStructureType
const voidx
VkShaderModuleCreateFlags
size t
const uint32_t»

1 VkShaderModulet resteTnfo:

sType;
phext;
flags;
codeSize;
pCode;

graphics/211lis01.jpg
layout (set = ©, binding
layout (set = @, binding
layout (set = ©, binding

3) uniform samplerBuffer my_float_texel_buffer;
4) uniforn isamplerBuffer my_signed_texel_buffer;
5) uniform usamplerBuffer my_unsigned_texel buffer;

graphics/31pro01.jpg
VkResult vkDeviceWaltladle (

'VkDevice device):

graphics/121pro01.jpg
typedet struct VklmagesubresourceRange {
VkImageAspectFlags aspectMask;

uint32 t baselfipLevel
uint32 t LevelCount;
uint32_t baseArrayLayer,
uint32_t layerCount;

} VkImageSubresourceRange.

graphics/124pro01.jpg
void vkCmdUpdateBuffer (
VkCommandBuffer
VkBuffer
VkDeviceSize
VkDeviceSize
const uint32_ts

commandBuffer,
dstBuffer,
dstOffset,
datasize,
pData);

graphics/426tab01.jpg
Function

Renderpass

Inside

Outside

Command Buffer Level

Primary

Secondary

vkCmdBeginQuery
vkCmdBeginRenderPass
vkCmdBindDescriptorSets
vkCmdBindIndexBuffer
vkCmdBindPipeline
vkCmdBindVertexBuffers
vkCmdBlitImage
vkCmdClearAttachments
vkCmdClearColorImage
vkCmdClearDepthStencilImage
vkCmdCopyBuffer
vkCmdCopyBufferToImage
vkCmdCopyImage
vkCmdCopyImageToBuffer
vkCmdCopyQueryPoolResults
vkCmdDispatch
vkCmdDispatchIndirect
vkCmdDraw
vkCmdDrawIndexed
vkCmdDrawIndexedIndirect
vkCmdDrawIndirect

vkCmdEndQuery
vkCmdEndRenderPass
vkCmdExecuteCommands

4

ANRNENEN

AN

AN NN NN

AN Y R NN

AN N NN

NASTAANRNRNRNRNRNRNSRNSNSNSNSNSSSNSNSNASNASN

4

AN N N N N T U N N NN

graphics/59pro01.jpg
1f (cl
{

}

else if (cl <= 0.0)

{
cs =0.0;

}

else if (cl < 0.0031308)
cs = 12.92 * cl;

else

{
cs = 1.055 = pow(cl, 0.41666) - 0.055;

graphics/59pro02.jpg
1.9)

cl = 1.0;

else if (cs <= 0.0)
cl = 0.0;

F

else if (cs <= 0.04045)
cl = cs / 12.92;

else

{
}

cl = pow((cs + 0.0555) / 1.055), 2.4)

graphics/313list-02.jpg
#version 450 core

layout (points) in;
layout (points) out;
layout (max_vertices = 1) out;

in gl PerVertex

veca gl_Position;
} glin[];

out gs_out
{

vec4 color;

void main(void)

gl_Position = gl_in[0].gl Position
color = vec4(0.5, 0.1, 0.9, 1.6)

EmitVertex();

graphics/242pro1-01.jpg
typedef struct VkPipelineShaderStageCreatelnfo {

VkstructureType sType;
const voidx phlext ;
VkPipelineShaderStageCreateFlags flags;
VkShaderStageFlagBits stage
VkShaderModule module;

const charx phame;

const VkSpecializationInfox pSpecializationInfo;

} VkPipelineShaderStageCreateInfo:

graphics/176lis02.jpg
OpCapability Shader

%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %4 "main"
OpExecutionMode %4 LocalSize 4 5 6
OpSource GLSL 450

graphics/176lis01.jpg
#version 450 core
layout (local size x = 4, local_size.y = 5, local size z 6) in;
void main(void)

// Do nothing.

graphics/224tab01.jpg
Function

VK_COMPARE_OP_. ..

Meaning

ALWAYS

NEVER

LESS

LESS_OR_EQUAL

EQUAL

NOT_EQUAL

GREATER

GREATER_OR_EQUAL

The comparison always passes; the return
value will be 1.0.

The comparison never passes; the return
value will be 0.0.

The comparison passes if the shader’s
reference value is less than the value in the
image.

The comparison passes if the shader’s
reference value is less than or equal to the
value in the image.

The comparison passes if the shader’s
reference value is equal to the value in the
image.

The comparison passes if the shader’s
reference value is not equal to the value in
the image.

The comparison passes if the shader’s
reference value is greater than the value in
the image.

The comparison passes if the shader’s
reference value is greater than or equal to
the value in the image.

graphics/85pro01.jpg
void vkGetlImageSparseMemoryRequirements (

VkDevice device,
VkInage image,
uint32 tx

pSparseMemoryRequi rementCount,
VKSparseImageMemoryRequirementss pSparseMemoryRequirements);

graphics/323pro-01.jpg
void vkCmdSetLineWidth (
VkCommandBuffer commandBuffer,
float lineWidth):

graphics/88pro01.jpg
void vkGetPhysicalDeviceSparselmageFormatProperties (

VkPhysicalDevice

VkFormat

VkImageType
VksampleCountFlagBits
VkImageUsageFlags
VkImageTiling

uint32_tx
VkSparseImageFormatPropertiess

physicalDevice,
format,

type,

samples,

usage,

tiling,
pPropertyCount,
pProperties):

graphics/383list-01.jpg
// First, perform a submission to the compute queue. The compute submission
// includes the compute -> graphics semaphore (m_computeToGfxSemaphore) in
// the pSignalSemaphores list. This sempaphore will become signaled once the
// compute queue finishes processing the command buffers in the submission.
VksubmitInfo computeSubmitInfo =

{
VK_STRUCTURE_TYPE_SUBMIT_INFO, nullptr, // sType, phext
o, 7/ waitSemaphoreCount
nullptr, // phaitSemaphores
nullptr, // pWaitDstStageMask
1, // commandBufferCount
&computeCmdBuffer, // pCommandBuffers
1, // signalSemaphoreCount
&m_computeToGfxSemaphore // pSignalSemaphores

b

vkQueueSubmit (m_computeQueue

&computeSubmitInfo,
VK_NULL_HANDLE) ;

// Now perform a submission to the graphics queue. This submission includes
/7 m_computeToGfxSemaphore in the pWaitSemaphores list passed to the

// submission. We need to wait at a specific stage. Here, we just use

// VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, but if you know that the data produced
// on the source queue will be consumed at a later stage of the pipeline in
// the destination queue, you could place the wait point later.

static const VkFlags waitStages = VK PIPELINE STAGE TOP_OF_PIPE_BIT;
VksubmitInfo graphicsSubmitInfo
{

VK_STRUCTURE_TYPE_SUBMIT_INFO, nullptr, // sType, phext

1, // waitSemaphoreCount
&m_computeToGfxSemaphore, 7/ pWaitSemaphores
&waitStages, // phaitDstStageMask

1, // commandBufferCount
&graphicsCmdBuffer, // pCommandBuffers

. 7/ signalSemaphoreCount
nullptr // pSignalSemaphores

1
vkQueueSubmit (m_graphicsQueue,

&graphicsSubmitInfo,
VK _NULL HANDLE):

graphics/237pro01.jpg
void vkDestroyRenderPass (
VkDevice device,
VkRenderPass renderPass,
const VkAllocationCallbacks* pAllocator);

graphics/234pro01.jpg
typedet struct VkAttachmentReterence {
uint32_t attachment;
VkImagelayout layout;

} VkAttachmentReference:

graphics/327list-01a.jpg
%2 = OpTypeVoid

%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeVector %6 4
%8 = OpTypeInt 32 @
%9 OpConstant %8 1

%10 = OpTypeArray %6 %9
; This creates the built-in output structure containing gl ClipDistance
%11 = OpTypeStruct %7 %6 %10 %10
%12 = OpTypePointer Qutput %11
; Instantiate the built-in outputs
%13 = OpVariable %12 Output

; Beginning of main()
5 = OpLabel
; Load from the push-constant array.
%23 = OpAccessChain %22 %21 %16 %16
%24 = OpLoad %6 %23
; Store to clip distance.
%26 = OpAccessChain %25 %13 %15 %16
OpStore %26 %24

; End of main()
OpReturn
OpFunctionEnd

graphics/404list-01.jpg
cenun

KAttachment_BACK
kAttachment DEPTH
KAttachment_GBUFFER

enum

W
NRo

KkSubpass_DEPTH =0,
KSubpass_GBUFFER =1,
KSubpass_LIGHTING =2

b

static const VkAttachmentDescription

// Back buffer
{

0,

VK_FORMAT_R8GBBS8AB_UNORM,
VK_SAMPLE_COUNT_1 BIT,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

3,
7/ Depth buffer
it

VK_FORMAT_D32_SFLOAT,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT UNDEFINED,
VK_IMAGE_LAYOUT_UNDEFINED

attachments([] =

flags
format

samples

Toadop

store0p
stencilLoad0p
stencilStoreOp
initiallayout
finalLayout

flags

format

samples

Loadop

store0p
stencilLoadOp
stencilStore0p
initiallayout
finallayout

graphics/72pro01.jpg
void vkDestroyBuffer (
VkDevice device,
VkBuffer buffer,
const VkAllocationCallbacks# pAllocator):

graphics/72pro02.jpg
void vkDestroyBufferView (
VkDevice device,
VkBufferView bufferView,
const VkAllocationCallbacks# pAllocator)

graphics/154pro03.jpg
VKResult vkGetDisplayPlaneSupportedDisplaysKhR(

VkPhysicalDevice physicalDevice,
uint32't planeIndex,
uint32_tx pbisplayCount,

VkDisplayKHR# pDisplays);

graphics/154pro02.jpg
typedef struct VkDisplayPlanePropertieskHR {
VkDisplayKHR currentDisplay;
uint32_t currentStackIndex;

} VkDisplayPlanePropertieskHi

graphics/282pro-02.jpg
typedef struct VkDrawlndirectCommand {
uint32.t vertexCount;
uint32 t instanceCount;
uint32 t firstVertex;
uint32 t firstInstance;

} VkDrawIndirectCommand;

graphics/282pro-01.jpg
void vkCmdDrawIndirect (
VkCommandBuffer
VkBuffer
VkDeviceSize
uint32_t
uint32_t

commandBuffer,
buffer,
offset,
drawCount
stride):

graphics/314list-01a.jpg
%$19981
22639

OpTypePointer Output %29
OpTypeStruct %29

OpTypePointer Output %1018
OpVariable %1654 Output

OpConstant %13 0.5

OpConstant %13 0.1

OpConstant %13 0.9

OpConstant %13 1

OpConstantComposite %29 %252 %2936 %1364 %138
OpFunction %8 None %1282

OpLabel

OpAccessChain %666 %5305 %2571 %2571
OpLoad %29 %7129

OpAccessChain %667 %22044 %2571
OpStore %1981 %15646

OpAccessChain %667 %4930 %2571
OpStore %22639 %878

OpEmitVertex

OpReturn

OpFunctionEnd

graphics/122lis01.jpg
const VkImageMemoryBarrier imageMemoryBarriers =
{

VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType
nullptr, 7/ phext
VK_ACCESS_COLOR_ATTACHMENT WRITE_BIT, 7/ srchccessMask
VK_ACCESS_SHADER_READ_BIT, // dstAccessMask

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // oldLayout
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, // newLayout

VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex
VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex
image, 7/ image
// subresourceRange
VK_IMAGE_ASPECT_COLOR BIT, // aspectMask
0, 7/ baseliplLevel
VK_REMAINING MIP_LEVELS, // levelCount
; 7/ baseArrayLayer
VK_REMAINING_ARRAY_LAYERS // layerCount
¥

b

vkCmdPipelineBarrier (m_currentCommandBuffer,
VK_PIPELINE STAGE COLOR_ATTACHMENT OUTPUT_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
o,

» nullptr,

, nullptr,

' &imageMemoryBarrier):

roo

graphics/297list-02a.jpg
%1246 = OpTypePointer Output %609

%5448 = OpVariable %1246 Output
;; Declare constants used for indexing into our output arrays and the
77 values written into those arrays

%2978 = OpConstant %13 3
%2921 = OpConstant %13 4
%2577 = OpConstant %12 2
%1387 = OpConstant %13 5
%2580 = OpConstant %12 3
%2864 = OpConstant %13 6

;; Start of the main function
%5663 = OpFunction %8 None %1282
%23934 = OpLabel
;; Declare references to elements of the output arrays and write constants
;; into them.
%6956 = OpAccessChain %650 %3290 %2571
OpStore %6956 %1330

%19732 = OpAccessChain %650 %3290 %2574
OpStore %19732 %2807

%19733 = OpAccessChain %650 %5448 %2571
OpStore %19733 %2978

%19734 = OpAccessChain %650 %5448 %2574
OpStore %19734 %2921

%19735 = OpAccessChain %650 %5448 %2577
OpStore %19735 %1387

%23304 = OpAccessChain %650 %5448 %2580
OpStore %23304 %2864

;i End of main

OpReturn
OpFunctionEnd

graphics/9pro01.jpg
void vkGetPhysicalDeviceProperties (
VkPhysicalDevice physicalDevice,
VkPhysicalDevicePropertiess pProperties);

graphics/9pro02.jpg
typede? struct VkPnysicalDeviceProperties {

uint32_t apiVersion;

uint32_t driverVersion;

uint32.t vendorID;

uint32_t devicelD;

VkPhysicalDeviceType deviceType;

char deviceName
[VK_MAX_PHYSICAL DEVICE NAME SIZE];

uint8_ t pipelineCacheUUID[VK UUID SIZE];

VkPhysicalDeviceLimits limits;

VkPhysicalDeviceSparseProperties sparseProperties;
} VkPhysicalDeviceProperties;

graphics/205pro01.jpg
typedef struct VkDescriptorlmagelnfo {
Vksampler sampler;
VkInageView imageView;
VkImageLayout imagelayout;

} VkDescriptorImageInf

graphics/265tab01.jpg
Old Pipeline | New Pipeline | State Valid
Dynamic Dynamic Yes
Dynamic Static Yes
Static Static Yes
Static Dynamic No

graphics/205pro02.jpg
typedet struct VkDescriptorBufferinto
VkBuffer buffer;
VkDeviceSize offset;
VkDeviceSize range;

} VkDescriptorBufferInfo;

graphics/255pro-01.jpg
typedef struct VkPipelineTessellationStateCreatelnfo {

VkStructureType sType;
const voids plext;
VkPipelineTessellationStateCreateFlags flags;
uint32 t patchControlPoints;

} VkPipelineTessellationStateCreateInfo;

graphics/316list-01.jpg
#version 450 core

layout (triangles) in;
layout (triangle_strip, max_vertices = 6) out;

void main(void)
{
int i,
vec4 scale = vec4(1.0f, 1.0f, 1.0f, 1.0f);

for (j = 0; j <2; j++)
i
for (i =0; i<3; it+)
gl_Position = glin[i].gl Position * scale;

EmitVertex();
}

EndPrimitive();
scale.xy = -scale.xy;

graphics/323fig01.jpg
Line Width -

(Xar Yoo 2}

graphics/183pro01.jpg
// Thls structure does not exist 1n officlal heagers but 1s

// for illustration.

typedef struct VkPipelineCacheHeader {

uint32 t Tength;
uint32_t version;
uint32_t vendorID;
uint32 t deviceID;
uintg_t uuid[16];

} VkPipelineCacheHeader;

included here

graphics/254fig01.jpg

graphics/365pro-01.jpg
void vkCmdSetBlendConstants (
VkCommandBuffer commandBuffer,
const float blendConstants[4]):

graphics/254fig02.jpg

graphics/238pro02.jpg
typedet struct VkFramebutfer(reatelnfo {

VkStructureType
const voids
VkFramebufferCreateFlags
VkRenderPass
uint32_t
const VkImageViews
uint32_t
uint32_t
uint32_t

} VkFramebufferCreateInfo;

sType;

plext;

flags
renderPass;
attachmentCount;
pAttachments;
width;
height
layers:

graphics/238pro01.jpg
VkResult vk(CreateFramebuffer (

VkDevice device,
const VkFramebufferCreateInfox pCreateInfo,
const VkAllocationCallbacks* pAllocator,

VkFramebuffers pFramebuffer);

graphics/305list-01.jpg
struct PushConstantData
.
vnath: :matd mvp_matrix;
float displacement_scale;

T
static const VKDescriptorSetLayoutBinding descriptorBindings[] =

// Only binding is a sampled image with combined sampler.
o
V}'LDESCRIPTORTVPE,CDMBIMED,IMAGE,SAMPLER,
1,
VK_SHADER STAGE TESSELLATION_EVALUATION BIT,
nullptr

}

b

static const VKDescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo =
s
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr,
0,
vkcore: :utils: :arraysize(descriptorBindings),
descriptorBindings
i

vkCreateDescriptorSetLayout (getDevice(),
SdescriptorSetLayoutCreateInfo,
nullptr,
&m_descriptorSetLayout);

graphics/199pro01.jpg
void vkDestroyPipelinelLayout (
VkDevice device,
VkPipelineLayout pipelineLayout,
const VkAllocationCallbacks#* pAllocator):

graphics/258pro-01.jpg
typedel struct VkPlpellneRasterizationsState(reatelnfo {

VkStructureType
const voidx
VkPipelineRasterizationStateCreateFlags
VkBool32
VkBool32
VkPolygontode
VkCullModeFlags
VkFrontFace
VkBool32
float
float
float
float

} VkPipelineRasterizationStateCreateInf

sType;

phext;

flags
depthClampEnable;
rasterizerDiscardEnable;
polygonMode;

culltode;

frontFace;
depthBiasEnable;
depthBiasConstantFactor;
depthBiasClamp;
depthBiasSlopeFactor
lineWidth;

graphics/199pro02.jpg
void vkDestroyDescriptorSetLayout (
VkDevice device,
VkDescriptorSetLayout descriptorSetLayout,
const VkAllocationCallbacks# pAllocator);

graphics/04_sellers_fig01_01.jpg
Application

Instances

Physical
Devices

Logical
Devices

Queues

graphics/107pro02.jpg
typedef struct Vksubmitlnto {
VkStructureType
const_voids«
uint32_t
const VkSemaphores
const VkPipelineStageFlags+
uint32_t
const_VkCommandBuffers
uint32_t
const VkSemaphores

} VkSubmitInfo;

sType;
plext;
waitSemaphoreCount;
pWaitSemaphores;
pWaitDstStageMask;
commandBuf ferCount ;
pConmandBuffers;
signalSemaphoreCount ;
pSignalSemaphores;

graphics/38pro01.jpg
void VKAPL_CALL InternalAllocationNotification(

voids pUserbata,

size t size,

VkInternalAllocationType allocationType,

VkSystemAllocationScope allocationScope);
void VKAPI_CALL InternalFreeNotification(

voids pUserData,

size t size,

VkInternalAllocationType allocationType,

VKSystemAllocationScope allocationScope):

graphics/153pro01.jpg
typedet struct VkDisplayPropertiesKHR {

VkDisplaykHR
const charx

VkExtent2D

VkExtent2D
VKSurfaceTransformFlagskHR
VkBool32

VkBoo132

} VkDisplayPropertieskHR

display;
displayName;
physicalDimensions;
physicalResolution;
supportedTransforms;
planeReorderPossible
persistentContent;

graphics/107pro01.jpg
VkResult vkQueuesubmit (

VkQueue queue,
uint32_t submitCount,
const VkSubmitInfox pSubmits,

VkFence fence):

graphics/68pro01.jpg
typedef struct VkImageSubresourceRange {
VkImageAspectFlags aspectMask;

uint32_t baseMipLevel;
uint32 t TevelCount ;
uint32 t baseArrayLayer
uint32_t layerCount ;

} VkImageSubresourceRange:

graphics/368pro-01.jpg
VkResult vk(CreateFence (

VkDevice device,
const VkFenceCreateInfo+ pCreateInfo,
const VkAllocationCallbacks# pAllocator,

VkFencesx pFence) ;

graphics/389pro-01.jpg
void vkDestroyQueryPool (
VkDevice device,
VkQueryPool queryPool,
const VKAllocationCallbacks* pAllocator);

graphics/182pro03.jpg
VkResult vkGetPipelineCacheData (

VkDevice device,
VkPipelineCache pipelineCache,
size tx pDataSize,

voids pData);

graphics/233pro01.jpg
typedef struct Vksubpassbescription i

VkSubpassDescriptionFlags
VkPipelineBindPoint
uint32_t
const VKAttachmentReferencex
uint32_t
const VkAttachmentReferences
const VkAttachmentReferences
const VkAttachmentReferencex
uint32_t
const uint32_tx

} VkSubpassDescription:

flags;
pipelineBindPoint;
inputAttachmentCount;
pInputAttachments;
colorAttachmentCount ;
pColorAttachments;
PResolveAttachments;
pDepthStencilAttachment;
preserveAttachmentCount;
pPreserveAttachments

graphics/67pro01.jpg
typedef struct VkComponentMapping 1
VkComponentSwizzle r;
VkComponentSwizzle g
VkComponentSwizzle — b;
VkComponentSwizzle a;

} VkComponentMapping:

graphics/pub.jpg
vv Addison-Wesley

graphics/182pro01.jpg
VkResult vk(CreatePipelineCache (

VkDevice device,
const VkPipelineCacheCreateInfox pCreateInfo,
const VkAllocationCallbacks* pAllocator,

VKPipelineCachex pPipelineCache):

graphics/182pro02.jpg
typedef struct VkPipelineCacheCreatelnfo {

VkStructureType sType;

const voids pNext;
VkPipelineCacheCreateFlags flags:

size t initialDataSize;
const voids pInitialData;

} VkPipelineCacheCreateInfo:

graphics/125pro01.jpg
void vkCmdClearColorImage (
VkCommandBuffer
VkInage
VkImageLayout
const_VkClearColorValuex
uint32_t
const VKImageSubresourceRanges

commandBuf fer,
image,
imageLayout,
pColor,
rangeCount,
pRanges) ;

graphics/261pro-01.jpg
typedef struct VkPipelineDepthStencilStateCreateInfo {

VkStructureType
const voidx
VkPipelineDepthStencilStateCreateFlags
VkBool32
VkBool32
VkCompareOp
VkBool32
VkBoo132
VkStencilOpState
VkStencilOpState
float
float
} VkPipelineDepthStencilStateCreateInfo

sType;
plext;

flags;
depthTestEnable;
depthiriteEnable;
depthCompare0p;
depthBoundsTestEnable;
stencilTestEnable;
front;

back;

minDepthBounds ;
maxDepthBounds ;

graphics/116pro01.jpg
typedef struct VkMemoryBarrier {

VkstructureType
const voids
VkAccessFlags
VkAccessFlags

} VkMemoryBarrier:

sType;
pNext ;
srcAccesshask;
dstAccessMask

graphics/90pro02.jpg
typedet struct VkSparseflemoryBind {

VkDeviceSize resource0ffset;
VkDeviceSize size;
VkDeviceMemory memor
VkDeviceSize memory0ffset ;

VkSparseMenoryBindFlags flags;
} VKSparseMemoryBind;

graphics/96pro01.jpg
typedef struct VkDeviceQueueCreatelnfo {

VkStructureType
const voidx
VkDeviceQueueCreateFlags
uint32_t
uint32 t
const floatx

} VkDeviceQueueCreateInfo:

queueFanilyIndex;
queueCount ;
pQueuePriorities;

graphics/90pro01.jpg
typedef struct vVksparseBuTTerflemoryBindlnfo {
VkBuffer buffer;
uint32_t bindCount;
const VKSparseMemoryBind+ pBinds;

} VkSparseBufferMemoryBindInfo:

graphics/371pro-01.jpg
VkResult vkwaltrorFences (
VkDevice
uint32_t
const VkFences
VkBool32
uint64_t

device,
fenceCount,
pFences,
waitAll,
timeout):

graphics/25lis01.jpg
uint32_t numInstanceLayers = 0;
std::vector<VkLayerProperties> instancelayerProperties;

// Query the instance layers.
vkEnumerateInstancelayerProperties (&numInstanceExtensions,
nullptr);

// If there are any layers, query their properties.
if (numInstancelayers != 0)
{
instanceLayerProperties. resize (nunInstancelayers) ;
vkEnumerateInstanceLayerProperties (nullptr,
&numInstanceLayers,
instanceLayerProperties.data());

graphics/236pro01a.jpg
0, 1/
VK_PIPELINE_BIND_POINT_GRAPHICS, //
0, /7
nullptr, 1/
1, /7
&attachmentReferences[0], /7
nullptr, //
nullptr, Vid
0, i
nullptr b

%
b

flags
pipelineBindPoint
inputAttachmentCount
pInputAttachments
colorAttachmentCount
pColorAttachments
PResolveAttachments
pbepthStenci lAttachment
preserveAttachmentCount
pPreserveAttachments

// Finally, this is the information that Vulkan needs to create the renderpass

// object.
static VkRenderPassCreateInfo renderpassCreateInfo =
{

VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, 7/
nullptr, 17
0, /7
1, /7
&attachments (0], /7
1, /7
&subpasses[0], 1
0, vh
nullptr v

}i
VkRenderPass renderpass = VK_NULL_HANDLE;

// The only code that actually executes is this single
// the renderpass object.
vkCreateRenderPass (device,

&renderpassCreatelnfo,

nullptr,

&renderpass) ;

sType
phext

flags
attachmentCount
pAttachments
subpassCount
pSubpasses
dependencyCount
pbependencies

call, which creates

graphics/154pro01.jpg
VkResult vkGetPhysicalDeviceDisplayPlanePropertieskHR(
VkPhysicalDevice physicalDevice,
uint32_tx pPropertyCount,
VkDisplayPlanePropertiesKHR+ pProperties);

graphics/229pro01.jpg
void vkCmdDraw (

VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,

uint32_t firstInstance):

graphics/204pro02.jpg
typedef struct VkWriteDescriptorSet {
VkStructureType
const voids
VkDescriptorSet
uint32 t
uint32 t
uint32 t
VkDescriptorType
const VkDescriptorImageInfox
const VkDescriptorBufferInfos
const VKBufferViews
} VkWriteDescriptorSet;

sType;

plext;

dstSet;
dstBinding;
dstArrayElement;
descriptorCount;
descriptorType;
pImageInfo;
pBufferInfo;
pTexelBufferView;

graphics/204pro01.jpg
void vkUpdateDescriptorSets (
VkDevice
uint32_t
const VkWriteDescriptorSets
uint32_t
const VKCopyDescriptorSets

device,
descriptoriiriteCount,
pDescriptorirites,
descriptorCopyCount,
pDescriptorCopies):

graphics/82lis01.jpg
uint32_t application::chooseHeapFromFlags(
const VkMemoryRequirements& memoryRequirements,
VkMemoryPropertyFlags requiredFlags,
VkMemoryPropertyFlags preferredFlags)

VkPhysicalDeviceMenoryProperties deviceMemoryProperties;

vkGetPhysicalDeviceMemoryProperties(m_physicalDevices[0],
&deviceMemoryProperties);

uint32 t selectedType = ~0u;
uint32t memoryType;

for (memoryType

{

; memoryType < 32; ++memoryType)
if (memoryRequirements.memoryTypeBits & (1 << memoryType))

const VkMemoryType& type =
deviceMemoryProperties.memoryTypes [memoryTypel ;

// If it exactly matches my preferred properties, grab it.
if ((type.propertyFlags & preferredFlags) == preferredFlags)
{

selectedType = memoryType;
break;

graphics/80pro02.jpg
typaden SETUCE Yhappechicmotynande i

VkStructureType

const voids
VkDeviceMemory
VkDeviceSize offset;
VkDeviceSize size;

} VkMappedMemoryRange;

graphics/80pro01.jpg
VkResult vkFlushMappedMemoryRanges (
VkDevice device,
uint32_t memoryRangeCount,
const VkMappedMemoryRangex pMemoryRanges) ;

graphics/4pro01.jpg
VkResult vkCreatelnstance (
const VkInstanceCreateInfo* pCreatelInfo,
const VkAllocationCallbacks+ pAllocator,
VKInstances pInstance):

graphics/274list-01.jpg
// Raw, non-indexed data
static const float vertex positions[] =

-0.25f, 0.25f, -0.25f,
-0.25f, -0.25f, -0.25f,
0.25f, -0.25f, -0.25f,
8.25F; -8.251, -0.25f;
0.25f, 0.25f, -0.25f,
0.25f, 0.25f, -0.25f,

.25f, -0.25f, -0.25f,
25f, -0.25f, 0.25f,
25f, 0.25f, -0.25f,

coo ooo

i
-0.

-0.
-0.
-0.

-0.
-0.
-8,

=B

graphics/341pro-01.jpg
typede? struct VkPipellneDepthStencilStateCreatelnfo {

VkStructureType sType;

const voids plex
VkPipelineDepthStencilStateCreateFlags flags;

VkBool32 depthTestEnable;
VkBool32 depthiriteEnable;
VkCompareOp depthCompare0p;
VkBool32 depthBoundsTestEnable;
VkBool32 stencilTestEnable;
VkStencilOpState front;
VkStencilOpState back;

float minDepthBounds ;
float maxDepthBounds ;

} VkPipelineDepthStencilStateCreateInfo:

graphics/32pro02.jpg
void vkDestroyInstance (
VkInstance instance,
const VKAllocationCallbacks* pAllocator) :

graphics/214pro01.jpg
void vkCmdPushConstants (

VkCommandBuffer commandBuf fer,
VkPipelineLayout layout,
VkShaderStageFlags stageFlags,
uint32_t offset,
uint32_t size,

const voids pValues);

graphics/32pro01.jpg
void vkDestroyDevice (
VkDevice device,
const VKAllocationCallbacks* pAllocator);

graphics/329list-01.jpg
OpCapability Shader

;; The shader requires the CullDistance capability

%1 =

OpCapability CullDistance
OpExtInstImport “GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %4 "main" %13 %29
OpSource GLSL 450

OpName %4 "main"

OpName %11 "gl_PerVertex"
OpMemberName %11 © “gl_Position
OpMemberName %11 1 “gl_PointSiz
OpMemberName %11 2 "gl_ClipDistance"

;; Redeclaration of gl CullDistance built-in

OpMemberName %11 3 “gl_CullbDistance"
OpName %13 "

OpName %19 "push_constants_b"

OpMemberName %19 © “cull_distance"

OpName %21 “push_constant"

OpName %29 "i_position"

OpMemberDecorate %11 6 BuiltIn Position
OpMemberDecorate %11 1 BuiltIn PointSize
OpMemberDecorate %11 2 BuiltIn ClipDistance

Decorate the built-in variable as CullDistance.

OpMemberDecorate %11 3 BuiltIn CullDistance
Opbecorate %11 Block

OpDecorate %18 ArrayStride 4
OpMemberDecorate %19 © Offset 0

Opbecorate %19 Block

OpDecorate %29 Location 0

graphics/269pro-01.jpg
typedeT struct VkRenderPassBeginlnto {

VkStructureType sType;

const voids pNext;
VkRenderPass renderPass;
VKFramebuffer framebuffer;
VkRect2D renderArea;
uint32 t clearValueCount;
const VkClearValuex pClearValues

} VkRenderPassBeginInfo;

graphics/158pro01.jpg
VkResult vkCreateDisplayPlaneSurfaceKHR(

VkInstance instance,
const VkDisplaySurfaceCreateInfokHR+ pCreatelnfo,
const VkAllocationCallbacks* pAllocator,

VkSurfaceKHR#* pSurface);

graphics/214lis01.jpg
Optapability Shader
OpExtInstInport "GLSL.std.450"

OpMenmoryModel Logical GLSL45

OpEntryPoint GLCompute %4 “main
OpExecutionMode %4 LocalSize 1 1 1

OpSource GLSL 450

OpName %4 "main"

;; Name the push constant block and its members
OpName %7 “my_push_constants_t"

OpMenberName %7 @ “bourbon”

OpMenberName %7 1 “scotch"

OpMemberName %7 2 “beer"

OpNare %9 “my_push_constants"

;; Assign offsets to the members of the push constant block
OpMemberDecorate %7 0 Offset 0
OpMenberDecorate %7 1 Offset 4
OpMemberDecorate %7 2 0ffset 8

OpDecorate %7 Block

0OpTypeVoid

OpTypeFunction %2

OpTypelnt 32 1

OpTypeStruct %6 %6 %6

;: Declare the push constant block itself
0pTypePointer PushConstant %7

OpVariable %8 PushConstant

%1

graphics/269pro-02.jpg
typedef union VkClearValue {
VkClearColorValue color;
VkClearDepthStencilvalue depthStencil;
} VKkClearValue:

graphics/158pro02.jpg
typedef struct VkDisplaySurtacelreatelnfokhR {

VkStructureType
const voids
VkDisplaySurfaceCreateFlagskHR
VkDisplayModeKHR
uint32 t
uint32_t
VkSurfaceTransformFlagBitskHR
float
VkDisplayPlaneAlphaFlagBitskHR
VkExtent2D

} VkDisplaySurfaceCreateInfoKHR:

sType;

pNext;

flags
displayMode;
planeIndex;
planeStackIndex;
transform;
globalAlpha;
alphatiode;
imageExtent;

graphics/194pro02.jpg
typedef struct VkPlpelinelayout(reatelnto {

VkStructureType sType;

const voidx plext;
VkPipelineLayoutCreateFlags flags;

uint32_t setLayoutCount ;

const VkDescriptorSetLayoutx pSetLayouts;

uint32_t pushConstantRangeCount ;
const VkPushConstantRangex pPushConstantRanges ;

} VkPipelinelayoutCreateInfo;

graphics/283pro-01.jpg
void vkCmdDrawIndexedIndirect (

VkCommandBuffer commandBuf fer,
VkBuffer buffer,
VkDeviceSize offset,
uint32_t dravCount,

uint32 t stride):

graphics/194pro01.jpg
VkResult vkCreatePipelinelayout (

VkDevice device,
const VkPipelinelayoutCreateInfox pCreateInfo,
const VkAllocationCallbacks* pAllocator,

VkPipelinelLayout* pPipelineLayout):

graphics/216pro02.jpg
typedef struct VkSamplerCreatelnfo {

VkstructureType
const voids
VkSamplerCreateFlags
VkFilter
VkFilter
VkSamplerttipmaptode
VkSamplerAddresshode
VkSamplerAddresshode
VkSamplerAddresshode
float
VkBool32
float
VkBool32
VkCompare0p
float
float
VkBorderColor
VkBool32

} VkSamplerCreateInfo:

sType;
plext;
flags;
magFilte
minFilter;
mipmapMode;
addressHodeU;
addressHodeV;
addressModel
mipLodBias;
anisotropyEnable;
maxAnisotropy;
compareEnable;
compare0p;

minLod;

maxLod;

borderColor;
unnormalizedCoordinates;

graphics/216pro01.jpg
VKResult vk(reateSampler (
VkDevice

device,
const VkSamplerCreateInfox pCreatelnfo,
const VkAllocationCallbacks+ pAllocator,

VkSamplers pSampler);

graphics/283pro-02.jpg
typedet struct VkDrawlndexedindirect(ommand {
uint32.t indexCount;
uint32 t instanceCount;
uint32_t firstIndex;
int32_t vertexOffset;
uint32 t firstInstance;
} VkDrawIndexedIndirectCommand;

graphics/263pro-01.jpg
typedet struct VkPipelineColorBlendAttachmentState {

VkBoo132 blendEnable;
VkBlendFactor srcColorBlendFactor;
VkBlendFactor dstColorBlendFactor;
VkBlendOp colorBlendOp;
VkBlendFactor srcAlphaBlendFactor;
VkBlendFactor dstAlphaBlendFactor;
VkBlendOp alphaBlendOp;

VkColorComponentFlags colorWriteMask;
} VkPipelineColorBlendAttachmentState:

graphics/414fig01.jpg
DEPTH -
BUFFER -

A
DEPTH G-BUFFER LIGHTING TRANSLUCENT
PREPASS PASS PASS PASS FRAMEBUFFER
'
¥

G-BUFFER

graphics/281fig01.jpg

graphics/381pro-02.jpg
typedet struct Vksemaphorelreatelnto {
VkStructureType sType;
const voids pNext;
VkSemaphoreCreateFlags flags;

} VkSemaphoreCreateInfo;

graphics/381pro-01.jpg
VkResult vk(reateSemaphore (

VkDevice device,
const VkSemaphoreCreateInfox pCreatelnfo,
const VkAllocationCallbacks+ pAllocator,

VkSemaphorex pSemaphore) ;

graphics/161pro02.jpg
typede? struct VkPresentlnfoKHR {

VkstructureType
const_voidx
uint32_t
const_VkSemaphores
uint32 t
const VkSwapchainkHR«
const uint32_tx
VkResult

} VkPresentInfoKHR:

waitSemaphoreCount;
pWai tSemaphores ;
swapchainCount;
pSwapchains;
pInageIndices;
pResults;

graphics/101pro01.jpg
void vkDestroyCommandPool (
VkDevice device,
VkCommandPool commandPool,
const VKkAllocationCallbacks* pAllocator);

graphics/373list-01.jpg
// kFrameDataSize 1s the size of the adata consumed in a single frame.

// kRingBufferSegments is the number of frames’ worth of data to keep
// Create a buffer large enough to hold kRingBufferSegments copies

// of kFrameDataSize.

static const VkBufferCreateInfo bufferCreateInfo

VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, nullptr,

kFrameDataSize * kRingBufferSegments,

VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_SHARING_MODE EXCLUSIVE,

{
0
0,
nullptr
b

result = vkCreateBuffer(device,

// Create kRingBufferSegments fences, all initially
static const VkFenceCreateInfo fenceCreateInfo =

VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, nullptr,
VK_FENCE_

g

for (int i

result

&bufferCreateInfo,
nullptr,
&m_buffer);

CREATE_SIGNALED BIT

0; i < kRingBufferSegments; ++i)

vkCreateFence (device,
&fenceCreateInfo,
nullptr,
&m_fence[i]);

A
/7
/7
//
/7
Vg
17

sType, phext
flags

size

usage

sharingMode

queueFami lyIndexCount
pQueueFanilyIndices

signaled state

graphics/9780134464688.jpg
Wuikan. -

Programming Guide

Graham Sellers
With contributions from John Kessenich

graphics/161pro01.jpg
VkResult vkQueuePresentKHR(
VkQueue queue,
const VkPresentInfoKHR# pPresentInfo);

graphics/210lis01.jpg
1

OpCapability Shader
OpExtInstImport "GLSL.std.450"

OpMenoryModel Logical GLSL450

OpEntryPoint Vertex %4 "main"

OpSource GLSL 450

OpName %4 "main"

;: Name the my_uniform_buffer_t block and its members
OpName %12 “my_uniform_buffer_t"

OpenberName %12 6 “foo"

OpMemberName %12 1 "bar"

OpMenberName %12 2 “baz"

OpName %14 "my_uniform_buffer

;; Name the my_storage_buffer_t block and its members
OpName %18 "my_storage_buffer_t"

OpMenberName %18 0 “peas”

OpMemberName %18 1 "carrots"

OptemberNane %18 2 "potatoes”

OpName %20 "my_storage_buffer"

OpDecorate %11 ArrayStride 16

;; Assign offsets to the members of my_uniform_buffer_t.
OpMemberDecorate %12 0 0ffset ©

OpMenberDecorate %12 1 0ffset 16

OpMenberDecorate %12 2 0ffset 32

Opbecorate %12 Block

OpDecorate %14 DescriptorSet 0

OpDecorate %14 Binding 1

OpDecorate %17 ArrayStride 16

;; Assign offsets to the members of my_storage_buffer_t.
OpMemberDecorate %18 0 0ffset O

OpMenberDecorate %18 1 0ffset 4

OpMenberDecorate %18 2 0ffset 16

OpDecorate %18 BufferBlock

OpDecorate %20 DescriptorSet 0

OpDecorate %20 Binding 2

graphics/291fig01.jpg
TessLevelOuter[0]

: :

TessLevelOuter[1] (1,0)

graphics/156pro02.jpg
typedef struct VkDisplayModePropertieskHR {
VkDisplayModeKHR displayMode;
VkDisplayModeParameterskHR parameters;
} VKDisplayModePropertieskHR:

graphics/75pro02.jpg
typedef struct VkMemoryAllocatelnfo {
VkStructureType sType;

const voids pNext;
VkDeviceSize allocationSize;
uint32 t memoryTypeIndex;

} VkMemoryAllocateInfo:

graphics/156pro01.jpg
VkResult vkGetDisplayModePropertleskHR(

VkPhysicalDevice physicalDevice,
VkDisplaykHR display,
uint32 tx pPropertyCount,

VkDisplayModePropertieskHR+ pProperties):

graphics/27pro01.jpg
VkResult vkEnumeratelnstanceExtensionProperties (
const_chars pLayerNane,
uint32 te pPropertyCount,
VKExtensionPropertiess pProperties);

graphics/285list-01.jpg
#version 450 core

// Enable the GL_ARB_shader_draw._parameters extensions.
#extension GL_ARB_shader draw_parameters : require

layout (location = @) in vec3 position 3;
layout (set = 0, binding = 0) uniform FRAME_DATA
{

matd view matrix;
matd proj_matrix;
mat4 viewproj_matrix;
}

layout (set = @, binding = 1) readonly buffer OBJECT TRANSFORMS
{

mat4 model_matrix[];

i

void main(void)

{
// Extend input position to vecd.
vecd position = vecd(position 3, 1.0);

// Compute per-object model-view matrix.
matd my_matrix = view_matrix + model_matrix[gl DrawIDARB];

// Output position using global projection matrix.
gl_Position = proj_matrix * P;

graphics/404fig01.jpg
DEPTH

BUFFER
S
0y
[y
'
' '
' Y
DEPTH G-BUFFER LIGHTING
PREPASS PASS PASS FRAMEBUEFER

G-BUFFER _—

graphics/108pro02.jpg
VkResult vkDeviceWaitIdle (
VkDevice device)

graphics/75pro01.jpg
VkResult vkAllocateMemory (
VkDevice
const VkMemoryAllocateInfos
const VkAllocationCallbacks+
VkDeviceMemory#

device,
pAllocatelnfo,
pAllocator,
pMemory) :

graphics/108pro01.jpg
VkResult vkQueueWaitldle (
VkQueue queue)

graphics/271pro-01.jpg
void vkCmdBindVertexBuffers (
VkCommandBuf fer
uint32 t
uint32_t
const VkBuffers
const VkDeviceSizex

commandBuf fer,
firstBinding,
bindingCount
pBuffers,
pOffsets):

graphics/221fig01.jpg
Ny e |
W»HEIIEH:HEI_
e N e P |

1 oL L=t L

R o S o e =

4 L= L=t L

R o T o e

4 LU= L=t L

PR ot o e =

= e e |
THEI»HEI»HEI |

L p mp e e e b [

graphics/264pro-01.jpg
typedef struct VkPlpelineDynamicState(reatelnfo {

VkStructureType sType;
const voids plext;
VkPipelineDynamicStateCreateFlags flags;

uint32_t dynamicStateCount
const VkDynamicStates pDynamicStates ;

} VkPipelineDynamicStateCreateInfo;

graphics/179lis01.jpg
Layout (constant_id = 0) const int numThings = 42;
layout (constant_id = 1) const float thingScale = 4.2f;
layout (constant id = 2) const bool doThat = false

graphics/179lis02.jpg
OpDecorate %7 SpecId ©
OpDecorate %9 SpecId 1
OpDecorate %11 SpecId 2
OpTypeInt 32 1
OpSpecConstant %6 42
OpTypeFloat 32
OpSpecConstant %8 4.2
0pTypeBool
OpSpecConstantFalse %10

graphics/306list-02.jpg
#version 450 core
layout (vertices = 4) out;
void main(void)

{
if (gl InvocationID == 0)

gl_TessLevelInner[0] .0f;
gl TessLevelInner[1] = 64.0f;

gl_TessLevelOuter[0]
gl_TessLevelOuter[1]
gl TessLevelOuter[2]
gl _TessLevelOuter[3]

.0f;
O
.of;
.of;

}
gl out[gl InvocationID].gl Position = gl in[gl InvocationID].gl Position;

graphics/306list-01.jpg
#version 450 core
void main(void)

float x = float(gl VertexIndex & 1) - 0.5f;
float y = float(gl VertexIndex & 2) = 0.5f - 0.5f;

gl Position = vecd4(x, y, 0.0f, 1.0f);

graphics/192lis01.jpg
#version 450 core

layout (set = 0, binding = 0) uniform sampler2d myTexture;
layout (set = 0, binding = 2) uniform sampler3D myLut;
layout (set = 1, binding = @) uniform myTransforms

{

matd transforml;
mat3 transform2;

void main(void)

// Do nothing!

graphics/192lis02.jpg
; Version: 1.

0

; Generator: Khronos Glslang Reference Front End; 1

; Bound: 22
; Schema: @

%1

%2
%3
%6
%7
%8
%9
%10
%11
%12
%13
%14
%15
%16
%17
%18
%19
%20
%21

%5

OpCapability Shad

er

OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %4 “main”
OpExecutionMode %4 Localsize 11 1

OpSource GLSL 450
OpName %4 “"main"

OpName %10 "myTexture"

Ophame %14 "myLut

OpName %19 "myTransforms"
OpMemberName %19 © “transforml"
OpMemberName %19 1 “transform2"

OpName %21 ™"

OpDecorate %16 DescriptorSet 0
OpDecorate %16 Binding ©

OpDecorate %14 DescriptorSet @
Opbecorate %14 Binding

OpMemberDecorate
OpMemberDecorate
OpMemberDecorate
OpMemberDecorate
OpMemberDecorate
OpMemberDecorate
OpDecorate %19 Bl

%19
%19
%19
%19
%19
%19
ock

FrrRoo®

2

ColMajor

offset 0
MatrixStride 16
ColMajor

offset 64
MatrixStride 16

OpDecorate %21 DescriptorSet 1
Opbecorate %21 Binding ©

0pTypeVoid
OpTypeFunction %2
OpTypeFloat 32

OpTypeImage %6 2D 0 © © 1 Unknown

OpTypeSampledInage %7

OpTypePointer UniformConstant %8
OpVariable %9 UniformConstant
OpTypeImage %6 30 0 0 0 1 Unknown
OpTypeSampledImage %11
OpTypePointer UniformConstant %12
OpVariable %13 UniformConstant

OpTypeVector %6 4
OpTypeMat rix %15
OpTypeVector %6 3
OpTypeMat rix %17
OpTypeStruct %16

4

3
%18

OpTypePointer Uniform %19
OpVariable %20 Uniform

OpFunction %2 None %3

OpLabel
OpReturn
OpFunctionEnd

graphics/380pro-01.jpg
void vkCmdWaitEvents (

VkCommandBuffer

uint32_t

const VKEvents
VkPipelineStageFlags
VkPipelineStageFlags
uint32_t

const VkMemoryBarriers
uint32_t

const VkBufferMemoryBarrierx
uint32_t

const VKImageMemoryBarriers

commandBuffer,
eventCount,

pEvents,

srcStageMlask,
dstStagetask,
memoryBarrierCount,
pMemoryBarriers,
bufferMenoryBarrierCount,
pBuffertemoryBarriers
imagettemoryBarrierCount,
pImageMemoryBarriers):

graphics/218fig01.jpg

graphics/15pro03.jpg
typedet struct VkDeviceQueuelreatelnfo {
VkStructureType
const voids
VkDeviceQueueCreateFlags flags;

uint32 t queueFamilyIndex
uint32_t queueCount ;
const floats pQueuePriorities;

} VkDeviceQueueCreateInfo;

graphics/270pro-03.jpg
void vkCmdEndRenderPass (
VkCommandBuffer commandBuffer) :

graphics/15pro02.jpg
typedef struct VkDeviceCreatelInfo {
VkStructureType
const voids
VkDeviceCreateFlags
uint32_t
const VkDeviceQueueCreateInfox
uint32.t
const charx consts
uint32 t
const charx consts
const VkPhysicalDeviceFeaturess
} VkDeviceCreateInfo:

sType;
pNext ;

flags
queueCreateInfoCount;
pQueueCreateInfos;
enabledLayerCount;
ppEnabledLayerNanes ;
enabledExtensionCount ;
ppEnabledExtensionNames;
pEnabledFeatures;

graphics/270pro-02.jpg
typedef struct vVkClearDepthstencilvalue {
float depth;
uint32_t stencil;

} VkClearDepthStencilValu

graphics/15pro01.jpg
VkResult vk(reateDevice (
VkPhysicalDevice
const VkDeviceCreateInfox
const VkAllocationCallbacks+
VkDevice*

physicalDevice,
pCreateInfo,
pAllocator,
pDevice.

graphics/415list-01.jpg
KkAttachment_BACK
kAttachment_DEPTH
kAttachment_GBUFFER
kAttachment_TRANSLUCENCY
kAttachment_OPAQUE

enum

{

kSubpass_DEPTH
kSubpass_GBUFFER
kSubpass_LIGHTING
kSubpass_TRANSLUCENTS
kSubpass_COMPOSITE

static const VkAttachmentDescription attachments[] =

// Back buffer

{
0,
VK_FORMAT_R8GBB8AB_UNORM,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
'VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

/!
"
Vi
/7
/7
/!
/!
/!
FF

flags
format

samples

1oadop

store0p
stencilloadOp
stencilStore0p
initiallayout
finalLayout

graphics/231pro01.jpg
typedet struct VkAttachmentDescription {
VkAttachmentDescriptionFlags flags;

VkFormat format;
VkSampleCountFlagBits samples
VkAttachmentLoadOp load0p
VkAttachmentStoreOp store0p
VkAttachmentLoadOp stencilloadop
VkAttachmentStoreOp stencilStoreOp
VkInageLayout initiallayout;
VkImageLayout finalLayout

} VkAttachmentDescription;

graphics/270pro-01.jpg
typedef union VkClearColorValue {
float float32[4];
int32_t int32[4];
uint32 t uint32(4];

} VkClearColorValue;

graphics/197lis01.jpg
// This describes our combined image-samplers. One set, two disjoint bindings
static const VkDescriptorSetlayoutBinding Samplers[] =

{
{
0, // Start from binding 0
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // Combined image-sampler
; 7/ Create one binding
VK_SHADER_STAGE_ALL, // Usable in all stages
nullptr 7/ No static samplers
1,
{
2, // Start from binding 2
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // Combined image-sampler
1 // Create one binding
VK_SHADER_STAGE_ALL, // Usable in all stages
nullptr // No static samplers
o
b

// This is our uniform block. One set, one binding.
static const VkDescriptorSetlLayoutBinding UniformBlock =

{

o, // Start from binding 0
VK_DESCRIPTOR TYPE_UNIFORM BUFFER, 77 Uniform block

L 7/ One binding
VK_SHADER STAGE ALL, 77 ALL stages

nullptr 77 No static samplers

// Now create the two descriptor set layouts.
static const VkDescriptorSetLayoutCreateInfo createInfoSamplers =
{

VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
nuliptr,
0

2
&Samplers[0]

static const VkDescriptorSetLayoutCreateInfo createInfoUniforms =
{

VK_STRUCTURE_TYPE_DESCRIPTOR SET_LAYOUT CREATE_INFO,

slniformBlock

// This array holds the two set layouts.
VkDescriptorsetLayout setLayouts[2];

vkCreateDescriptorSetLayout (device, &createInfoSamplers,
nullptr, &setlaouts[0]);

vkCreateDescriptorSetLayout (device, &createInfoUniforms,
nullptr, &setlayouts[1]);

// Now create the pipeline layout
const VkPipelinelayoutCreateInfo pipelinelayoutCreateInfo =

VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr,
2. setlayouts,
0, nullptr

1

VkPipelinelayout pipelinelayout;

vkCreatePipelineLayout (device, &pipelineLayoutCreateInfo,
nullptr, pipelinelLayout):

graphics/10pro02.jpg
void vkGetPhysicalDeviceMemoryProperties (
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryPropertiess pMemoryProperties):

graphics/10pro01.jpg
void vkGetPhysicalDeviceFeatures (
VkPhysicalDevice physicalDevice,
VKPhysicalDeviceFeaturess pFeatures);

graphics/206pro01.jpg
typedef struct VkCopyDescriptorSet {

VkStructureType
const voids
VkDescriptorSet
uint32_t

uint32_t
VkDescriptorSet
uint32 t

uint32 t

uint32_t

} VkCopyDescriptorSet;

sType;
pNext;
srcset;
srcBinding;
srcArrayElement;
dstSet;
dstBinding;
dstArrayElement;
descriptorCount

graphics/25pro01.jpg
VkResult vkinumerateDevicelayerProperties (
VkPhysicalDevice physicalDevice,
uint32_te pPropertyCount,
VkLayerProperties* pProperties);

graphics/60fig01.jpg
1.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

o

-

-

1.2

1.2

graphics/297list-01.jpg
#version 450 core

layout (vertices = 1) out;
void main(void)

{

gl_TessLevelInner[0]
gl TessLevelInner[1]

gl_TessLevelOuter[0]
gl TessLevelOuter[1]
gl TessLevelOuter[2]
gl_TessLevelOuter[3]

graphics/236pro01.jpg
// This 1s our color attachment. It’s an R8G8BSA8_UNORM single sample 1mage.
// We want to clear it at the start of the renderpass and save the contents
// when we’re done. It starts in UNDEFINED layout, which is a key to

// Vulkan that it’s allowed to throw the old content away, and we want to
// leave it in COLOR ATTACHMENT OPTIMAL state when we’re done.

static const VkAttachmentDescription attachments[] =

{
34
0, // flags
VK_FORMAT_RBGBBBAS_UNORM, // format
VK_SAMPLE_COUNT_1 BIT, 7/ samples
VK_ATTACHMENT LOAD_OP CLEAR, 7/ 1oad0p
VK_ATTACHMENT_STORE_OP_STORE, // store0p
VK_ATTACHMENT_LOAD_OP_DONT_CARE, // stencilloadop
VK_ATTACHMENT_STORE_OP_DONT_CARE, // stencilStoreOp
VK_IMAGE_LAYOUT_UNDEFINED, // initiallayout
VK_IMAGE_LAYOUT COLOR ATTACHMENT OPTIMAL // finallayout
}
}i

// This is the single reference to our single attachment
static const VkAttachmentReference attachmentReferences[] =
{
£
0, // attachment
VK_IMAGE_LAYOUT_COLOR ATTACHMENT OPTIMAL // layout

}
}i

// There is one subpass in this renderpass, with only a reference to the
// single output attachment.
static const VkSubpassDescription subpasses[] =
{
£

graphics/297list-02.jpg
; Require tessellation capability; import GLSL450 constructs

OpCapability Tessellation
%1 = OpExtInstImport "GLSL.std.450"
OpiemoryModel Logical GLSL450
Define “main" as the entry point for a tessellation control shader.
OpEntryPoint TessellationControl %5663 “main" %3290 %5448
Number of patch output vertices = 1
OpExecutionMode %5663 OutputVertices 1
Decorate the tessellation level variables appropriately
OpDecorate %3290 Patch
OpDecorate %329 BuiltIn TessLevelInner
OpDecorate %5448 Patch
OpDecorate %5448 BuiltIn TessLevelOuter
Declare types used in this shader

%8 = OpTypeVoid
%1282 = OpTypeFunction %8
%13 = OpTypeFloat 32
%11 = OpTypeInt 32 0
; This is the declaration of the gl TessLevellInner(2] variable.
%2576 = OpConstant %11 2
%549 = OpTypeArray %13 %2576
%1186 = OpTypePointer Output %549
%3290 = OpVariable %1186 Output
%12 = OpTypelnt 32 1
%2571 = OpConstant %12 @
%1330 = OpConstant %13 7
%650 = OpTypePointer Output %13
%2574 = OpConstant %12 1
%2807 = OpConstant %13 8

; Declare the gl_TessLevelOuter[4] variable

%2582
%609

OpConstant %11 4
OpTypeArray %13 %2582

graphics/308fig01.jpg
Vulkan Applcation Depl

Spent

AVA'
o

VAN
W)
S

)
)
7S

graphics/404list-01c.jpg
b

// oubpass 2 - g-butter generation
{

0, // flags
VK_PIPELINE BIND_POINT_GRAPHICS, // pipelineBindPoint

0, 7/ inputAttachmentCount
nullptr, // pInputAttachments

vkcore: :utils: :arraysize(gBufferOutputs), // colorAttachmentCount
gBufferOutputs, // pColorAttachments

nullptr, // pResolveAttachments
&depthAttachmentReference, // pbepthStencilAttachment

0, // preserveAttachmentCount
nullptr 7/ ppreserveAttachments

1,
// Subpass 3 - lighting
{

0, // flags
VK_PIPELINE_BIND_POINT_GRAPHICS, // pipelineBindPoint

vkcore: :utils: :arraysize(gBufferReadRef), // inputAttachmentCount
gBufferReadRef, // pInputAttachments

vkcore: :utils: :arraysize(backBufferRenderRef), // colorAttachmentCount
backBufferRenderRef, // pColorAttachments

nullptr, // pResolveAttachments

nullptr, // pDepthStencilAttachment

0, // preserveAttachmentCount
nullptr // pPreserveAttachments

+

static const VkSubpassDependency dependencies[] =

// G-buffer pass depends on depth prepass
{

kSubpass_DEPTH, srcSubpass
kSubpass_GBUFFER, dstSubpass
VK_PIPELINE_STAGE COLOR_ATTACHMENT OUTPUT_BIT, // srcStageMask

N
AN

VK_PIPELINE_STAGE_FRAGMENT_SHADER BIT, // dstStageMask
VK_ACCESS_COLOR_ATTACHMENT_WRITE BIT, // srcAccessMask
VK_ACCESS_SHADER READ_BIT, // dstAccessMask
VK_DEPENDENCY_BY_REGION BIT /1 dependencyFlags

graphics/404list-01d.jpg
L LHEING. PRIS DRPRINS: Il G=0UT TR «
{

kSubpass_GBUFFER, /7
kSubpass_LIGHTING, 4
VK_PIPELINE STAGE COLOR ATTACHMENT OUTPUT BIT, //
VK_PIPELINE_STAGE_FRAGMENT_SHADER BIT, //
VK_ACCESS_COLOR_ATTACHMENT_WRITE BIT, /7
VK_ACCESS_SHADER READ_BIT, 1/
VK_DEPENDENCY_BY_REGION BIT 1
}
static const VkRenderPassCreateInfo renderPassCreateInfo =
{
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr,
0, i
vkcore: :utils: :arraysize(attachments), //
attachments, 1/
vkcore: :utils::arraysize(subpasses), 1/
subpasses, //
vkcore: :utils::arraysize(dependencies), /7
dependencies /7

bi

result = vkCreateRenderPass (device,
&renderPassCreateInfo,
nullptr,
&m_renderPass) :

srcsubpass
dstsubpass
srcstageMask
dstStageMask
srcAccesshask
dstAccessMask
dependencyFlags

flags
attachmentCount
pAttachments
subpassCount
pSubpasses
dependencyCount
pDependencies

graphics/404list-01a.jpg
{/ G-buffer 1

o, // flags
VK_FORMAT_R32G32B32A32_UINT, // format
VK_SAMPLE_COUNT_1_BIT, // samples

VK_ATTACHMENT_LOAD_OP_DONT_CARE, // loadOp
VK_ATTACHMENT STORE OP_DONT CARE, // storeOp
VK_ATTACHMENT LOAD_OP_DONT_CARE, // stencilload0p
VK_ATTACHMENT STORE OP_DONT_CARE, // stencilStoreOp
VK_IMAGE_LAYOUT UNDEFINED, // initiallayout
) VK_IMAGE_LAYOUT_UNDEFINED /7 finalLayout
b

// Depth prepass depth buffer reference (read/write)
static const VkAttachmentReference depthAttachmentReference =
{

kAttachment DEPTH, // attachment
VK_IMAGE LAYOUT DEPTH STENCIL ATTACHMENT OPTIMAL // layout

b

// G-buffer attachment references (render,
static const VkAttachmentReference gBufferOutputs[] =
{

kAttachment_GBUFFER, // attachment
VK_IMAGE_LAYOUT_COLOR ATTACHMENT_OPTIMAL 77 layout
}
b

// Lighting input attachment references
static const VkAttachmentReference gBufferReadRef[] =

// Read from g-buffer
{

KkAttachment_GBUFFER, // attachment
VK_IMAGE_LAYOUT_SHADER READ_ONLY_OPTIMAL // layout

T
// Read depth as texture.

KkAttachment DEPTH, // attachment
VK_IMAGE_ LAYOUT DEPTH STENCIL READ_ONLY OPTIMAL // layout

graphics/404list-01b.jpg
// Final pass-back buffer render reference
static const VKAttachmentReference backBufferRenderRef[] =
{

kAttachment BACK, // attachment
VK_IMAGE_LAYOUT_COLOR ATTACHMENT OPTIMAL /1 layout
}
b

static const VkSubpassDescription subpasses[] =

// Subpass 1 - depth prepass

{
0, // flags
VK_PIPELINE BIND_POINT GRAPHICS, // pipelineBindPoint
0, // inputAttachmentCount
nullptr, // pInputAttachments
0, // colorAttachmentCount
nullptr, // pColorAttachments
nullptr, // pResolveAttachments
&depthAttachmentReference, 7/ pDepthStencilAttachment
0, // preserveAttachmentCount
nullptr // pPreserveAttachments

1,

// Subpass 2 - g-buffer generation

{
) // flags

VK_PIPELINE BIND_POINT_GRAPHICS, // pipelineBindPoint

9, // inputAttachmentCount
nullptr, // pInputAttachments

vkcore: :utils: :arraysize(gBufferOutputs), // colorAttachmentCount
gBufferOutputs, // pColorAttachments

nullptr, // pResolveAttachments
&depthAttachmentReference, // pDepthStencilAttachment

0, // preserveAttachmentCount
nullptr // pPreserveAttachments

5

graphics/307list-01.jpg
#version 450 core
layout (quads, fractional odd_spacing) in
layout (push_constant) uniform push_constants_b
mat4 mvp_matrix;
float displacement scale;
} push_constants;
layout (set = @, binding = @) uniform sampler2D texDisplacement;
void main(void)
{
vecd midl = mix(gl_in[@].gl Position, gl in[1].gl Position, gl TessCoord.x);
vecd mid2 = mix(gl in[2].gl Position, gl in[3].gl Position, gl TessCoord.x);
vecd pos = mix(midl, mid2, gl TessCoord.y);
float displacement = texture(texDisplacement, gl TessCoord.xy).x;
pos.z = displacement * push_constants.displacenent_scale;

gl_Position = push_constants.mvp_matrix * pos;

graphics/64688.jpg
n
T o

graphics/186pro01.jpg
void vkCmdBindPipeline (
VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline pipeline):

graphics/98pro01.jpg
VkResult vk(CreateCommandPool (

VkDevice device,
const VkCommandPoolCreateInfox pCreateInfo,
const VkAllocationCallbacks* pAllocator,

VkCommandPool# pCommandPool) ;

graphics/312list-02.jpg
Decorate the first member of our block with the BuiltIn Position.
OpMemberDecorate %1017 @ BuiltIn Position
OpDecorate %1017 Block

Declare an array of structures, with a pointer to this array as an input
%1017 = OpTypeStruct %29

%557 = OpTypeArray %1017 %2573

%1194 = OpTypePointer Input %557

%5305 = OpVariable %1194 Input

%666 = OpTypePointer Input %29

;7 Access the input using OpLoad.
%7129 = OpAccessChain %666 %5305 %2571 %2571
%15646 = OpLoad %29 %7129

graphics/318list-01.jpg
#version 450 core

layout (triangles, invocations = 2) in;
layout (triangle_strip, max_vertices = 3) out;

layout (set = @, binding = 8) uniform
{

mat4 projection;

mat4 objectTowWorld[2];
} transforms;

void main(void)
{
int i;
matd objectToWorld = transforms,objectToWorld[gl InvocationID];
matd objectToClip = objectToWorld * transforms.projection;
for (1=0; i<3; it+)
gl_Position = gl in[i].gl Position * objectToClip;

EmitVertex();

graphics/98pro02.jpg
typedef struct VkCommandPoolCreatelnfo {

VkstructureType sType
const voids plext;
VkCommandPoolCreateFlags flags;
uint32_t queueFamilyIndex

} VkCommandPoolCreateInfo;

graphics/104lis01.jpg
void CopyDataBetweenBuffers(VkCmdBuffer cmdBuffer,
VkBuffer srcBuffer, VkDeviceSize srcOffset,
VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize size)

const VkBufferCopy copyRegion =

srcOffset, dstOffset, size
¥

vkCmdCopyBuffer (cndBuffer, srcBuffer, dstBuffer, 1, ©Region);

graphics/390pro-01.jpg
void vkCmdResetQueryPool (
VkCommandBuffer’
VkQueryPool
uint32_t
uint32_t

conmandBuf fer,
queryPool ,
firstQuery,
queryCount) ;

graphics/390pro-02.jpg
void vkCmdBeginQuery (

VkCommandBuf fer commandBuffer,
VkQueryPool queryPool,
uint32_t query,

VkQueryControlFlags flags);

graphics/123pro01.jpg
void vkCmdFillBuffer (
VkCommandBuffer
VkBuffer
VkDeviceSize
VkDeviceSize
uint32 t

commandBuffer,
dstBuffer,
dstoffset,
size,

data):

graphics/333pro-01.jpg
void vkCmdSetViewport (
VkCommandBuffer
uint32_t
uint32_t
const VkViewports

commandBuffer,
firstViewport,
viewportCount,
pViewports);

graphics/73pro02.jpg
void vkDestroyImageView (
VkDevice device,
VkImageView imageView,
const VkAllocationCallbacks# pAllocator):

graphics/73pro01.jpg
void vkDestroyImage (
VkDevice device,
VkInage image,
const VkAllocationCallbacks#* pAllocator);

graphics/148pro01.jpg
VkResult vkGetSwapchainImagesKHR
Vkbevice
VkSwapchainkHR
uint32_tx
VkImage*

device,

swapchain,
pSwapchainImageCount,
pSwapchainImages

graphics/103pro01.jpg
void vkCmdCopyBuffer (
VkCommandBuffer
VkBuffer
VkBuffer
uint32_t
const VKBufferCopys

commandBuffer,
srcBuffer,
dstBuffer,
regionCount,
pRegions) :

graphics/379pro-02.jpg
void vkCmdResetEvent (
VkCommandBuf fer commandBuffer,
VkEvent event,
VkPipelineStageFlags stageMask) :

graphics/103pro02.jpg
typedet struct VkButter(opy {

VkDeviceSize srcOffset;
VkDeviceSize dstoffset;
VkDeviceSize size;

} VKBufferCopy:

graphics/379pro-01.jpg
void vkCmdSetEvent (
VkCommandBuf fer commandBuffer,
VkEvent event,
VkPipelineStageFlags stageMask) ;

graphics/30pro01.jpg
PFN_vkVoldFunction vkGetlnstanceProcAddr (
VkInstance instance,
const chars pName) ;

graphics/382pro-03.jpg
typedef struct VkSubmitlnfo {

VkStructureType

const voids

uint32_t waitSemaphoreCount;
const VKSemaphorex pWaitSemaphores;
const VkPipelineStageFlags+ pWaitDstStageMask;
uint32_t commandBuf ferCount ;
const_VkCommandBuf fer+ pCommandBuffers;
uint32_t signalSemaphoreCount;
const VKSemaphorex pSignalSemaphores;

} VkSubmitInfo:

graphics/30pro02.jpg
VKAPI_ATTR void VKAPI_CALL vkVoidFunction(void);

graphics/382pro-02.jpg
VkResult vkQueueSubmit (

VkQueue Queue,
uint32_t submitCount,
const VkSubmitInfo+ pSubmits,

VkFence fence):

graphics/30pro03.jpg
PFN_vkVolidFunction vkGetDeviceProcAdar (
Vkbevice device,
const chars pName) ;

graphics/382pro-01.jpg
void vkDestroySemaphore (
VkDevice device,
VkSemaphore semaphore,
const VKAllocationCallbacks* pAllocator);

graphics/151pro01.jpg
VkResult vkAcquireNextImageKHR(

VkDevice device,
VkSwapchainkHR swapchain,
uint64_t timeout,
VKSemaphore semaphore,
VkFence fence,

uint32_tx pImageIndex);

graphics/326pro-01.jpg
OpExecutionMode %n QutputVertices 9}

graphics/280list-01.jpg
#version 450 core

layout (set = @, binding = @) uniform matrix_uniforms_b
{

mat4 mvp_matrix(1024];

layout (set = @, binding = 1) uniforn color_uniforms_b

vecd cube_colors[1024];
i

layout (location = @) in vec3 i position;

out vs_fs

{
i

flat vecd color;

void main(void)
{
float f = float(gl VertexIndex / 6) / 6.0f;
vecd colorl = cube colors[gl InstanceIndex];
vecd color2 = cube colors[gl InstanceIndex & 512];

color = mix(colorl, color2, f);
glPosition = mvp_matrix[gl_InstanceIndex] » vecd(i_position, 1.8f);

graphics/274pro01.jpg
of fset + firstIndex * sizeof(index)

graphics/334list-01.jpg
#version 450 core

layout (triangles, invocations = 4) in;
layout (triangle_strip, max_vertices = 3) out;

layout (set = @, binding = 0) uniform transform_block

mat4 mvp_matrix[4];

b
in VS_OUT
{

vecd4 color;
} gs-in[];
out GS_OUT
{

vec4 color;
} gs out;
void main(void)
{

for (int i = 0; i < gl_in.length(); i++)
{

gs_out.color = gs_in[i].colo
gl_Position = mvp_matrix[gl InvocationID] *

gl in[i].gl Position;
gl_ViewportIndex = gl InvocationID;
EmitVertex();

EndPrimitive();

graphics/iifig01.jpg
OpenGL Series

from Addison-Wesley

GL

Programming Guide

vv Addison-Wesley

Visit informit.com/opengl for a complete list of available products.

e OpenGL gr s system is a software interface to graphics hardware.
(“GL" stands for “Graphics Library”) It allows you to ¢

that produce color images of moving, three-dimensional objects. With OpenGL,

ate interactive programs

you can control computer-graphics technology to produce realistic pictures, or
ones that depart from reality in imaginative ways

The OpenGL Series from Addison-Wesley Professional comprises tutorial and
reference books that help programmers gain a practical understanding of OpenGL
standards, along with the insight needed to unlock OpenGL's full potential.

ﬁ You L!J

Make sure to connect with us!
informit.com/socialconnect

informir.com ‘ Addison-Wesley

Pearson

graphics/113pro01.jpg
void vkCmdPipelineBarrier (
VkCommandBuf fer
VkPipelineStageFlags
VkPipelineStageFlags
VkDependencyFlags
uint32_t
const_VkMemoryBarriers
uint32_t

const_VkBufferMemoryBarriers

uint32_t
const VkImageMemoryBarriers

commandBuffer,
srcStageMfask,
dstStageMask,
dependencyFlags,
memoryBarrierCount,
pMemoryBarriers,
bufferMenoryBarrierCount,
pBufferMemoryBarriers,
imageMemoryBarrierCount,
pImageMemoryBarriers):

graphics/209lis01.jpg
layout (set = 0, binding = 1) uniform my_uniform_buffer_t
float foo;
vecd bar;
int baz[42];

} my_uniform_buffer;

layout (set = @, binding = 2) buffer my_storage buffer_t
{

int peas;

float carrots;

vec3 potatoes{99];
} my storage buffer;

graphics/273pro-01.jpg
void vkCmdDrawIndexed (
VkCommandBuffer
uint32 t
uint32_t
uint32_t
int32_t
uint32_t

commandBuffer,
indexCount,
instanceCount,
firstIndex,
vertexOffset,
firstInstance):

graphics/273pro-02.jpg
void vkCmdBindIndexBuffer (

VkCommandBuf fer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,

VkIndexType indexType);

graphics/141pro01.jpg
VKResult vk(reateXlibSurtaceKHR(

VkInstance instance,
const VkXlibSurfaceCreateInfokHR+ pCreateInfo,
const VkAllocationCallbacks+ pAllocator,

VkSurfaceKHR* pSurface):

graphics/141pro02.jpg
typede? struct VkXlibsurface(CreatelnToKHR {

VkStructureType sType;
const voids pNext;
VkXLibSurfaceCreateFlagskHR flags;
Display+ dpy;
Window window;

} VkXlibSurfaceCreateInfoKHR;

graphics/212lis01.jpg
%1

OpCapability Shader
OpCapability SampledBuffer
OpExtInstImport “GLSL.std.450"
OpifemoryModel Logical GLSL456
OpEntryPoint Vertex %4 "main”
OpSource GLSL 450

OpName %4 “main”

;; Name our texel buffers

OpName %10 "my_float_texel_buffer"
OpName %15 “my_signed_texel_buffer"
OpName %20 "my_unsigned_texel_buffer"
;; Assign set and binding decorations.
OpDecorate %10 DescriptorSet ©
OpDecorate %10 Binding 3

OpDecorate %15 DescriptorSet 8
OpDecorate %15 Binding 4

OpDecorate %20 DescriptorSet 0
OpDecorate %20 Binding 5

0pTypeVoid

OpTypeFunction %2

;; Declare the three texel buffer variables.

OpTypeFloat 32
OpTypeImage %6 Buffer 0 0 © 1 Unknown
0OpTypeSampledInage %7

OpTypePointer UniformConstant %8
OpVariable %9 UniformConstant
OpTypelnt 32 1

OpTypeImage %11 Buffer © © @ 1 Unknown
OpTypeSampledImage %12

OpTypePointer UniformConstant %13
OpVariable %14 UniformConstant
OpTypeInt 32 0

OpTypeImage %16 Buffer © © @ 1 Unknown
OpTypeSampledImage %17

OpTypePointer UniformConstant %18
OpVariable %19 UniformConstant

graphics/45pro01.jpg
void vkGetPhysicalDeviceFormatProperties (
VkPhysicalDevice physicalDevice,
VkFormat format,
VKFormatPropertiess pFormatProperties);

graphics/45pro02.jpg
typedef struct VkrormatProperties i
VkFormatFeatureFlags linearTilingFeatures;
VkFormatFeatureFlags optimalTilingFeatures;
VkFormatFeatureFlags bufferFeatures;

} VKFormatProperties;

graphics/201pro02.jpg
VkResult vkAllocateDescriptorSets (
VkDevice device,
const VkDescriptorSetAllocateInfo+ pAllocatelnfo,
VkDescriptorSets pDescriptorSets);

graphics/28lis01.jpg
ulnt32_t numlnstancetxtensions = 0;
std::vector<VkExtensionProperties> instanceExtensionProperties;

// Query the instance extensions.

vkEnumerateInstanceExtensionProperties(nullptr,
&numInstanceExtensions,
nullptr);

// If there are any extensions, query their properties.
if (numInstanceExtensions 0)
{

instanceExtensionProperties. resize(nunInstanceExtensions);
vkEnumerateInstanceExtensionProperties (nullptr,
&numInstanceExtensions,
instanceExtensionProperties.data());

graphics/201pro01.jpg
typedef struct VkDescriptorPoolSize {
VKDescriptorType type;
uint32t descriptorCount;
} VkDescriptorPoolSize:

graphics/201pro03.jpg
typedef struct VkDescriptorSetAllocatelnfo {

VkstructureType sType;

const void* pNext;
VkDescriptorPool descriptorPool;
uint32_t descriptorSetCount;

const VkDescriptorSetLayouts pSetlayouts;
} VkDescriptorSetAllocateInfo:

graphics/149lis01.jpg
VkResult result;

// First, we create the swap chain.
VkSwapchainCreateInfokHR swapChainCreateInfo =
{

VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, // sType

nullptr, 7/ pNext
7/ flags
n’mainSurface, // surface
2, 7/ minImageCount
VK_FORMAT_R8G8BBAS_UNORM, // imageFormat
VK_COLORSPACE_SRGB_NONLINEAR KHR, // imageColorSpace
{ 1024, 768 }, // imageExtent
1, 7/ imageArrayLayers
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, // imageUsage
VK_SHARING_MODE_EXCLUSIVE, // imageSharingMode
0, 7/ queueFamilyIndexCount
nullptr, 7/ pQueuefamilyIndices
VK_SURFACE_TRANSFORM_INHERIT_BIT KHR, // preTransform
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, // compositeAlpha
VK_PRESENT_MODE_FIFO_KHR, 7/ presenthode
VK_TRUE, // clipped
m_swapChain // oldSwapchain
+i
result = vkCreateSwapchainkHR(m_logicalDevice,
&swapChainCreateInfo,
nullptr,

&n_swapChain) ;

// Next, we query the swap chain for the number of images it actually contains.
uint32_t swapChainImageCount =

if (result == VK SUCCESS)

result = vkGetSwapchainInageskHR(m_logicalDevice,
m_swapChain,

&swapChainImageCount,
nullptr);
¥
if (result VK_SUCCESS)
{
// Now we resize our image array and retrieve the image handles from the
7/ swap chain.
m_swapChainInages. resize (swapChainImageCount);
result = vkGetSwapchainImageskHR(m_logicalDevice,
m_swapChain,
&swapChainInageCount
m_swapChainInages.data());
b

return result

VK_SUCCESS ? m_swapChain : VK_NULL_HANDLE

graphics/268pro-01.jpg
void vkCmdDraw (

VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32 t instanceCount,
uint32_t firstVertex,

uint32_t firstInstance):

graphics/268pro-02.jpg
void vkCmdBeginRenderPass (
VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfox pRenderPassBegin,
VkSubpassContents contents);

graphics/378pro-02.jpg
VKResult vkGetkventStatus (
VkDevice device,
VKEvent event):

graphics/378pro-01.jpg
VkResult vkResetEvent (
VkDevice device,
VkEvent event):

