

 [image: (missing alt)]

 Table of Contents

 Learning Vulkan

 Credits

 About the Author

 Acknowledgments

 About the Reviewer

 www.PacktPub.com

 Why subscribe?

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Downloading the color images of this book

 Errata

 Piracy

 Questions

 1. Getting Started with the NextGen 3D Graphics API

 Vulkan and its evolution

 Vulkan versus OpenGL

 Important jargons before we get started

 Learning the fundamentals of Vulkan

 Vulkan's execution model

 Vulkan's queues

 The object model

 Object lifetime and command syntax

 Error checking and validation

 Understanding the Vulkan application

 Driver

 Application

 WSI

 SPIR-V

 LunarG SDK

 Getting started with the Vulkan programming model

 Hardware initialization

 Window presentation surfaces

 Resource setup

 Pipeline setup

 Descriptor sets and descriptor pools

 Shaders with SPIR-V

 Pipeline management

 Recording commands

 Queue submission

 Summary

 2. Your First Vulkan Pseudo Program

 Installing Vulkan

 The Hello World!!! pseudocode

 Initialization - a handshake with the device

 Swapchain initialization - querying the WSI extension

 Command buffer initialization - allocating command buffers

 Resource objects - managing images and buffers

 Creating a presentation surface - creating a swapchain

 Creating a depth image

 Resource allocation - allocating and binding device memory

 Supplying shaders - shader compilation into SPIR-V

 Building layouts - descriptor and pipeline layouts

 Creating a Render Pass - defining a pass attribute

 Framebuffer - connect drawing images to the Render Pass

 Populating geometry - storing a vertex into GPU memory

 Pipeline state management - creating pipelines

 Defining states

 Creating a graphics pipeline

 Executing the Render Pass - drawing Hello World!!!

 Acquiring the drawing surface

 Preparing the Render Pass control structure

 Render Pass execution

 Queue submission and synchronization - sending jobs

 Displaying with presentation layer - rendering a triangle

 Fitting it all together

 Summary

 3. Shaking Hands with the Device

 Getting started with the LunarG SDK

 Setting up our first project with CMake

 How to build the CMake file

 Introduction to extensions

 Querying layers and extensions

 Creating a Vulkan instance

 Enabling layers and extensions

 Testing the enabled layers and extensions

 Understanding physical and logical devices

 Physical devices

 Enumerating physical devices

 Querying physical device extensions

 Getting the properties of a physical device

 Interrogating memory properties from the physical device

 Logical device

 Creating a logical device

 Waiting on the host

 Losing the device

 Understanding queues and queue families

 Querying queue families

 Storing the graphics queue handle

 Creating a queue

 Implementing devices and queues all together

 Summary

 4. Debugging in Vulkan

 Peeking into Vulkan debugging

 Understanding LunarG validation layers and their features

 Implementing debugging in Vulkan

 Summary

 5. Command Buffer and Memory Management in Vulkan

 Getting started with command buffers

 Explicit synchronization

 Types of command in command buffers

 Command buffers and queues

 The order of execution

 Understanding command pool and buffer APIs

 Creating a command pool

 Resetting a command pool

 Destroying a command pool

 Command buffer allocation

 Resetting command buffers

 Freeing command buffers

 Recording command buffers

 Queue submission

 Queue waiting

 Implementing the wrapper class for a command buffer

 Implementing the command buffer allocation process

 Recording the command buffer allocation process

 How to use command buffer recording functions

 Submitting the command to the queue

 Managing memory in Vulkan

 Host memory

 Device memory

 Allocating device memory

 Freeing up device memory

 Accessing device memory from the host

 Lazily allocated memory

 Summary

 6. Allocating Image Resources and Building a Swapchain with WSI

 Getting started with image resources

 Image creation overview

 Understanding image resources

 Creating images

 Destroying the created images

 Understanding image layouts

 Creating an image view

 Destroying the image view

 Memory allocation and binding image resources

 Gathering memory allocation requirements

 Allocating physical memory on the device

 Binding the allocated memory to an image object

 Introducing swapchains

 Understanding the swapchain implementation flow

 The swapchain implementation's class block diagram

 Renderer - a window management custom class

 Creating the presentation window

 Initializing the renderer

 Creating the command pool

 Building swapchain and depth images

 Rendering the presentation window

 VulkanSwapChain - the swapchain manager

 Querying swapchain extensions

 Creating the surface with WSI and associating it with the created window

 The graphics queue with present support

 Querying swapchain image formats

 Creating the swapchain

 Swapchain surface capabilities and the presentation mode

 Managing presentation mode information

 Retrieving the swapchain's color images

 Creating color image views

 Creating a depth image

 Introduction to tiling

 Creating a depth buffer image object

 Getting the depth image's memory requirements

 Determining the type of memory

 Allocating and binding physical memory to a depth image

 Image layout transition

 Image layout transition with memory barriers

 Creating the image view

 Summarizing the application flow

 Initialization

 Rendering - displaying the output window

 Summary

 7. Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

 Understanding the Vulkan buffer resource type

 Creating the buffer resource object

 Destroying the buffer

 Creating a buffer view

 Destroying the buffer view

 Creating geometry with a buffer resource

 Preparing geometry data

 Creating a vertex buffer

 Buffer creation overview

 Implementing a buffer resource - creating the vertex buffer for the geometry

 Understanding the code flow

 Understanding a Render Pass

 Attachments

 Subpasses

 Vulkan APIs for the Render Pass

 Implementing the Render Pass

 Using the Render Pass and creating the framebuffer

 Implementing the framebuffer

 Clearing the background color

 Setting the background color in the Render Pass instance

 Rendering the colored background

 Working with a shader in Vulkan

 Introduction to SPIR-V

 Compiling a GLSL shader into SPIR-V

 Offline compilation with the glslangValidator executable

 Online compilation with SPIR-V tool libraries

 Implementing a shader

 Summary

 8. Pipelines and Pipeline State Management

 Getting started with pipelines

 VulkanPipeline - the pipeline implementation class

 Caching pipeline objects with a PCO

 Creating a pipeline cache object

 Merging pipeline caches

 Retrieving data from pipeline caches

 Implementing the PCO

 Creating a graphics pipeline

 Implementing a graphics pipeline

 Destroying pipelines

 Understanding compute pipelines

 Pipeline State Objects (PSO) in Vulkan

 Dynamic states

 Implementing dynamic states

 Vertex input states

 Implementing vertex input states

 Input assembly states

 Implementing input assembly states

 Primitive restart

 Primitive topologies

 Primitives topologies with no adjacency

 Primitives topologies with adjacency

 Rasterization

 Rasterization states

 Implementing rasterization states

 Blending

 Color blend states

 Implementing color blend states

 Viewport management

 The viewport state

 Implementing the viewport state

 Depth and stencil tests

 Depth and stencil states

 Implementing depth stencil states

 Multisample states

 Implementing multisample states

 Implementing the pipeline

 Summary

 9. Drawing Objects

 Overview of the drawing process in Vulkan

 Walking through the header declaration

 Preparing the drawing object

 Recording Render Pass commands

 Beginning Render Pass instance recording

 Transitioning to the next subpass

 Finishing Render Pass instance recording

 Implementation

 Binding pipeline object

 Implementation

 Specifying drawing object geometry information

 Implementation

 Defining a dynamic viewport

 Implementation

 Scissoring

 Implementation

 Draw command

 vkCmdDraw command

 Implementing drawing object preparation

 Rendering the drawing object

 Acquiring the swapchain image

 Executing the drawing command buffer object

 Displaying the output with the presentation engine

 Implementing drawing object rendering

 Rendering an indexed geometry

 Understanding synchronization primitives in Vulkan

 Fences

 Semaphores

 Events

 Resizing the display window

 Summary

 10. Descriptors and Push Constant

 Understanding the concept of descriptors

 VulkanDescriptor - a user-defined descriptor class

 Descriptor set layout

 Implementing the descriptor set layout

 Destroying the descriptor set layout

 Understanding pipeline layouts

 Creating a pipeline layout

 Implementing the pipeline layout creation

 Destroying the pipeline layout

 Implementing the pipeline layout destruction process

 Descriptor pool

 Creating a descriptor pool

 Implementing the creation of the descriptor pool

 Destroying the descriptor pool

 Implementing the destruction of the descriptor pool

 Creating the descriptor set resources

 Creating the descriptor sets

 Allocating the descriptor set object from the descriptor pool

 Destroying the allocated descriptor set objects

 Associating the resources with the descriptor sets

 Implementing descriptor set creation

 How to implement Uniforms in Vulkan?

 Prerequisites

 Execution model overview

 Initialization

 Shader implementation

 Creating descriptors

 Rendering

 Binding the descriptor set

 Update

 Updating the transformation

 Push constant updates

 Defining the push constant resource in the shader

 Updating the pipeline layout with the push constant

 Updating the resource data

 Summary

 11. Drawing Textures

 Image resource - a quick recap

 Prerequisites for texture drawing

 Specifying the texture coordinates

 Updating the shader program

 Loading the image files

 Using the GLI library

 Local image data structure

 Implementing the image resource with linear tiling

 Loading the image file

 Creating the image object

 Memory allocation and binding

 Populating the allocated device memory

 Creating the command buffer object

 Setting the image layout

 Submitting the command buffer

 Creating an image sampler

 Filtering

 Wrapping modes

 Creating the image view

 Implementing the image resource with optimal tiling

 Loading the image file

 Buffer object memory allocation and binding

 Populating the allocated device memory

 Creating the image object

 Image object memory allocation and binding

 Creating a command buffer object

 Setting the image layout

 Buffer to image copy

 Setting the optimal image layout

 Submitting the command buffer

 Creating an image sampler

 Creating the image view

 Copying data content between images and buffers

 Updating the descriptor set

 Summary

Learning Vulkan

Learning Vulkan

Copyright © 2016 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: December 2016
Production reference: 1121216
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-980-9

www.packtpub.com

Credits

	

Author

Parminder Singh

	

Copy Editor

Gladson Monteiro

	

Reviewer

Chris Forbes

	

Project Coordinator

Ritika Manoj

	

Commissioning
 Editor

Ashwin Nair

	

Proofreader

Safis Editing

	

Acquisition
 Editors

Smeet Thakkar

Aaron Lazar

	

Indexer

Rekha Nair

	

Content Development Editor

Sachin Karnani

	

Production Coordinator

Aparna Bhagat

	

Technical Editor

Murtaza Tinwala

	

Graphics

Abhinash Sahu

About the Author

Parminder Singh is a computation graphics engineer with Blackmagic Design, Singapore. He has been working and developing graphic applications in the fields of network simulations, geo-modeling, navigation, automotive, infotainment systems, image processing, and post-production for the past decade. His research interests include GPU programming for scalable graphics and compute applications, porting, and performance optimization techniques.
He is a Vulkan, Metal and OpenGL ES trainer and has also authored OpenGL ES 3.0 Cookbook, Packt. His hobbies include traveling, light cooking, and spending quality time with his baby girl.
Feel free to connect Parminder at https://www.linkedin.com/in/parmindersingh18 or you can reach him at http://openglescookbook.com.

Acknowledgments

I dedicate this to my sweet baby girl, Raskeerat, who was born at the same time as we started this project. With a little baby onboard, it's challenging to write a book; I am grateful to my beloved wife Gurpreet Kaur and my family for helping me deliver this project to the community.
I extend my gratitude to Dr. Ulrich Kabatek and the entire graphics team of Continental Automotive; every member of the team had something to offer me to scale my vision of graphics. I am grateful to Blackmagic Design, who helped me extend my horizon to take GPU programming to a whole new level. I express my regards to Mohit Sindhwani and the whole of Quantum Invention's team. It was a great pleasure to work for them and also was a wonderful learning experience.
I am highly indebted to Chris Forbes from Google; his expertise in the graphics domain has raised the bar of this title. I am highly impressed with his reviews and the quality of work he delivered. Chris reviewed this title inch-by-inch and helped us not only to improve the contents but also our understanding of the concepts with his detailed explanation.
Last but not the least, I am thankful to the entire division of Packt, especially Sachin Karnani, who constantly remained involved during the production of this title. Murtaza Tinwala, who brilliantly exhibited his content management and technical skills during the final stages. I'm really happy to have them work with me on this book.

About the Reviewer

Chris Forbes works as a software developer for Google, working on Vulkan validation support and other ecosystem components. Previously he has been involved in implementing OpenGL 3 and 4 support in open source graphics drivers for Linux (www.mesa3d.org), as well as rebuilding classic strategy games to run on modern systems (www.openra.net).

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[image: www.PacktPub.com]

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.
Why subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Preface

This book is all about learning Vulkan from scratch. Vulkan is a next-generation cross-platform graphics and compute API. Despite being a successor of OpenGL API, it is a completely fresh approach to redesigning an API from the base that meets the competitive demand of consumers and works very close with the underlying GPU hardware. Vulkan is a software interface that is capable of controlling GPU hardware settings to harness the power of paralleling computing. The driver layer in Vulkan is really thin and puts more responsibilities on the shoulders of an application programmer to manage the application, its resources, memory management, synchronization, and more; this explicit nature of Vulkan makes it verbose. This book allows the beginner to learn such topics in baby steps, covering each chapter with an easy-to-follow companion example. The chapters are laid out in an incremental fashion; each chapter is built on top of the previous one, exposing the modular difference to our readers.
The Vulkan API certainly requires some level of computer graphics or computing knowledge prior to starting programming on it, as many of the concepts or terminologies are very general and directly used throughout this book.
This book is very practically oriented and prepared with an objective to allow its readers to learn Vulkan theory, concepts, and API specification, and see them in action through companion examples. There are plenty of references throughout the book that help readers to refer to the related concept, helping them to recap the fundamentals as they proceed through.
What this book covers

Chapter 1, Getting Started with the NextGen 3D Graphics API, will begin with the fundamentals of the Vulkan API and provides an overview of all its distinct features compared to its predecessor OpenGL API. This chapter will cover the basics, concepts, application model, and technical jargon used in Vulkan programming that is extremely helpful for first-time learners. You will also walk through the Vulkan programming model and see an outline of each module and its role.

Chapter 2, Your First Vulkan Pseudo Program, will help you program a simple Hello World program using a pseudocode approach. This will help the beginners to get a flavor of Vulkan programming and learn the step-by-step process to build their first Vulkan application. You will also learn how to install necessary software and the SDK.

Chapter 3, Shaking Hands with the Device, will help you to set up the programming environment to start with building your very first Vulkan example. You will create the Vulkan instance and initialize the program. You will connect with the physical hardware device, explore different types of queues exposed by it, and query various available layers and extensions. This chapter will provide a detailed understanding of the device queue and queue family concept and its relation with logical devices.

Chapter 4, Debugging in Vulkan, will describe how to perform debugging in a Vulkan application. Vulkan allows debugging through validation layers. In this chapter, we will discuss the role of each validation layer and program a simple example to understand the debugging in action. In addition, we will also query the layer extensions to add extra features that may not be a part of the Vulkan specifications.

Chapter 5, Command Buffer and Memory Management in Vulkan, will thoroughly discuss and implement command buffers in Vulkan. You will understand the role of the command pool and will learn how to record command buffers in Vulkan. The second half of the chapter will cover memory management in Vulkan; you will dig through device memory, and learn methods to allocate or deallocate GPU memory and understand the mapping of CPU and GPU memory.

Chapter 6, Allocating Image Resources and Building a Swapchain with WSI, will shed light on image resources and discuss memory management concepts, such as image creation, allocation, binding and mapping. Using this, we will create a depth image for depth testing. This chapter will also introduce the WSI swapchain, which is used for presentation and renders the drawing output onscreen. We will acquire the swapchain color images and create image views that will be used for drawing primitives.

Chapter 7, Buffer Resource, Render Pass, Frame Buffer, and Shaders with SPIR-V, will discuss the buffer resource and its usage for implementing the vertex buffer containing a drawing object’s geometry information. This chapter will give a detailed introduction to using the Render Pass to define a single unit of work specifying drawing operations using various attachments and subpasses. We will use Render Pass and implement frame buffers in Vulkan and demonstrate simple example to clear the background. As the chapter closes, we will implement our first shader in Vulkan using SPIR-V; we learn about SDK tools that convert GLSL into SPIR-V intermediate representation.

Chapter 8, Pipelines and Pipeline State Management, will introduce Vulkan’s compute and graphics pipeline. This chapter will provide an overview of the graphic pipeline flow and cover the role of various modules from start to end. We will discuss pipeline state objects, pipeline cache objects, and pipeline layouts. This chapter will cover all the pipeline states thoroughly, also covering dynamics states, input assembly with drawing primitives, rasterization, blending, viewport, depth/stencil testing, and multisampling. We will use these states' objects and implement the graphics pipeline.

Chapter 9, Drawing Objects, will thoroughly cover the process of drawing objects in Vulkan. We will record and execute the drawing object command buffers. The recording associates the Render Pass, framebuffer, and pipeline together along with the viewport and geometry data. The command buffer execution involves the submission of the command buffer to the device queue and presenting the drawn swapchain image to the presentation engine. We will also discuss the Vulkan synchronization mechanisms and understand fences, semaphore, and memory barriers. In addition, we will also cover drawing APIs and demonstrate it through some easy-to-follow examples.

Chapter 10, Descriptors and Push Constant, will describe how to update shader resources from a Vulkan application using descriptors and push constants. In descriptors, we will discuss and create descriptor pools and descriptor set layout. You will learn how to use the pipeline layouts and use the descriptors to update the buffer resource residing on the device memory and render the updated geometry on screen. Unlike descriptors, push constant do not use the command buffer and provides an optimized path to update the resources. You will implement a small example to understand push constants in action.

Chapter 11, Drawing Textures, will bring realism to our rendered 3D drawing object by adding textures. You will learn how to create the image resource and apply samplers to it. You will also learn how to apply textures using linear and optimal tiling. In optimal tiling implementation, you will learn to transfer buffer and image memory through staging.

What you need for this book

Please follow through the hardware and software requirements provided with this book. The reader must have a decent knowledge of C/C++ programming. Coding experience is required.

Who this book is for

This book caters to those who have an interest in or desire to create cross-platform, high-performance graphics, and compute applications across desktop and embedded domains. The programmer may require some knowledge and experience of graphics and compute domain to better co-relate the Vulkan concepts.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Enumerate the number of physical devices or GPUs on the existing system and get the vkEnumeratePhysicalDevices() API."
A block of code is set as follows:
 foreach layerProperty{
 VkExtensionProperties *instanceExtensions;
 res = vkEnumerateInstanceExtensionProperties(layer_name,
 &instanceExtensionCount, instanceExtensions);
 }
When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

 // Specify extensions that needs to be enabled on instance.
 instanceInfo.ppEnabledExtensionNames = {
 VK_KHR_SURFACE_EXTENSION_NAME,
 VK_KHR_WIN32_SURFACE_EXTENSION_NAME};

 // Create the Instance object
 vkCreateInstance(&instanceInfo, NULL, &instance);

New terms and important words are shown in bold. Words that you see on the screen, for example,
in menus or dialog boxes, appear in the text like this: "This can be done by simply placing a tick against the Add Python <version> to PATH checkbox."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:
	Log in or register to our website using your e-mail address and password.
	Hover the mouse pointer on the SUPPORT tab at the top.
	Click on Code Downloads & Errata.
	Enter the name of the book in the Search box.
	Select the book for which you're looking to download the code files.
	Choose from the drop-down menu where you purchased this book from.
	Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's webpage at the Packt Publishing website. This page can be accessed by entering the book's name in the Search box. Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
	WinRAR / 7-Zip for Windows
	Zipeg / iZip / UnRarX for Mac
	7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Learning-Vulkan. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at copyright@packtpub.com with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.

Chapter 1. Getting Started with the NextGen 3D Graphics API

Vulkan is a revolutionary high-performance 3D graphics and computing API for modern GPU pipeline architectures to meet the demanding requirements of the community. This API provides a brand-new approach to overcome the complexities and gaps in existing traditional APIs. Vulkan is an explicit API that promises predictable behavior and allows you to have smooth rendering frame rates without causing lags or hitches. This chapter will present an overview of the Vulkan API and its distinct features compared to its predecessor: the OpenGL API. We will take a look at Vulkan's ecosystem and understand its graphics system.
So we will cover the following topics:
	Vulkan and its evolution
	Vulkan versus OpenGL
	Important jargons before we get started
	Learning the fundamentals of Vulkan
	Understanding the Vulkan application
	Getting started with the Vulkan programming model

Vulkan and its evolution

It's almost a quarter-century since the famous OpenGL API came into existence, and it is still evolving. Internally, it is a pure state machine that contains several switches working in a binary state (on/off). These states are used to build dependency mapping in the driver to manage resources and control them in an optimal way to yield maximum performance. This state machine automates resource management implicitly, but it is not intelligent enough to capture application logic, which is the driving force behind resource management. As a result, there might be unexpected situations, such as the implementation going off, resulting in recompilation of the shaders even when the application has not requested it. In addition, the OpenGL API might be subject to other factors, such as unpredictable behavior, multithreading scalability, rendering glitches, and so on. Later in this chapter, we will compare OpenGL with the Vulkan API to understand the difference between the two.
Launched by Khronos in 2016, the Vulkan API has a revolutionary architecture that takes full advantage of modern graphics processor units to produce high-performance graphics and compute applications. If you are not aware of Khronos, it's an association of members and organizations that focus on producing open standards for royalty-free APIs. For more information, refer to https://www.khronos.org.
The original concept of Vulkan was designed and developed by AMD, based on their proprietary Mantle API. This API showcased cutting-edge capabilities through several games, thereby proving its revolutionary approach and fulfilling all the competitive demands of the industry. AMD made their Mantle API open source and donated it to Khronos. The Khronos consortium, with the help of many other hardware and software vendors, made collaborative efforts to release Vulkan.
Vulkan is not the only next-gen 3D graphics API; there are competitors, such as Microsoft's Direct-X 12 and Apple's Metal. However, Direct-X is limited to its Windows variants and Metal to Mac (OS X and iOS). Vulkan stands out in that respect. Its cross-platform nature supports almost all the available OS platforms; this list includes Windows (XP, Vista, 7, 8, and 10), Linux, Tizen, SteamOS, and Android.

[image: Vulkan and its evolution]

Vulkan versus OpenGL

Here are the features/improvements in Vulkan that give it an edge over OpenGL:
	Reduced driver overhead and CPU usage: Vulkan is designed to be closer to the underlying graphics hardware. Therefore, it provides an application programmer with direct control over computing resources on the host in order to allow the GPU to render as fast as possible. This also allows the software to directly access the graphics processor, allowing better performance.
	Multithread scalability: Multithread scaling is really poor in OpenGL, and it is very difficult to take advantage of the threading features to better utilize the CPU. However, Vulkan is specially designed to allow end users to fully exploit its multithreading capability in a very transparent manner with no implicit global states. Jobs under different threads remain separated from the moment they are created and submitted for execution.
	An explicit API: OpenGL is an implicit API, where resource management is the driver's responsibility. The driver takes application hints and tracks resources, which is an unnecessary overhead.	Vulkan is an explicit API; here, the driver is not responsible for tracking resources and their relationships. This task is assigned to the application. This clean approach is more predictable; the driver is not doing gymnastics behind the scenes to manage resources (as in OpenGL). As a result, job processing is streamlined and straightforward, resulting in optimal performance and predictable behavior.

	Precompiled intermediate shading language: Unlike OpenGL, which requires shaders to be provided as OpenGL Shading Language (GLSL) source code, the Standard Portable Intermediate Language (SPIR-V) is a standard intermediate language used by Vulkan for parallel computing and graphics.

Note
Compilers for source languages, such as GLSL, HLSL, or LLVM, must target the SPIR-V specification and provide utilities to provide SPIR-V input. Vulkan takes this ready-to-execute binary-intermediate input and uses it at the shader stage.

	Driver and Application layer: In OpenGL, the application layer is thinner as compared to the driver layer, as the driver's automation takes into account resource management and state tracking. Vulkan is the opposite of this. It ensures the driver is closer to the hardware with less overhead. It's an application's responsibility to manage logic, resources, and states. The following diagram shows the thickness of the driver and application code base of both the APIs:

[image: Vulkan versus OpenGL]

	Memory controls: Vulkan is capable of exposing various memory types on the system and requires the application developer to choose the appropriate memory type for the intended use of each resource. In contrast, OpenGL drivers decide on the placement of resources according to internal heuristics, which vary between vendors, and it may produce suboptimal placement or unexpected hitches if the driver moves the resource later.
	Predictable: Vulkan is highly predictable as compared to OpenGL; it does not cause any lags or hitches while rendering. The jobs are submitted upfront as soon as they are given to the driver, whereas the OpenGL job submission process is not upfront and is at the mercy of the driver's scheduler.
	A single API: OpenGL has separate versions for a desktop-based API (OpenGL) and embedded API (OpenGL ES). Vulkan is clean and consists of only a single API for any number of platforms. Vulkan supports mobile platforms as a first-class citizen, which is not the case in OpenGL. Usually, the OpenGL implementation first appears on desktop-based versions and is later made available to the OpenGL ES APIs.
	Direct access to the GPU: Vulkan gives a lot of control to the application user by advertising its capabilities and hardware facilities. It exposes various types of available physical devices, memory types, command buffer queues, and extensions. This behavior ensures the software layer is much closer to the real hardware.
	Error checking and validation: When using OpenGL, well-behaved applications pay a price when it comes to checking for errors, which they will never trigger at the time of execution. In contrast, Vulkan offers these checks and validation as an add-on service, which can be enabled and disabled as and when required. These checks are optional and can be injected into a runtime by enabling error checking and other validation layers. As a result, it causes less CPU overhead by avoiding unnecessary checks. Ideally, these error and validation layers must be turned on during the development phase for the debugging process and turned off during the release process.
	Supports various GPU hardware: Vulkan supports mobile and desktop rasterizers as an integrated part of the implementation. It supports tile-based or deferred rasterizers for embedded platforms along with native tiling-based feed forward rasterizers.

Important jargons before we get started

Let's check out some of the important technical jargons used in Vulkan before we dive deep into the fundamental details. This book will cover more of these technical terms as we proceed further.
	Physical device and device: A system may contain more than one physical Vulkan-capable hardware device. A physical device represents a unique device, whereas a device refers to a logical representation of the physical device in an application.
	Queues: A queue represents an interface between the execution engine and the application. A physical device always contains one or more queues (graphics, compute, DMA/transfer, and so on). A queue's responsibility is to gather the jobs (command buffers) and dispatch them to the physical device for processing.
	Memory type: Vulkan exposes various memory types. At a broader level, there are two types of memory: host and device. As we proceed through this chapter, we will cover these.
	Command: A command is an instruction to do some act. A command can be broadly divided into action, set state, or synchronization.	Action commands: These can be used to draw primitives, clear a surface, copy a buffer, query/timestamp operations, and begin/end subpass operations. These commands are capable of altering framebuffer attachments, reading or writing into the memory (buffer or image), and writing query pools.
	Set state commands: These help bind the pipelines, descriptor sets, and buffers; they also help set a dynamic state and render a pass/subpass state.
	Synchronization commands: Synchronization helps in satisfying the requirements of two or more action commands, which may compete for resources or have some memory dependencies. This includes setting or waiting for events, inserting the pipeline barrier, and rendering pass/subpass dependencies.

	Command buffer: A command buffer is a collection of commands; it records the commands and submits them to the queues.

In the next section, we will take an overview of Vulkan to help us understand its working model and fundamental basics. We will also understand the command syntax rules get an idea of API commands by simply looking at them.

Learning the fundamentals of Vulkan

This section will cover the basics of Vulkan. Here we will discuss the following:
	Vulkan's execution model
	Vulkan's queue
	The object model
	Object life-time and command syntax
	Error checking and validation

Vulkan's execution model

A Vulkan-capable system is able to query the system and expose the number of physical devices available on it. Each of the physical devices advertises one or more queues. These queues are categorized into different families, where each family has very specific functionalities. For example, these functionalities could include graphics, compute, data transfer, and sparse memory management. Each member of the queue family may contain one or more similar queues, making them compatible with each other. For example, a given implementation may support data transfer and graphics operations on the same queue.
Vulkan allows you to explicitly manage memory control via the application. It exposes the various types of heap available on the device, where each heap belongs to a different memory region. Vulkan's execution model is fairly simple and straightforward. Here, command buffers are submitted into queues, which are then consumed by the physical device in order to be processed.
A Vulkan application is responsible for controlling a set of Vulkan-capable devices by recording a number of commands into command buffers and submitting them into a queue. This queue is read by the driver that executes the jobs upfront in the submitted order. The command buffer construction is expensive; therefore, once constructed, it can be cached and submitted to the queue for execution as many times as required. Further, several command buffers can be built simultaneously in parallel using multiple threads in an application.
The following diagram shows a simplified pictorial representation of the execution model:

[image: Vulkan's execution model]

In this, the application records two command buffers containing several commands. These commands are then given to one or more queues depending upon the job nature. The queues submit these command buffer jobs to the device for processing. Finally, the device processes the results and either displays them on the output display or returns them to the application for further processing.
In Vulkan, the application is responsible for the following:
	Producing all the necessary prerequisites for the successful execution of commands:	This may include preparing resources, precompiling a shader, and attaching the resources to the shader; specifying the render states; building a pipeline; and drawing calls

	Memory management
	Synchronization	Between the host and device
	Between the different queues available on the device

	Hazard management

Vulkan's queues

Queues are the medium in Vulkan through which command buffers are fed into the device. The command buffers record one or more commands and submit them to the required queue. The device may expose multiple queues; therefore, it is the application's responsibility to submit the command buffer to the correct queue.
The command buffers can be submitted to the following:
	Single queue:	The order of the submission of the command buffer and execution or playback are maintained
	Command buffers are executed in a serial fashion

	Multiple queues:	Allows the execution of the command buffer in parallel in two or more queues.
	The order of the submission and execution of command buffers are not guaranteed unless specified explicitly. It is the application's responsibility to synchronize this; in its absence, the execution may be completely out of order with respect.

Vulkan provides various synchronization primitives to allow you to have relative control of the work execution within a single queue or across queues. These are as follows:
	Semaphore: This synchronizes work across multiple queues or a coarse-grained command buffer submission in a single queue.
	Events: Events controls fine-grained synchronization and are applied on a single queue, allowing us to synchronize work within a single command buffer or sequence of command buffers submitted to a single queue. The host can also participate in event-based synchronization.
	Fences: These allow synchronization between the host and device.
	Pipeline barriers: A pipeline barrier is an inserted instruction that ensures that commands prior to it must be executed before commands specified after it in the command buffer.

The object model

At the application level, all the entities, including devices, queues, command buffers, framebuffers, pipelines, and so on, are called Vulkan objects. Internally, at the API level, these Vulkan objects are recognized with handles. These handles can be of two types: dispatchable and non-dispatchable.
	A dispatchable handle: This is a pointer that refers to an opaque-shaped entity inside. Opaque types do not allow you to have direct access to the structure's field. The fields can only be accessed using API routines. Each dispatchable handle has an associated dispatchable type that is used to pass as a parameter in the API command. Here's an example of this:

	

VkInstance

	

VkCommandBuffer

	

VkPhysicalDevice

	

VkDevice

	

VkQueue

	Non-dispatchable handles: These are 64-bit integer-type handles that may contain the object information itself, rather than a pointer to the structure. Here's an example of this:

	

VkSemaphore

	

VkFence

	

VkQueryPool

	

VkBufferView

	

VkDeviceMemory

	

VkBuffer

	

VkImage

	

VkPipeline

	

VkShaderModule

	

VkSampler

	

VkRenderPass

	

VkDescriptorPool

	

VkDescriptorSetLayout

	

VkFramebuffer

	

VkPipelineCache

	

VkCommandPool

	

VkDescriptorSet

	

VkEvent

	

VkPipelineLayout

	

VkImageView

Object lifetime and command syntax

In Vulkan, objects are created and destroyed explicitly as per application logic, and it is the responsibility of an application to manage this.
Objects in Vulkan are created using Create and destroyed using the Destroy command:
	Create syntax: Objects are created using the vkCreate* command; this accepts a Vk*CreateInfo structure as a parameter input
	Destroy syntax: The objects produced using the Create command are destroyed using vkDestroy*

Objects created as part of the existing object pool or heap are created using the Allocate command and released from the pool or heap with Free.
	Allocate syntax: Objects that are created as part of an object pool use vkAllocate* along with Vk*AllocateInfo as an argument input.
	Freeing syntax: Objects are released back to the pool or memory using the vkFree* command.

Any given implementation information can be easily accessed using the vkGet* command. The API implementation of the form vkCmd* is used to record commands in the command buffer.

Error checking and validation

Vulkan is specially designed to offer maximum performance by keeping error checks and validations optional. At runtime, the error checks and validations are really minimal, making the building of a command buffer and submission highly efficient. These optional capabilities can be enabled using Vulkan's layered architecture, which allows the dynamic injection of various layers (debugging and validation) into the running system.

Understanding the Vulkan application

This section will provide you with an overview of the various components that contribute to, and are helpful in building a Vulkan application.
The following block diagram shows the different component blocks and respective interconnections within the system:

[image: Understanding the Vulkan application]

Driver

A Vulkan-capable system comprises a minimum of one CPU and GPU. IHV's vendor supplies the driver of a given Vulkan specification implementation for their dedicated GPU architecture. The driver acts as an interface between the application and the device itself. It provides high-level facilities to the application so it can communicate with the device. For example, it advertises the number of devices available on the system, their queues and queue capabilities, available heaps and their related properties, and so on.

Application

An application refers to a user-written program that is intended to make use of Vulkan APIs to perform graphics or compute jobs. The application starts with the initialization of the hardware and software; it detects the driver and loads all the Vulkan APIs. The presentation layer is initialized with Vulkan's Window System Integration (WSI) APIs; WSI will be helpful in rendering the drawing image on the display surface. The application creates resources and binds them to the shader stage using descriptors. The descriptor set layout helps bind the created resources to the underlying pipeline object that is created (of the graphics or compute type). Finally, command buffers are recorded and submitted to the queue for processing.

WSI

Windows System Integration is a set of extensions from Khronos for the unification of the presentation layer across different platforms, such as Linux, Windows, and Android.

SPIR-V

SPIR-V provides a precompiled binary format for specifying shaders to Vulkan. Compilers are available for various shader source languages, including variants of GLSL and HLSL, which produce SPIR-V.

LunarG SDK

The Vulkan SDK from LunarG comprises a variety of tools and resources to aid Vulkan application development. These tools and resources include the Vulkan loader, validation layers, trace and replay tools, SPIR-V tools, Vulkan runtime installer, documentation, samples, and demos, see Chapter 3, Shaking Hands with the Device to see detailed description to get started with LunarG SDK. You can read more about it at http://lunarg.com/vulkan-sdk.

Getting started with the Vulkan programming model

Let's discuss the Vulkan programming model in detail. Here, the end user, considering he or she is a total beginner, will be able to understand the following concepts:
	The Vulkan programming model
	The rendering execution model, which will be described using a pseudo step-by-step approach
	How Vulkan works

The following diagram shows a top-down approach of the Vulkan application programming model; we will understand this process in detail and also delve into the sublevel components and their functionalities:

[image: Getting started with the Vulkan programming model]

Hardware initialization

When a Vulkan application starts, its very first job is the initialization of the hardware. Here, the application activates the Vulkan drivers by communicating with the loader. The following diagram represents a block diagram of a Loader with its subcomponents:

[image: Hardware initialization]

Loader: A loader is a piece of code used in the application start-up to locate the Vulkan drivers in a system in a unified way across platforms. The following are the responsibilities of a loader:
	Locating drivers: As its primary job, a loader knows where to search for drivers in the given system. It finds the correct driver and loads it.
	Platform-independent: Initializing Vulkan is consistent across all platforms. Unlike OpenGL, where creating a context requires working with a different window system API for each environment, EGL, GLX, and WGL. Platform differences in Vulkan are expressed as extensions.
	Injectable layers: A loader supports a layered architecture and provides the capability to inject various layers at runtime. The big improvement is that the driver need not do any of the work (or retain any of the states it would need to do the work) in determining whether the application's use of the API is valid. Therefore, it's advisable to turn on the selected injectable layers, as per application requirements, during the development stage and turn them off at the deployment stage. For example, injectable layers can offer the following:	Tracing the Vulkan API commands
	Capturing rendered scenes and executing them later
	Error and validation for debugging purposes

The Vulkan application first performs a handshake with the loader library and initializes the Vulkan implementation driver. The loader library loads Vulkan APIs dynamically. The loader also offers a mechanism that allows the automatic loading of specific layers into all Vulkan applications; this is called an Implicit-Enabled layer.
Once the loader locates the drivers and successfully links with the APIs, the application is responsible for the following:
	Creating a Vulkan instance
	Querying the physical device for the available queues
	Querying extensions and storing them as function pointers, such as WSI or special feature APIs
	Enabling an injectable layer for error checking, debugging, or the validation process

Window presentation surfaces

Once the Vulkan implementation driver is located by the loader, we are good to draw something using the Vulkan APIs. For this, we need an image to perform the drawing task and put it on the presentation window to display it:

[image: Window presentation surfaces]

Building a presentation image and creating windows are very platform-specific jobs. In OpenGL, windowing is intimately linked; the window system framebuffer is created along with context/device. The big difference from GL here is that context/device creation in Vulkan needn't involve the window system at all; it is managed through Window System Integration (WSI).
WSI contains a set of cross-platform windowing management extensions:
	A unique cross-platform implementation for the majority of platforms, such as Windows, Linux, Android, and other OSes
	A consistent API standard to easily create surfaces and display them without getting into the details

WSI supports multiple windowing systems, such as Wayland, X, and Windows, and it also manages the ownership of images via a swapchain.
WSI provides a swapchain mechanism; this allows the use of multiple images in such a way that, while the window system is displaying one image, the application can prepare the next.
The following screenshot shows the double-buffering swap image process. It contains two images named First Image and Second Image. These images are swapped between Application and Display with the help of WSI:

[image: Window presentation surfaces]

WSI works as an interface between Display and Application. It makes sure that both images are acquired by Display and Application in a mutually exclusive way. Therefore, when an Application works on First Image, WSI hands over Second Image to Display in order to render its contents. Once the Application finishes the painting First image, it submits it to the WSI and in return acquires Second Image to work with and vice-versa.
At this point, perform the following tasks:
	Create a native window (like the CreateWindow method in the Windows OS)
	Create a WSI surface attached to the window
	Create the swapchain to present to the surface
	Request the drawing images from the created swapchain

Resource setup

Setting up resources means storing data into memory regions. It could be any type of data, for example, vertex attributes, such as position, color, or image type/name. Certainly, the data has resided somewhere in the memory for Vulkan to access it.
Unlike OpenGL, which manages the memory behind the scenes using hints, Vulkan provides full low-level access and control of the memory. Vulkan advertises the various types of available memory on the physical device, providing the application with a fine opportunity to manage these different types of memory explicitly.
Memory heaps can be categorized into two types, based upon their performance:
	Host local: This is a slower type of memory
	Device local: This is a type of memory with high bandwidth; it is faster

Memory heaps can be further divided based upon their memory type configurations:
	Device local: This type of memory is physically attached to the physical device:	Visible to the device
	Not visible to the host

	Device local, host visible: This type of memory is also physically attached to the device:	Visible to the device
	Visible to the host

	Host local, host visible: This refers to the local memory of the host, but it is slower than the local device:	Visible to the device
	Visible to the host

In Vulkan, resources are explicitly taken care of by the application with exclusive control of memory management. The following is the process of resource management:
	Resource objects: For resource setup, an application is responsible for allocating memory for resources; these resources could be either images or buffer objects.
	Allocation and suballocations: When resource objects are created, only logical addresses are associated with them; there is no physical backing available. The application allocates physical memory and binds these logical addresses to it. As allocation is an expensive process, suballocation is an efficient way to manage the memory; it allocates a big chunk of physical memory at once and puts different resource objects into it. Suballocation is the responsibility of an application. The following diagram shows the suballocated object from the big allocated piece of physical memory:

[image: Resource setup]

	Sparse memory: For very large image objects, Vulkan fully supports sparse memory with all its features. Sparse memory is a special feature that allows you to store large image resources; which are much larger than the actual memory capacity, in the memory. This technique breaks the image into tiles and loads only those tiles that fit the application logic.
	Staging buffers: The population of the object and image buffers is done using staging, where two different memory regions are used for the physical allocation. The ideal memory placement for a resource may not be visible to the host. In this case, the application must first populate the resource in a staging buffer that is host-visible and then transfer it to the ideal location.
	Asynchronous transfer: The data is transferred asynchronously using asynchronous commands with any of the graphics or DMA/transfer queues.

Tip

Physical memory allocation is expensive; therefore, a good practice is to allocate a large physical memory and then suballocate objects.

In contrast, OpenGL resource management does not offer granular control over the memory. There is no conception of host and device memory; the driver secretly does all of the allocation in the background. Also, these allocation and suballocation processes are not fully transparent and might change from one driver to another. This lack of consistency and hidden memory management cause unpredictable behavior. Vulkan, on the other hand, allocates the object right there in the chosen memory, making it highly predictable.

Therefore, during the resource setup stage, you need to perform the following tasks:
	Create a resource object.
	Query the appropriate memory instance and create a memory object like buffer and images.
	Get the memory requirements for the allocation.
	Allocate space and store data in it.
	Bind the memory with the resource object that we created.

Pipeline setup

A pipeline is a set of events that occur in a fixed sequence defined by the application logic. These events consist of the following: supplying the shaders, binding them to the resource, and managing the state:

[image: Pipeline setup]

Descriptor sets and descriptor pools

A descriptor set is an interface between resources and shaders. It is a simple structure that binds the shader to the resource information, such as images or buffers. It associates or binds a resource memory that the shader is going to use. The following are the characteristics associated with descriptor sets:
	Frequent change: By nature, a descriptor set changes frequently; generally, it contains attributes such as material, texture, and so on.
	Descriptor pool: Considering the nature of descriptor sets, they are allocated from a descriptor pool without introducing global synchronization
	Multithread scalability: This allows multiple threads to update the descriptor set simultaneously

Tip
Updating or changing a descriptor set is one of the most performance-critical paths in rendering Vulkan. Therefore, the design of a descriptor set is an important aspect in achieving maximum performance. Vulkan supports logical partitioning of multiple descriptor sets at the scene (low frequency updates), model (medium frequency updates), and draw level (high frequency updates). This ensures that the high frequency update descriptor does not affect low frequency descriptor resources.

Shaders with SPIR-V

The only way to specify shaders or compute kernels in Vulkan is through SPIR-V. The following are some characteristics associated with it:
	Multiple inputs: SPIR-V producing compilers exist for various source languages, including GLSL and HLSL. These can be used to convert a human-readable shader into a SPIR-V intermediate representation.
	Offline compilation: Shaders/kernels are compiled offline and injected upfront.
	glslangValidator: LunarG SDK provides the glslangValidator compiler, which can be used to create SPIR-V shaders from equivalent GLSL shaders.
	Multiple entry points: The shader object provides multiple entry points. This is very beneficial for reducing the shipment size (and the loaded size) of the SPIR-V shaders. Variants of a shader can be packaged into a single module.

Pipeline management

A physical device contains a range of hardware settings that determine how the submitted input data of a given geometry needs to be interpreted and drawn. These settings are collectively called pipeline states. These include the rasterizer state, blend state, and depth stencil state; they also include the primitive topology type (point/line/triangle) of the submitted geometry and the shaders that will be used for rendering. There are two types of states: dynamic and static. The pipeline states are used to create the pipeline object (graphics or compute), which is a performance-critical path. Therefore, we don't want to create them again and again; we want to create them once and reuse them.
Vulkan allows you to control states using pipeline objects in conjunction with Pipeline Cache Object (PCO) and the pipeline layout:
	Pipeline objects: Pipeline creation is expensive. It includes shader recompilation, resource binding, Render Pass, framebuffer management, and other related operations. Pipeline objects could be numbered in hundreds and thousands; therefore, each different state combination is stored as a separate pipeline object.
	PCO: The creation of pipelines is expensive; therefore once created, a pipeline can be cached. When a new pipeline is requested, the driver can look for a closer match and create the new pipeline using the base pipeline.

Pipeline caches are opaque, and the details of their use by the driver are unspecified. The application is responsible for persisting the cache if it wishes to reuse it across runs and for providing a suitable cache at the time of pipeline creation if it wishes to reap potential benefits.
	Pipeline layout: Pipeline layouts describe the descriptor sets that will be used with the pipeline, indicating what kind of resource is attached to each binding slot in the shader. Different pipeline objects can use the same pipeline layout.

In the pipeline management stage, this is what happens:
	The application compiles the shader into SPIR-V form and specifies it in the pipeline shader state.
	The descriptor helps us connect these resources to the shader itself. The application allocates the descriptor set from the descriptor pool and connects the incoming or outgoing resources to the binding slots in the shader.
	The application creates pipeline objects, which contain the static and dynamic state configuration to control the hardware settings. The pipeline should be created from a pipeline cache pool for better performance.

Recording commands

Recording commands is the process of command buffer formation. Command buffers are allocated from the command pool memory. Command pools can also be used for multiple allocations. A command buffer is recorded by supplying commands within a given start and end scope defined by the application. The following diagram illustrates the recording of a drawing command buffer, and as you can see, it comprises many commands recorded in the top-down order responsible for object painting.

[image: Recording commands]

Note
Note that the commands in the command buffer may vary with the job requirement. This diagram is just an illustration that covers the most common steps performed while drawing primitives.

The major parts of drawing the are covered here:
	Scope: The scope defines the start and end of the command buffer recording.
	Render Pass: This defines the execution process of a job that might affect the framebuffer cache. It may comprise attachments, subpasses, and dependencies between those subpasses. The attachment refers to images on which the drawing is performed. In a subpass, an attachment-like image can be subpassed for multisampling resolve. Render Pass also controls how the framebuffer will be treated at the beginning of the pass: it will either retain the last information on it or clear it with the given color. Similarly, at the end of the Render Pass, the results are going to be either discarded or stored.
	Pipeline: This contains the states' (static/dynamic) information represented by a pipeline object.
	Descriptor: This binds the resource information to the pipeline.
	Bind resource: This specifies the vertex buffer, image, or other geometry-related information.
	Viewport: This determines the portion of the drawing surface on which the rendering of the primitives will be performed.
	Scissor: This defines a rectangular space region beyond which nothing will be drawn.
	Drawing: The draw command specifies geometry buffer attributes, such as the start index, total count, and so on.

Tip
The creation of a command buffer is an expensive job; it considers the most performance-critical path. It can be reused numerous times if the same work needs to happen on many frames. It can be resubmitted without needing to re-record it. Also, multiple command buffers can be produced simultaneously using multiple threads. Vulkan is specially designed to exploit multithreaded scalability. Command pools ensure there is no lock contention if used in a multithreaded environment.

The following diagram shows a scalable command buffer creation model with a multicore and multithreading approach. This model provides true parallelism with multicore processors.

[image: Recording commands]

Here, each thread is made to utilize a separate command buffer pool, which allocates either single or multiple command buffers, allowing no fights on resource locks.

Queue submission

Once command buffers are built, they can be submitted to a queue for processing. Vulkan exposes different types of queue to the application, such as the graphics, DMA/transfer, or compute queues. Queue selection for submission is very much dependent upon the nature of the job. For example, graphics-related tasks must be submitted to the graphics queue. Similarly, for compute operations, the compute queue will be the best choice. The submitted jobs are executed in an asynchronous fashion. Command buffers can be pushed into separate compatible queues allowing parallel execution. The application is responsible for any kind of synchronization within command buffers or between queues, even between the host and device themselves.
Queue submission performs the following jobs:
	Acquiring the images from the swapchain on which the next frame will be drawn
	Deploying any synchronization mechanism, such as semaphore and fence, required
	Gathering the command buffer and submitting it to the required device queue for processing
	Requesting the presentation of the completed painted images on the output device

Summary

This introductory chapter has boiled down Vulkan to a level where understanding it will be really easy for beginners. In this chapter, we learned about the evolution of Vulkan and understood the history and people behind it. Then, we distinguished this API from OpenGL and understood the reasons for its existence in the modern computing age. We also looked at simple and easy definitions of the important technical jargon associated with this API. The fundamentals of the Vulkan API provide a precise and enriched overview of its working model. We also saw the basic building blocks of the Vulkan ecosystem and got to know their roles and responsibilities with interconnections. Finally, at the end of the chapter, we understood how Vulkan works with an easy-to-understand step-by-step pseudo programming model approach.
After you finish this chapter, you will be expected to have a basic understanding of the Vulkan API and its detailed working model along with a reasonable familiarity acquaintance with its technical jargon, to take your first steps in Vulkan programming.
In the next chapter, we will start with Vulkan programming using a pseudocode approach. We will create a simple example without going into much details yet still covering important core aspects, the fundamentals of Vulkan API, and data structures to understand the complete process of graphics pipeline programming in Vulkan.

Chapter 2. Your First Vulkan Pseudo Program

In the last chapter, we provided a very basic introduction to visualize the new Vulkan API. We hovered through the high-level ecosystem design of this API and also understood the internal module's functionality to learn its execution model.
In this chapter, we will learn about the installation process to get ready to work with Vulkan pseudocode programming. The explicit nature of Vulkan makes the programming verbose. In Vulkan, a simple Hello World!!! program may end up with around 1,500 lines of code. This means trying even a simple example will be a challenge for beginners. But let's not hit the panic button; we will go through the entire Hello World!!! program with a simple pseudocode programming model.
Beginners will also learn about a step-by-step approach to building their first Vulkan application in a user-friendly way. In the following chapters of this book, we will delve into the real coding process and get our hands dirty with Vulkan programming. So the learning process is divided into several modules and split across multiple chapters.
This chapter lays the foundation for the remaining chapters. Here, we will build a very simple Hello World!!! pseudocode program, where we will understand the process of building a simple tricolored triangle using Vulkan. We will cover the following topics:
	Installing Vulkan
	The Hello World!!! pseudocode program
	Fitting it all together

Installing Vulkan

Enough discussing about Vulkan. Now we will delve into the installation process and learn all we need to make Vulkan work.
Tip
Before you go ahead with the installation, please go through the software-hardware requirements, which you will find in the code files provided with this book. If your system complies with the requirements mentioned, you are good to go with the installation process.

Please follow these instructions to install Vulkan:
	The Vulkan driver: Most vendors now have their Vulkan support included in the normal driver package. First, install the Vulkan driver. You can choose the installation location; otherwise, the default location will do. For instance, if you are installing NVIDIA drivers, the installer first checks the system configuration to scan any compatibility issues with the installing driver. It will upgrade any preinstalled driver on the system.
	Install Python: Install Python and make sure you add it to the path. This can be done by simply placing a tick against the Add Python <version> to PATH checkbox.
	Install CMake: Next, install CMake. Ensure you select Add CMake to the system PATH for all users. You can use the default location for installation.
	Install the SDK: Install the LunarG SDK. The default location should be fine.

Note
The LunarG SDK contains the Vulkan specification, manual, and the necessary libraries that will be helpful in building the project. It also contains demo samples that can be quickly launched to check the status of the installation. If you are able to run the sample executable successfully, it means the Vulkan driver and SDK are installed properly. You can find these samples under <Lunar-G SDK Path>/Bin or <Lunar-G SDK Path>/Bin32 for 32 bits systems.

The Hello World!!! pseudocode

In this section, we will build our first Hello World!!! Vulkan application. The application is built using the pseudocode program model, which offers the following benefits:
	Learning through a step-by-step process how to build a Vulkan application.
	Vulkan coding is lengthy and beginners might get lost in the detail. The pseudocode highlights only the necessary details that are easy to understand.
	A compact form of the program, which is easier for first-time users to memorize.
	Each pseudocode uses the real Vulkan API and explains the control flow.
	By the end of this chapter, if you are a complete beginner, you'll able to understand Vulkan programming and all the necessary clues to build applications from scratch. In addition, you will learn about the high-level concepts of Vulkan APIs with their responsibilities and functionalities.
	For a detailed understanding of the API, use the Vulkan specification available with the LunarG SDK. Or refer to https://www.khronos.org/registry/vulkan/specs/1.0/apispec.html.

Tip
Given the scope of this chapter, it is not possible to provide a line-by-line description of each data structure field and API argument. The pseudocode is only limited to providing a high-level definition, an overview and related functionalities in a maximum of one to two lines for most of the important data structures or APIs. All the Vulkan APIs and related data structures will be thoroughly covered as we proceed through the upcoming chapters in this book.

Initialization - a handshake with the device

Vulkan initialization includes the initialization of validation layer properties and instance object (VkInstance) creation. Once the instance is created, check the available physical devices (VkPhysicalDevice) on the existing system. Choose the intended physical device and create a corresponding logical device (VkDevice) with the help of the instance object. In Vulkan programming, logical devices are used in most of the APIs that represent a logical representation of the physical device.

[image: Initialization - a handshake with the device]

Vulkan provides debugging capabilities by means of error and validation layers. There are two types of extension:
	Instance-specific: This provides global-level extensions
	Device-specific: This provides physical-device-specific extensions

[image: Initialization - a handshake with the device]

At the beginning, the system is enumerated for global layers and device-specific extensions; these are exposed by the Vulkan driver. The global layers and extensions can be injected into the instance object to be enabled at the global level. However, enabling the extensions only at the device level will enable them only at that specific device.
The initialization is responsible for creating instance and device objects. In addition, global layers/extensions are queried and enabled at either the global or instance level. Similarly, the extensions are enabled on the specific device. The following is the pseudocode for the initialization process:
	Enumerating Instance Layer properties: Vulkan first communicates with the loader and locates the driver. The driver exposes a number of extensions and layers, which may vary with each new installation or from one GPU vendor to another. vkEnumerateInstanceLayerProperties retrieves the number of layers and their properties. Each layer may contain multiple extensions that can be queried using vkEnumerateInstanceExtensionProperties:
 /*** 1. Enumerate Instance Layer properties ***/

 // Get number of instance layers
 uint32_t instanceLayerCount;

 // Use second parameter as NULL to return the layer count
 vkEnumerateInstanceLayerProperties(&instanceLayerCount, NULL);

 VkLayerProperties *layerProperty = NULL;
 vkEnumerateInstanceLayerProperties(&instanceLayerCount,
 layerProperty);

 // Get the extensions for each available instance layer
 foreach layerProperty{
 VkExtensionProperties *instanceExtensions;
 res = vkEnumerateInstanceExtensionProperties(layer_name,
 &instanceExtensionCount, instanceExtensions);
 }

	Instance creation: The instance object (VkInstance) is created using the vkCreateInstance() API with parameters specifying the name of the layer and extensions that are to be enabled for validation or debugging purposes. These names are specified in the VkInstanceCreateInfo structure:
 /*** 2. Instance Creation ***/

 // Vulkan instance object
 VkInstance instance;
 VkInstanceCreateInfo instanceInfo = {};

 // Specify layer names that needs to be enabled on instance.
 instanceInfo.ppEnabledLayerNames = {
 "VK_LAYER_LUNARG_standard_validation",
 "VK_LAYER_LUNARG_object_tracker" };

 // Specify extensions that needs to be enabled on instance.
 instanceInfo.ppEnabledExtensionNames = {
 VK_KHR_SURFACE_EXTENSION_NAME,
 VK_KHR_WIN32_SURFACE_EXTENSION_NAME};

 // Create the Instance object
 vkCreateInstance(&instanceInfo, NULL, &instance);

	Device creation: Enumerate the number of physical devices or GPUs on the existing system and get the vkEnumeratePhysicalDevices() API:
 /*** 3. Enumerate physical devices ***/

 VkPhysicalDevice gpu; // Physical device
 uint32_t gpuCount; // Pysical device count
 vector<VkPhysicalDevice>gpuList; // List of physical devices
 // Get number of GPU count
 vkEnumeratePhysicalDevices(instance, &gpuCount, NULL);

 // Get GPU information
 vkEnumeratePhysicalDevices(instance, &gpuCount, gpuList);

For each physical device, enumerate device-specific extensions in the same way we did during instance creation.
Note
For an instance-based enumeration, use the vkEnumerate Instance-LayerProperties and vkEnumerateInstance
ExtensionProperties APIs. However, device-based layer enumeration is deprecated; therefore, the extensions can be enumerated using vkEnumerate-DeviceExtensionProperties.

With the physical device list in hand, query the following information:
	Queue and queue types: Query the available physical device queues and queue properties using the vkGetPhysicalDeviceQueueFamilyProperties API. Among the queried queues, search for the graphics-capable queue and store its queue family index in the application for later use. The graphics queue is chosen because we are only interested in drawing operations.
	Memory information: The vkGetPhysicalDeviceMemoryProperties() API retrieves the available memory types on the intended physical device.
	Physical device properties: Optionally, you can store physical device properties to retrieve some specific information while programming. This can be done using the vkGetPhysicalDeviceProperties() API.

The device object is created using the vkCreateDevice() API. It's the logical representation of the physical device in the application space. From now onward, the program will use the device object in various places:

/*** 4. Create Device ***/

// Get Queue and Queue Type
vkGetPhysicalDeviceQueueFamilyProperties(gpu,
 &queueCount, queueProperties);

// Get the memory properties from the physical device or GPU
vkGetPhysicalDeviceMemoryProperties(gpu, &memoryProperties);

// Get the physical device or GPU properties
vkGetPhysicalDeviceProperties(gpu, &gpuProps);

// Create the logical device object from physical device
VkDeviceCreateInfo deviceInfo = {};
vkCreateDevice(gpuList[0],&deviceInfo, NULL, &device);

The following diagram summarizes the approach to creating a Vulkan instance and device in a cheat sheet fashion; you can refer to it as a quick recap of the process:

[image: Initialization - a handshake with the device]

Swapchain initialization - querying the WSI extension

The presentation is responsible for displaying the rendered content on the output window. For this, we need an empty window to which we can paste our drawing images. Create an empty window using the CreateWindowEx (Windows) or xcb_create_window (Linux) APIs.
The presentation needs to be initialized first using instance- and device-based WSI extension APIs. These APIs allow you to create the presentation surface using various surface properties.
Note
These APIs must be dynamically linked and stored as function pointers in the application. Use the vkGetInstanceProcAddr() API to query these APIs, as shown in the following tabular form.

For instance-based extension APIs, refer to the following:
	

vkGetPhysicalDeviceSurfaceSupportKHR

	

vkGetPhysicalDeviceSurfaceCapabilitiesKHR

	

vkGetPhysicalDeviceSurfaceFormatsKHR

	

vkGetPhysicalDeviceSurfacePresentModesKHR

	

vkDestroySurfaceKHR

	

Similarly, for device-based extension APIs, refer to the following:
	

vkCreateSwapchainKHR

	

vkDestroySwapchainKHR

	

vkGetSwapchainImagesKHR

	

vkAcquireNextImageKHR

	

vkQueuePresentKHR

	

It's really great to get these APIs to do all the presentation-related fun. Let's see what else is required:
	Create an abstract surface object: The very first thing in surface creation is the creation of the VkSurfaceKHR object. This object abstracts the native platform's (Windows, Linux, Wayland, Android, and more) windowing/surface mechanisms. This object is created using the vkCreate<Win32/Wayland/Android>SurfaceKHR() API.
	Using a graphics queue with the presentation: Use the created abstract surface object and search for a graphics queue that is capable of supporting the presentation using the vkGetPhysicalDeviceSurfaceSupportKHR() API.

Note
Store the handle or index of this searched queue. Later, it will be used to query its surface properties and create a logical object of this queue (the next step).

	Get a compatible queue: Before you start any type of command buffer recording, the queue must be acquired for command buffer submission. Use the vkGetDeviceQueue() API and specify the handle or index of the compatible queue that we have already queried in the last step.
	Query the surface formats: Retrieve all the advertised surface formats that are supported by the physical device using the vkGetPhysicalDeviceSurfaceFormatsKHR API:

 /*** 5. Presentation Initialization ***/

 // Create an empty Window
 CreateWindowEx(...); /*Windows*/
 xcb_create_window(...); /*Linux*/
 // Query WSI extensions,store it as function pointers. For example:

 // vkCreateSwapchainKHR, vkCreateSwapchainKHR

 // Create an abstract surface object
 VkWin32SurfaceCreateInfoKHR createInfo = {};
 vkCreateWin32SurfaceKHR(instance, &createInfo, NULL, &surface);

 // Among all queues, select a queue that supports presentation
 foreach Queue in All Queues{
 vkGetPhysicalDeviceSurfaceSupportKHR
 (gpu, queueIndex, surface, &isPresentationSupported);
 // Store this queue's index
 if (isPresentationSupported) {
 graphicsQueueFamilyIndex = Queue.index;
 break;
 }
 }

 // Acquire compatible queue supporting presentation

 // and is also a graphics queue
 vkGetDeviceQueue(device, graphicsQueueFamilyIndex, 0, &queue);

 // Allocate memory for total surface format count
 uint32_t formatCount;
 vkGetPhysicalDeviceSurfaceFormatsKHR
 (gpu, surface, &formatCount, NULL);

 VkSurfaceFormatKHR *surfaceFormats = allocate memory
 (formatCount * VkSurfaceFormatKHR);

 // Grab the surface format into VkSurfaceFormatKHR objects
 vkGetPhysicalDeviceSurfaceFormatsKHR
 (gpu, surface, &formatCount, surfaceFormats);

The following diagram presents a quick overview of the presentation initialization:

[image: Swapchain initialization - querying the WSI extension]

Command buffer initialization - allocating command buffers

Before we start creating a presentation surface, we need command buffers. Command buffers record the commands and submit them to a compatible queue for processing.
Command buffer initialization includes the following:
	Command pool creation: Remember, we saved the handle of the compatible graphics queue that supports the presentation. Now we will use that index or handle to create a command pool with the vkCreateCommandPool() API, which is compatible with this queue family.
	Allocate a command buffer: Command buffers can simply be allocated from the created command pool using the vkAllocateCommandBuffers() API.

Note
There is no need to allocate command buffers from the command pool for each frame if repeatedly used. If the existing command buffers are no longer required, they can be reused efficiently.

The command buffer pool is used to assign memory regions to create a command buffer without introducing global synchronization:

[image: Command buffer initialization - allocating command buffers]

Resource objects - managing images and buffers

It is very important to understand the concept of resource types under Vulkan. From now on, we will deal with resource management quite often. Resource management includes the creation, allocation, and binding of resources. For example, the presentation surface itself treats the drawing surface just like any other generic Vulkan resource type.
Vulkan divides resources into two types, Buffer and Image, as shown in the following diagram:

[image: Resource objects - managing images and buffers]

These resources are further divided into views; let's understand these:
	Buffer: The buffer object represents resources with linear array types. The buffer object is of the type VkBuffer and is created with the vkCreateBuffer() API. This API takes a VkBufferCreateInfo structure as parameter input, which specifies the various properties that can be used during object creation. For example, you can specify the tiling of an image, usage of an image, size, queue compatibility, and so on. Now let's look at what constitutes a buffer view:	Buffer view: A buffer view (VkBufferView) represents the data buffer itself. It is used to accommodate the data in a contiguous fashion, in a specific data interpretation format. It can be created with the help of the vkCreateBufferView() API. It accepts the VkBufferViewCreateInfo structure where various buffer-specific properties can be specified, such as its buffer object (VkBuffer), format, the range of the buffer view, and more.

	Image: This is programmatically represented by VkImage. This object stores one- to three-dimensional buffer arrays. The object is created using the vkCreateImage() API. Similar to buffer object, this API uses the VkImageCreateInfo structure to specify various properties during object creation. Now let's look at what an image view is:	Image view: Similar to buffer view, an image view object is of the type VkImageView. Use the vkCreateImageView() API along with the VkImageViewCreateInfo structure to create the image view object.

Note
The application does not consume the buffer (VkBuffer) and image (VkImage) object directly; instead, it relies on their respective views: VkBufferView and VkImageView.

Creating a presentation surface - creating a swapchain

Let's do a quick recap. So far, we have created a Vulkan instance, a logical device to represent our physical device, and we have queried queue properties and also stored the queue family index that supports the presentation. We have created function pointers for WSI extensions and understood Vulkan resource types. We have also initialized and created our command buffers from the command pool.
That covers all we require to kick off our command buffer recording process.
Tip

What should be recorded into command buffers?
a) Building the drawing image and depth image for swapchain and depth/stencil testing.
b) Creating the shader module to associate with the shader program.
c) Binding resources to the shaders with a descriptor set and pipeline layout.
d) Creating and managing the Render Pass and framebuffer object.
e) Drawing operations.

Start command buffer recording with the vkBeginCommandBuffer(
) API. This defines the starting scope of the command buffer; after this, any command specified will be recorded in the command buffer.
Now, we will learn how to create a swapchain. Here we will acquire the drawing images from the swapchain for rendering purposes:
	Getting surface capabilities: Query the surface capabilities, such as current size, minimum/maximum size possible, possible transformation capabilities, and more, with the vkGetPhysicalDeviceSurfaceCapabilitiesKHR() API.
	Getting surface presentation modes: The presentation mode tells how the drawing surface is going to be updated, for example, whether it is going to be updated in an immediate mode or vertical blank dependent and so on. The presentation modes can be retrieved using the vkGetPhysicalDevice-SurfacePresentModesKHR() API.
	Creating the swapchain: Use the surface capabilities in conjunction with the presentation modes to create the swapchain object. These capabilities, along with many other parameters such as size, surface format, and more, are specified in the VkSwapChainCreateInfo structure that is passed to vkCreateSwap-chainKHR() to create the object.
	Retrieving the swapchain images: Query the number of image surfaces advertised by the swapchain and retrieve the respective image objects (VkImage) using the vkGetSwapchainImagesKHR() API. For example, if the swapchain supports double buffering, then it should return a count of two and also two images for drawing.Note
For a swapchain image, there is no memory allocation needed on behalf of the application. Internally, the swapchain has already taken care of memory allocation and returned the baked object. The application only needs to specify how to use this image through image views. An image view describes the use of an image.

	Setting the image layout: For each image, set the implementation-compatible layout and add a pipeline barrier. According to the Vulkan specification, a pipeline barrier inserts an execution dependency and a set of memory dependencies between a set of commands; first it inserts the command buffer and then the set of commands in the command buffer. This can be done using the vkCmdPipelineBarrier() API. By inserting the barrier, it is guaranteed that the image view will be available in the specified layout before it is used by the application.
	Creating an image view: As the application uses only the VkImageView objects, create a VkImageView object using vkCreateImageView(). Save the view objects for application use:
 /*** 6. Creating Swapchain ***/

 //Start recording commands into command buffer
 vkBeginCommandBuffer(cmd, &cmdBufInfo);

 // Getting surface capabilities
 vkGetPhysicalDeviceSurfaceCapabilitiesKHR
 (gpu, surface, &surfCapabilities);

 // Retrieve the surface presentation modes
 vkGetPhysicalDeviceSurfacePresentModesKHR
 (gpu, surface, &presentModeCount, NULL);
 VkPresentModeKHR presentModes[presentModeCount];
 vkGetPhysicalDeviceSurfacePresentModesKHR
 (gpu, surface, &presentModeCount, presentModes);

 // Creating the Swapchain
 VkSwapchainCreateInfoKHR swapChainInfo = {};
 fpCreateSwapchainKHR(device, &swapChainInfo, NULL, &swapChain);

 // Create the image view of the retrieved swapchain images
 vkGetSwapchainImagesKHR
 (device, swapChain, &swapchainImageCount, NULL);
 VkImage swapchainImages[swapchainImageCount];
 vkGetSwapchainImagesKHR
 (device, swapChain, &swapchainImageCount,
 swapchainImages);

 // Retrieve the Swapchain images
 foreach swapchainImages{

 // Set the implementation compatible layout
 SetImageLayout(. . .)

 // Insert pipeline barrier
 VkImageMemoryBarrier imgMemoryBarrier = { ... };
 vkCmdPipelineBarrier(cmd,srcStages,destStages,0,0,
 NULL,0,NULL,1,&imgMemoryBarrier);

 // Insert pipeline barrier
 vkCreateImageView(device, &colorImageView, NULL,
 &scBuffer.view);

 // Save the image view for application use
 buffers.push_back(scBuffer);
 }

The following diagram shows how swapbuffer image objects (VkImage) are used in the form of image view objects (VkImageView):

[image: Creating a presentation surface - creating a swapchain]

Creating a depth image

The application needs a depth image if it intends to use depth testing. For 2D drawing logic, only the swapchain image is enough. The process of depth image creation is the same as the swapchain image. But there is a difference: unlike swapchain images, which are ready-made (returned by vkGetPhysicalDeviceSurfaceFormatsKHR()), the depth image object (VkImage) is allocated and created by the application manually.
The following is the depth image creation process:
	First, query the physical device format properties for the depth image using the vkGetPhysicalDeviceFormatProperties() API.
	Create an image object using the vkCreateImage() API and get the resource memory requirements with the vkGetImageMemoryRequirements() API.
	Next, allocate the memory with the vkAllocateMemory() API using the retrieved memory requirement properties. Bind the allocated memory to the created image object by calling the vkBindImageMemory() API.
	Similar to the swapchain drawing images, set the proper image layout and create an image view for application usage. For more details on device memory allocation, refer to the next section, Resource allocation - allocating and binding device memory.

Refer to the following diagram; the newly allocated depth image is created (VkImage) and connected to its view types (VKImageView) whose object resides in the memory:

[image: Creating a depth image]

The following pseudocode illustrates the creation of the depth image object, this depth image will be used for depth testing purposes:

 /*** 7. Creating Depth image ***/

 // Query supported format features of the physical device
 vkGetPhysicalDeviceFormatProperties(gpus,depthFormat,&properties);

 // Create an image object
 vkCreateImage(device, &imageInfo, NULL, &imageObject);

 // Get the memory requirements for an image resource
 vkGetImageMemoryRequirements(device, image, &memRequirements);

 // Allocate memory
 vkAllocateMemory(device, &memAlloc, NULL, &memorys);

 // Bind memory
 vkBindImageMemory(device, imageObject, mem, 0);

 // Set the implementation compatible layout
 SetImageLayout(. . .)

 // Insert a pipeline barrier to ensure that specified image
 // layout are created before it being used further
 vkCmdPipelineBarrier(cmd, srcStages, destStages, 0, 0, NULL,
 0, NULL, 1, &imgPipelineBarrier);

 // Create an Image View
 vkCreateImageView(device, &imgViewInfo, NULL, &view);

Resource allocation - allocating and binding device memory

When first created, Vulkan resources (for buffer, VkBuffer, and for image, VkImage) do not have any backing memory associated with them. Before using a resource, we need to allocate memory to it and bind the resource to the memory.
In order to allocate the Vulkan resource objects, first the application needs to query the available memory on the physical device using vkGetPhysicalDeviceMemory-Properties(). This API advertises one or more heaps and further exposes one or more memory types from these heaps. The exposed properties are stored in a memory control structure (VkPhysicalDeviceMemoryProperties). For a typical PC user, it will expose two heaps: the system RAM and GPU RAM. Further, each of these heaps will be categorized based on their memory types.
Note
The properties of memory-specific queries, such as heap types, can be queried during application initialization and cached at the application level for later use.

Now, each of these memory types can have various properties that need to be queried from the physical device. For example, some memory types could be either CPU-visible or not; they could be coherent between CPU and GPU access, cached or uncached, and so on. Such queries allow the application to choose the right kind of memory that fits their needs, following is the typical process in Vulkan that a general application uses for resource allocation:
	Memory requirements: The resource objects (VkBuffer and VkImage) are created based upon their object properties, such as tiling mode, usage flags, and more. Now, each of these objects may have different memory requirements that need to be queried by calling vkGetBufferMemoryRequirements() or vkGetImageMemoryRequirements(). This is helpful in computing the allocation size; for example, the returned size will take care of the padding alignment and so on. It will take account of the specified bitmask of the memory types that are compatible with the resource.

	Allocation: The memory is allocated using the vkAllocateMemory() API. It accepts the device object (VkDevice) and a memory control structure (VkPhysicalDeviceMemoryProperties).
	Binding: We got the memory requirements that helped us get the right type of memory; using this, we allocate memory. Now we can bind the resource object to this allocated memory using the vkBindBufferMemory() or vkBindImageMemory() API.
	Memory mapping: Memory mapping is how the content of physical device memory is updated. First, map the device memory to the host memory using vkMapMemory(). Update the content on this mapped memory region (on host the side) and call the vkUnmapMemory() API. This API updates the content of device memory with the updated mapped memory content.

Supplying shaders - shader compilation into SPIR-V

Compile the shader files using glslangValidator.exe (a LunarG SDK tool) to convert them from a readable text format to the SPIR-V format, which is a binary-intermediate form that Vulkan understands:

// VERTEX SHADER
#version 450

layout (location = 0) in vec4 pos;
layout (location = 1) in vec4 inColor;
layout (location = 0) out vec4 outColor;

out gl_PerVertex {
 vec4 gl_Position;
};

void main() {
 outColor = inColor;
 gl_Position = pos;
 gl_Position.y = -gl_Position.y;
 gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0;
}

// FRAGMENT SHADER
#version 450

layout (location = 0) in vec4 color;
layout (location = 0) out vec4 outColor;

void main() {
 outColor = color;
};

The following pseudocode shows the process of creating shader modules within an application. A shader module for a given shader (vertex, fragment, geometry, tessellation, and more) is created by calling the vkCreateShaderModule() API. This needs to be provided with the SPIR-V format intermediate binary shader code that is specified in the VkShaderModuleCreateInfo control structure:

/*** 8. Building shader module ***/

VkPipelineShaderStageCreateInfo vtxShdrStages = {....};
VkShaderModuleCreateInfo moduleCreateInfo = { ... };

// spvVertexShaderData contains binary form of vertex shader
moduleCreateInfo.pCode = spvVertexShaderData;

// Create Shader module on the device
vkCreateShaderModule
 (device, &moduleCreateInfo, NULL, &vtxShdrStages.module);

Building layouts - descriptor and pipeline layouts

A descriptor connects the resources with the shader through layout binding slots. It is very commonly used to connect uniform and sampler resource types to the shaders.
More than one descriptor layout binding can be present in a single descriptor set; they will be present in the form of blocks or arrays, as shown in the following pseudocode. These blocks are then bundled into a single control structure, VkDescriptorSetLayoutCreateInfo, and used to create a descriptor layout object by calling the vkCreateDescriptorSetLayout() API. A descriptor set layout represents the type of information a descriptor set contains.
Descriptor layouts are created but are not presently accessible by the underlying pipeline. In order to provide access, we need to create a pipeline layout. A pipeline layout is the means by which the pipeline can access the descriptor set information. It is created by calling the vkCreatePipelineLayout() API, which consumes a VkPipelineLayoutCreateInfo control structure object containing the preceding descriptor layout:

/*** 9. Creating descriptor layout and pipeline layout ***/

// Descriptor layout specifies info type associated with shaders
VkDescriptorSetLayoutBinding layoutBind[2];

layoutBind[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
layoutBind[0].binding = 0;
layoutBind[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;

layoutBind[1].descriptorType =
 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
layoutBind[1].binding = 0;
layoutBind[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;

// Use layout bindings and create a descriptor set layout
VkDescriptorSetLayoutCreateInfo descriptorLayout = {};
descriptorLayout.pBindings = layoutBind;

VkDescriptorSetLayout descLayout[2];
vkCreateDescriptorSetLayout
 (device, &descriptorLayout, NULL, descLayout.data());

// Now use the descriptor layout to create a pipeline layout
VkPipelineLayoutCreateInfo pipelineLayoutCI = { ... };
pipelineLayoutCI.pSetLayouts = descLayout.data();
vkCreatePipelineLayout
 (device, &pipelineLayoutCI, NULL, &pipelineLayout);

Note
The present example in this chapter makes use of the attributes only (vertex position and color). It does not use any uniform or sampler. Therefore, at this point in the chapter, we do not need to define the descriptor. We will understand more about descriptor sets in detail later, specifically in Chapter 10, Descriptors and Push Constant.

Creating a Render Pass - defining a pass attribute

Next, create a Render Pass object. A Render Pass contains subpasses and attachments. It describes the structure of the drawing work to the driver, how data will flow between the various attachments or what the ordering requirements are; and runtime behavior, such as how these attachments will be treated at each load or whether it needs to be clear or preserve information. The Render Pass object is created by calling the vkCreateRenderPass() API. It accepts the subpass and the attachment control structures as arguments. See the following pseudocode for more information:

/*** 10. Render Pass ***/

// Define two attachment for color and depth buffer
VkAttachmentDescription attachments[2];
attachments[0].format = colorImageformat;
attachments[0].loadOp = clear ? VK_ATTACHMENT_LOAD_OP_CLEAR
 : VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].format = depthImageformat;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;

VkAttachmentReference colorReference, depthReference = {...};

// Describe the subpass, use color image and depth image
VkSubpassDescription subpass = {};
subpass.pColorAttachments = &colorReference;
subpass.pDepthStencilAttachment = &depthReference;

// Define RenderPass control structure
VkRenderPassCreateInfo rpInfo = { &attachments,&subpass ...};

VkRenderPass renderPass; // Create Render Pass object
vkCreateRenderPass(device, &rpInfo, NULL, &renderPass);

Framebuffer - connect drawing images to the Render Pass

A framebuffer is a collection of image views, corresponding to the attachment specified in the Render Pass. The image view represents the drawing image or depth image. The Render Pass object is used to control these attachments through the properties that are specified while creating the Render Pass object.
The VkFramebufferCreateInfo control structure accepts the Render Pass object and the attachment and other important parameters in it, such as the dimensions, number of attachments, layers, and so on. This structure is passed to the VkCreateFramebuffer() API to create the framebuffer object.
Note
The attachments used to represent the color and depth buffer must be image views (VKImageView), not image objects (VkImage).

The following diagram shows the created framebuffer object. It contains the image views of the color buffers images for drawing and the depth view for depth testing:

[image: Framebuffer - connect drawing images to the Render Pass]

Let's walk through the frame buffer creation process using the following pseudocode:

/*** 11. Creating Frame buffers ***/

VkImageView attachments[2]; // [0] for color, [1] for depth
attachments[1] = Depth.view;

VkFramebufferCreateInfo fbInfo = {};
fbInfo.renderPass = renderPass; // Pass render buffer object
fbInfo.pAttachments = attachments; // Image view attachments
fbInfo.width = width; // Frame buffer width
fbInfo.height = height; // Frame buffer height
// Allocate memory for frame buffer objects, for each image

// in the swapchain, there is one frame buffer
VkFramebuffer framebuffers[number of draw imagein swap chain];

foreach (drawing buffer in swapchain) {
 attachments[0] = currentSwapChainDrawImage.view;
 vkCreateFramebuffer(device, &fbInfo, NULL, &framebuffers[i]);
}

Populating geometry - storing a vertex into GPU memory

Next, define the geometric shape that will appear on the display output. In this chapter, we used a simple tricolor triangle.
The following screenshot shows the interleaved geometry data associated with this triangle. It contains the vertex position followed by color information for each vertex. This data array needs to be supplied to the physical device via a Vulkan buffer object (VkBuffer).

[image: Populating geometry - storing a vertex into GPU memory]

The following pseudocode involves the allocation, mapping, and binding process of the buffer objects:

/*** 12. Populate Geometry - storing vertex into GPU memory ***/

static const VertexWithColor triangleData[] ={
 /*{ x, y, z, w, r, g, b, a },*/
 { 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0 },
 { -1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0 },
 { 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0 },
};

VkBuffer buffer;
VkMemoryRequirements mem_requirement;
VkDeviceMemory deviceMemory;

// Create buffer object, query required memory and allocate
VkBufferCreateInfo buffer_info = { ... };
vkCreateBuffer(device, &buffer_info, NULL, &buffer);

vkGetBufferMemoryRequirements(device, buffer, &mem_requirement);

VkMemoryAllocateInfo alloc_info = { ... };

vkAllocateMemory(device, &alloc_info, NULL, &(deviceMemory));

// Copy the triangleData to GPU using mapping and unmapping.
uint8_t *pData;
vkMapMemory(device, deviceMemory, 0, mem_requirement.size,
 0, &pData);
memcpy(pData, triangleData, dataSize); /**** Copying data ****/
vkUnmapMemory(device, deviceMemory);

// Bind the allocated memory
vkBindBufferMemory(device, buffer, deviceMemory, 0);

The process of buffer resource creation is very similar to that of image objects. Here, Vulkan provides buffer-based APIs for allocation, mapping, and binding. This is very similar to image object management APIs. The following table shows buffer and image resource management APIs and related data structures:
	

Buffer object

	

Image object

	

VkBuffer

	

VkImageView

	

VkBufferCreateInfo

	

VkImageCreateInfo

	

vkCreateBuffer

	

vkCreateImage

	

vkGetBufferMemoryRequirements

	

vkGetImageMemoryRequirements

	

vkBindBufferMemory

	

vkBindImageMemory

	

vkCreateBufferView

	

vkCreateImageView

The buffer is not initially associated with any type of memory. The application must allocate and bind appropriate device memory to the buffer before it can be used. Unlike images, which have to be compulsorily created with the image view in order to use them in the application, the buffer object can be used directly (such as vertex attribute, uniforms, and so on). If the buffer object is required to be accessed in the shader stage, it must be accessed in the form of buffer view objects

[image: Populating geometry - storing a vertex into GPU memory]

Once the vertex data is uploaded in the device memory, the pipeline must be informed with the specification of this data. This will be helpful in retrieving and interpreting the data. For example, the preceding geometry vertex data comprises position and color information, stored in an interleaved fashion, and each attribute is 16-bytes wide. This information needs to be communicated to the underlying pipeline with the help of vertex input binding (VkVertexInputBindingDescription) and the vertex input attribute descriptor (VkVertexInputAttributeDescription) control structure.
	The VkVertexInputBindingDescription contains properties that help the pipeline to read the buffer resource data, for example, the stride between each unit of information, considering the rate of information to be read (whether it is vertex-based or based on a number of instances).
	The VkVertexInputAttributeDescription interprets the buffer resource data.

In the following pseudocode, the position and color attributes are read at the 0th and 1st location in the vertex shader. Since the data is in interleaved form, the offset is 0 and 16, respectively:

/*** 13. Vertex binding ***/

VkVertexInputBindingDescription viBinding;
viBinding.binding = 0;
viBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
viBinding.stride = sizeof(triangleData) /*data Stride*/;

VkVertexInputAttributeDescriptionviAttribs[2];
viAttribs[0].binding = 0;
viAttribs[0].location = 0;
viAttribs[0].format = VK_FORMAT_R32G32B32A32_SFLOAT;
viAttribs[0].offset = 0;
viAttribs[1].binding = 0;
viAttribs[1].location = 1;
viAttribs[1].format = VK_FORMAT_R32G32B32A32_SFLOAT;
viAttribs[1].offset = 16;

Note
The control structure objects viAttribs and viBinding will be used at the time of pipeline creation. A pipeline object contains several states, among these, the vertex input state consumes the objects that are helpful in reading and interpreting a buffer resource.

Pipeline state management - creating pipelines

A pipeline is a collection of multiple states. Each state contains a set of properties that defines an execution protocol for that state. Collectively, all these states produce a single pipeline. There are two types of pipeline:
	Graphics pipeline: This pipeline may comprise multiple shader stages, including vertex, fragment, tessellation, geometry, and so on. It has a pipeline layout and multiple fixed-function pipeline stages.
	Compute pipeline: This is used for the compute operation. It consists of a single static compute shader stage and the pipeline layout.

Pipeline state management can be divided into two steps. The first step consists of defining various state objects containing important state control properties. In the second step, a pipeline object is created using these state objects.
Defining states

A pipeline may consume several states, and these are defined here:
	Dynamic states: The dynamic state notifies the pipeline about what states are expected to change at runtime. This allows the pipeline to permit a special routine update to the respective state instead of using an initialized value. For example viewport and scissoring are dynamic states. The VkPipelineDynamicStateCreateInfo structure specifies all dynamic states and their properties in the application program.
	Vertex input state: This state helps the pipeline to understand the reading and interpretation of data. Use the VkPipelineVertexInputStateCreateInfo object and specify the object of vertex input binding (VkVertexInputBindingDescription) and the vertex input attribute descriptor (VkVertexInputAttributeDescription) in it.
	Rasterization state: This is the process by which a primitive is converted into a two-dimensional image containing vital information, such as color, depth, and other attributes. It is represented by the VkPipelineRasterizationStateCreateInfo structure; this structure can be specified with culling mode, front-face orientation, primitive type, line width, and more.
	Color blend attachment state: Blending is a combination of a source and a destination color; this can be combined in various ways with different attributes and blend equations. This is represented using the VkPipelineColor-BlendStateCreateInfo structure.
	Viewport state: This state is helpful in controlling the viewport transformation. The viewport properties can be specified using VkPipelineViewportState-CreateInfo. There could be various viewports. This state helps in determining the vital properties of the selected viewport, such as dimension, start point, depth range, and more. For each viewport, there is a corresponding scissor rectangle defining the scissor test rectangular bounds.

	Depth stencil state: The VkPipelineDepthStencilStateCreateInfo control structure is used to control the depth bound tests, stencil test, and depth test.
	Multisample state: The multisampling state contains important properties that control the behavior of the antialiasing of rasterized Vulkan primitives, such as points, lines, and polygons. The VkPipelineMultisampleStateCreateInfo control structure can be used to specify such control properties.
	The following pseudocode defines the various pipeline state objects that will be used in creating the graphics pipeline:

 /*** 14. Defining states ***/

 // Vertex Input state
 VkPipelineVertexInputStateCreateInfo vertexInputStateInfo= {...};
 vertexInputStateInfo.vertexBindingDescriptionCount = 1;
 vertexInputStateInfo.pVertexBindingDescriptions = &viBinding;
 vertexInputStateInfo.vertexAttributeDescriptionCount = 2;
 vertexInputStateInfo.pVertexAttributeDescriptions = viAttribs;

 // Dynamic states
 VkPipelineDynamicStateCreateInfo dynamicState = { ... };

 // Input assembly state control structure
 VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo= { ... };

 // Rasterization state control structure
 VkPipelineRasterizationStateCreateInfo rasterStateInfo = { ... };

 // Color blend Attachment state control structure
 VkPipelineColorBlendAttachmentState colorBlendSI = { ... };

 // Color blend state control structure
 VkPipelineColorBlendStateCreateInfo colorBlendStateInfo = { ... };

 // View port state control structure
 VkPipelineViewportStateCreateInfo viewportStateInfo = { ... };

 // Depth stencil state control structure
 VkPipelineDepthStencilStateCreateInfo depthStencilStateInfo={..};

 // Multisampling state control structure
 VkPipelineMultisampleStateCreateInfo multiSampleStateInfo = {..};

Creating a graphics pipeline

Pipeline state objects are packed into the VkGraphicsPipelineCreateInfo control structure. This structure provides a means to access the pipeline state information inside the graphics pipeline object.
The creation of the pipeline state object could be an expensive operation. It is one of the performance-critical paths. Therefore, pipeline state objects are created from a pipeline cache (VkPipelineCache) to offer maximum performance. This allows the driver to create a new pipeline using existing base pipelines.
The graphics pipeline object is created using the vkCreateGraphicsPipelines() API. This API accepts the pipeline cache object to allocate the VkPipeline object from it and the VkGraphicsPipelineCreateInfo object to specify all the states connected with this pipeline:

/*** 15. Creating Graphics Pipeline ***/

// Create the pipeline objects
VkPipelineCache pipelineCache;
VkPipelineCacheCreateInfo pipelineCacheInfo;
vkCreatePipelineCache(device, &pipelineCacheInfo, NULL,
 &pipelineCache);

// Define the control structure of graphics pipeline
VkGraphicsPipelineCreateInfo pipelineInfo;
pipelineInfo.layout = pipelineLayout;
pipelineInfo.pVertexInputState = &vertexInputStateInfo;
pipelineInfo.pInputAssemblyState = &inputAssemblyInfo;
pipelineInfo.pRasterizationState = &rasterStateInfo;
pipelineInfo.pColorBlendState = &colorBlendStateInfo;
pipelineInfo.pMultisampleState = &multiSampleStateInfo;
pipelineInfo.pDynamicState = &dynamicState;
pipelineInfo.pViewportState = &viewportStateInfo;
pipelineInfo.pDepthStencilState = &depthStencilStateInfo;
pipelineInfo.pStages = shaderStages;
pipelineInfo.stageCount = 2;
pipelineInfo.renderPass = renderPass;

// Create graphics pipeline
vkCreateGraphicsPipelines
 (device, pipelineCache, 1, &pipelineInfo, NULL, &pipeline);

Executing the Render Pass - drawing Hello World!!!

We are almost there! At this stage, we will render our simple triangle on the drawing surface with the help of the Render Pass stage. The execution of the Render Pass stage requires a drawing surface and a recording of a set of commands that defines a single Render Pass run.
Acquiring the drawing surface

The very first thing we require before we start rendering anything is the drawing framebuffer. We have already created the framebuffer object and associated the swapchain drawing image within it (containing the swapchain image views). Now, we will use the vkAcquireNextImageKHR() API to determine the index of the drawing image that is currently available for the drawing operation. Using this acquired index, we refer to the corresponding framebuffer and give it to the Render Pass stage for rendering purposes:

/*** 16. Acquiring drawing image ***/

// Define semaphore for synchronizing the acquire of draw image.

// Only acquire draw image when drawing is completed
VkSemaphore imageAcquiredSemaphore;
VkSemaphoreCreateInfo imageAcquiredSemaphoreCI = {...};
imageAcquiredSemaphoreCI.sType=VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
vkCreateSemaphore(device, &imageAcquiredSemaphoreCI, NULL,
 &imageAcquiredSemaphore);

// Get the index of the next available swapchain image:
vkAcquireNextImageKHR(device, swapChain, UINT64_MAX,
 imageAcquiredSemaphore, NULL, &swapChainObjCurrentBuffer);

A synchronization mechanism is required when two or more swapchain drawing images are being used. A drawing image must only be acquired if it has rendered on the display output and is ready to take the next job; this status is indicated by vkAcquireNextImageKHR(). A semaphore object can be used to synchronize the acquiring of the drawing images. A semaphore (VkSemaphore) can be created using the vkCreateSemaphore() API; this object will be used in the command buffer submission.

Preparing the Render Pass control structure

Render Pass needs some specific information, such as the frame buffer, Render Pass object, render area dimensions, clear color, depth stencil values, and so on. This information is specified using the VkRenderPassBeginInfo control structure. This structure is later used to define Render Pass execution. The following pseudocode will help you understand the use of this structure in detail:

/*** 17. Preparing render pass control structure ***/

// Define clear color value and depth stencil values
const VkClearValue clearValues[2] = {
 [0] = { .color.float32 = { 0.2f, 0.2f, 0.2f, 0.2f } },
 [1] = { .depthStencil = { 1.0f, 0 } },
};

// Render pass execution data structure for a frame buffer
VkRenderPassBeginInfo beginPass;
beginPass.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
beginPass.pNext= NULL;
beginPass.renderPass = renderPass;
beginPass.framebuffer =framebuffers[currentSwapchainImageIndex];
beginPass.renderArea.offset.x = 0;
beginPass.renderArea.offset.y = 0;
beginPass.renderArea.extent.width = width;
beginPass.renderArea.extent.height = height;
beginPass.clearValueCount = 2;
beginPass.pClearValues = clearValues;

Render Pass execution

The execution of the Render Pass is defined within a user-defined scope. This scope is interpreted using start and end markers defined by the vkCmdBeginRenderPass() and vkCmdEndRenderPass() APIs respectively. Within this scope, the following commands are specified, automatically linked to the current Render Pass:
	Bind the pipeline: Bind the graphics pipeline with vkCmdBindPipeline().
	Bind the geometry buffer: Supply the vertex data buffer object (of the type VkBuffer) to the Render Pass using the vkCmdBindVertexBuffers() API.
	Viewport and scissor: Specify the viewport and scissor dimensions by calling the vkCmdSetViewport() and vkCmdSetScissor() APIs.
	Draw object: Specify the draw command containing information such as how many vertices need to read from the start index, the number of instances, and so on.

Before we finish command buffer recording, set an implementation-compatible image layout and end command buffer recording by calling vkEndCommandBuffer():

/**** START RENDER PASS ****/
vkCmdBeginRenderPass(cmd, &beginPass, VK_SUBPASS_CONTENTS_INLINE);

// Bind the pipeline
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
const VkDeviceSize offsets[1] = { 0 };

// Bind the triangle buffer data
vkCmdBindVertexBuffers(cmd, 0, 1, &buffer, offsets);

// viewport = {0, 0, 500, 500, 0 ,1}
vkCmdSetViewport(cmd, 0, NUM_VIEWPORTS, &viewport);

// scissor = {0, 0, 500, 500}
vkCmdSetScissor(cmd, 0, NUM_SCISSORS, &scissor);

// Draw command - 3 vertices, 1 instance, 0th first index
vkCmdDraw(cmd, 3, 1, 0, 0);

/**** END RENDER PASS ****/
vkCmdEndRenderPass(cmd);

// Set the swapchain image layout
setImageLayout(VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL . .);

/**** COMMAND BUFFER RECORDING ENDS HERE ****/
vkEndCommandBuffer(cmd);

The following diagram shows the Render Pass execution process. It highlights the operations performed under the Render Pass scope.

[image: Render Pass execution]

Queue submission and synchronization - sending jobs

Finally, we have reached a point where our command buffer is successfully recorded with numerous commands, including the Render Pass information and the graphics pipeline. The command buffer will be processed by submitting it into the queue. The driver will read the command buffer and schedule it.
Note
Command buffers are generally packed into batches for efficient rendering; therefore, if multiple command buffers exist, then they need to be packed into a single VkCommandBuffer array.

Before a command buffer is submitted, it's important to know the status of the previously submitted batch. If it is processed successfully, then it only makes sense to push a new batch into the queue. Vulkan provides fences (VkFence) as a synchronization mechanism to know whether the previously sent jobs have been completed. A fence object (VkFence) is created using the vkCreateFence() API. This API accepts a VkFenceCreateInfo control structure into it.
Command buffers are specified in a submission object (VkSubmitInfo). This object contains the command buffer list along with a VkSemaphore object for the synchronization of a framebuffer with swapchain drawing images. This information is fed into the vkQueueSubmit() API; it contains a VkQueue object to which the command buffer is going to be submitted and a VkFence object to ensure there is synchronization between each command buffer submission:
VkFenceCreateInfo fenceInfo = { ... };
VkFence drawFence;
// Create fence forensuring completion of cmdBuffer processing
vkCreateFence(device, &fenceInfo, NULL, &drawFence);

// Fill the command buffer submission control sturctures
VkSubmitInfo submitInfo[1] = { ... };
submitInfo[0].pNext = NULL;
submitInfo[0].sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo[0].pWaitSemaphores = &imageAcquiredSemaphore;
submitInfo[0].commandBufferCount = 1;
submitInfo[0].pCommandBuffers = &cmd;

// Queue the command buffer for execution
vkQueueSubmit(queue, 1, submitInfo, NULL);

Displaying with presentation layer - rendering a triangle

Once the command buffer is submitted to the queue, it is processed asynchronously by the physical device. As a result, it will render a tricolor triangle on the drawing surface of the swapchain. Now, this surface is invisible to the user and it needs to be presented on the display window. The drawing surface is presented with the help of the VkPresentInfoKHR control structure. This contains the presentation information, for example, the number of swapchains in the application, the index of a drawing image that needs to be retrieved, and so on. This control structures object is used as a parameter in vkQueuePresentKHR. This flips the drawing surface image to the display window.
Note
Once vkQueueSubmit is called, the presentation queue can wait upon the imageAcquiredSemaphore semaphore signaled by the last submission before it performs the presentation.

// Define the presentation control structure
VkPresentInfoKHR present = { ... };
present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
present.pNext = NULL;
present.swapchainCount = 1;
present.pSwapchains = &swapChain;
present.pImageIndices = &swapChainObjCurrent_buffer;

// Check if all the submitted command buffers are processed
do {
 res=vkWaitForFences(device,1,&drawFence,VK_TRUE,FENCE_TIMEOUT);
} while (res == VK_TIMEOUT);

// Handover the swapchain image to presentation queue

// for presentation purpose
vkQueuePresentKHR(queue, &present);

// Destroy Synchronization objects
vkDestroySemaphore(device, imageAcquiredSemaphore, NULL);
vkDestroyFence(device, drawFence, NULL);

Fitting it all together

This section provides a short description of the working of our first Vulkan pseudo application. The following diagram is a snapshot of the working model:

[image: Fitting it all together]

First, the application creates the Vulkan instance and device at the initialization stage with the necessary layers enabled and extensions created. The device exposes various queues (graphics or compute) as shown in the preceding diagram. These queues gather the command buffers and submit them to the physical device for processing.
Using the WSI extension, drawing surfaces are prepared for rendering graphic contents. The swapchain exposes these drawing surface as images, which are used in the form of image views. Similarly, the depth image view is prepared. These image view objects are used by the framebuffer. Render Pass makes use of this framebuffer to define a unit-rendering operation.
The command buffer is allocated from command buffer pools, and it is used to record various commands along with the Render Pass execution process. The Render Pass execution requires some vital Vulkan objects, such as the graphics pipeline, the descriptor set, shader modules, pipeline objects, and geometry data, as shown in the preceding diagram.
Finally, the command buffer is submitted to a presentation-supported (plus graphics) queue. Once submitted, it is processed by the GPU in an asynchronous fashion. Various synchronization mechanisms and memory barriers may be required to make the rendering output hitch-free.

Summary

In this chapter, we explored the step-by-step process of installing Vulkan on your system. Then we pseudo programmed "Hello World!!!" where we rendered a tricolor triangle on the display window.
This introductory chapter has boiled down Vulkan to a level where understanding this graphics API is really easy for beginners. This chapter is a cheat code for Vulkan programming; it can be used as a reference to remember all the programming steps along with all their respective APIs in the correct order.
Aristotle said, "Well begun is half done!" With the completion of the first two chapters, we have built a strong foundation to fully understand Vulkan mechanics from scratch; we will do this in the upcoming chapters.
In the next chapter, we will delve into core programming and start building our first Vulkan application. You will learn about layers and extensions and how to enable them implicitly and explicitly. We will also look into the fundamentals of Vulkan instances and the device and queues, which are very helpful to communicate with the GPU. Once we do this, we will query the resources and facilities it exposes. We will also learn how to get queues and their advertised properties.

Chapter 3. Shaking Hands with the Device

With the knowledge we gained from the last two chapters, we have now reached a level where we can start Vulkan programming from scratch. These two chapters laid the foundation and helped us understand the basic fundamentals of this revolutionary API. Now, at a higher level, we understand the motivation behind this technology, its core blocks, and the associated functionalities and terminologies. In addition, we walked through Vulkan pseudocoding and built a very simple application to understand and visualize the Vulkan programming model.
From this chapter onward, we will dive into the core of Vulkan programming and start transforming our Hello World!!! pseudocode into a real-world executable sample.
Note
All the chapters in this book are designed and programmed carefully in a structured way; every new chapter is dependent on the previous one. You are advised to follow the sequence of the chapters for an efficient learning experience.

In this chapter, we will cover the following topics:
	Getting started with the LunarG SDK
	Setting up the first project with CMake
	An introduction to layers and extensions
	Creating a Vulkan instance
	Understanding physical and logical devices
	Understanding queues and queue families
	Implementing the device and queues all together

Getting started with the LunarG SDK

All the chapters in this book use the LunarG SDK for Vulkan programming. This SDK can be downloaded from https://vulkan.lunarg.com; you'll need a LunarG account to do this.
The SDK's default installation path always locates to C:\VulkanSDK\ [version]. Upon successful installation, the SDK's Bin directory location is added to the $PATH environment variable (C:\VulkanSDK\1.0.26.0\Bin). In addition, the VK_SDK_PATH environment variable is added, pointing to the SDK's path (C:\VulkanSDK\1.0.26.0).
The installation will also add the Vulkan loader (vulkan-1.dll) to C:\Windows\System32. Based on the window target, the loader will be either a 32-bit or 64-bit DLL.
The following are some general terms that will be commonly used throughout the chapter:
	
Term

	
Description

	

ICD

	
This is the abbreviation for Installable Client Driver. It is a Vulkan-compatible display driver. Multiple ICDs--for example, NVIDIA and Intel drivers--can coexist without interfering with each other.

	

Layers

	
These are pluggable components that either hook or intercept Vulkan commands. They provide services such as debugging, validation, tracing, and so on.

	

Loader

	
A loader's job is to locate the display driver and expose the layer's libraries in a platform-independent way. On Windows, the load library (vulkan-1.dll) uses registries to locate ICD and layer configurations.

The following are the folder contencified in the highlighted part of the following code.ts of the LunarG SDK along with the respective descriptions:
	
Directory

	
Description

	

Bin and Bin32

	
These contain the 32-bit (the Bin32 folder) and 64-bit (the Bin folder) release build of the executable and loader. They also contain the libraries of layers and tools.

	

Config

	
This is meant to store different Vulkan configurations. For example, it contains the vk_layer_settings.txt file, which is used to set configuration parameters at different validation layers. These configurations can dynamically affect the layers.

	

Demo

	
This is the Vulkan demo source for the cube, tri, and vulkaninfo programs.

	

Doc

	
This refers to specifications, manuals, release notes, and other important pieces of documentation.

	

glslang

	
This contains the source and headers for glslang. It provides a frontend parser for GLSL and a standalone wrapper tool called glslangValidator for shader validation.

	

Include

	
This contains the necessary header files that help the Vulkan application to be built and compiled.

	

Runtime

installer

	
The Vulkan runtime installer offers Vulkan runtime libraries that can be included by a Vulkan application or driver. Refer to the README.txt file for more information.

	

Source

	
This contains the source implementation for loader (vulkan-1.dll) and layer libraries.

	

spir-v tools

	
This refers to the source code and header files for SPIR-V tools.

Note
The installation of multiple SDKs does not affect other installations. The $PATH variable points to the most recently installed SDK version.

Setting up our first project with CMake

CMake is a build process management tool that works in an operating system in a compiler-independent manner. It makes use of CMakeLists.txt to build project solutions. In this section, we will learn the process of building a CMake file for our first Vulkan application. Refer to the following instructions to understand the creation of this configuration file (CMakeLists.txt):
	Create an empty CMakeLists.txt file as per the specified folder structure convention, that is, chapter_3 > Sample Name > CMakeLists.txt. For the purpose of ensuring compatibility across different CMake versions, you need to specify the minimum supported version. If the current version of CMake happens to be lower than the specified one, then it will stop building the solution. The minimum supported version of CMake is specified with cmake_minimum_required. The following is the code from the CMakeList.txt file: cmake_minimum_required(VERSION 3.7.1)

	Specify the necessary variables that will be used to locate the path of the Vulkan SDK using the set CMake keyword. Also, provide a meaningful name: set (Recipe_Name "3_0_DeviceHandshake")

	In this title we used CMake version 3.7.1 since it comes with a Vulkan module. This module is helpful to auto locate the Vulkan SDK installation, included directories and required libraries to build Vulkan application. In the following CMake code we first try to locate the Vulkan SDK using CMake Vulkan module, if this is unsuccessful then we use manually specify the Vulkan SDK path. Follow the given inline comment in the code for detailed description:
 # AUTO_LOCATE_VULKAN - accepted value ON or OFF

 # ON - Use CMake to auto locate the Vulkan SDK.

 # OFF - Vulkan SDK path can be specified manually.

 # This is helpful to test the build on various Vulkan version.
 option(AUTO_LOCATE_VULKAN "AUTO_LOCATE_VULKAN" ON)

 if(AUTO_LOCATE_VULKAN)

 message(STATUS "Attempting auto locate Vulkan using CMake......")

 # Find Vulkan Path using CMake's Vulkan Module

 # This will return Boolean 'Vulkan_FOUND' indicating

 # the status of find as success(ON) or fail(OFF).

 # Include directory path - 'Vulkan_INCLUDE_DIRS'

 # and 'Vulkan_LIBRARY' with required libraries.
 find_package(Vulkan)

 # Try extracting VulkanSDK path from ${Vulkan_INCLUDE_DIRS}
 if (NOT ${Vulkan_INCLUDE_DIRS} STREQUAL "")
 set(VULKAN_PATH ${Vulkan_INCLUDE_DIRS})
 STRING(REGEX REPLACE "/Include" "" VULKAN_PATH
 ${VULKAN_PATH})
 endif()

 if(NOT Vulkan_FOUND)
 # CMake may fail to locate the libraries but could be able to

 # provide some path in Vulkan SDK include directory variable

 # 'Vulkan_INCLUDE_DIRS', try to extract path from this.

 message(STATUS "Failed to locate Vulkan SDK, retrying again...")

 # Check if Vulkan path is valid, if not switch to manual mode.
 if(EXISTS "${VULKAN_PATH}")
 message(STATUS "Successfully located the
 Vulkan SDK: ${VULKAN_PATH}")
 else()
 message("Error: Unable to locate Vulkan SDK. Please
 turn off auto locate option by
 specifying 'AUTO_LOCATE_VULKAN' as 'OFF'")
 message("and specify manually path using 'VULKAN_SDK'
 and 'VULKAN_VERSION' variables
 in the CMakeLists.txt.")
 return()
 endif()

 endif()

 else()

 message(STATUS "Attempting to locate Vulkan SDK
 using manual path......")
 set(VULKAN_SDK "C:/VulkanSDK")
 set(VULKAN_VERSION "1.0.33.0")
 set(VULKAN_PATH "${VULKAN_SDK}/${VULKAN_VERSION}")
 message(STATUS "Using manual specified path: ${VULKAN_PATH}")

 # Check if manual set path exists
 if(NOT EXISTS "${VULKAN_PATH}")
 message("Error: Unable to locate this Vulkan SDK path
 VULKAN_PATH:
 ${VULKAN_PATH}, please specify correct path.
 For more information on correct installation process,
 please refer to subsection 'Getting started with
 Lunar-G SDK' and 'Setting up first project with CMake'
 in Chapter 3, 'Shaking hands with the device' in this
 book 'Learning Vulkan', ISBN - 9781786469809.")
 return()
 endif()

 endif()

	With project keyword you can specify any desire name of your project. On Windows, Window System Integration (WSI) needs the VK_KHR_WIN32_SURFACE_EXTENSION_NAME extension API. For this, you need to define the VK_USE_PLATFORM_WIN32_KHR preprocessor directives (with -D prefixed) in the CMake file using add_definitions(). Include the path where Vulkan header files are placed. Also, add the path of the Bin folder to link the necessary Vulkan runtime/static libraries:
 # Specify a suitable project name
 project(${Recipe_Name})

 # Add preprocessor definitions here
 add_definitions(-DVK_USE_PLATFORM_WIN32_KHR)

	Specify all required libraries in the VULKAN_LIB_LINK_LIST variable and later linked it to the building project using target_link_libraries(). In addition, provide a correct path for including Vulkan header files using CMake’s include_directories() API. Also, specify the path from where linked libraries are located using link_directories() API.
 # Add ‘vulkan-1’ library for build Vulkan application.
 set(VULKAN_LINK_LIST "vulkan-1")

 if(${CMAKE_SYSTEM_NAME} MATCHES "Windows")

 # Include Vulkan header files from Vulkan SDK
 include_directories(AFTER ${VULKAN_PATH}/Include)

 # Link directory for vulkan-1
 link_directories(${VULKAN_PATH}/Bin)

 endif()

	The following code is used to group the header and source files together in the build source project for better visualization and management of the code structure:
 # Bunch the header and source files together
 if (WIN32)
 source_group ("include" REGULAR_EXPRESSION "include/*")
 source_group ("source" REGULAR_EXPRESSION "source/*")
 endif (WIN32)

	Specify the sample's header file path. Read all the header files and source files in the sample using file() API and store them in the CPP_Lists and HPP_Lists variables. Use these lists to specify to the build solution all the files that need to be used for compilation. Provide a name to the project build and link it to all the necessary Vulkan libraries:
 # Define include path
 include_directories (${CMAKE_CURRENT_SOURCE_DIR}/include)

 # Gather list of header and source files for compilation
 file (GLOB_RECURSE CPP_FILES
 ${CMAKE_CURRENT_SOURCE_DIR}/source/*.cpp)
 file (GLOB_RECURSE HPP_FILES
 ${CMAKE_CURRENT_SOURCE_DIR}/include/*.*)

 # Build project, provide name and include files to be compiled
 add_executable (${Recipe_Name} ${CPP_FILES} ${HPP_FILES})

 # Link the debug and release libraries to the project
 target_link_libraries (${Recipe_Name}${VULKAN_LIB_LIST})

	Define the project properties and the correct C/C++ standard versions to be used in the project compilation. Specify the path of the binary executable:
 # Define project properties
 set_property(TARGET ${Recipe_Name} PROPERTY RUNTIME_OUTPUT_-
 DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/binaries)
 set_property(TARGET ${Recipe_Name} PROPERTY RUNTIME_OUTPUT_-
 DIRECTORY_DEBUG ${CMAKE_CURRENT_SOURCE_DIR}/binaries)
 set_property(TARGET ${Recipe_Name} PROPERTY RUNTIME_OUTPUT_-
 DIRECTORY_RELEASE ${CMAKE_CURRENT_SOURCE_DIR}/binaries)
 set_property(TARGET ${Recipe_Name} PROPERTY RUNTIME_OUTPUT_-
 DIRECTORY_MINSIZEREL ${CMAKE_CURRENT_SOURCE_DIR}/binaries)
 set_property(TARGET ${Recipe_Name} PROPERTY RUNTIME_OUTPUT_-
 DIRECTORY_RELWITHDEBINFO ${CMAKE_CURRENT_SOURCE_DIR}/binaries)

 # Define C++ version to be used for building the project
 set_property(TARGET ${Recipe_Name} PROPERTY CXX_STANDARD 11)
 set_property(TARGET ${Recipe_Name} PROPERTY
 CXX_STANDARD_REQUIRED ON)

 # Define C version to be used for building the project
 set_property(TARGET ${Recipe_Name} PROPERTY C_STANDARD 99)
 set_property(TARGET ${Recipe_Name} PROPERTY
 C_STANDARD_REQUIRED ON)

How to build the CMake file

Follow these steps to build the CMake file:
	Open the command-line terminal and go to the sample's build directory. If it is not present, create it. This empty build folder will contain the Visual Studio project built through the command line. You can also use the CMake GUI instead.
	Execute the following command to build the project (choose the correct IDE version). The last parameter specifies the platform architecture; therefore, if you are using a 32-bit machine, use Win32:
 cmake -G "Visual Studio 14 2015 Win64" ..

This is how the command-line interface looks:

[image: How to build the CMake file]

The two dots at the end of the command specify the path of CMakeLists.txt (one folder level up), which is required by the CMake command to build the project. Upon successful execution, you will find the following project files based on the project name specified:

[image: How to build the CMake file]

The following diagram shows the folder structure of all the samples that follow in this book:

[image: How to build the CMake file]

Introduction to extensions

While implementing a Vulkan application, the very first thing that a developer may need to do, and be interested in, is seeing the extended features, functionalities, and capabilities offered by the API. These allow them to gather vital information that can be used to report errors, debug, and trace commands; they can also be used for validation purposes. Vulkan makes use of layers and extensions to expose these additional functionalities:
	Layers: Layers get hooked up with the existing Vulkan APIs and insert themselves in the chain of Vulkan commands that are associated with the specified layer. It's commonly used for validating the development process. For example, the driver need not check the supplied parameters in the Vulkan API; it's the layer's responsibility to validate whether the incoming parameter is correct or not.
	Extensions: Extensions provide extended functionality or features, which may or may not be part of the standard specification. The extension could either be a part of the instance or the device. The extension commands cannot be linked statically; they are queried first and then linked dynamically to the function pointers. These function pointers may already be defined in vulkan.h for the registered extension along with the necessary data structures and enumerations.

An extension can be categorized into two types:
	Instance-based: This represents global functionalities that are independent of any device and can be accessible without any VkDevice
	Device-based: Here, the extensions are very specific to a device and require a valid handle of the device to operate on and expose the special functionalities

Note
It is suggested that layers and extensions should be enabled during the development phase of an application and turned off at the production stage when the product is expected for release. Turning off the extensions and layers at the production stage allows the application to save unnecessary validation overheads, thus offering higher performance.

Before we get started with application programming, let's take a look at which user-defined classes are used by the sample and what their responsibilities are:
	Main program: This is an entry point for Hello World!!! It is the application that contains the main() function. The program control logic is built within this file (main.cpp).
	Headers.h: This is the single place where all the headers are included; we will put our Vulkan headers here.
	VulkanLayerAndExtension: This class is implemented in VulkanLayerAndExtension.h/.cpp and provides layer- and extension-based functionalities for the instance and device. It also offers debugging capabilities.
	VulkanInstance: This class creates the Vulkan instance object and is helpful during initialization. It's implemented in VulkanInstance.h/.cpp.
	VulkanDevice: VulkanDevice.h/.cpp is responsible for creating the logical and physical devices. Each physical device is capable of exposing one or more queues. This class also manages a device's queue and its respective properties.

Querying layers and extensions

In this section, we will implement the main, VulkanApplication, and VulkanLayerAndExtension classes. Now we will begin our Vulkan programming. We'll start by querying the advertised Vulkan layers. Refer to the following instructions to implement this:
	The very first thing required for Vulkan programming is to add <vulkan/vulkan.h> to the header file Header.h. It contains the most commonly used Vulkan APIs and structure declarations.
	Create the VulkanLayerAndExtension class and declare the function and variables, as specified in the highlighted part of the following code. Please refer to the inline comments for more details:

 struct LayerProperties {
 VkLayerProperties properties;
 vector<VkExtensionProperties> extensions;
 };

 class VulkanLayerAndExtension{

 // Layers and corresponding extension list
 std::vector<LayerProperties> // Instance/global
 layergetInstanceLayerProperties();

 // Global extensions
 VkResult getExtensionProperties(LayerProperties
 &layerProps, VkPhysicalDevice* gpu = NULL);

 // Device based extensions
 VkResult getDeviceExtensionProperties(VkPhysicalDevice*gpu);
 };

	Upon application startup, the getInstanceLayerProperties() helper function queries either instance or global layers. It gets the total count of the layers and stores all of the layer information in a VkLayerProperties vector called layerProperties. Both the operations (count and store) are done by calling vkEnumerateInstanceLayerProperties() twice. For the first time, calling the API with the second argument as NULL returns the layer count in the first argument, instanceLayerCount. In the second instance, instead of providing the second argument as NULL, pass it as an array/vector of VkLayerProperties and fetch detailed property information into it.

Note
Most enumerated APIs under Vulkan are used to perform more than one functionality, based on the arguments supplied. Just now, we have seen that the vkEnumerateInstanceLayerProperties API is not only used to retrieve the layer count (by supplying a NULL argument), but also to get the array of layers (by supplying an array of data structures) that contains information.

Here's the syntax of the preceding code:
VkResult VulkanLayerAndExtension::getInstanceLayerProperties()
{
 // Stores number of instance layers
 uint32_t instanceLayerCount;
 // Vector to store layer properties

 std::vector<VkLayerProperties> layerProperties;
 // Check Vulkan API result status
 VkResult result;

 // Query all the layers
 do {
 result = vkEnumerateInstanceLayerProperties
 (&instanceLayerCount, NULL);

 if (result)
 return result;

 if (instanceLayerCount == 0)
 return VK_INCOMPLETE; // return fail

 layerProperties.resize(instanceLayerCount);
 result = vkEnumerateInstanceLayerProperties
 (&instanceLayerCount, layerProperties.data());
 } while (result == VK_INCOMPLETE);

 // Query all the extensions for each layer and store it.
 std::cout << "\nInstanced Layers" << std::endl;
 std::cout << "===================" << std::endl;
 for (auto globalLayerProp: layerProperties) {

 // Print layer name and its description
 std::cout <<"\n"<< globalLayerProp.description <<
 "\n\t|\n\t|---[Layer Name]--> " <<
 globalLayerProp.layerName <<"\n";

 LayerProperties layerProps;
 layerProps.properties = globalLayerProp;

 // Get Instance level extensions for

 // corresponding layer properties
 result = getExtensionProperties(layerProps);

 if (result){
 continue;
 }

 layerPropertyList.push_back(layerProps);

 // Print extension name for each instance layer
 for (auto j : layerProps.extensions){
 std::cout << "\t\t|\n\t\t|---
 [Layer Extension]--> " << j.extensionName << "\n";
 }

 }
 return result;
}

The following is the syntax of vkEnumerateInstanceLayerProperties():
VkResult vkEnumerateInstanceLayerProperties (
 uint32_t* pPropertyCount,
 VkLayerProperties* pProperties);

The following table describes the vkEnumerateInstanceLayerProperties() API fields:
	
Parameters

	
Description

	

pPropertyCount

	
This variable represents the number of layers at the instance level. This variable works as an input or output variable, depending upon the value passed to pProperties.

	

pProperties

	
This variable can take two values. When specified as NULL, the API returns the layer count in pPropertyCount with the total number of layers. When used as an array, the API retrieves the information of the layer properties in the same array.

Once we retrieve the layer property information for each layer, we'll use it to iterate through all the layers in order to query the extensions exposed by each layer. We'll do this by calling our user-defined helper function getExtensionProperties().
Upon the successful execution of the layer and their extensions, you'll see the following output on the console:
LunarG debug layer
 |---[Layer Name]--> VK_LAYER_LUNARG_api_dump

LunarG Validation Layer
 |---[Layer Name]--> VK_LAYER_LUNARG_core_validation
 |---[Layer Extesion]--> VK_EXT_debug_report

LunarG Standard Validation Layer
 |---[Layer Name]--> VK_LAYER_LUNARG_standard_validation

LunarG Validation Layer
 |---[Layer Name]--> VK_LAYER_LUNARG_device_limits
 |---[Layer Extesion]--> VK_EXT_debug_report

Each layer may be capable of supporting one or more extensions. The getExtensionProperties() function first enumerates the layers to get the number of extensions exposed. Then, it stores the extension properties information in the LayerProperties data structures using the vkEnumerate-InstanceExtensionProperties() API. This whole process is very similar to the layer enumeration; refer to getInstanceLayerProperties() for more information on the last step. The getExtensionProperties() function queries the extensions for both the instance and device:

// This function retrieves extension and its

// properties at instance and device level.

// Pass a valid physical device pointer (gpu) to retrieve

// device level extensions, otherwise use NULL to

// retrieve extension specific to instance level.
VkResult VulkanLayerAndExtension::getExtensionProperties
 (LayerProperties &layerProps, VkPhysicalDevice* gpu)
{
 // Stores number of extension per layer
 uint32_t extensionCount;
 VkResult result;
 // Name of the layer
 char* layerName = layerProps.properties.layerName;

 do {
 // Get the total number of extension in this layer
 if(gpu){
 result = vkEnumerateDeviceExtensionProperties
 (*gpu, layerName,
 &extensionCount, NULL);
 }
 else{
 result = vkEnumerateInstanceExtensionProperties
 (layerName, &extensionCount, NULL);
 }

 if (result || extensionCount == 0)
 continue;

 layerProps.extensions.resize(extensionCount);

 // Gather all extension properties
 if (gpu){
 result = vkEnumerateDeviceExtensionProperties
 (*gpu, layerName, &extensionCount,
 layerProps.extensions.data());
 }
 else{
 result = vkEnumerateInstanceExtensionProperties
 (layerName, &extensionCount,
 layerProps.extensions.data());
 }

 } while (result == VK_INCOMPLETE);

Creating a Vulkan instance

A Vulkan instance is a primary object that is required to build an application; it stores all the application states. It is of the type VkInstance and is managed inside the VulkanInstance class, which is user-defined (VulkanInstance.h/cpp). This class is responsible for the creation and destruction of the Vulkan instance object. The following is the implementation of the header file:
class VulkanInstance { // Many lines skipped

 // Vulkan instance object variable
 VkInstance instance;

 // Vulkan instance specific layer and extensions
 VulkanLayerAndExtension layerExtension;

 // Functions for Creation and Deletion of Vulkan instance
 VkResult createInstance(vector<const char *>& layers,
 vector<const char *>& extensions,
 const char* applicationName);

 // Destroy Vulkan instance
 void destroyInstance();
};

The creation of a Vulkan instance requires a set of information that is specified using the VkApplicationInfo structure object, as represented by appInfo in the following code. This structure object provides vital information about the application, such as its name, version, engine, and so on. In addition, it also tells the drivers about the Vulkan API version to be used by the application. If the specified version is not compatible with the underlying driver, the application reports an error (if the validation layer is enabled). For more information, refer to the apiVersion field of the VkApplicationInfo structure, which is described later in this section:
VkResult VulkanInstance::createInstance(vector<const char *>& layers, vector<const char *>& extensionNames, char const*const appName) {

 // Set the instance specific layer and extension information
 layerExtension.instanceExtensionNames = extensionNames;
 layerExtension.instanceLayerNames = layers;

 // Define the Vulkan application structure
 VkApplicationInfo appInfo = {};
 appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
 appInfo.pNext = NULL;
 appInfo.pApplicationName = appName;
 appInfo.applicationVersion = 1;
 appInfo.pEngineName = appName;
 appInfo.engineVersion = 1;
 appInfo.apiVersion = VK_API_VERSION_1_0;

 // Define the Vulkan instance create info structure
 VkInstanceCreateInfo instInfo = {};
 instInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
 instInfo.pNext = NULL;
 instInfo.flags = 0;
 instInfo.pApplicationInfo = &appInfo;

 VkResult res = vkCreateInstance(&instInfo, NULL, &instance);
 return res;
}

The VkInstance object is created using the vkCreateInstance() API. This API uses a VkInstanceCreateInfo control structure object (instInfo). This structure object contains the reference of appInfo (VkApplicationInfo) to understand application-specific attributes. In addition, the VkInstanceCreateInfo object can also be used to enable the instance-specific layer and its corresponding extensions.
Note
To learn more about layers and enabling them in the Vulkan application, refer to the next section.

The following is the syntax for Vulkan instance creation API:
VkResult vkCreateInstance(
 const VkInstanceCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkInstance* pInstance);

Here are the fields for the vkCreateInstance API:
	
Parameters

	
Description

	

pCreateInfo

	
This refers to the pointer to the VkInstanceCreateInfo structure (described later) containing application- (application create info), layer-, and Vulkan-specific information.

	

pAllocator

	
This specifies how to control host memory allocation. For more information, refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pInstance

	
This handles the Vulkan instance object of the type VkInstance.

The following is the syntax and structure description for VKInstanceCreateInfo:
typedef struct VKInstanceCreateInfo (
 VkStructureType type;
 const void* pNextnext;
 VkInstanceCreateFlags flags;
 const VkApplicationInfo* pApplicationInfo;
 uint32_t enabledLayerCount;
 const char* const* ppEnabledLayerNames;
 uint32_t enabledExtensionCount;
 const char* const* ppEnabledExtensionNamesenabledExtensionNames;
} VkInstanceCreateInfo;

VKInstanceCreateInfo has the following fields:
	
Parameters

	
Description

	

type

	

This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_INSTANCE

_CREATE_INFO.

	

pNext

	
This field could either be a valid pointer to an extension-specific structure or Null.

	

flags

	
This field is reserved for the future and is not in use at present.

	

pApplicationInfo

	

This indicates the object pointer of VkApplicationInfo that contains application-specific information, such as the Vulkan API version, its name and engine version, and so on.

For more information, refer to VkApplicationInfo, which is defined in detail later. This field can also be NULL.

	

enabledLayerCount

	
This field specifies the count of layers to be enabled at the instance level.

	

ppEnabledLayerNames

	
This contains the list of layer names in the form of an array that needs to be enabled at the instance level. Refer to the Introduction to layer and extensions section for further information.

	

enabledExtensionCount

	
This field specifies the count of extensions to be enabled at the instance level.

	

ppEnabledExtensionNames

	
This contains a list of extension names in the form of an array that needs to be enabled at the instance level. Refer to the Introduction to layer and extensions section for further details.

VKInstanceCreateInfo consumes VkApplicationInfo as one of its member variables. Let's look at the specs of this structure:
typedef struct VkApplicationInfo {
 VkStructureType type;
 const void* pNext;
 const char* pApplicationName;
 uint32_t applicationVersion;
 const char* pEngineName;
 uint32_t pEngineVersion;
 uint32_t apiVersion;
} VkApplicationInfo;

Here are the fields described in the structure:
	
Parameters

	
Description

	

type

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_APPLICATION_INFO. The type of this structure.

	

pNext

	
This field could either be a valid pointer to an extension-specific structure or Null as well.

	

pApplicatonName

	
This field indicates the user-defined application name given to the application, such as Hello World!!!.

	

applicationVersion

	
Use this field to indicate the versioning of the developer application. This will be helpful in retrieving the application version directly from the application executable itself.

	

engineName

	
This is the name of the backend engine used by the application.

	

engineVersion

	
This indicates the backend application's engine versioning if used; if not, the application version will suffice.

	

apiVersion

	
This field announces the version number of the Vulkan API that is to be used to run the application. The implementation reads this value and validates whether it can be ignored (if specified as 0) or can be used (if specified non-zero), it will report an error (if the API version is not supported). If there is an error, the implementation returns VK_ERROR_INCOMPATIBLE_DRIVER.

Note
The patch version number speciﬁed in apiVersion is ignored when creating an instance object. Only the major and minor versions of the instance must match those requested in apiVersion.

When the application is no longer in use, it can kill the Vulkan instance using the user-defined function destroyInstance():
void VulkanInstance::destroyInstance(){
 vkDestroyInstance(instance, NULL); // Destroy the instance
}

Inside this function, it calls the vkDestroyInstance() API, which accepts the handle of the Vulkan instance that needs to be destroyed. The following is the syntax of this API followed by its description:
VkResult vkDestroyInstance(
 VkInstance instance,
 const VkAllocationCallbacks* pAllocator);

The following fields are associated with the vkDestroyInstance API:
	
Parameters

	
Description

	

instance

	
The is the handle of the Vulkan instance, which needs to be destroyed.

	

pAllocator

	
This specifies the host memory deallocation control.

Enabling layers and extensions

Enabling layers in Vulkan is simple. The application must be aware of the available layers in the current Vulkan implementation. This can be easily done by querying and printing the available instance-based layers; we have already covered this topic under the Querying layers and extensions subsection.
Refer to the following steps to enable layers and extensions:
	Add two vector lists to the VulkanLayerAndExtension class. The first list contains the layer names that need to be enabled. The second contains the list of extensions that are used by the application: class VulkanLayerAndExtension{

 // List of layer names requested by the application.
 std::vector<const char *> appRequestedLayerNames;

 // List of extension names requested by the application.
 std::vector<const char *> appRequestedExtensionNames;

 . . .
 };

	In this application, we have enabled one layer (VK_LAYER_LUNARG_api_dump) and two extensions (VK_KHR_SURFACE_EXTENSION_NAME and VK_KHR_WIN32-_SURFACE_EXTENSION_NAME) in main.cpp. For more information, refer to the next subsection, Testing the enabled layers and extensions.
	The createInstance() function contains a list of layers and extensions. If there is no list to specify, assign a NULL pointer to ppEnabledLayerNames and ppEnabledExtensionNames: VkResult VulkanInstance::createInstance(char const*const
 appName, VulkanLayerAndExtension* layerExtension){
 . . . // Many line skipped

 VkInstanceCreateInfo instInfo = {};

 // Specify the list of layer name to be enabled.
 instInfo.enabledLayerCount = layers.size();
 instInfo.ppEnabledLayerNames = layers.data();

 // Specify the list of extensions to be enabled.
 instInfo.enabledExtensionCount = extensionNames.size();
 instInfo.ppEnabledExtensionNames = extensionNames.data();

 VkResult res = vkCreateInstance(&instInfo,NULL,&instance);
 }

Note
The LunarG Vulkan SDK supports different types of layers for debugging and validation purposes. In this example, we will enable VK_LAYER_LUNARG_api_dump; this layer prints the Vulkan API calls along with their parameters and values. Layers can be injected at runtime for instance-based layers. For more information on the features offered by other layers, refer to the Understanding layer features section in the next chapter.

Testing the enabled layers and extensions

Follow these instructions to test the output:
	Create the VulkanApplication class and implement the constructor and a wrapper function (createVulkanInstance) to create the instance. Note that this is a singleton class. For more information, refer to the VulkanApplication.h/.cpp file: #include "VulkanInstance.h"
 #include "VulkanLED.h"

 class VulkanApplication {
 private:
 VulkanApplication();

 public:
 ~VulkanApplication();

 // Many lines skipped please refer to source

 // code for full implementation.
 public:
 // Create the Vulkan instance object
 VkResult createVulkanInstance
 (vector<const char *>& layers, vector<const char*
 > & extensions, const char* applicationName);

 // Vulkan Instance object
 VulkanInstance instanceObj;

 };

 // Application constructor responsible for layer enumeration.
 VulkanApplication::VulkanApplication() {
 // At application start up, enumerate instance layers
 instanceObj.layerExtension.getInstanceLayerProperties();
 }

 // Wrapper function to create the Vulkan instance
 VkResult VulkanApplication::createVulkanInstance
 (vector<const char*>& layers, vector<const char *>&
 extensions, const char* appName){

 instanceObj.createInstance(layers, extensions, appName);

 return VK_SUCCESS;
 }

	Set the instance-level layers and extensions from the main (main.cpp) program, enabling the instance layer VK_LAYER_LUNARG_api_dump. Also, add the extensions VK_KHR_SURFACE_EXTENSION_NAME and VK_KHR_WIN32_SURFACE_EXTENSION_NAME. This layer outputs the API call with their parameters and values: #include "Headers.h"
 #include "VulkanApplication.h"

 std::vector<const char *> instanceExtensionNames = {
 VK_KHR_SURFACE_EXTENSION_NAME,
VK_KHR_WIN32_SURFACE_EXTENSION_NAME
 };

 std::vector<const char *> layerNames = {
 "VK_LAYER_LUNARG_api_dump"
 };

 int main(int argc, char **argv){
 VkResult res;
 // Create singleton object, calls Constructor function
 VulkanApplication* appObj =VulkanApplication::GetInstance();
 appObj->initialize();

 }

 // Application constructor responsible for layer enumeration.
 void VulkanApplication::initialize()
 {
 char title[] = "Hello World!!!";

 // Create the Vulkan instance with

 // specified layer and extension names.
 createVulkanInstance(layerNames, instanceExtensionNames,
 title);
 }

	Compile the project, open the terminal type, and go to the folder containing the executable. Type [executable name].exe > [redirect file name], for example, 3_0_DeviceHandshake.exe > apiDump.txt:

[image: Testing the enabled layers and extensions]

	This will result in the following output: t{0} vkCreateInstance(pCreateInfo = 000000C697D0F570, pAllocator =
 0000000000000000, pInstance = 0000025A40AED010) = VK_SUCCESS
 pCreateInfo (000000C697D0F570)
 sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO
 pNext = 000000C697D0F548
 flags = 0
 pApplicationInfo = 000000C697D0F6B8
 enabledLayerCount = 1
 ppEnabledLayerNames = 0000025A3F0ED490
 enabledExtensionCount = 2
 ppEnabledExtensionNames = 0000025A3F0ED9E0
 ppEnabledExtensionNames[0] = VK_KHR_surface
 ppEnabledExtensionNames[1] = VK_KHR_win32_surface
 ppEnabledLayerNames[0] = VK_LAYER_LUNARG_api_dump
 pApplicationInfo (000000C697D0F588)
 sType = VK_STRUCTURE_TYPE_APPLICATION_INFO
 pNext = 0000000000000000
 pApplicationName = Draw Cube
 applicationVersion = 1
 pEngineName = Draw Cube
 engineVersion = 1
 apiVersion = 4194304
 pNext (000000C697D0F578)

Note
The layers can also be enabled explicitly, for instance by setting the Windows environment variables to VK_INSTANCE_LAYERS = VK_LAYER_LUNARG_api_dump.

Understanding physical and logical devices

Vulkan divides the representation of a device into two forms known as the logical and physical device:
	Physical device: A physical device represents a single workforce that may comprise a single GPU along with other hardware parts that work together to help the system accomplish the submitted jobs. On a very simple system, a physical device can be considered to represent the physical GPU unit.
	Logical device: A logical device represents the application view of the actual device.

Physical devices

OpenGL does not expose physical devices; it connects them behind the curtains. Vulkan, on the other hand, exposes the system real computing device or GPU to the application. It allows the application to enumerate the physical devices available on the system.
Note
In this section, we will add a new user-defined class called VulkanDevice; this class is implemented in VulkanDevice.h/.cpp. It is responsible for managing the physical (VkPhysicalDevice) and logical device (VkDevice). In addition, it also manages the physical device's queue families.

The following is the declaration of the VulkanDevice class; as we proceed through this chapter, we will uncover most of the functions used in this class. Refer to the accompanying source code for the full implementation of this header file declaration:
class VulkanDevice{
 public:
 VulkanDevice(VkPhysicalDevice* gpu); ~VulkanDevice();

 // Device related member variables
 VkDevice device; // Logical device
 VkPhysicalDevice* gpu; // Physical device
 VkPhysicalDeviceProperties gpuProps; // Physical device attributes
 VkPhysicalDeviceMemoryProperties memoryProperties;

 // Queue related properties

 // Vulkan Queues object
 VkQueue queue;

 // Store all queue families exposed by the physical device.
 vector<VkQueueFamilyProperties>queueFamilyProps;

 // Stores graphics queue index
 uint32_t graphicsQueueFamilyIndex;

 // Number of queue family exposed by device
 uint32_t queueFamilyCount;

 // Device specific extensions
 VulkanLayerAndExtension layerExtension;

 // This class exposes the below function to the outer world
 createDevice(), memoryTypeFromProperties()
 destroyDevice(), getGrahicsQueueHandle(),
 initializeDeviceQueue(), getPhysicalDeviceQueuesAndProperties();
};

Enumerating physical devices

In order to establish a connection with the available physical devices, an application has to enumerate them. Physical device enumeration is a process by which Vulkan exposes the number of actual devices, which are available on the system, to the application. A list of physical devices can be retrieved using vkEnumeratePhysicalDevices().
The following is the syntax of this API:
VkResult (
 VkInstance instance,
 uint32_t pPhysicalDeviceCount,
 VkPhysicalDevice* pPhysicalDevice);

The following are the fields associated with this API:
	
Parameters

	
Description

	

instance

	
This is the handle of the Vulkan instance.

	

pPhysicalDeviceCount

	
This specifies the number of physical devices.

	

pPhysicalDevice

	
This is the Vulkan physical device object.

This API is wrapped in the Application class's enumeratePhysicalDevices function. It returns the number of physical device objects on the available system:
 VkResult VulkanApplication::enumeratePhysicalDevices
 (std::vector<VkPhysicalDevice>& gpuList){

 // Holds the gpu count
 uint32_t gpuDeviceCount;

 // Get the gpu count
 vkEnumeratePhysicalDevices
 (instanceObj.instance, &gpuDeviceCount, NULL);

 // Make space for retrieval
 gpuList.resize(gpuDeviceCount);

 // Get Physical device object
 return vkEnumeratePhysicalDevices
 (instanceObj.instance, &gpuDeviceCount, gpuList.data());

 }

The following diagram shows the enumerated physical devices on the system and is associated with the VkInstance object while querying:

[image: Enumerating physical devices]

Querying physical device extensions

A physical device exposes extensions similar to Vulkan instances. For each retrieved instance layer property (VkLayerProperties), there may exist extension properties for each physical device that can be queried using the vkEnumerateDeviceExtensionProperties() API.
The following is the syntax of this API:
VkResult vkEnumerateDeviceExtensionProperties (
 VkPhysicalDevice physicalDevice,
 const char* pLayerName,
 uint32_t* pExtensionCount,
 VkExtensionProperties* pProperties);

Here are the fields associated with this API:
	
Parameters

	
Description

	

physicalDevice

	
This represents the physical device to which the extension properties will be queried.

	

pLayerName

	
This is the name of the layer for which the extension needs to be queried.

	

pExtensionCount

	
This refers to the number of extension properties exposed by the current physicalDevice for a corresponding pLayerName.

	

pProperties

	
This represents a retrieved array; it contains the extension's property objects that correspond to the pLayerName.

The process of querying device-based extension properties is very similar to that of an instance-based one. The following is the implementation of this function:
VkResult VulkanLayerAndExtension::getDeviceExtensionProperties
 (VkPhysicalDevice* gpu)
{
 // Variable to check Vulkan API result status
 VkResult result;

 // Query all the extensions for each layer and store it.
 std::cout << "\Device extensions" << std::endl;
 std::cout << "===================" << std::endl;
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 std::vector<LayerProperties>* instanceLayerProp =
 &appObj->GetInstance()->instanceObj.
 layerExtension.layerPropertyList;

 for (auto globalLayerProp : *instanceLayerProp) {
 LayerProperties layerProps;
 layerProps.properties = globalLayerProp.properties;

 if (result = getExtensionProperties(layerProps, gpu))
 continue;

 layerPropertyList.push_back(layerProps);

 // Many lines skipped..
 }
 return result;
}

Getting the properties of a physical device

The properties of a physical device can be retrieved using the vkGetPhysicalDeviceProperties() API; the attributes are retrieved in the VkPhysicalDeviceProperties control structure. Here's the syntax of this process:
void vkGetPhysicalDeviceMemoryProperties (
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceMemoryProperties* pMemoryProperties);

Here are the fields for vkGetPhysicalDeviceMemoryProperties:
	
Parameters

	
Description

	

physicalDevice

	
This is the GPU handle whose memory properties need to be retrieved.

	

pMemoryproperties

	
This is the structure that will retrieve the GPU memory properties.

Interrogating memory properties from the physical device

A single physical device may have different memory types, which are further differentiated based on their properties. It's important for an application to know the characteristics of the memory; this facilitates better allocation of the resources, depending upon the application logic or resource type. The following syntax is to retrieve the physical device memory properties:
void vkGetPhysicalDeviceMemoryProperties (
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceMemoryProperties* pMemoryProperties);

Here are the fields described for vkGetPhysicalDeviceMemoryProperties:
	
Parameters

	
Description

	

physicalDevice

	
This is the GPU handle whose memory properties need to be queried.

	

pMemoryProperties

	
This is for retrieving the memory properties.

Logical device

A logical device is the representation of a physical device, but it is used in the application space; it provides a specialized view of the physical device. For example, a physical device may consist of three queues: graphics, compute, and transfers. However, a logical device can be created with a single queue (say, graphics) attached to it; this makes it very easy to submit the command buffers.
Creating a logical device

A logical device is represented using VkDevice and can be created using the vkCreateDevice API. Here's the syntax of this:
VkResult vkCreateDevice(
 VkPhysicalDevice pPhysicalDevice,
 Const VkDeviceCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDevice* pDevice);

For more information on API fields, refer to the following table:
	
Parameters

	
Description

	

pPhysicalDevice

	
This represents the physical device handle whose logical device is to be created.

	

pCreateInfo

	
This is the VkDeviceCreateInfo structure that contains specific information that will be utilized by the vkCreateDevice() API to control the creation of a logical device.

	

pAllocator

	
This specifies how to control host memory allocation. For more information, refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pDevice

	
This refers to the created logical device pointer that contains the newly created VkDevice object.

This API uses the VkDeviceCreateInfo control structure object (deviceInfo), which contains the necessary information required to create a logical device object. For instance, it contains the names of the layers (this feature is deprecated and kept for backward-compatibility) and extensions that need to be enabled on the device. In addition, it also specifies which queue it should be creating and connect to. In our case, we are interested in drawing operations; therefore, we need a queue handle (graphicsQueueIndex) that will represent a queue that has the functionality of drawing capabilities. In other words, we need the graphics queue handle.
Note
The queue information is contained in the VkDeviceQueueCreateInfo structure object, queueInfo. When a logical device is created, it also creates the associated queues with it, using this structure. For more information on queues, how to find the graphics queue index, and the queue creation process, refer to the next section, Understanding queues and queue families.

VulkanDevice::createDevice is a user-defined wrapper method that helps to create the logical device object. Here is its implementation:
 VkResult VulkanDevice::createDevice(vector<const char *>& layers,
 vector<const char *>& extensions){

 VkResult result;
 float queuePriorities[1] = { 0.0 };

 // Create the object information
 VkDeviceQueueCreateInfo queueInfo = {};
 queueInfo.queueFamilyIndex = graphicsQueueIndex;
 queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
 queueInfo.pNext = NULL;
 queueInfo.queueCount = 1;
 queueInfo.pQueuePriorities = queuePriorities;

 VkDeviceCreateInfo deviceInfo = {};
 deviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
 deviceInfo.pNext = NULL;
 deviceInfo.queueCreateInfoCount = 1;
 deviceInfo.pQueueCreateInfos = &queueInfo;
 deviceInfo.enabledLayerCount = 0;
 // Device layers are deprecated
 deviceInfo.ppEnabledLayerNames = NULL;
 deviceInfo.enabledExtensionCount = extensions.size();
 deviceInfo.ppEnabledExtensionNames = extensions.data();
 deviceInfo.pEnabledFeatures = NULL;

 result = vkCreateDevice(*gpu, &deviceInfo, NULL, &device);

 assert(result == VK_SUCCESS);
 return result;
}

Waiting on the host

A device is said to be active as long as it has jobs in the queues to process. Once the queues have no more command buffers to process, the device becomes idle. The following vkDeviceWaitIdle API waits on the host until all the queues for the logical device become idle. This API accepts the argument that takes the handle of the logical device object for which the idle status is to be checked. Here's the syntax for this:
VkResult vkDeviceWaitIdle(VkDevice device);

Losing the device

While working with logical (VKDevice) and physical (VKPhysicalDevice) devices for a certain reason--such as hardware malfunction, device error, execution timeouts, power management events, and/or platform-speciﬁc events--the devices can be lost. This may result in failing to execute the pending commands buffer.
Tip
When a physical device is lost, the attempt to create a logical device object (VKDevice) will fail and it will return VK_ERROR_DEVICE_LOST. If the logical device object is lost, certain commands will return VK_ERROR_DEVICE_LOST upon its use. However, the corresponding physical device may remain unaffected. It is not possible to reset the lost state of the logical device, and this loss of state is local to the logical device object (VKDevice) and does not affect any other active logical device objects.

Understanding queues and queue families

Queues are the means by which an application and a physical device communicate. The application provides the jobs in the form of a command buffer that is submitted to the queues. These are read by the physical device and processed asynchronously.
A physical device may support four types of queues, as shown in the following diagram. There could be multiple queues of the same type on a physical device; this allows the application to choose the number of queues and what type of queue it needs. For example, a simple application may require two queues: compute and graphics; here, the former is used for convolution computing and the second renders the computed blur image.

[image: Understanding queues and queue families]

A physical device may consist of one or more queue families exposing what types of queue exist inside each queue family. Further, each queue family may have one or more queue count. The following diagram shows three queue families with their respective multiple queues:

[image: Understanding queues and queue families]

Querying queue families

A physical device is capable of exposing multiple queue families.
The number of queue family properties are exposed by the vkGetPhysicalDeviceQueueFamilyProperties() API, as described here:
VkResult vkGetPhysicalDeviceQueueFamilyProperties (
 VkPhysicalDevice physicalDevice,
 uint32_t* pQueueFamilyPropertyCount,
 VkQueueFamilyProperties* pQueueFamilyProperties);

Here are the fields for this API:
	
Parameters

	
Description

	

physicalDevice

	
This is the physical device handle whose queue properties are to be retrieved.

	

pQueueFamilyPropertyCount

	
This refers to the number of queue families exposed by the device.

	

pQueueFamilyProperties

	
This field retrieves the queue family properties in an array of size equal to queueFamilyPropertyCount.

Queues are divided into families according to capabilities that are similar in nature. The following code snippet from the VulkanDevice class shows how to query the queue families and their properties in the VkQueueFamilyProperties control structure object, namely queueFamilyProps.
In our implementation, the queue family properties are queried in a wrapper function called getPhysicalDeviceQueuesAndProperties(), defined in the VulkanDevice class. The following is the implementation:
void VulkanDevice::getPhysicalDeviceQueuesAndProperties(){
 // Query queue families count by passing NULL as second parameter
 vkGetPhysicalDeviceQueueFamilyProperties(*gpu, &queueFamilyCount,
 NULL);

 // Allocate space to accomodate Queue properties
 queueFamilyProps.resize(queueFamilyCount);

 // Get queue family properties
 vkGetPhysicalDeviceQueueFamilyProperties
 (*gpu, &queueFamilyCount, queueFamilyProps.data());
}

The queueFlag field of this structure contains the family information in the form of the following flag bits:
	
Flag bit

	
Queue family meaning

	

VK_QUEUE_GRAPHICS_BIT

	
This is a graphics queue; it supports graphics-related operations.

	

VK_QUEUE_COMPUTE_BIT

	
This is a compute queue; it offers computation capabilities.

	

VK_QUEUE_TRANSFER_BIT

	
This is a transfer queue; it supports transfers.

	

VK_QUEUE_SPARSE_BINDING_BIT

	
This is a sparse queue; it is capable of sparse memory management.

Each queue family may support one or more queue types, which are indicated by the queueFlag field of VkQueueFamilyProperties. The queueCount specifies the number of queues in the queue family. The third field timestampVaildBits is used to time the command execution. The last parameter minImageTransferGranularity specifies the minimum granularity image transfer operations in the present queue family support. Here is the syntax for this:
typedef struct VkQueueFamilyProperties {
 VkQueueFlags queueFlags;
 uint32_t queueCount;
 uint32_t timestampValidBits;
 VkExtent3D minImageTransferGranularity;
} VkQueueFamilyProperties;

The following diagram shows how the queue and queue families are related in a physical device. In this particular illustration, a physical device comprises four types of queue family, where each of these contains different capabilities in terms of the queue type (queueFlags) it supports and the number of queues (queueCount) in each family.

[image: Querying queue families]

Storing the graphics queue handle

The creation of a logical device object also needs a valid queue handle (in the form of an index) in order to create the associated queue with it. For this, iterate through all the queried queue family properties and check for the VkQueueFamilyProperties::queueFlags bit information to find the appropriate queue. For example, we are interested in the graphics queue handle. The following code stores the handle of the graphics queue in graphicsQueueIndex, which is used in the creation of the logical device (VkDevice) object:
uint32_t VulkanDevice::getGrahicsQueueHandle(){
 bool found = false;
 // 1. Iterate number of Queues supported by the Physical device
 for (unsigned int i = 0; i < queueFamilyCount; i++){
 // 2. Get the Graphics Queue type
 if (queueFamilyProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT){
 // 3. Get the handle/index ID of graphics queue family.
 found = true;
 graphicsQueueIndex = i;
 break;
 }
 } return 0;
}

Creating a queue

Queues are created implicitly when a logical device object is created using the vkCreateDevice() API. This API also intakes the queue information in the form of VkDeviceQueueCreateInfo. The following is the syntax and associated field's description:
typedef struct VkDeviceQueueCreateInfo {
 VkStructureType type;
 const void* pNext;
 VkDeviceQueueCreateFlags flags;
 uint32_t queueFamilyIndex;
 uint32_t queueCount;
 const float* pQueuePriorities;
} VkDeviceQueueCreateInfo;

The following table describes each field of this API:
	
Parameters

	
Description

	

type

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO.

	

pNext

	
This field could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
These are unused flags, which are reserved for future use.

	

queueFamilyIndex

	
This queues family information specified in the form of a 32-bit unsigned int queue index type. For example, in our case we supplied the graphicsQueueIndex variable, which contains the graphics queue index.

	

queueCount

	
This refers to the number of queue families to be created.

	

pQueuePriorities

	
This field represents an array of normalized floating-point values that specify the priority of the work submitted to each created queue.

As we already know, queues are automatically created when a logical device object is created. The created queue can then be retrieved by the application using the vkGetDeviceQueue() API. The following function (getDeviceQueue()) from the VulkanDevice class provides a high-level wrapper function to get the device's associated queue:
void VulkanDevice::getDeviceQueue(){
 vkGetDeviceQueue(device, graphicsQueueWithPresentIndex, 0, &queue);
}

Here is the syntax for this:
void vkGetDeviceQueue (
 VkDevice logicalDevice,
 uint32_t queueFamilyIndex,
 uint32_t queueIndex,
 VkQueue* pQueue);

For more information about the API fields, refer to the following table:
	
Parameters

	
Description

	

logicalDevice

	
This refers to the logical device (VkDevice) object that owns the queue.

	

queueFamilyIndex

	
This field indicates the index number of the family to which the queue (pQueue) belongs.

	

queueIndex

	
There could be multiple queues within a queue family, where each queue is identified by a unique index. This field indicates the index of the queue within the queue family (indicated by queueFamilyIndex).

	

pQueue

	
This is the retrieved queue object returned by this API.

Note
The desired queue object that is intended to be queried from the logical device object will be deferred at this point. This is because we are interested in a queue that is capable of providing presentation capabilities, and for this, we need to wait until Chapter 6, Allocating Image Resources and Building a Swapchain with WSI. In this chapter, we will learn how to implement the swapchain for presentation purposes.

Implementing devices and queues all together

In this section, we will revisit all of the knowledge we've gathered in this chapter so far and implement a program to create the device and queues from an application's view. Let's look at a step-by-step process that describes the flow of information.
First, enumerate the physical devices on the system using enumeratePhysicalDevices(); the retrieved physical device is stored in the gpuList vector. For the sake of simplicity, we are assuming the system has only one GPU (using the first element of gpuList). Next, we handshake with the device using the handShakeWithDevice() function:

/********** VulkanApplication.cpp **********/

// Get the list of physical devices on the system
vector<VkPhysicalDevice> gpuList;

enumeratePhysicalDevices(gpuList);

if (gpuList.size() > 0) {
 appObj->handShakeWithDevice
 (&gpuList[0], layerNames, deviceExtensionNames);
}

void VulkanApplication::initialize()
{
 // Many lines skipped please refer to the source code.
 // Get the list of physical devices on the system
 std::vector<VkPhysicalDevice> gpuList;
 enumeratePhysicalDevices(gpuList);

 // This example use only one device which is available first.
 if (gpuList.size() > 0) {
 handShakeWithDevice(&gpuList[0], layerNames,
 deviceExtensionNames);
 }
}

The VulkanApplication::enumeratePhysicalDevices() function makes use of vkEnumeratePhysicalDevices and gathers the number of physical devices (VKPhysicalDevice) onboard. The application asserts whether there is a GPU to work with. Next, it allocates the necessary space to store this information in a vector list and provides it to the same API (vkEnumeratePhysicalDevices) again, along with the GPU count, to get the physical device objects:

/***************** Application.cpp *****************/
VkResult VulkanApplication::enumeratePhysicalDevices
 (vector<VkPhysicalDevice>& gpuList){
 uint32_t gpuDeviceCount;

 VkResult result = vkEnumeratePhysicalDevices
 (instanceObj.instance, &gpuDeviceCount, NULL);
 assert(result == VK_SUCCESS);

 gpuList.resize(gpuDeviceCount); assert(gpuDeviceCount);

 result = vkEnumeratePhysicalDevices
 (instanceObj.instance, &gpuDeviceCount, gpuList.data());
 assert(result == VK_SUCCESS);

 return result;
}

VulkanApplication::handShakeWithDevice() is responsible for creating the logical device objects and the queues associated with them. It also does some initialization jobs, which are necessary at a later stage of application development, such as getting the physical device properties and memory properties. Here is the syntax for this API:
 void VulkanApplication::handShakeWithDevice (
 VkPhysicalDevice* gpu,
 std::vector<const char*>& extensions,
 int queueIndex);

Here are the description for the fields:
	
Parameters

	
Description

	

gpu

	
This is the physical device to which the application performs the handshake.

	

layers

	
This is the name of the layer that needs to be enabled at gpu.

	

extensions

	
This refers to the extension names that need to be enabled at gpu.

The inside process of the VulkanApplication::handShakeWithDevice() function is described as follows:
	Use the VulkanDevice object and query the extensions exposed by the associated physical device. The retrieved extensions can be cross-checked against the application-requested extensions to check whether they are supported by the physical device or not.
	Retrieve the physical device properties using vkGetPhysical-DeviceProperties() and store them in the local data structure (gpuProps) of VulkanDevice for later use.
	Get the memory information and its properties offered by the physical device using the vkGetPhysicalDeviceMemoryProperties() API.
	Query all the queue families supported by the physical device using the getPhysicalDeviceQueuesAndProperties() helper function of VulkanDevice class and store their properties for later use.
	Traverse through all the queues and check which queue supports graphics operations. This is done using the getGraphicsQueueHandle() function; this function returns the index or handle of the queue, which can be used to perform the graphics operations.
	Finally, VulkanDevice::createDevice() is called to create the logical device object associated with the physical device. This function uses the graphics queue handle and also creates the queue associated with the logical device object. In addition, this function also accepts the extensions' name list, which needs to be enabled on the physical device:

 /***************** Application.cpp *****************/

 // High level function for creating device and queues
 VkResult VulkanApplication::handShakeWithDevice(
 VkPhysicalDevice* gpu, std::vector<const char *>& layers,
 std::vector<const char *>& extensions)
 {

 // The user define Vulkan Device object.

 // This will manage the Physical and logical

 // device and their queue and properties
 deviceObj = new VulkanDevice(gpu);
 if (!deviceObj){
 return VK_ERROR_OUT_OF_HOST_MEMORY;
 }

 // Print the devices available layer and their extension
 deviceObj->layerExtension.
 getDeviceExtensionProperties(gpu);

 // Get the physical device or GPU properties
 vkGetPhysicalDeviceProperties(*gpu, &deviceObj->gpuProps);

 // Get memory properties from the physical device or GPU.
 vkGetPhysicalDeviceMemoryProperties(*gpu,
 &deviceObj->memoryProperties);

 // Query the availabe queues on the physical

 // device and their properties.
 deviceObj->getPhysicalDeviceQueuesAndProperties();

 // Retrive the queue which support graphics pipeline.
 deviceObj->getGrahicsQueueHandle();

 // Create Logical Device, ensure that this

 // device is connect to graphics queue
 deviceObj->createDevice(layers, extensions);

 return VK_SUCCESS;
 }

Summary

In this chapter, we got our hands dirty with Vulkan programming. We understood the setup and building process of the Vulkan project using CMake and the LunarG SDK. We started with Vulkan basics, with layers and extensions, and learned the step-by-step process to query them. We created a Vulkan instance and demonstrated the instructions to enable and test the layers and extensions at an instance level.
Further, we discussed devices and queues. We explored the differences between physical and logical device objects. We programmed the enumeration of the physical device on a system and learned to enable device-specific extensions. We enumerated the queue families associated with each physical device. Using the queue properties, we chose the graphics queue and created the logical device object.
Finally, we summed up all of our understanding and implemented the process of handshaking with the device, which includes the creation of physical and logical device objects along with their queues.
Debugging provides a better opportunity to learn through mistakes with valid reasons. In the next chapter, we will learn the debugging process in Vulkan, which is extremely important from a developer's perspective. Vulkan is a new graphics API and has a completely different programming paradigm from traditional APIs. The debugging capabilities provide a better way to understand these APIs.

Chapter 4. Debugging in Vulkan

In the last chapter, we initialized the Vulkan API and about learned the concepts of layers and extensions. We connected with the physical hardware device and understood the different types of queue exposed by it. Since we are gearing up for practical implementations, it's important that we learn the Vulkan debugging in order to avoid unpleasant mistakes.
Vulkan allows you to perform debugging through validation layers. These validation layer checks are optional and can be injected into the system at runtime. Traditional graphics APIs perform validation right up front using some sort of error-checking mechanism, which is a mandatory part of the pipeline. This is indeed useful in the development phase, but actually, it is an overhead during the release stage because the validation bugs might have already been fixed at the development phase itself. Such compulsory checks cause the CPU to spend a significant amount of time in error checking.
On the other hand, Vulkan is designed to offer maximum performance, where the optional validation process and debugging model play a vital role. Vulkan assumes the application has done its homework using the validation and debugging capabilities available at the development stage, and it can be trusted flawlessly at the release stage.
In this chapter, we will learn about the validation and debugging process of a Vulkan application. We will cover the following topics:
	Peeking into Vulkan debugging
	Understanding LunarG validation layers and their features
	Implementing debugging in Vulkan

Peeking into Vulkan debugging

Vulkan debugging validates application implementation. It surfaces not only errors, but also other validations, such as proper API usage. It does so by verifying each parameter passed to it, warning about the potentially incorrect and dangerous API practices in use and reporting any performance-related warnings when the API is not used optimally. By default, debugging is disabled, and it's the application's responsibility to enable it. Debugging works only for those layers that are explicitly enabled at the instance level at the time of instance creation (VkInstance).
When debugging is enabled, it inserts itself into the call chain for the Vulkan commands the layer is interested in. For each command, the debugging visits all the enabled layers and validates them for any potential error, warning, debugging information, and so on.
Debugging in Vulkan is simple. The following is an overview that describes the steps required to enable it in an application:
	Enable debugging capabilities by adding the VK_EXT_DEBUG_REPORT_EXTENSION_NAME extension at the instance level.
	Define the set of validation layers intended for debugging. For example, we are interested in the following layers at the instance and device level. For more information about these layer functionalities, refer to the next section:	VK_LAYER_GOOGLE_unique_objects
	VK_LAYER_LUNARG_api_dump
	VK_LAYER_LUNARG_core_validation
	VK_LAYER_LUNARG_image
	VK_LAYER_LUNARG_object_tracker
	VK_LAYER_LUNARG_parameter_validation
	VK_LAYER_LUNARG_swapchain
	VK_LAYER_GOOGLE_threading

	The Vulkan debugging APIs are not part of the core command, which can be statically loaded by the loader. These are available in the form of extension APIs that can be retrieved at runtime and dynamically linked to the predefined function pointers. So, as the next step, the debug extension APIs vkCreateDebugReportCallbackEXT and vkDestroyDebugReportCallbackEXT are queried and linked dynamically. These are used for the creation and destruction of the debug report.
	Once the function pointers for the debug report are retrieved successfully, the former API (vkCreateDebugReportCallbackEXT) creates the debug report object. Vulkan returns the debug reports in a user-defined callback, which has to be linked to this API.
	Destroy the debug report object when debugging is no longer required.

Understanding LunarG validation layers and their features

The LunarG Vulkan SDK supports the following layers for debugging and validation purposes. In the following points, we have described some of the layers that will help you understand the offered functionalities:
	VK_LAYER_GOOGLE_unique_objects: Non-dispatchable Vulkan objects handles are not required to be unique; a driver may return the same handle for multiple objects that it considers equivalent. This behavior makes tracking the object difficult because it is not clear which object to reference at the time of deletion. This layer packs the Vulkan objects into a unique identifier at the time of creation and unpacks them when the application uses it. This ensures there is proper object lifetime tracking at the time of validation. As per LunarG's recommendation, this layer must be last in the chain of the validation layer, making it closer to the display driver.
	VK_LAYER_LUNARG_api_dump: This layer is helpful in knowing the parameter values passed to the Vulkan APIs. It prints all the data structure parameters along with their values.
	VK_LAYER_LUNARG_core_validation: This is used for validating and printing important pieces of information from the descriptor set, pipeline state, dynamic state, and so on. This layer tracks and validates the GPU memory, object binding, and command buffers. Also, it validates the graphics and compute pipelines.
	VK_LAYER_LUNARG_image: This layer can be used for validating texture formats, rendering target formats, and so on. For example, it verifies whether the requested format is supported on the device. It validates whether the image view creation parameters are reasonable for the image that the view is being created for.
	VK_LAYER_LUNARG_object_tracker: This keeps track of object creation along with its use and destruction, which is helpful in avoiding memory leaks. It also validates that the referenced object is properly created and is presently valid.
	VK_LAYER_LUNARG_parameter_validation: This validation layer ensures that all the parameters passed to the API are correct as per the specification and are up to the required expectation. It checks whether the value of a parameter is consistent and within the valid usage criteria defined in the Vulkan specification. Also, it checks whether the type field of a Vulkan control structure contains the same value that is expected for a structure of that type.
	VK_LAYER_LUNARG_swapchain: This layer validates the use of the WSI swapchain extensions. For example, it checks whether the WSI extension is available before its functions could be used. Also, it validates that an image index is within the number of images in a swapchain.
	VK_LAYER_GOOGLE_threading: This is helpful in the context of thread safety. It checks the validity of multithreaded API usage. This layer ensures the simultaneous use of objects using calls running under multiple threads. It reports threading rule violations and enforces a mutex for such calls. Also, it allows an application to continue running without actually crashing, despite the reported threading problem.
	VK_LAYER_LUNARG_standard_validation: This enables all the standard layers in the correct order.

Note
For more information on validation layers, visit LunarG's official website. Check out https://vulkan.lunarg.com/doc/sdk and specifically refer to the Validation Layer Details section for more details.

Implementing debugging in Vulkan

Since debugging is exposed by validation layers, most of the core implementation of the debugging will be done under the VulkanLayerAndExtension class (VulkanLED.h/.cpp). In this section, we will learn about the implementation that will help us enable the debugging process in Vulkan:
The Vulkan debug facility is not part of the default core functionalities. Therefore, in order to enable debugging and access the report callback feature, we need to add the necessary extensions and layers:
	Extension: Add the VK_EXT_DEBUG_REPORT_EXTENSION_NAME extension to the instance level. This will help in exposing the Vulkan debug APIs to the application:

 vector<const char *> instanceExtensionNames = {
 // other extensios
 VK_EXT_DEBUG_REPORT_EXTENSION_NAME,
 };

	Layer: Define the following layers at the instance level to allow debugging at these layers:

 vector<const char *> layerNames = {
 "VK_LAYER_GOOGLE_threading",
 "VK_LAYER_LUNARG_parameter_validation",
 "VK_LAYER_LUNARG_device_limits",
 "VK_LAYER_LUNARG_object_tracker",
 "VK_LAYER_LUNARG_image",
 "VK_LAYER_LUNARG_core_validation",
 "VK_LAYER_LUNARG_swapchain",
 "VK_LAYER_GOOGLE_unique_objects"
 };

Note
In addition to the enabled validation layers, the LunarG SDK provides a special layer called VK_LAYER_LUNARG_standard_validation. This enables basic validation in the correct order as mentioned here. Also, this built-in metadata layer loads a standard set of validation layers in the optimal order. It is a good choice if you are not very specific when it comes to a layer.
a) VK_LAYER_GOOGLE_threading
b) VK_LAYER_LUNARG_parameter_validation
c) VK_LAYER_LUNARG_object_tracker
d) VK_LAYER_LUNARG_image
e) VK_LAYER_LUNARG_core_validation
f) VK_LAYER_LUNARG_swapchain
g) VK_LAYER_GOOGLE_unique_objects

These layers are then supplied to the vkCreateInstance() API to enable them:
VulkanApplication* appObj = VulkanApplication::GetInstance();
appObj->createVulkanInstance(layerNames,
 instanceExtensionNames, title);

// VulkanInstance::createInstance()
VkResult VulkanInstance::createInstance(vector<const char *>&
 layers, std::vector<const char *>& extensionNames,
 char const*const appName)
{

 . . .
 VkInstanceCreateInfo instInfo = {};

 // Specify the list of layer name to be enabled.
 instInfo.enabledLayerCount = layers.size();
 instInfo.ppEnabledLayerNames = layers.data();

 // Specify the list of extensions to

 // be used in the application.
 instInfo.enabledExtensionCount = extensionNames.size();
 instInfo.ppEnabledExtensionNames = extensionNames.data();
 . . .

 vkCreateInstance(&instInfo, NULL, &instance);
}

The validation layer is very specific to the vendor and SDK version. Therefore, it is advisable to first check whether the layers are supported by the underlying implementation before passing them to the vkCreateInstance() API. This way, the application remains portable throughout when run against another driver implementation. The areLayersSupported() function is a user-defined utility function that inspects the incoming layer names against system-supported layers. The unsupported layers are notified to the application and removed from the layer names before feeding them into the system:

// VulkanLED.cpp

 VkBool32 VulkanLayerAndExtension::areLayersSupported
 (vector<const char *> &layerNames)
{
 uint32_t checkCount = layerNames.size();
 uint32_t layerCount = layerPropertyList.size();
 std::vector<const char*> unsupportLayerNames;
 for (uint32_t i = 0; i < checkCount; i++) {
 VkBool32 isSupported = 0;
 for (uint32_t j = 0; j < layerCount; j++) {
 if (!strcmp(layerNames[i], layerPropertyList[j].
 properties.layerName)) {
 isSupported = 1;
 }
 }

 if (!isSupported) {
 std::cout << "No Layer support found, removed"
 " from layer: "<< layerNames[i] << endl;
 unsupportLayerNames.push_back(layerNames[i]);
 }
 else {
 cout << "Layer supported: " << layerNames[i] << endl;
 }
 }

 for (auto i : unsupportLayerNames) {
 auto it = std::find(layerNames.begin(),
 layerNames.end(), i);
 if (it != layerNames.end()) layerNames.erase(it);
 }

 return true;
 }

The debug report is created using the vkCreateDebugReportCallbackEXT API. This API is not a part of Vulkan's core commands; therefore, the loader is unable to link it statically. If you try to access it in the following manner, you will get an undefined symbol reference error:
vkCreateDebugReportCallbackEXT(instance, NULL, NULL, NULL);

All debug-related APIs need to be queried using the vkGetInstanceProcAddr() API and linked dynamically. The retrieved API reference is stored in a corresponding function pointer called PFN_vkCreateDebugReportCallbackEXT. The VulkanLayerAndExtension::createDebugReportCallback() function retrieves the create and destroy debug APIs, as shown in the following implementation:

/********* VulkanLED.h *********/

// Declaration of the create and destroy function pointers
PFN_vkCreateDebugReportCallbackEXT dbgCreateDebugReportCallback;
PFN_vkDestroyDebugReportCallbackEXT dbgDestroyDebugReportCallback;

/********* VulkanLED.cpp *********/
VulkanLayerAndExtension::createDebugReportCallback(){
 . . .

// Get vkCreateDebugReportCallbackEXT API
dbgCreateDebugReportCallback=(PFN_vkCreateDebugReportCallbackEXT)
vkGetInstanceProcAddr(*instance,"vkCreateDebugReportCallbackEXT");

 if (!dbgCreateDebugReportCallback) {
 std::cout << "Error: GetInstanceProcAddr unable to locate
 vkCreateDebugReportCallbackEXT function.\n";
 return VK_ERROR_INITIALIZATION_FAILED;
 }

 // Get vkDestroyDebugReportCallbackEXT API
 dbgDestroyDebugReportCallback=
 (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr
 (*instance, "vkDestroyDebugReportCallbackEXT");

 if (!dbgDestroyDebugReportCallback) {
 std::cout << "Error: GetInstanceProcAddr unable to locate
 vkDestroyDebugReportCallbackEXT function.\n";
 return VK_ERROR_INITIALIZATION_FAILED;
 }
 . . .
 }

The vkGetInstanceProcAddr() API obtains instance-level extensions dynamically; these extensions are not exposed statically on a platform and need to be linked through this API dynamically. The following is the signature of this API:
PFN_vkVoidFunction vkGetInstanceProcAddr(
 VkInstance instance,
 const char* name);

The following table describes the API fields:
	

Parameters

	

Description

	

instance

	
This is a VkInstance variable. If this variable is NULL, then the name must be one of these: vkEnumerateInstanceExtensionProperties, vkEnumerateInstanceLayerProperties, or vkCreateInstance.

	

name

	
This is the name of the API that needs to be queried for dynamic linking.

Using the dbgCreateDebugReportCallback() function pointer, create the debugging report object and store the handle in debugReportCallback. The second parameter of the API accepts a VkDebugReportCallbackCreateInfoEXT control structure. This data structure defines the behavior of the debugging, such as what the debug information should include: errors, general warnings, information, performance-related warnings, debug information, and so on. In addition, it also takes the reference of a user-defined function (debugFunction); this helps filter and print the debugging information once it is retrieved from the system. Here's the syntax for creating a debugging report:
struct VkDebugReportCallbackCreateInfoEXT {
 VkStructureType type;
 const void* pNext;
 VkDebugReportFlagsEXT flags;
 PFN_vkDebugReportCallbackEXT fnCallback;
 void* pUserData;
};

The following table describes the purpose of the mentioned API fields:
	

Parameters

	

Description

	

type

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT.

	

flags

	
This is to define the kind of debugging information to be retrieved when debugging is on; the next table defines these flags.

	

fnCallback

	
This field refers to the function that filters and displays debug messages.

The VkDebugReportFlagBitsEXT control structure can exhibit a bitwise combination of the following flag values:
	

Flag values

	

Description

	

VK_DEBUG_REPORT_INFORMATION_BIT_EXT

	
This is to display user-friendly information describing the background activities in the currently running application, for example, resource details that may be useful when debugging an application.

	

VK_DEBUG_REPORT_WARNING_BIT_EXT

	
This is to provide a warning message for potentially incorrect or dangerous use of the API.

	

VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT

	
This indicates a potentially non-optimal use of Vulkan, which may result in performance loss.

	

VK_DEBUG_REPORT_ERROR_BIT_EXT

	
This refers to an error message specifying incorrect API usage, which may cause undefined results--for example, application crash.

	

VK_DEBUG_REPORT_DEBUG_BIT_EXT

	
This indicates diagnostic information from the loader and layer.

The createDebugReportCallback function implements the creation of the debug report. First, it creates the VulkanLayerAndExtension control structure object and fills it with relevant information. This primarily includes two things: first, assigning a user-defined function (pfnCallback) that will print the debug information received from the system (see the next point), and second, assigning the debugging flag (flags) in which the programmer is interested:

/********* VulkanLED.h *********/

// Handle of the debug report callback
VkDebugReportCallbackEXT debugReportCallback;

// Debug report callback create information control structure
VkDebugReportCallbackCreateInfoEXT dbgReportCreateInfo = {};

/********* VulkanLED.cpp *********/
VulkanLayerAndExtension::createDebugReportCallback(){
 . . .
 // Define the debug report control structure,

 // provide the reference of 'debugFunction',

 // this function prints the debug information on the console.
 dbgReportCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG
 _REPORT_CREATE_INFO_EXT;
 dbgReportCreateInfo.pfnCallback = debugFunction;
 dbgReportCreateInfo.pUserData = NULL;
 dbgReportCreateInfo.pNext = NULL;
 dbgReportCreateInfo.flags = VK_DEBUG_REPORT_WARNING_BIT_EXT |
 VK_DEBUG_REPORT_PERFORMANCE
 _WARNING_BIT_EXT |
 VK_DEBUG_REPORT_ERROR_BIT_EXT |
 VK_DEBUG_REPORT_DEBUG_BIT_EXT;

 // Create the debug report callback and store the handle

 // into 'debugReportCallback'
 result = dbgCreateDebugReportCallback
 (*instance, &dbgReportCreateInfo, NULL, &debugReportCallback);

 if (result == VK_SUCCESS) {
 cout << "Debug report callback object created successfully\n";
 }
 return result;
}

Define the debugFunction() function that prints the retrieved debug information in a user-friendly way. It describes the type of debug information along with the reported message:
VKAPI_ATTR VkBool32 VKAPI_CALL
VulkanLayerAndExtension::debugFunction(VkFlags msgFlags,
 VkDebugReportObjectTypeEXT objType, uint64_t srcObject,
 size_t location, int32_t msgCode, const char *pLayerPrefix,
 const char *pMsg, void *pUserData) {

 if (msgFlags & VK_DEBUG_REPORT_ERROR_BIT_EXT) {
 std::cout << "[VK_DEBUG_REPORT] ERROR: ["<<layerPrefix<<"]
 Code" << msgCode << ":" << msg << std::endl;

 }
 else if (msgFlags & VK_DEBUG_REPORT_WARNING_BIT_EXT) {
 std::cout << "[VK_DEBUG_REPORT] WARNING: ["<<layerPrefix<<"]
 Code" << msgCode << ":" << msg << std::endl;
 }
 else if (msgFlags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT) {
 std::cout<<"[VK_DEBUG_REPORT] INFORMATION:[" <<layerPrefix<<"]
 Code" << msgCode << ":" << msg << std::endl;

 }
 else if(msgFlags& VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT){
 cout <<"[VK_DEBUG_REPORT] PERFORMANCE: ["<<layerPrefix<<"]
 Code" << msgCode << ":" << msg << std::endl;
 }
 else if (msgFlags & VK_DEBUG_REPORT_DEBUG_BIT_EXT) {
 cout << "[VK_DEBUG_REPORT] DEBUG: ["<<layerPrefix<<"]
 Code" << msgCode << ":" << msg << std::endl;
 }
 else {
 return VK_FALSE;
 }

 return VK_SUCCESS;
 }

The following table describes the various fields from the debugFunction() callback:
	

Parameters

	

Description

	

msgFlags

	
This specifies the type of debugging event that has triggered the call, for example, an error, warning, performance warning, and so on.

	

objType

	
This is the type object that is manipulated by the triggering call.

	

srcObject

	
This is the handle of the object that's being created or manipulated by the triggered call.

	

location

	
This refers to the location of the code describing the event.

	

msgCode

	
This refers to the message code.

	

layerPrefix

	
This is the layer responsible for triggering the debug event.

	

msg

	
This field contains the debug message text.

	

userData

	
Any application-specific user data is specified to the callback using this field.

Tip

The debugFunction callback has a Boolean return value. The true return value indicates the continuation of the command chain to subsequent validation layers even after an error has occurred.

However, the false value instructs the validation layer to abort the execution when an error occurs. It is advisable to stop the execution at the very first error.

The presence of an error itself indicates that something has occurred unexpectedly; letting the system run in these circumstances may lead to undefined results or further errors, which could be completely senseless sometimes. In the latter case, where the execution is aborted, it provides a better opportunity for the developer to concentrate and fix the reported error. In contrast, the former approach, where the system throws a bunch of errors, may be cumbersome leaving the developers in a confused state sometimes.

In order to enable debugging at vkCreateInstance, provide dbgReportCreateInfo to the pNext field of VkInstanceCreateInfo structure:
 VkInstanceCreateInfo instInfo = {};
 . . .
 instInfo.pNext = &layerExtension.dbgReportCreateInfo;
 vkCreateInstance(&instInfo, NULL, &instance);

Finally, once the debug is no longer in use, destroy the debug callback object:
void VulkanLayerAndExtension::destroyDebugReportCallback(){
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 dbgDestroyDebugReportCallback(instance,debugReportCallback,NULL);
 }

The following is the output from the implemented debug report. Your output may differ from this based on the GPU vendor and SDK provider. Also, the explanations of the errors or warnings reported are very specific to the SDK itself. But at a higher level, the specification will hold; this means you can expect to see a debug report with a warning, information, debugging help, and so on, based on the debugging flag you have turned on.

[image: Implementing debugging in Vulkan]

Summary

This chapter was short, precise, and full of practical implementations. Working on Vulkan without debugging capabilities is like shooting in the dark. We know very well that Vulkan demands an appreciable amount of programming and developers make mistakes for obvious reasons; they are humans after all. We learn from our mistakes, and debugging allows us to find and correct these errors. It also provides insightful information to build quality products.
Let's do a quick recap. We learned the Vulkan debugging process. We looked at the various LunarG validation layers and understood the roles and responsibilities offered by each one of them. Next, we added a few selected validation layers that we were interested in debugginig. We also added the debug extension that exposes the debugging capabilities; without this, the API's definition could not be dynamically linked to the application. Then, we implemented the Vulkan create user define debug report function and linked it to our debug reporting callback; this callback decorates the captured debug report in a user-friendly and presentable fashion. Finally, we implemented the API to destroy the debugging report callback object.
In the next chapter, we will understand command buffers, explore their role in the Vulkan pipeline, and learn to use them to record and execute API calls. We will also take an in-depth look at the Vulkan memory management for host and device memory; we will learn about various APIs to control them.

Chapter 5. Command Buffer and Memory Management in Vulkan

A command buffer is a collection of commands, and it is submitted to an appropriate hardware queue for GPU processing. The driver then fetches the command buffers and validates and compiles them before the real GPU processing starts.
This chapter will shed light on command buffer concepts. We will learn about command pool creation, allocation/deallocation of command buffers, and recording commands. We will implement the command buffers and use them in the next chapter to drive a swapchain. A swapchain abstracts the mechanism to interface with platform surfaces and provides an array of images that can be used to perform rendering. Once rendering is done, the image is presented to the native windowing system.
In the second half of the chapter, we will understand memory management in Vulkan. We will discuss the concepts of host and device memory. We will look into memory allocators to manage host memory allocations. At the end of this chapter, we will delve into device memory and learn the methods to allocate/deallocate and use it through mapping.
This chapter will cover the following topics on command buffers and memory allocation:
	Getting started with command buffers
	Understanding the command pool and command buffer APIs
	Recording command buffers
	Implementing the command buffer wrapper class
	Managing memory in Vulkan

Getting started with command buffers

As the name suggests, a command buffer is a buffer or collection of commands in a single unit. A command buffer records various Vulkan API commands that an application is expected to execute. Command buffers once baked can be reused again and again. They record the commands in the sequence that is specified by the application. These commands are meant for carrying out different type jobs; this includes binding vertex buffer, pipeline binding, recording Render Pass commands, setting viewport and scissor, specifying drawing commands, controlling copy operations on image and buffer contents, and more.
There are two types of command buffers: primary and secondary command buffers:
	Primary command buffers: These are the owners of the secondary command buffers and responsible for executing them; they are directly submitted to the queues
	Secondary command buffers: These are executed through primary command buffers and cannot be directly submitted to queues

The number of command buffers in an application can vary from a few hundred to thousands. The Vulkan API is designed to offer maximum performance; therefore, the command buffers are allocated from the command pools in order to amortize the cost (when used in a multithreaded environment--refer to the Explicit synchronization section in this chapter) of resource creation across multiple command buffers. A command buffer cannot be created directly; instead, it is allocated from the command pool:

[image: Getting started with command buffers]

Command buffers are persistent; they are created once and can be reused continuously. Further, if a command buffer is no longer useful, it can be renewed with a simple reset command and made ready for another recording. This is an efficient way as compared to destroying and then creating a new buffer for the same purpose.
Explicit synchronization

When multiple command buffers are created in a multithreaded environment, then it's advisable to separate the synchronization domains by introducing separate command pools for each thread. This makes the cost of command buffer allocations efficient since the application does not need explicit synchronization in a different thread.
However, it is the application's responsibility to manage the synchronization between the command buffers that are shared across multiple threads.

[image: Explicit synchronization]

In contrast, OpenGL is an implicit synchronization model. In OpenGL, a lot of things are done automatically, which comes at the cost of a lot of resource tracking, cache flushing, and dependency chain construction. All of this is done behind the curtains, which indeed is an overhead of the CPU. Vulkan is fairly simple in this context; the explicit synchronization guarantees that there is no hidden mechanism nor an element of surprise.
An application is better aware of its resources, and hence, their usage and dependencies. A driver is less likely to pinpoint the dependencies with accuracy. As a result, the OpenGL implementation ends up with unexpected shader recompilations, cache flushes, and so on. Vulkan's explicit synchronization makes it free from these limitations, thereby making the hardware more productive.
Another differentiation is the submission of the command buffers in OpenGL: command buffers are pushed behind the scenes and are not in control of the application. An application that submits the commands has no guarantee when those jobs will be executed. This is because OpenGL executes command buffers in batches. It waits for the commands to build the batch and then it dispatches them together. On the other hand, Vulkan gives explicit control to the command buffer to allow the processing up front by submitting it to the desired queue.

Types of command in command buffers

A command buffer consists of one or more commands. These commands can be categorized into three types:
	Action: This command performs operations such as draw, dispatch, clear, copy, query/timestamp operations, and begin/end a subpass
	State management: This includes descriptor sets, bind pipelines, and buffers, and it is used to set the dynamic state, push constants, and the Render Pass/subpass state
	Synchronization: These commands are used for synchronization: pipeline barriers, set events, wait events, and Render Pass/subpass dependencies

Command buffers and queues

Command buffers are submitted to a hardware queue where they are processed asynchronously. Submission to queues can be made efficient by batching command buffers and executing them once. Vulkan has a deferred command model where a collection of draw calls in the command buffer and submissions are done separately and considered two different operations. This is helpful from an application perspective. This is because it will have prior knowledge of a large portion of the scene and this can be used as an opportunity to add appropriate optimizations to the submission, which would've been difficult to achieve in OpenGL.
Vulkan provides a logical view of the hardware queue, where each logical view is tightly connected to a hardware queue. A single Vulkan hardware queue can be represented by multiple logical queues, where each queue is being created based on the queue properties. For example, the presentation of rendered swapchain images may require the command buffer to submit them to a graphics queue, which is capable of presentation as well
The order of execution

Command buffers can be submitted to either a single queue or multiple queues:
	Single queue submission: Multiple command buffers submitted to a single queue may be executed or overlapped. In single queue submission, a command buffer must obey the order of the execution of operations as per the command order and the API order specification. This book only covers the submission commands used for vkQueueSubmit; it does not cover sparse memory binding command buffers (through vkQueueBindSparse).
	Multiple queue submission: The command buffers submitted to multiple queues may be executed in any order unless explicit ordering constraints are applied through the synchronization mechanism via semaphores and fences.

Understanding command pool and buffer APIs

This section will explain the different APIs that can be used to manage the command pool and command buffers. Here, we will understand the process of creating a command buffer pool that will be used for command buffer allocation. We will also look at the process of resetting and destroying APIs.
The next section of this chapter will be based on implementing these APIs in a ready-to-use wrapper class. The wrapper implementation will be highly useful in the remaining chapters of this book, where we will extensively make use of the command buffer.
Tip
As a prerequisite for the upcoming chapters, the Implementing the command pool and command buffers, Recording command buffers, and Managing memory in Vulkan sections are important.

Creating a command pool

A command pool is created using the vkCreateCommandPool() API. It accepts a VkCommandPoolCreateInfo control structure, which guides the implementation about the nature of command buffers that are going to be allocated from this pool. It also indicates which queue family it should belong to. This information, which is provided in advance, is useful to allocate compatible command pools; these pools can be used to optimize the command buffer allocation process for a typical queue submission. Here's the syntax of this:
typedef struct VkCommandPoolCreateInfo {
 VkStructureType sType;
 const void* next;
 VkCommandPoolCreateFlags flags;
 uint32_t queueFamilyIndex;
 } VkCommandPoolCreateInfo;

The following table describes the various fields of VkCommandPoolCreateInfo:
	
Parameters

	
Description

	

type

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO.

	

next

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flag

	
This represents a bitwise enum flag that indicates the behavior of the command pool usage and the command buffer being allocated from it. This enum flag is of the type VkCommandPoolFlag, and it can take VK_COMMAND_POOL_CREATE_TRANSIENT_BIT and VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT as possible input values. For more information on these flag values, refer to the following tip.

	

queueFamily

Index

	
This indicates the queue family to which the command buffer is intended to be submitted.

Tip

The VK_COMMAND_POOL_CREATE_TRANSIENT_BIT enum flag indicates that the command buffers allocated from this pool will be changed frequently and have a shorter lifespan. This means that the buffers will be reset or freed in a relatively short timeframe. This flag notifies the implementation about the nature of the command buffer, and this can be used to control the memory allocation behavior within the pool.

When the VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag is set, it indicates that a command buffer allocated from the pool can be individually reset in two ways: either explicitly by calling vkResetCommandBuffer or implicitly by calling vkBeginCommandBuffer. If this flag is not set, then these two APIs must not be called on the executable command buffers allocated from the pool. This indicates that they can only be reset in bulk by calling vkResetCommandPool.

The command pool in Vulkan is represented by the VkCommandPool object. It is created using the vkCreateCommandPool() API. The following is the syntax and description of the API:
VkResult vkCreateCommandPool(
 VkDevice device,
 const VkCommandPoolCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkCommandPool* pCommandPool);

The following table describes the various fields of this API:
	
Parameters

	
Description

	

device

	
This is the handle of the device that will create the command pool.

	

pCreateInfo

	
This refers to the VkCommandPoolCreateInfo object that indicates the nature of the command buffer in the command pool.

	

pAllocator

	
This controls host memory allocation.

	

pCommandPool

	
This represents the VkCommandPool object returned by the API.

Note
For more information on how to control host memory allocation using VkAllocationCallbacks* allocator, refer to the Host memory topic in the last section of this chapter, namely Managing memory in Vulkan.

Resetting a command pool

The command pool (VkCommandPool) can be reset using the vkResetCommandPool() API. Here is the syntax of this API:
VkResult vkResetCommandPool (
 VkDevice device,
 VkCommandPool commandPool,
 VkCommandPoolResetFlags flags);

The following are the parameters of this API:
	
Parameters

	
Description

	

device

	
This is the handle of the device that owns the command pool.

	

commandPool

	
This refers to the VkCommandPool handle that needs to be reset.

	

flags

	
This flag controls the behavior of resetting the pool.

Destroying a command pool

A command pool can be destroyed using the vkDestroyCommandPool() API. Here's the syntax of this:
VkResult vkDestroyCommandPool(
 VkDevice device,
 VkCommandPool commandPool,
 const VkAllocationCallbacks* allocator);

The following are the parameters of this API:
	
Parameters

	
Description

	

device

	
This is the handle of the device that destroys the command pool.

	

commandPool

	
This refers to the VkCommandPool handle that needs to be destroyed.

	

allocator

	
This controls host memory allocation. For more information, refer
to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

Command buffer allocation

Command buffers are allocated from the command buffer pool (VkCommandPool) using the vkAllocateCommandBuffers() API. This API needs the VkCommandBufferAllocateInfo control structure object, which specifies the various parameters that will be helpful in the allocation process. Upon successful execution of the API, it returns the VkCommandBuffer object. The following is the syntax of this API:
VkResult vkAllocateCommandBuffers(
 VkDevice device,
 const VkCommandBufferAllocateInfo* pAllocateInfo,
 VkCommandBuffer* pCommandBuffers);

Let's take a look at the API fields:
	
Parameters

	
Description

	

device

	
This is the handle of the logical device object that owns the command pool.

	

pAllocateInfo

	
This is a pointer to a VkCommandBufferAllocateInfo structure describing the parameters of the allocation; refer to the next table for more information.

	

pCommandBuffers

	
This refers to the allocated command buffer object array.

The VkCommandBufferAllocateInfo structure has the following fields.
	
Parameters

	
Description

	

sType

	
This refers to the type information telling Vulkan that it is a VkCommandBufferAllocate structure, this must be a type of VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO:

	

pNext

	
This refers to NULL or an extension-specific structure.

	

commandPool

	
This is the command pool handle from which memory needs to be allocated for the requested command buffers.

	

level

	
This is the bitwise enum flag of the type VkCommandBufferLevel indicating whether the command buffer is at the primary or secondary level. The following is the syntax of VkCommandBufferLevel:

 typedef enum VkCommandBufferLevel {
 VK_COMMAND_BUFFER_LEVEL_PRIMARY=0,
 VK_COMMAND_BUFFER_LEVEL_SECONDARY=1,
 } VkCommandBufferLevel;

	

commandBufferCount

	
This refers to the number of command buffers that need to be allocated.

Resetting command buffers

The allocated command buffer can be reset using the vkResetCommandBuffer() API. This API accepts the VkCommandBuffer object as the first parameter that needs to be reset. The second parameter is a bitwise mask, VkCommandBufferResetFlag, which controls the behavior of the reset operation. This structure has one enum value, namely VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT. When this value is set, it means that the memory held by the command buffer will be returned to the parent command pool.
The following is the syntax of the API:
VkResult vkResetCommandBuffer(
 VkCommandBuffer commandBuffer,
 VkCommandBufferResetFlags flags);

Freeing command buffers

One or more command buffers can be released using the vkFreeCommandBuffer() API. Here's the syntax of this API:
void vkFreeCommandBuffers(
 VkDevice device,
 VkCommandPool commandPool,
 uint32_t commandBufferCount,
 const VkCommandBuffer* pCommandBuffers);

The following are the parameters of the vkFreeCommandBuffers() API along with their respective descriptions:
	
Parameters

	
Description

	

device

	
This refers to the logical device that holds the command pool.

	

commandPool

	
This refers to the associated command pool from which the memory has to be released.

	

commandBufferCount

	
This refers to the number of command buffers that need to be released.

	

pCommandBuffers

	
This is an array of command buffer handles that needs to be released.

Recording command buffers

A command buffer is recorded using the vkBeginCommandBuffer() and vkEndCommandBuffer() APIs. These APIs define the scope under which any specified Vulkan commands are recorded. The following example shows the recording of the Render Pass instance creation between these two APIs, which works as the start and end scopes. For more information on creating a Render Pass, refer to the Understanding the Render Pass section in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V.

[image: Recording command buffers]

The start of the recording is performed using the vkBeginCommandBuffer() API. This defines the starting scope after which any call specified is considered to be recorded until the end scope is reached (vkEndCommandBuffer()).
The following is the syntax of this API, followed by a description of the necessary parameters:
VkResult vkBeginCommandBuffer(
 VkCommandBuffer commandBuffer,
 const VkCommandBufferBeginInfo* pBeginInfo);

This API accepts two parameters. The first one is the handle of the command buffer in which the calls are to be recorded. The second parameter is a VkCommandBufferBeginInfo structure object that defines additional information telling you how to begin the command buffer recording process.
The following is the API syntax of the VkCommandBufferBeginInfo structure:
typedef struct VkCommandBufferBeginInfo {
 VkStructureType sType;
 const void* pNext;
 VkCommandBufferUsageFlags flags;
 const VkCommandBufferInheritanceInfo* pInheritanceInfo;
} VkCommandBufferBeginInfo;

The accepted parameters in this structure are described as follows:
	
Parameters

	
Description

	

sType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO.

	

pNext

	
This field could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
This is a bitwise mask of the type VkCommandBufferUsageFlagBits indicating the command buffer usage behavior.

	

pInheritanceInfo

	
If this field is not NULL, it is used when the command buffer is the secondary command buffer. It contains the VkCommandBufferInheritanceInfo structure.

Command buffer recording is performed using the vkEndCommandBuffer() API. It accepts one parameter, which specifies the command buffer object on which the recording is to be stopped. Here's the syntax for this:
VkResult vkEndCommandBuffer(VkCommandBuffer commandBuffer);

Queue submission

Once the command buffer (VkCommandBuffer) is recorded, it is ready to be submitted to a queue. The vkQueueSubmit() API helps commit the jobs in an appropriate queue. Let's check out the syntax of this:
VkResult vkQueueSubmit(
 VkQueue queue,
 uint32_t submitCount,
 const VkSubmitInfo* pSubmitInfo,
 VkFence fence);

The accepted parameters are listed as follows:
	
Parameters

	
Description

	

queue

	
This is the queue's handle to which the command buffer is submitted.

	

submitCount

	
This refers to the number of submitInfo objects.

	

submitInfo

	
This refers to the VkSubmitInfo pointer. It contains vital information about each work submission, and the number of work submissions is indicated by submitCount. The next point talks about its API specification.

	

fence

	
This is used as a signaling mechanism indicating command buffer completion of the execution. If fence is non-null and submitCount is non-zero, then fence gets signaled when all the command buffers specified in the VkSubmitInfo::pCommandBuffers members of submitInfo are executed. If fence is non-null but submitCount is zero, then the signaled fence indicates that all of the work previously submitted to the queue has been completed.

Let's take a look at VkSubmitInfo. This structure embeds multiple pieces of information into itself. This information is used by the submission process to handle an individual VkSubmitInfo object containing a single command buffer or a bunch of them. The following is the syntax of this:
typedef struct VkSubmitInfo {
 VkStructureType type;
 const void* pNext;
 uint32_t waitSemaphoreCount;
 const VkSemaphore* pWaitSemaphores;
 const VkPipelineStageFlags* pWaitDstStageMask;
 uint32_t commandBufferCount;
 const VkCommandBuffer* pCommandBuffers;
 uint32_t signalSemaphoreCount;
 const VkSemaphore* pSignalSemaphores;
} VkSubmitInfo;

The accepted parameters are described as follows:
	
Parameters

	
Description

	

sType

	

This is the type of the VkSumbitInfo structure, which must be

VK_STRUCTURE_TYPE_SUBMIT_INFO.

	

pNext

	
This is a pointer to an extension-specific structure or NULL.

	

waitSemaphoreCount;

	
The refers to the number of semaphores upon which the command buffer is made to wait before it's executed.

	

pWaitSemaphores

	
This is a pointer to an array of semaphores upon which the command buffers are made to wait before they are executed in a batch.

	

pWaitDstStageMask

	
This is a pointer to an array of pipeline stages at which each corresponding semaphore wait will occur.

	

commandBufferCount

	
This refers to the number of command buffers to be executed in a batch.

	

pCommandBuffers

	
This is a pointer to an array of command buffers to be executed in a batch.

	

signalSemaphoreCount

	
This refers to the number of semaphores to be signaled once the commands specified in commandBuffers completes the execution.

	

pSignalSemaphores

	
This is a pointer to an array of semaphores that will be signaled when the command buffers for the given batch are executed.

Queue waiting

Once committed to the queue, the application must wait for the queue to finish the submitted jobs and be ready for the next batch. The process of waiting for the queue can be done using the vkQueueWaitIdle() API. This API will be blocked until all the command buffers and sparse-binding operations in the queue are not completed. This API accepts one argument, which specifies the handle of the queue upon which the waiting has to be done. The following is the syntax of this API:
VkResult vkQueueWaitIdle(VkQueue queue);

Implementing the wrapper class for a command buffer

This section implements the wrapper class for a command buffer called CommandBufferMgr. This class contains static functions that can be directly used like utility functions without requiring a class object. The class is implemented in a new file called wrapper.h/.cpp; this file will contain multiple utility methods.
Most of the implemented functions in this class are provided with a default implementation. This means that each function provides the user with the flexibility to change the control structure parameters from outside the function call and send them as parametric arguments. The function arguments are inherent defaults, so if you are not specifying anything custom, the function will do all the jobs for you.
The following is the header implementation of the CommandBufferMgr class. It declares four static functions that are responsible for allocating memory, recording the command buffer, and submitting the command buffer to the command queue:

 /**************** Wrapper.h ******************/
class CommandBufferMgr{
public:
 // Allocate memory for command buffers from the command pool
 static void allocCommandBuffer(const VkDevice* device,
 const VkCommandPool cmdPool, VkCommandBuffer* cmdBuf, const
 VkCommandBufferAllocateInfo* commandBufferInfo);
 // Start the command buffer recording
 static void beginCommandBuffer(VkCommandBuffer cmdBuf,
 VkCommandBufferBeginInfo* inCmdBufInfo = NULL);
 // End the command buffer recording
 static void endCommandBuffer(VkCommandBuffer cmdBuf);
 // Submit the command buffer for execution
 static void submitCommandBuffer(const VkQueue& queue, const
 VkCommandBuffer* cmdBufList, const VkSubmitInfo* submit-
 Info = NULL, const VkFence& fence = VK_NULL_HANDLE);
};

Implementing the command buffer allocation process

The allocCommandBuffer() function allocates a command buffer (cmdBuf) from the specified command pool (cmdPool). The allocation behavior can be controlled using the VkCommandBufferAllocateInfo pointer argument. When the last parameter of this function has its default parameter value (NULL), then VkCommandBufferAllocateInfo is implemented inside, as shown in the following code, and used for command buffer allocation:
void CommandBufferMgr::allocCommandBuffer(const VkDevice* device,
const VkCommandPool cmdPool, VkCommandBuffer* cmdBuf, const VkCommandBufferAllocateInfo* commandBufferInfo){
 VkResult result;

 // If command information is available use it as it is.
 if (commandBufferInfo) {
 result = vkAllocateCommandBuffers
 (*device, commandBufferInfo, cmdBuf);
 assert(!result);
 return;
 }

 // Default implementation, create the command buffer

 // allocation info and use the supplied parameter into it
 VkCommandBufferAllocateInfo cmdInfo = {};
 cmdInfo.sType = VK_STRUCTRE_TYPE_COMMAND_BUFFER_ALOCATE_INFO;
 cmdInfo.pNext = NULL;
 cmdInfo.commandPool = cmdPool;
 cmdInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
 cmdInfo.commandBufferCount = (uint32_t) sizeof(cmdBuf)/
 sizeof(VkCommandBuffer);
 // Allocate the memory
 result = vkAllocateCommandBuffers(*device, &cmdInfo, cmdBuf);
 assert(!result);
 }

Recording the command buffer allocation process

API calls can be easily recorded with the simple beginCommandBuffer() and endCommandBuffer() wrapper functions. Refer to the following code to understand the implementation:

void CommandBufferMgr::beginCommandBuffer(VkCommandBuffer cmdBuf,
 VkCommandBufferBeginInfo* inCmdBufInfo){
 VkResult result;
 // If the user has specified the custom command buffer use it
 if (inCmdBufInfo) {
 result = vkBeginCommandBuffer(cmdBuf, inCmdBufInfo);
 assert(result == VK_SUCCESS);
 return;
 }

 // otherwise, use the default implementation.
 VkCommandBufferInheritanceInfo cmdBufInheritInfo = {};
 cmdBufInheritInfo.sType = VK_STRUCTURE_TYPE_COMMAND-
 _BUFFER_INHERITANCE_INFO;
 cmdBufInheritInfo.pNext = NULL;
 cmdBufInheritInfo.renderPass = VK_NULL_HANDLE;
 cmdBufInheritInfo.subpass = 0;
 cmdBufInheritInfo.framebuffer = VK_NULL_HANDLE;
 cmdBufInheritInfo.occlusionQueryEnable = VK_FALSE;
 cmdBufInheritInfo.queryFlags = 0;
 cmdBufInheritInfo.pipelineStatistics = 0;

 VkCommandBufferBeginInfo cmdBufInfo = {};
 cmdBufInfo.sType=VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
 cmdBufInfo.pNext = NULL;
 cmdBufInfo.flags = 0;
 cmdBufInfo.pInheritanceInfo = &cmdBufInheritInfo;

 result = vkBeginCommandBuffer(cmdBuf, &cmdBufInfo);
 assert(result == VK_SUCCESS);
}

The following code describes the end of command buffer recording:
void CommandBufferMgr::endCommandBuffer(VkCommandBuffer commandBuffer){
 VkResult result;
 result = vkEndCommandBuffer(commandBuffer);
 assert(result == VK_SUCCESS);
}

How to use command buffer recording functions

In this section, we will use the code snippet from Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V, and demonstrate the use of the implemented command buffer management utility functions. These functions grately simplify the code for the command buffer creation and submission processes.
In the following code, the Render Pass instance is created using command buffers. First, the command pool (cmdPool) is created and used to allocate a command buffer (vecCmdDraw) using allocCommandBuffer(). The command buffer recording scope is managed between the beginCommandBuffer() and endCommandBuffer() functions. Under these scope-defining functions, a series of commands is recorded (vkCmdBeginRenderPass, vkCmdBindPipeline, vkCmdDraw, and more). Ignore the working of the commands used for Render Pass instance creation for now; we will understand them in detail in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V. Here, our purpose is only er recording.
Finally, the command buffer is submitted with submitCommandBuffer(); this function is described in detail in the next section:

 vkCreateCommandPool(device, &cmdPoolInfo, NULL, &cmdPool);

 CommandBufferMgr::allocCommandBuffer(&device,
cmdPool,vecCmdDraw);

 // Start recording the command buffer

 CommandBufferMgr::beginCommandBuffer(vecCmdDraw);

 // Render pass instance
 vkCmdBeginRenderPass(. . .);
 vkCmdBindPipeline(. . .);
 vkCmdBindDescriptorSets(. . .);
 vkCmdBindVertexBuffers(. . .);
 vkCmdSetViewport(. . .);
 vkCmdSetScissor(. . .);
 vkCmdDraw(. . .);
 vkCmdEndRenderPass(. . .);

 // End recording the command buffer

 CommandBufferMgr::endCommandBuffer(vecCmdDraw);

 CommandBufferMgr::submitCommandBuffer(queue, &vecCmdDraw);

Submitting the command to the queue

Submission of the prepared command buffer is done with the help of the submitCommandBuffer() function. It takes four parameters. The first parameter specifies the submission queue (queue) to which the second parameter, namely the command buffer (cmdBuffer), is to be submitted for execution. The third parameter (inSubmitInfo) specifies the behavior involved in controlling the submission process. The last parameter signals the completion of the submitted command buffers (fence):
void CommandBufferMgr::submitCommandBuffer(const VkQueue& queue,
 const VkCommandBuffer cmdBuffer, const
 VkSubmitInfo* inSubmitInfo, const VkFence& fence){
 VkResult result;
 // If Submit information is available use it as it is.

 // This assumes that the commands are already specified

 // in the structure, hence ignore command buffer
 if (inSubmitInfo){
 vkQueueSubmit(queue, 1, inSubmitInfo, fence);
 result = vkQueueWaitIdle(queue);
 return;
 }

 // Else, create the submit info with specified buffer commands
 VkSubmitInfo submitInfo = {};
 submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
 submitInfo.pNext = NULL;
 submitInfo.waitSemaphoreCount = 0;
 submitInfo.pWaitSemaphores = NULL;
 submitInfo.pWaitDstStageMask = NULL;
 submitInfo.commandBufferCount = (uint32_t)
 sizeof(commandBuffer)/sizeof(VkCommandBuffer);
 submitInfo.pCommandBuffers = commandBuffer;
 submitInfo.signalSemaphoreCount = 0;
 submitInfo.pSignalSemaphores = NULL;

 result = vkQueueSubmit(queue, 1, &submitInfo, fence);
 assert(!result);

 result = vkQueueWaitIdle(queue); assert(!result);
}

Managing memory in Vulkan

Vulkan divides memory broadly into two types: host memory and device memory. Further, each type of memory can be uniquely broken down based on the properties and memory type. Vulkan provides a transparent mechanism to view internal memory details and related properties. Such a type of exposure is not possible in OpenGL, and hence the application is unable to explicitly control memory regions and layouts.
Of these memory types, host memory is slower than device memory. However, host memory may be available in abundance. On the other hand, device memory is directly visible to the physical device, making it efficient and faster. In this section, we will learn about host and device memory and a way to access them.
Host memory

Vulkan makes use of host memory to store API internal data structures in the implementation. Vulkan provides allocators, which allow an application to control memory allocation on behalf of host memory. If the application does not use allocators, then the Vulkan implementation uses a default allocation scheme to reserve a memory slot for its data structures.
Host memory is managed by the VkAllocationCallbacks control structure, which is passed to Vulkan APIs for custom management of host memory. For example, the command buffer pool creation (vkCreateCommandPool) and destroy (vkDestroyCommandPool) APIs accept the third argument as the host memory allocator (the VkAllocationCallbacks pointer).
The following is the syntax of this control structure:
typedef struct VkAllocationCallbacks {
 void* pUserData;
 PFN_vkAllocationFunction pfnAllocation;
 PFN_vkReallocationFunction pfnReallocation;
 PFN_vkFreeFunction pfnFree;
 PFN_vkInternalAllocationNotification pfnInternalAlloc;
 PFN_vkInternalFreeNotification pfnInternalFree;
} VkAllocationCallbacks;

The accepted parameters are described as follows:
	
Parameters

	
Description

	

pUserData

	
This field indicates the user data that can be passed in to manage the memory management callbacks (alloc/realloc/free). The user data may change each time a callback is executed, even with the same object.

	

pfnAllocation

	
This is a user-defined function pointer of the signature type PFN_vkAllocationFunction. This defines a custom allocation function that can be used to allocate host memory to manage the data structures of the Vulkan API that uses this allocator.

	

pfnReallocation

	
This is a user-defined function pointer of the signature type PFN_vkReallocationFunction. This defines a custom reallocation function that can be used to reallocate the host memory of Vulkan API data structures.

	

pfnFree

	
This refers to the function pointer PFN_vkfreeFunction, which points to a custom-defined memory release function.

	

pfnInternalAlloc

	
This function pointer is used by the implementation to perform internal allocation. It notifies the application about the allocation that has been made. The function pointer used should match the PFN_vkInternalAllocationNotification signatures.

	

pfnInternalFree

	

When the implementation releases internal allocation, it calls the function pointer PFN_vkInternalFreeAllocationNotification, which notifies the application about freeing up allocated memory.

This function pointer is used by the implementation to release an internal memory allocation. It notifies the application when the memory is released. The function pointer used should match the PFN_vkInternalFreeAllocationNotification signatures.

Given the scope and page limitations of this book, there is only so much that can be covered about memory allocation extension functions, as discussed in the preceding table. For further information, refer to https://www.khronos.org/registry/vulkan/specs/1.0/apispec.html.

Device memory

Device memory is GPU memory that is visible to the physical device. The physical device can read its memory regions directly. Device memory is very close to the physical device, and thus provides faster performance than host memory. Image objects, buffers objects, and uniform buffer objects are all allocated on device memory.
A single physical device may have different types of memory; these are further differentiated based on their heaps and properties. The vkGetPhysicalDeviceMemoryProperties() API queries the available memory heaps and memory properties of the physical device. It's important for an application to know its memory characteristics. This allows better allocation of resources, depending upon the application logic or resource type.
The following is the syntax of the vkGetPhysicalDeviceMemoryProperties()API:
void vkGetPhysicalDeviceMemoryProperties (
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties* pMemoryProperties);

The following vkGetPhysicalDeviceMemoryProperties fields are available:
	
Parameters

	
Description

	

physicalDevice

	
This refers to the physical device handle whose memory properties need to be queried.

	

pMemoryProperties

	
The queried memory properties are retrieved in the VkPhysicalDeviceMemoryProperties data structure pointer. What follows is a description of this structure.

The VkPhysicalDeviceMemoryProperties structure is described as follows:
typedef struct VkPhysicalDeviceMemoryProperties {
 uint32_t memoryTypeCount;
 VkMemoryType memoryTypes[VK_MAX_MEMORY_TYPES];
 uint32_t memoryHeapCount;
 VkMemoryHeap memoryHeaps[VK_MAX_MEMORY_HEAPS];
} VkPhysicalDeviceMemoryProperties;

The vkGetPhysicalDeviceMemoryProperties structure provides the following information:
	Memory types: This contains the number of memory types (memoryTypeCount) that can be used to access the available memory type (VkMemoryType) on the physical device. A memory type provides vital information by describing a set of memory properties, for example, whether the host memory is cached or not cached. An allocation from a certain memory type is associated with a specific memory heap, which is indicated by another field in this structure called the heap index.
	Memory heaps: This field provides the number of memory heaps (memoryHeapCount) available on the physical device. This information is used to access the allocated memory space in those heaps. Each heap is represented by VkMemoryHeap, which describes a memory resource of a certain size. Each heap may share more than one memory type.

Note
The correct size of a physical memory resource can be queried accurately with the mechanisms provided by the memory type and memory heap. This allows the memory to be used with a variety of various properties.

The following is the syntax of the VkMemoryHeap data structure:
typedef struct VkMemoryHeap {
 VkDeviceSize size;
 VkMemoryHeapFlags flags;
} VkMemoryHeap;

The first field size indicates the total size of the memory in the heap; this memory size in bytes is occupied in the heap. The second field flag is a bitwise mask of the type VkMemoryHeapFlagBits, indicating the heap attributes. Here's the syntax of this:
typedef enum VkMemoryHeapFlagBits {
 VK_MEMORY_HEAP_DEVICE_LOCAL_BIT = 0x00000001,
} VkMemoryHeapFlagBits;

The flag value with VK_MEMORY_HEAP_DEVICE_LOCAL_BIT indicates that the corresponding heap belongs to the device's local memory. This type of memory may have different memory property flags (VkMemoryPropertyFlagBits) and performance characteristics as compared to the host local memory.

VkMemoryType provides information about the properties of this memory type with bitwise flags (propertyFlags) and an index of the heap itself (heapIndex). Here's the syntax of this:
typedef struct VkMemoryType {
 VkMemoryPropertyFlags propertyFlags;
 uint32_t heapIndex;
} VkMemoryType;

The following are the possible VkMemoryPropertyFlagBits enum flags:
	
Flags

	
Description

	

VK_MEMORY_PROPERTY_

DEVICE_LOCAL_BIT

	
The memory allocation performed with this type is considered to be most efficient for device memory access.

	

VK_MEMORY_PROPERTY_

HOST_VISIBLE_BIT

	
The memory allocated with this flag type is accessible to the host. The host can make use of mapping functions (vkMapMemory()) to access the contents.

	

VK_MEMORY_PROPERTY_

HOST_COHERENT_BIT

	

This flag indicates that the host cache management

commands vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges are not needed to make host writes visible to device or the device writes visible to the host, respectively.

	

VK_MEMORY_PROPERTY_

HOST_CACHED_BIT

	
The memory allocated with this memory type is cached on the host. Host memory access to uncached memory is slower than access to cached memory; however, uncached memory is always host-coherent.

	

VK_MEMORY_PROPERTY_

LAZILY_ALLOCATED_BIT

	
The memory is only device-accessible. Make sure that VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT are not set with this memory type.

Allocating device memory

Device memory can be allocated in Vulkan using the vkAllocateMemory() API. This API returns the VkDeviceMemory object if the device memory is successfully allocated. This object is used within the application to access or operate device memory data. The following is the syntax for this:
VkResult vkAllocateMemory(
 VkDevice device,
 const VkMemoryAllocateInfo* allocateInfo,
 const VkAllocationCallbacks* allocator,
 VkDeviceMemory* memory);

Let's look at the various fields for this API:
	
Parameters

	
Description

	

device

	
This represents the logical device that owns the memory.

	

allocateInfo

	
This is a pointer to VkMemoryAllocateInfo; it describes the parameters for device memory allocation.

	

allocator

	
This is either NULL or is a pointer to the VkAllocationCallbacks structure; it controls host memory allocation.

	

memory

	
This is the handle of the allocated memory of the VkMemoryHandle type.

The VkMemoryAllocateInfo structure is defined as follows:
typedef struct VkMemoryAllocateInfo {
 VkStructureType type;
 const void* pNext;
 VkDeviceSize allocationSize;
 uint32_t memoryTypeIndex;
} VkMemoryAllocateInfo;

The following table describes each parameter of this structure:
	
Parameters

	
Description

	

type

	
This represents the type information of this structure; it must be VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO.

	

pNext

	
This is a pointer to an extension-specific structure.

	

allocationSize

	
The refers to the size of the memory that needs to be allocated.

	

memoryTypeIndex

	
This is the index of the memory type that is used for selecting memory properties and the heap where the memory comes from.

Note
The implementation supports suballocation very well. For example, if the memory requirement for an image is 512 bytes aligned and for buffer objects is 64 bytes aligned, then vkAllocateMemory guarantees that it will meet the specified requirement. It will return 512 bytes of aligned device memory, which can be used to allocate any of the object types. Once memory is allocated, it remains uninitialized. The application should create large VkDeviceMemory objects and suballocate ranges out of them for good performance.

The number of allocations performed on the physical device memory is implementation-dependent and can be queried using the maxMemoryAllocationCount member of VkPhysicalDeviceLimits. When maxMemoryAllocationCount is exceeded, vkAllocateMemory may return VK_ERROR_TOO_MANY_OBJECTS.

Freeing up device memory

The allocated device memory can be freed using the vkFreeMemory() API. The following is the syntax for this:
void vkFreeMemory(
 VkDevice device,
 VkDeviceMemory memory,
const VkAllocationCallbacks* allocator);

The following table describes each parameter of this structure:
	
Parameters

	
Description

	

device

	
This refers to the logical device that owns the memory.

	

memory

	
This refers to the VkDeviceMemory object that needs to be free.

	

allocator

	
This controls host memory deallocation.

Accessing device memory from the host

The allocated device memory using the vkAllocateMemory API is only visible to the device; it is not visible or accessible to the host. The host can only access those allocated device memory regions that are mappable; the memory allocated with memory property VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT is considered mappable.
Using the vkMapMemory() API, the mapped device memory can be accessed by the host. This API returns a virtual address pointer that is mapped to the allocated device memory region. The following is the syntax of the API:
VkResult vkMapMemory(
 VkDevice device,
 VkDeviceMemory memory,
 VkDeviceSize offset,
 VkDeviceSize size,
 VkMemoryMapFlags flags,
 void** ppData);

The accepted parameters are described as follows:
	
Parameters

	
Description

	

device

	
This refers to the logical device that owns the memory.

	

Memory

	
This refers to the device object memory that needs to be mapped.

	

offset

	
This refers to the memory offset in bytes right from the start of the memory.

	

Size

	
This refers to the size of the memory range that needs to be mapped.

	

flags

	
This is reserved for future use.

	

ppData

	
This returns the mapped memory address. This is a pointer to the pointer that contains a host-accessible pointer to the beginning of the mapped range.

Note
The vkMapMemory API immediately returns the pointer to the mapped memory. It does not check whether the memory is already mapped. Therefore, it is the application's responsibility to manage the mapped memory. Accessing a type of memory that is already mapped may lead to undefined behavior; the driver may die in a heap.

Once the memory is mapped, it can be used like normal host memory, and the data can be updated on it. Once the memory is updated, it needs to be unmapped so that the device memory can be reflected with the latest changes. The unmapping of the memory is performed using the vkUnmapMemory() API. It accepts two parameters. The first is of the type VkDevice that indicates the logical device object handle that owns the memory, and the second parameter is the handle to the device memory (VkDeviceMemory) that needs to be unmapped. Here is the syntax for this:
void vkUnMapMemory(VkDevice device, VkDeviceMemory memory);

As we go further in this book, we will learn to use uniforms in the Vulkan API. In Chapter 10, Descriptors and Push Constant, we will implement device memory allocation and mapping to update the uniform buffer.

Lazily allocated memory

The memory allocated with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit flag is not allocated up front based on the requested size, but it may be allocated in a monotonic fashion, where memory gradually increases in line with application demand. The memory may start from a zero byte size in the beginning and grow with use.
Lazily allocated memory can only be used by image objects of the type VkImage. These image objects must contain the memory type as VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT.
At any given moment, the size of the lazily allocated memory presently committed to a specific memory object (VkDeviceMemory) can be queried using the vkGetDeviceMemoryCommitment() API. The following is the syntax for this:
void vkGetDeviceMemoryCommitment(
 VkDevice device,
 VkDeviceMemory memory,
 VkDeviceSize* pCommittedMemoryInBytes);

This API accepts three parameters, which are explained in the following table:
	
Parameters

	
Description

	

device

	
This is the logical device that owns the memory.

	

memory

	
This is the device object memory that needs to be queried for size.

	

pCommittedMemoryInBytes

	
This returns the currently committed size in device memory.

Summary

In this chapter, we learned about command buffers and memory allocation in the Vulkan API. We understood the concept of command buffers and command pools, and while doing this, we created pools and allocated command buffer objects through them. We got hands-on and built the command buffer wrapper class and implemented the creation, resetting, and destruction of command pools and command buffers. We implemented the recording of command buffers and submitted them to an appropriate queue for processing.
The second part of this chapter was full of memory management concepts for host- and device-based memory. We learned about allocators and their APIs to manage host allocation. We also looked into device memory and understood how Vulkan APIs allocate, map, and free device memory.
Vulkan has two types of resource: buffers and images. In the next chapter, we will learn about Vulkan image resources and use them to create swapchains with the help of command buffers. Buffer resources will be covered in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V.

Chapter 6. Allocating Image Resources and Building a Swapchain with WSI

In the previous chapter, we covered concepts related to memory management and command buffers. We learned about host and device memory and ways to allocate in the Vulkan API. We also covered command buffers; we implemented command buffer recording API calls and submitted them to queues for processing.
In this chapter, we will make use of our knowledge of command buffers and memory allocation to implement a swapchain and depth image. A swapchain provides the mechanism by which we can render drawing primitives to swapchain color images, which is then passed on to the presentation layer in order to display the primitives in the window. Images are a prerequisite of swap buffer creation; therefore, this chapter will help you gain in-depth knowledge of image resources and their uses in the Vulkan application.
We will cover the following topics:
	Getting started with image resources
	Understanding an image resource
	Memory allocation and binding an image resource
	Introducing swapchains
	Creating a depth image
	Summarizing the application flow

Getting started with image resources

A Vulkan resource is simply a representation of a memory view that contains data. Vulkan primarily has two types of resource: buffers and images. In this chapter, we will only discuss the concept of an image resource; this will be used to implement the swapchain. For more information on the buffer resource type, refer to Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V. In order to get an overview of this, you may want to revisit the Resource objects - managing images and buffers section in Chapter 2, Your First Vulkan Pseudo Program.
Vulkan images represent contiguous texture data in 1D/2D/3D form. These images are primarily used as either an attachment or texture:
	Attachment: The image is attached to the pipeline for the framebuffer's color or depth attachment and can also be used as an auxiliary surface for multipass processing purposes
	Texture: The image is used as a descriptor interface and shared at the shader stage (fragment shader) in the form of samplers

Note
If you come from an OpenGL background, note that the use of images in Vulkan is entirely different from its counterpart in OpenGL. In Vulkan, the image is created by specifying a number of bitwise fields indicating the kind of image usage, such as color attachment, depth/stencil attachment, a sampled image in a shader, image load/store, and so on. In addition, you need to specify the tiling information (linear or optimal) for the image. This specifies the tiling or swizzling layout for the image data in memory.

The notion of texture in Vulkan is primarily interpreted with images, image layouts, and image views:
	Image: An image represents the texture object in Vulkan. This contains metadata that is utilized for computing memory requirements. The gathered memory requirements are helpful during memory allocation. An image indicates other, and numerous types of information, such as the format, size, and type (sparse map, cube map, and so on). A single image may contain sub-resources, such as multiple images, based on the mipmap level or array layers. Each image or image sub-resource is specified with an image layout.

	Image layout: An image layout is an implementation-specific way to store image texture information in a grid coordinate representation in the image memory. The image stored in image memory is very implementation-specific; each image has a specific usage, for example, color attachment, a sampled image in a shader, image load/store, or sparse textures for large images. For these special purposes, the implementation provides image layouts that are specialized in image memory usage to offer optimal performance.

Note
Each image layout is special. Each may offer only certain features. For example, an image specified with the VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL image layout can be used as a color image attachment for optimal performance; however, it cannot be used for transfer purposes.

	Image view: Images cannot be used directly for reading and writing purposes by API calls or pipeline shaders; instead, image views are used. It not only acts like an interface to the image object, but it also provides the metadata that is used to represent a continuous range of image sub-resources.

Image creation overview

In this section, we will provide you with a quick introduction to the image creation process in a step-by-step manner. This will be helpful in getting an overview of the image, image views, and the associated memory allocations. This section is immediately followed by two other sections that will cover images (Understanding an image resource) and their memory allocation (Memory allocation and binding image resources) along with a detailed description of the corresponding APIs.
The following are step-by-step instructions on how to create an image resource using Vulkan APIs:
	First, create the image object:	Create an image object (VkImage) using the vkCreateImage() API. This API intakes an array of the VkImageCreateInfo structure, which specifies important image characteristics that are helpful in creating one or more image objects. At this time, the image object has no physical allocation on the device; however, it has logical memory information that will be used to allocate memory in the next step. This memory information comes from the VkImageCreateInfo object, which contains the format, image size, creation flags, and so on.

	Then, allocate image memory:	Getting the memory requirements: Before we allocate the required chunk of image memory, we need to calculate the appropriate size of the memory we want to allocate. This is done using the vkGetImageMemoryRequirements() API. It automates the process of calculating the appropriate size of the image based on the image properties. It intakes the VkCreateImageInfo object that we described in the previous step.
	Determining the memory type: Next, get the appropriate memory type from the available memory types. Once the type is made available, look for a type that matches the user properties.
	Allocating device memory: Allocate the device memory (VkDeviceMemory) with the vkAllocateMemory() API.
	Binding the allocated memory: Bind the allocated device memory (VkDeviceMemory) to the image object (VkImage) using the vkBindImageMemory() API.

	Set the image layout:	Set the correct image layout as per application requirements; do this using pipeline image memory barriers with vkCmdPipelineBarrier().

	Create the image views:	Images can only be accessed via image views. This is the final step where we create an image view using vkCreateImageView(). The image can now be used by either API calls or pipeline shaders.

[image: Image creation overview]

Understanding image resources

This section will cover the Vulkan APIs used to create an image resource. Here, we'll look into the concept of a data image, image view, and image layout in detail.
Creating images

An image resource in Vulkan is represented using the VkImage object. This object supports a multidimensional image up to three-dimensional data arrays. Images are created using the vkCreateImage() API. Here's the syntax to do this:
VkResult vkCreateImage(
 VkDevice device,
 const VkImageCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkImage* pImage);

The following table describes the various fields of VkCommandPoolCreateInfo:
	
Parameters

	
Description

	

device

	
This refers to the logical device responsible for creating an image.

	

pCreateInfo

	
This refers to a VkImageCreateInfo pointer.

	

pAllocator

	
This controls the host memory allocation process.

	

pImage

	
This returns the VkImage pointer after it's created.

The vkCreateImage() intakes VkImageCreateInfo as a second parameter, this control structure is defined here:
typedef struct VkImageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageCreateFlags flags;
 VkImageType imageType;
 VkFormat format;
 VkExtent3D extent;
 uint32_t mipLevels;
 uint32_t arrayLayers;
 VkSampleCountFlagBits samples;
 VkImageTiling tiling;
 VkImageUsageFlags usage;
 VkSharingMode sharingMode;
 uint32_t queueFamilyIndexCount;
 const uint32_t* pQueueFamilyIndices;
 VkImageLayout initialLayout;
} VkImageCreateInfo;

The following table describes the various fields of VkImageCreateInfo:
	
Parameters

	
Description

	

sType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
This refers to the VkImageCreateFlagBits bit field flags. More information on this will be provided later in this section.

	

imageType

	
This specifies the 1D/2D/3D dimensionality of the image using the VkImageType enum. It must be one of these: VK_IMAGE_TYPE_1D, VK_IMAGE_TYPE_2D, or VK_IMAGE_TYPE_3D.

	

format

	
This refers to the image format specified in the VkFormat type. It describes the format and type of the data elements that will be contained in the image.

	

extent

	
This describes the number of elements in each dimension of the base level.

	

mipLevels

	
This refers to the different levels of detail available in the minified sampling image.

	

arrayLayers

	
This specifies the number of layers in the image.

	

samples

	
This specifies the number of subdata element samples in the image, as defined in VkSampleCountFlagBits.

	

tilings

	
This specifies the tiling information of the image in the memory. It should be of the type VkImageTiling and must be either one of these two enum values: VK_IMAGE_TILING_OPTIMAL or VK_IMAGE_TILING_LINEAR.

	

usage

	
This refers to VkImageUsageFlagBits specifying the bit field that describes the intended usage of the image. More information on this will be provided later in this section.

	

sharingMode

	
This specifies the sharing mode of the image when it will be accessed by multiple queue families. This must be one of these values: VK_SHARING_MODE_EXCLUSIVE or VK_SHARING_MODE_CONCURRENT from the VkSharingMode enum.

	

queueFamilyIndexCount

	
This represents the number of entries in the queueFamilyIndices array.

	

queueFamilyIndices

	
This is an array of queue families that will access the image. The sharingMode must be VK_SHARING_MODE_CONCURRENT; otherwise, ignore it.

	

initialLayout

	
This defines the initial VkImageLayout state of all the sub-resources of the images. This must be either VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED. For more information on image layouts, refer to the Understanding the image layouts section of this chapter.

The image's usage flag of the VkImageCreateInfo control structure is described using the VkImageUsageFlagBits enum flag. The following is the syntax followed by a description of each field type of this enum:
typedef enum VkImageUsageFlagBits {
 VK_IMAGE_USAGE_TRANSFER_SRC_BIT = 0x00000001,
 VK_IMAGE_USAGE_TRANSFER_DST_BIT = 0x00000002,
 VK_IMAGE_USAGE_SAMPLED_BIT = 0x00000004,
 VK_IMAGE_USAGE_STORAGE_BIT = 0x00000008,
 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000010,
 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT= 0x00000020,
 VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT = 0x00000040,
 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT = 0x00000080,
} VkImageUsageFlagBits;

Let's look at these bitwise fields in detail to understand what they mean:
	
Enum type

	
Description

	

VK_IMAGE_USAGE_TRANSFER_SRC_BIT

	
The image is used by the transfer command's (the copy command) source.

	

VK_IMAGE_USAGE_TRANSFER_DST_BIT

	
The image is used by the transfer command's (the copy command) destination.

	

VK_IMAGE_USAGE_SAMPLED_BIT

	

This image type is used as a sampler at the shading stage through the image view type, where the associated descriptor set slot (VkDescriptorSet) type could be either VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER.

The sampled image in the shader is used for address calculations, controlling the filtering behavior, and other attributes.

	

VK_IMAGE_USAGE_STORAGE_BIT

	
Use this image type for load, store, and atomic operations on the image memory. The image view is associated with the descriptor type slot of the type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

	

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

	
The image view created from this type of image resource is appropriate for a color attachment or the resolve attachment associated with the frame buffer object (VkFrameBuffer).

	

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

	
The image view created from this type of image resource is appropriate for a depth/stencil attachment or the resolve attachment associated with the frame buffer object (VkFrameBuffer).

	

VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT

	
The image type represented by this flag is allocated lazily. The memory type for this must be specified as VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT. Note that if this flag is specified, then VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT must not be used.

	

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

	
The image view created from this type of image resource is appropriate for an input attachment in the shader stage and in the frame buffer. This image view must be associated with the descriptor set slot (VkDescriptorSet) of the type VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.

Note
The memory allocated with the VK_MEMORY_PROPERTY_LAZILY_-ALLOCATED_BIT bit flag is not allocated upfront as per the requested size, but it may be allocated in a monotonic fashion where memory gradually increases with application demand.

The flag field in the VkImageCreateInfo enum hints the underlying application how it manages various image resources, such as memory, format, and attributes, using the VkImageCreateFlagBits enum. The following is the syntax of each type:
typedef enum VkImageCreateFlagBits {
 VK_IMAGE_CREATE_SPARSE_BINDING_BIT = 0x00000001,
 VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
 VK_IMAGE_CREATE_SPARSE_ALIASED_BIT = 0x00000004,
 VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT = 0x00000008,
 VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT = 0x00000010,
 VK_IMAGE_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
} VkImageCreateFlagBits;
typedef VkFlags VkImageCreateFlags;

Now let's understand the flag definitions:
	
Flags

	
Description

	

VK_IMAGE_CREATE_SPARSE_BINDING_BIT

	
The image is fully stored using sparse memory binding.

	

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

	
Here the images can be stored partially using sparse memory binding. In order to use this field, the image must have the VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag.

	

VK_IMAGE_CREATE_SPARSE_ALIASED_BIT

	
In this type of flag, the image is stored in sparse memory; it can also hold multiple portions of the same image in the same memory regions. The image must be created using the VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag.

	

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

	
This format is useful in cases where the image view (VkImageView) format is different from the created image object format itself (VkImage).

	

VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT

	
This format is used for cube mapping. In this case, VkImageView must be of the type VK_IMAGE_VIEW_TYPE_CUBE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY.

Destroying the created images

When the image is no longer required, it can be destroyed using vkDestroyImage(). Here's the syntax to do this:
void vkDestroyImage(VkDevice device,
 VkImage image,
 const VkAllocationCallbacks* pAllocator);

This API accepts three parameters, which are described in the following table:
	
Parameters

	
Description

	

device

	
This is the logical device that destroys image.

	

image

	
This is the VkImage object that needs to be destroyed.

	

pAllocator

	
This controls the host memory deallocation process. Refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

Understanding image layouts

Let's take a look at the various image layouts available in the Vulkan specification. They are represented by the VkImageLayout enum values, as described in the following list:
	VK_IMAGE_LAYOUT_UNDEFINED: This layout does not support device access. This is most suitable for either intialLayout or oldLayout in an image transition. The transitioning of this layout does not provide any guarantee of preserving the memory data it holds.
	VK_IMAGE_LAYOUT_GENERAL: This layout supports all types of device access.
	VK_IMAGE_LAYOUT_PREINITIALIZED: This layout also does not support device access and is most suitable for either intialLayout or oldLayout in an image transition. The contents held by the layout memory are preserved while transitioning. This type of layout is useful in cases where the data is readily available at the initialization time. This way, the data can be directly stored in device memory immediately, without requiring an extra step to execute the layout transition.
	VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: This layout is very suitable for color images. Therefore, it must only be used with the color and resolved attachment of VkFrameBuffer. In order to use this layout, the image must have the usage bit set as VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT.

Note
Image sub-resources do not have the usage bits specified individually--they are specified for the whole image only.

	VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: This layout must only be used for the depth/stencil attachment of VkFrameBuffer. In order to use this layout, the image must have the usage bit set as VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT.
	VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: This is similar to VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, except that it's used as a read-only VkFrameBuffer attachment or a read-only image in a shader, where it must be read as a sampled image, combined image/sampler, and/or input attachment. The image must be created with the usage bit set as VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT.
	VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: This must be used as a read-only shader image, for example, a sampled image, combined image/sampler, and/or input attachment. The image sub-resource must be created either with the usage bit set as VK_IMAGE_USAGE_SAMPLED_BIT or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT.
	VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: This must be used as the source image of a transfer command with a transfer pipeline, and its usage is valid only if the image sub-resource has the usage bit set as VK_IMAGE_USAGE_TRANSFER_SRC_BIT.
	VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: This must be used as the destination image of a transfer command with a transfer pipeline, and its usage is valid only if the image sub-resource has the usage bit set as VK_IMAGE_USAGE_TRANSFER_DST_BIT.

Creating an image view

An image view is created using vkCreateImageView(). Here's the syntax of this:
VkResult vkCreateImageView(
 VkDevice device,
 const VkImageViewCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkImageView* pView);

The following table describes the various fields of VkCommandPoolCreateInfo:
	
Parameters

	
Description

	

device

	
This is the handle of the logical device that creates the image view.

	

pCreateInfo

	
This is the pointer to VkCreateImageViewInfo; it controls the creation of VkImageView.

	

pAllocator

	
This controls the host memory allocation process. For more information, refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pView

	
This returns the handle of the created VkImageView object.

The VkCreateImageViewInfo data structure contains view-specific attributes that are consumed by the vkCreateImageView() API to create the image view. The following is the syntax of each field:
typedef struct VkImageViewCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageViewCreateFlags flags;
 VkImage image;
 VkImageViewType viewType;
 VkFormat format;
 VkComponentMapping components;
 VkImageSubresourceRange subresourceRange;
} VkImageViewCreateInfo;

The following table describes the various fields of VkImageViewCreateInfo:
	
Parameters

	
Description

	

sType

	
This is the type information of the structure; it must be VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO.

	

pNext

	
This is an extension-specific structure. This field could be NULL as well.

	

flags

	
This field is NULL; it is reserved for future use.

	

image

	
This is the handle of VkImage.

	

viewType

	

This indicates the image view type using the enum VkImageViewType. It must be either one of these flag values: VK_IMAGE_VIEW_TYPE_1D, VK_IMAGE_VIEW_TYPE_2D,

VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE,

VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE-_2D_ARRAY, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY.

	

format

	
This specifies the format (VkFormat) of the image.

	

components

	
This is used for remapping the color/depth/stencil after it has been converted into color components.

	

subresourceRange

	
This is used for selecting a range of mipmap levels and array layers, which are accessible through the view.

Destroying the image view

An image view is destroyed using the vkDestroyImageView() API. This API intakes three parameters. The first parameter (device) specifies the logical device that is responsible for destroying the image view (imageView), which is indicated by the second parameter. The last parameter pAllocator controls the host memory allocation process. Here's the syntax of this:
void vkDestroyImageView(VkDevice device,
 VkImageView imageView,
 VkAllocationCallbacks* pAllocator);

Memory allocation and binding image resources

When an image resource object (VkImage) is created, it contains a logical allocation. The image has no physical association with the device memory at that point. The actual memory backing is provided separately at a later stage. The physical allocation is very type-dependent; the images can be categorized into sparse and non-sparse. The sparse resource is specified using sparse creation flags (VkImageCreateFlagBits in VkImageCreateInfo); however, if the flag is not specified, it is a non-sparse image resource. This chapter will only address non-sparse memory as a reference. For more information on sparse resource allocation, refer to the official Vulkan 1.0 specification.
The association of an image with memory is a three-step process: gathering memory allocation requirements for image allocation, allocating the physical chunk on the device memory, and binding the allocated memory to the image resource. Let's take a look at this in detail.
Gathering memory allocation requirements

The non-sparse image resources memory requirement can be queried using the vkGetImageMemoryRequirements() API. Here is the syntax of this:
void vkGetImageMemoryRequirements(VkDevice device,
 VkImage image,
 VkMemoryRequirements*
 pMemoryRequirements);

The following are the different fields of the vkGetImageMemoryRequirements()API:
	
Parameters

	
Description

	

device

	
This refers to the device that owns the image.

	

image

	
This refers to the VkImage object.

	

pMemoryRequirements

	
This returns the VkMemoryRequirements structure object.

The VkMemoryRequirements structure object contains the memory requirements associated with the image object that we pass to vkGetImageMemoryRequirements(). Here's the syntax of this:
typedef struct VkMemoryRequirements {
 VkDeviceSize size;
 VkDeviceSize alignment;
 uint32_t memoryTypeBits;
} VkMemoryRequirements;

The parameters of this structure and their respective descriptions are as follows:
	
Parameters

	
Description

	

size

	
This specifies the size of the image resource required in bytes.

	

alignment

	
This refers to the alignment offset in bytes that specifies the offset within the allocation required for the resource.

	

memoryTypeBits

	
This is a bitwise flag indicating the supported memory type for the image resource. If the bit i is set, it means it will support the memory type i in the VkPhysicalDeviceMemoryProperties structure of the image resource.

Allocating physical memory on the device

Physical memory is allocated using the vkAllocateMemory() API. This API was discussed in the last chapter. For a detailed description of this API, refer to the Allocating the device memory subsection under Managing memory in Vulkan in Chapter 5, Command Buffer and Memory Management in Vulkan.

Binding the allocated memory to an image object

Once physical memory is allocated to the device, what we need to do is bind this memory to its own image resource object (VkImage). The image resource is bonded with the allocated device memory using the vkBindImageMemory() API. The code for this is as follows:
VkResult vkBindBufferMemory(VkDevice device,
 VkBuffer buffer,
 VkDeviceMemory memory,
 VkDeviceSize memoryOffset);

The parameters of this structure are described as follows:
	
Parameters

	
Description

	

device

	
This is the logical device that owns the memory and image object.

	

image

	
This refers to the VkImage object to which we need to bind the memory.

	

memory

	
This refers to the allocated VkDeviceMemory.

	

memoryOffset

	
This is the offset in bytes that specifies the starting point of the memory to which the image will be bounded.

Introducing swapchains

Swapchains are a mechanism by which the rendering of the drawing primitive is shown on a platform-specific presentation window/surface. A swapchain may contain single or multiple drawing images. These drawing images are called color images. A color image is simply an array of pixel information that resides in a special layout in the memory. The number of draw images in a swapchain is very specific to the implementation. When double images are used, it's called double buffering, and when three surfaces are used, triple buffering.
Among these images, when one image completes the drawing process in the background, it is swapped to the presentation window. In order to fully utilize the GPU, a different image is then treated as a background buffer for the drawing process. This process is repeated back and forth and the swapping of the images takes place continuously. Making use of multiple images improves the frame rate output as the GPU is always constantly busy with the processing part with one of the image, reducing the overall idle time.
The swapping or flipping of the drawing image is dependent upon the presentation mode; this may be updated during the Vertical Blanking Interval (VBI) or as soon as the drawing is made available. This means that when the monitor is refreshed, the background image is swapped with the front image displaying the new image. A swapchain is available in the form of an API extension, which needs to be enabled with VK_KHR_SWAPCHAIN_EXTENSION_NAME. Refer to the Querying swapchain extensions section for more information.
Understanding the swapchain implementation flow

The following diagram will provide you with an overview of swapchain implementation from start to finish. This will cover each and every part of the flow in a very brief fashion, allowing you to remain connected throughout the implementation, which will be covered in detail in upcoming sections:

[image: Understanding the swapchain implementation flow]

Let's get into the flow and quickly take an overview of each of the specifics:
	Create an empty window: This process provides an empty native platform window that is connected to the swapchain's color images. Each time a frame (image) is written, it is swapped to the presentation layer. The presentation layer relays this information to the attached native window for display purposes.
	Querying swap chain extensions: The swapchain APIs are not part of the standard API specification. They are implementation-specific, and the loader is used to load these APIs in the form of extensions. The loaded extensions are stored in the form of function pointers whose signatures are predefined in the Vulkan specification.
	Creating a surface and associate it with the created window: This process creates a logical platform-specific surface object. At this time, it has no memory backing for the color images. This logical surface object is attached to the empty window, declaring the window as its owner.
	Getting supported image formats: In this step, we query the physical device to check all the image formats it supports.
	Querying swapchain image surface capabilities: This obtains the information on basic surface capabilities, since it is required when we create swapchains images. In addition, it checks the present modes that are available.
	Managing the present mode information: This uses the available present mode information and decide the present mode technique that should be used in the swapchain. A swapchain's present mode decides how the incoming presentation requests will be internally processed and queued.
	Creating the swapchain and retrieving the presentation images: Let's use the above-gathered information and create the swapchain images. The WSI extension returns the color image object; these images are of the type VkImage, and are used by the application.Tip
The WSI images are not owned by the application it belongs to WSI and hence the image layout cannot applied. The image layout can only be applied to images that are owned by the application.

	Creating color image views: Depending upon the system capabilities, the WSI implementation may return 1–3 swapchain images (based on single, double, or triple buffering). For using each image in the application, you will need to create a corresponding image view.
	Creating a depth image: Similar to the color images, you will need a depth image for depth testing; but unlike swapchain images, which are prebaked by the WSI, the depth image needs to be created by the application. First, you will need to create a depth image object (VkImage), follow the next steps to allocate the memory, create image layout and finally producing the image view object (VkImageView).
	Depth image memory allocation: You will need to allocate the physical device memory and bind it to the depth image object.
	Creating the command pool: We need the command buffer for depth image since this image is owned by us; we will use the command buffer to apply the image layouts.
	Creating the command buffer: You will need to create the command buffer and begin to record the commands responsible for creating the depth image layout using the created depth image object.
	Image layout: This lets you apply a depth/stencil compatible image layout on the depth image object.
	Add pipeline barriers: In order to ensure that the image layout is always executed before the creation of the image view, add a pipeline barrier. When a pipeline barrier is inserted, it ensures that the commands prior to it is executed before the commands that follow it in the command buffer.
	Ending command buffer recording: This allows you to stop the command buffer recording .
	Creating a depth image view: After the image object is converted into the compatible image layout, create an image view object (VkImageView). The image cannot be directly used in the application; they must be in an image view form.

The created color image view will be submitted to the graphics queue to let the presentation engine render it on the display window. By the end of this chapter, you will be able to display the blank window since nothing is rendered on the swapchain color images so far.

The swapchain implementation's class block diagram

This section will act as a brief introduction to the upcoming section where we will implement the swapchain. This will help us understand the role of these classes as we inch towards a detailed implementation.
Note
In this chapter, we are introducing three new user-defined custom classes: VulkanRenderer, VulkanSwapChain, and VulkanPipeline. These classes are not associated with any official Vulkan specification API or data structures. These are user-defined and will help us manage the application in an organized way.

The following block diagram shows these module classes and their hierarchical relationship. Besides this, this pictorial representation will also inform you about the responsibility of each and every module. As we proceed to the next chapter, we will introduce a few more classes:

[image: The swapchain implementation's class block diagram]

Renderer - a window management custom class

The VulkanRender class is defined in VulkanRenderer.h/.cpp. It manages a unique presentation window and its dependent resources, such as devices, swapchains, pipelines, and so on, in an application. An application can have multiple rendering windows, as described in the following diagram; each renderer takes care of an individual presentation window with all its corresponding resources.
However, since we are at the beginner level, our samples assume only one output presentation window. Therefore, VulkanApplication contains a single VulkanRenderer class object:

[image: Renderer - a window management custom class]

The following is the declaration of the VulkanRenderer header file. This class creates the presentation layer's empty window (createPresentationWindow()), which will be later filled with the color images of the swapchain. The empty window creation process is very platform-specific; this sample example is only implemented for the Windows platform:

[image: Renderer - a window management custom class]

In addition, the VulkanRenderer class manages the initialization (initialize()) and renders the presentation window, (render()). This class also manages the command pool for various command buffers:

/************* VulkanRenderer.h *************/
class VulkanRenderer{
// Many line skipped in this header, please refer to

// corresponding source with this chapter.
public:
 void initialize(); //Simple life cycle

 // Create an empty window
 void createPresentationWindow(int& w, int& height);

 // Windows procedure method for handling events.
 static LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM
 wParam, LPARAM lParam);

 void createCommandPool(); // Create command pool
 void createSwapChain(); // Create swapchain Color image
 void createDepthImage(); // Create Depth image

public:
 HINSTANCE connection; // hInstance - Windows Instance
 char name[80]; // name - App name appearing on the window
 HWND window; // hWnd - the window handle

 // Data structure used for depth image
 struct{ VkFormat format;
 VkImage image;
 VkDeviceMemory mem;
 VkImageView view;
 }Depth;

 VkCommandBuffer cmdDepthImage; // Depth image command buffer
 VkCommandPool cmdPool; // Command pool

 int width, height; // Window Width and Height

private:
 // Class managers
 VulkanSwapChain* swapChainObj;
 VulkanApplication* application;
 // The device object associated with this Presentation layer.
 VulkanDevice* deviceObj;
};

VulkanRenderer::VulkanRenderer(VulkanApplication * app,
 VulkanDevice* deviceObject){
 // Many lines skipped
 application = app;
 deviceObj = deviceObject;

 swapChainObj = new VulkanSwapChain(this);
}

Creating the presentation window

This section will implement the windowing system that will be used to present the swapchain color images on the display window. This example primarily focuses on Windows and uses the CreateWindowEx() API to create an overlapped pop-up or child window with an extended window style. Creating windows is common, and discussing this topic is beyond the scope of this book.
Refer to the online MSDN documentation for more information on the related APIs (https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85).aspx):
void VulkanRenderer::createPresentationWindow(const int&
 windowWidth, const int& windowHeight){

 width = windowWidth;
 height = windowHeight;

 WNDCLASSEX winInfo;
 // Initialize the window class structure:
 memset(&winInfo, 0, sizeof(WNDCLASSEX));
 winInfo.cbSize = sizeof(WNDCLASSEX);
 winInfo.lpfnWndProc = WndProc;
 winInfo.hInstance = connection;
 winInfo.lpszClassName = name;

 // Register window class
 if (!RegisterClassEx(&winInfo)) { exit(1); }

 // Create window with the registered class
 RECT wr = { 0, 0, width, height };
 AdjustWindowRect(&wr, WS_OVERLAPPEDWINDOW, FALSE);
 window = CreateWindowEx(0, name, name, WS_OVERLAPPEDWINDOW
 |WS_VISIBLE | WS_SYSMENU, 100, 100,
 wr.right - wr.left, wr.bottom - wr.top,
 NULL, NULL, connection, NULL);

 SetWindowLongPtr(window,GWLP_USERDATA,&application);
}

On a Microsoft Windows window, we need a windows procedure function to handle event processing. Here we will process the WM_PAINT, WM_SIZE and WM_CLOSE events. The WM_CLOSE event is called when a user clicks on the close button on the window. However, the WM_PAINT event is used to render the window. We will handle the WM_PAINT and WM_SIZE message in later chapters:

// Windows procedure handlers for MS Windows
LRESULT CALLBACK VulkanRenderer::WndProc(HWND hWnd, UINT uMsg,
WPARAM wParam, LPARAM lParam){
 VulkanApplication* appObj = VulkanApplication::GetInstance();

 switch (uMsg){
 case WM_CLOSE: PostQuitMessage(0); break;

 default: break;
 }

 return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}

Initializing the renderer

The initialization creates a presentation window with a given dimension and fulfills various prerequisites for the swapchain implementation. This includes querying the swapchain extension APIs, creating surface objects, finding the best-supported queue for the presentation layer, getting the compatible image format for drawing, and so on. We will discuss each and every part in detail as we proceed through the chapter. The initialization of the Renderer class is done using the initialize() function, as described in the following code; refer to the comments highlighted in bold to get an overview:
void VulkanRenderer::initialize(){
 // Create an empty window with dimension 500x500
 createPresentationWindow(500, 500);

 // Initialize swapchain
 swapChainObj->intializeSwapChain();

 // We need command buffers, so create a command buffer pool
 createCommandPool();

 // Let's create the swapchain color images
 buildSwapChainAndDepthImage();
}

Creating the command pool

The VulkanRenderer class contains the command pool. This pool will be used for command buffer allocation and for various operations such as the creation of the depth image, pipeline state setup, drawing primitives, and many more. This chapter will demonstrate the first command buffer in action, where we will create the depth image.
In the following code, the command pool is created using the various attributes specified in the VkCommandPoolCreateInfo control structure. This control structure contains the index of the graphics queue for which the command buffers need to be allocated. Vulkan specifies such information in the control structures ahead of time, allowing the underlying pipeline to take full advantage of pre-optimizations. For more information on command buffers and command pools, refer to the Understanding the command pool and buffer APIs section in Chapter 5, Command Buffer and Memory Management in Vulkan:
void VulkanRenderer::createCommandPool(){
 VulkanDevice* deviceObj = application->deviceObj;

 VkCommandPoolCreateInfo cmdPoolInfo = {};
 cmdPoolInfo.sType=VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
 cmdPoolInfo.queueFamilyIndex = deviceObj->
 graphicsQueueWithPresentIndex;

 vkCreateCommandPool(deviceObj->device, &cmdPoolInfo, NULL,
 &cmdPool);
}

Building swapchain and depth images

The buildSwapChainAndDepthImage() function is the entry point for creating swapchain and depth images. We will look at these internal functions in detail as we proceed:
void VulkanRenderer::buildSwapChainAndDepthImage(){
 // Get the appropriate queue to submit the command into
 deviceObj->getDeviceQueue();

 // Create swapchain and get the color images
 swapChainObj->createSwapChain(cmdDepthImage);

 // Create the depth image
 createDepthImage();
}

Rendering the presentation window

Draw the presentation window on the display and handle Windows messages. When the user presses the close button, exit the presentation window and break the infinite rendering loop:
void VulkanRenderer::render(){
 MSG msg; // message
 while (1) {
 PeekMessage(&msg, NULL, 0, 0, PM_REMOVE);
 if (msg.message == WM_QUIT) {
 break; // If Quit message the exit the render loop
 }
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 RedrawWindow(window, NULL, NULL, RDW_INTERNALPAINT);
 }
}

VulkanSwapChain - the swapchain manager

A swapchain is implemented in the VulkanSwapChain class inside VulkanSwapChain.h/.cpp. This class manages the entire swapchain life cycle from its initialization and creation to its destruction (public functions). The life cycle comprises several smaller intermediate stages, such as querying the API extensions, getting the appropriate image format, getting surface capabilities and the presentation mode, and so on (private functions).
The following is the header file declaration of the VulkanSwapChain class, we will go through all the important functionalities:
class VulkanSwapChain{
 // Many line are skipped, please refer to source code
 public:
 void intializeSwapChain();
 void createSwapChain(const VkCommandBuffer& cmd);
 void destroySwapChain();

 private:
 VkResult createSwapChainExtensions();
 void getSupportedFormats();
 VkResult createSurface();
 uint32_t getGraphicsQueueWithPresentationSupport();
 void getSurfaceCapabilitiesAndPresentMode();
 void managePresentMode();
 void createSwapChainColorBufferImages();
 void createColorImageView(const VkCommandBuffer& cmd);

 public:
 // User define structure containing public variables used

 // by the swapchain private and public functions.
 SwapChainPublicVariables scPublicVars;

 private:
 // User define structure containing private variables used

 // by the swapchain private and public functions.
 SwapChainPrivateVariables scPrivateVars;
 VulkanRenderer* rendererObj;
 VulkanApplication* appObj;
};

In addition to this, the class has two user-defined structures, namely SwapChainPrivateVariables and SwapChainPublicVariables. This includes the class's private and public member variables:
struct SwapChainPrivateVariables
{
 // Store the image surface capabilities
 VkSurfaceCapabilitiesKHR surfCapabilities;

 // Stores the number of present modes
 uint32_t presentModeCount;

 // Arrays for retrived present modes
 std::vector<VkPresentModeKHR> presentModes;

 // Size of the swapchain color images
 VkExtent2D swapChainExtent;

 // Number of color images supported
 uint32_t desiredNumberOfSwapChainImages;
 VkSurfaceTransformFlagBitsKHR preTransform;

 // Stores present mode bitwise flag for swapchain creation
 VkPresentModeKHR swapchainPresentMode;

 // The retrived drawing color swapchain images
 std::vector<VkImage> swapchainImages;

 std::vector<VkSurfaceFormatKHR> surfFormats;
};

struct SwapChainPublicVariables
{
 // The logical platform dependent surface object
 VkSurfaceKHR surface;

 // Number of buffer image used for swapchain
 uint32_t swapchainImageCount;

 // Swapchain object
 VkSwapchainKHR swapChain;

 // List of color swapchain images
 std::vector<SwapChainBuffer> colorBuffer;

 // Current drawing surface index in use
 uint32_t currentColorBuffer;

 // Format of the image
 VkFormat format;
};

Querying swapchain extensions

The swapchain implementation needs a set of APIs. These APIs are not part of the Vulkan SDK and are dynamically available. The APIs are very specific to the platform implementation and are available in the form of API extensions, which are queried dynamically and stored in the form of a function pointer. This API extension can be queried successfully by specifying the VK_KHR_SWAPCHAIN_EXTENSION_NAME device extension when the VkDevice object is created:
std::vector<const char *> deviceExtensionNames = {
 VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

// Look into VulkanDevice::createDevice() for more info
VkDeviceCreateInfo deviceInfo = {};
deviceInfo.ppEnabledExtensionNames = deviceExtensionNames;
vkCreateDevice(*gpu, &deviceInfo, NULL, &device);

The following code snippet codes a macro, thereby helping us query instance- and device-specific extensions. We use this macro to get the WSI extension API's function pointer. For more information on instance- and device-level extensions, refer to the Introduction to layer and extensions section in Chapter 3, Shaking Hands with the Device:
#define INSTANCE_FUNC_PTR(instance, entrypoint){
 fp##entrypoint = (PFN_vk##entrypoint) vkGetInstanceProcAddr
 (instance, "vk"#entrypoint);
 if (fp##entrypoint == NULL) { exit(-1);
}

#define DEVICE_FUNC_PTR(dev, entrypoint){
 fp##entrypoint = (PFN_vk##entrypoint)vkGetDeviceProcAddr
 (dev, "vk"#entrypoint);

 if (fp##entrypoint == NULL) { exit(-1);
}

The following are the extension names at the instance and device level:
std::vector<const char *> instanceExtensionNames = {
 VK_KHR_SURFACE_EXTENSION_NAME,

 VK_KHR_WIN32_SURFACE_EXTENSION_NAME,

 VK_EXT_DEBUG_REPORT_EXTENSION_NAME,
};

std::vector<const char *> deviceExtensionNames = {
 VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

This macro uses vkGetInstanceProcAddr() and vkGetDeviceProcAddr() to get the instance- and device-level extensions. For more information on the vkGetInstanceProcAddr() API, refer to the Implementing debugging in Vulkan section in Chapter 4, Debugging in Vulkan.
The following code queries instance- and device-level extensions using the user-defined createSwapChainExtensions() function:
VkResult VulkanSwapChain::createSwapChainExtensions(){

 // Dependency on createPresentationWindow()
 VkInstance& instance = appObj->instanceObj.instance;
 VkDevice& device = appObj->deviceObj->device;

 // Get Instance based swapchain extension function pointer
 INSTANCE_FUNC_PTR(instce,GetPhysicalDeviceSurfaceSupportKHR);
 INSTANCE_FUNC_PTR(instance,
 GetPhysicalDeviceSurfaceCapabilitiesKHR);
 INSTANCE_FUNC_PTR(instance,
 GetPhysicalDeviceSurfaceFormatsKHR);
 INSTANCE_FUNC_PTR(instance,
 GetPhysicalDeviceSurfacePresentModesKHR);
 INSTANCE_FUNC_PTR(instance, DestroySurfaceKHR);

 // Get Device based swapchain extension function pointer
 DEVICE_FUNC_PTR(device, CreateSwapchainKHR);
 DEVICE_FUNC_PTR(device, DestroySwapchainKHR);
 DEVICE_FUNC_PTR(device, GetSwapchainImagesKHR);
 DEVICE_FUNC_PTR(device, AcquireNextImageKHR);
 DEVICE_FUNC_PTR(device, QueuePresentKHR);
}

The following table shows the extension APIs that will be required to implement and manage the swapchain. These extensions are at both the instance and device levels and they must be queried. As we go through the various function implementations, we will discuss their extensions in detail:
	
Instance

	
Device

	
For vkGetPhysicalDeviceSurfaceSupportKHR, the function pointer is fpGetPhysicalDeviceSurfaceSupportKHR.

	

For vkCreateSwapchainKHR

the function pointer is fpGetPhysical.

	

For vkGetPhysicalDeviceSurfaceCapabilitiesKHR

the function pointer is fpGetPhysicalDeviceSurfaceCapabilitiesKHR.

	

For vkDestroySwapchainKHR

the function pointer is fpDestroySwapchainKHR.

	

For vkGetPhysicalDeviceSurfaceFormatsKHR

the function pointer is fpGetPhysicalDeviceSurfaceFormatsKHR.

	

For vkGetSwapchainImagesKHR

the function pointer is fpGetSwapchainImagesKHR.

	

For vkGetPhysicalDeviceSurfacePresentModesKHR

the function pointer is fpGetPhysicalDeviceSurfacePresentModesKHR.

	

For vkAcquireNextImageKHR

the function pointer is fpAcquireNextImageKHR.

	

For vkDestroySurfaceKHR

the function pointer is fpDestroySurfaceKHR.

	

For vkQueuePresentKHR

the function pointer is fpQueuePresentKHR.

The retrieved API extensions are stored in the user-defined function pointer variable. They are renamed by replacing the prefix vk with fp. For example, the API extension vkGetPhysicalDeviceSurfaceCapabilitiesKHR() is stored as fpGetPhysicalDeviceSurfaceCapabilitiesKHR(). This is similar for others API extensions as well.

Creating the surface with WSI and associating it with the created window

The Vulkan API can be implemented seamlessly on every platform. A platform is an abstraction of windowing and OS services. Some examples include MS Windows, Android, and Wayland. Window System Integration (WSI) provides a platform-independent way to implement windowing or surface management.
Vulkan represents the logical surface object using VkSurfaceKHR. Different platforms have different APIs to create the VkSurfaceKHR surface object, such as vkCreateWin32-SurfaceKHR(), vkCreateAndroidSurfaceKHR(), and vkCreateXcbSurfaceKHR():

[image: Creating the surface with WSI and associating it with the created window]

This example will focus on the Windows platform:
VkResult vkCreateWin32SurfaceKHR(
 VkInstance instance,
 const VkWin32SurfaceCreateInfoKHR* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* surface);

The following is the description of each and every field:
	
Parameters

	
Description

	

instance

	
This refers to the VkInstance object associated with the surface.

	

pCreateInfo

	
This refers to the VkWin32SurfaceCreateInfoKHR structure object to control surface management. More information in provided in the following information box.

	

pAllocator

	
This is used to control the host-specific memory allocation process.

	

surface

	
This returns the pointer of the created surface object.

Note
The vkCreate<Platform>SurfaceKHR structure object is created on the logical surface. It has no backing of the physical memory yet.

The API takes the VkWin32SurfaceCreateInfo structure as an input parameter, where various control properties on surface management can be specified. The following is the API syntax:
typedef struct VkWin32SurfaceCreateInfoKHR {
 VkStructureType type;
 const void* next;
 VkWin32SurfaceCreateFlagsKHR flags;
 HINSTANCE hinstance;
 HWND hwnd;
} VkWin32SurfaceCreateInfoKHR;

Let's take a look at all the parameters of the control structure:
	
Parameters

	
Description

	

type

	
This is the type information of this structure, which must be VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR.

	

next

	
This refers to NULL or an extension-specific pointer.

	

flag

	
This field is reserved for future use.

	

hInstance

	
This is the instance ID of the created window.

	

hwnd

	
This is the handle of the created window; hwnd and hInstance will be used to associate the surface with the presentation window.

The VulkanSwapChain class implements the creation of the logical WSI surface using the createSurface() method:

// Depends on createPresentationWindow(), need window handle
VkResult VulkanSwapChain::createSurface(){
 VkInstance& instance = appObj->instanceObj.instance;

 // Construct the surface description:
 VkWin32SurfaceCreateInfoKHR createInfo = {};
 createInfo.sType =
 VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
 createInfo.pNext = NULL;
 createInfo.hinstance = rendererObj->connection;
 createInfo.hwnd = rendererObj->window;

 // Create the VkSurfaceKHR object
 return result = vkCreateWin32SurfaceKHR(instance,
 &createInfo, NULL, &scPublicVars.surface);
}

The graphics queue with present support

When swapchain color images are painted by the drawing primitives commands, they then submitted to the presentation engine to be displayed on the screen. This request is submitted in the form of a command buffer into the queue which can take up presentation requests and process it. Therefore, we need a graphic queue which is not only capable of accepting drawing command buffers but also supports the presentation. This can be done by querying each graphic queue available on the physical device and checking whether they support the presentation properties or not. The following code help us to achieve the same, we implement a help function getGraphicsQueueWithPresentationSupport() where we end up retrieving a single queue supporting graphics and presentation command buffer requests:
uint32_t VulkanSwapChain::getGraphicsQueueWithPresentationSupport(){
 VulkanDevice* device = appObj->deviceObj;
 uint32_t queueCount = device->queueCount;
 VkPhysicalDevice gpu = *device->gpu;
 vector<VkQueueFamilyProperties>& queueProps =
 device->queueProps;

 // Iterate each queue and get presentation status for each.
 VkBool32* supportsPresent = (VkBool32 *)malloc(queueCount *
 sizeof(VkBool32));
 for (uint32_t i = 0; i < queueCount; i++) {
 fpGetPhysicalDeviceSurfaceSupportKHR(gpu, i,
 scPublicVars.surface, &supportsPresent[i]);
 }

 // Search for a graphics queues that supports presentation
 uint32_t graphicsQueueNodeIndex = UINT32_MAX;
 uint32_t presentQueueNodeIndex = UINT32_MAX;
 for (uint32_t i = 0; i < queueCount; i++) {
 if ((queueProps[i].queueFlags &
 VK_QUEUE_GRAPHICS_BIT) != 0) {

 if (graphicsQueueNodeIndex == UINT32_MAX) {
 graphicsQueueNodeIndex = i;
 }

 if (supportsPresent[i] == VK_TRUE) {
 graphicsQueueNodeIndex = i;
 presentQueueNodeIndex = i;
 break;
 }
 }
 }

 if (presentQueueNodeIndex == UINT32_MAX) {

 // If didn't find a queue that supports both graphics

 // and present, then find a separate present queue.
 for (uint32_t i = 0; i < queueCount; ++i) {
 if (supportsPresent[i] == VK_TRUE) {
 presentQueueNodeIndex = i;
 break;
 }
 }
 }

 free(supportsPresent);

 // Generate error if could not find queue with present queue
 if (graphicsQueueNodeIndex == UINT32_MAX ||
 presentQueueNodeIndex == UINT32_MAX) {return UINT32_MAX;}

 return graphicsQueueNodeIndex;
}

Querying swapchain image formats

The swapchain needs a supported color-space format for the surface. All the supported formats can be retrieved using the vkGetPhysicalDeviceSurfaceFormatsKHR() API. Here's the syntax of this:
VkResult vkGetPhysicalDeviceSurfaceFormatsKHR(
 VkPhysicalDevice physicalDevice,
 VkSurfaceKHR surface,
 uint32_t* pSurfaceFormatCount,
 VkSurfaceFormatKHR* pSurfaceFormats);

The following table describes the various fields of this API:
	
Parameters

	
Description

	

physicalDevice

	
This refers to the logical device associated with the swapchain.

	

surface

	
This refers to the logical surface created for the swapchain.

	

pSurfaceFormatCount

	
This is an in and out parameter. When vkGetPhysicalDeviceSurfaceFormatKHR is called with surfaceFormats as NULL, it returns the number of supported surface formats. Otherwise, it is used to retrieve the surfaces based on the number of surface pointers.

	

pSurfaceFormats

	
This is to retrieve the supported surface formats.

The following implementation gets the number of supported image formats. Using formatCount, the surface formats are retrieved into the VkSurfaceFormatKHR array. In the event no preferred surface format information is found, we treat the surface format as 32-bit RGBA:
void VulkanSwapChain::getSupportedFormats()
{
 VkPhysicalDevice gpu = *rendererObj->getDevice()->gpu;
 VkResult result;
 // Get the number of VkFormats supported:
 uint32_t formatCount;
 fpGetPhysicalDeviceSurfaceFormatsKHR
 (gpu, scPublicVars.surface, &formatCount, NULL);

 scPrivateVars.surfFormats.clear();
 scPrivateVars.surfFormats.resize(formatCount);

 // Get VkFormats in allocated objects
 result = fpGetPhysicalDeviceSurfaceFormatsKHR(gpu,
 scPublicVars.surface, &formatCount,
 &scPrivateVars.surfFormats[0]);

 // In case it's a VK_FORMAT_UNDEFINED, then surface has no

 // preferred format. We use RGBA 32 bit format
 if (formatCount == 1 && surfFormats[0].format ==
 VK_FORMAT_UNDEFINED)
 { scPublicVars.format = VK_FORMAT_B8G8R8A8_UNORM; }
 else
 {scPublicVars.format = surfFormats[0].format;}
}

Creating the swapchain

In the following subsection, we will learn the implementation of the swapchain. This consists of querying surface capabilities and presentation modes, retrieving color images, and creating image views.
Swapchain surface capabilities and the presentation mode

The swapchain creation process requires you to know two things in order to create the image surface: surface capabilities and the presentation mode:
	Surface capabilities: This specifies the image surface capabilities offered by the physical device. The vkGetPhysicalDeviceSurfaceCapabilitiesKHR() API extension can be used to query these capabilities. The extension is stored in the user-defined function pointer fpGetPhysicalDeviceSurface-CapabilitiesKHR(). Its syntax is as follows: VkResult vkGetPhysicalDeviceSurfaceCapabilitiesKHR(
 VkPhysicalDevice physicalDevice,
 VkSurfaceKHR surface,
 VkSurfaceCapabilitiesKHR* surfaceCapabilities);

The advertised capabilities are retrieved in the VkSurfaceCapabilitiesKHR object. This includes useful information such as the min/max number of image surfaces supported, image dimension range, the maximum number of image arrays possible, the kinds of transformation features supported by the surface (such as rotation or mirror rotation through 90, 180, and 270 degrees), and so on.

	The presentation mode: A swapchain can have various types of presentation mode, and can be retrieved using the vkGetPhysicalDeviceSurfacePresentModesKHR() API extension dynamically . The retrieved information is exposed via the VkPresentModeKHR enumeration supporting four types of presentation modes (see the next section for more information on the modes). The presentModelCount contains the number of presentation modes. The syntax of this API is as follows: VkResult vkGetPhysicalDeviceSurfacePresentModesKHR(

 VkPhysicalDevice physicalDevice,
 VkSurfaceKHR surface,
 uint32_t* presentModeCount,
 VkPresentModeKHR* presentModes);

The following code retrieves the surface capabilities along with the presentation modes and stores the required information in the private class member variables:
void VulkanSwapChain::getSurfaceCapabilitiesAndPresentMode(){
 // Some lines are skipped, please refer to the source code
 VkPhysicalDevice gpu = *appObj->deviceObj->gpu;

 fpGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, scPublicVars.
 surface, &scPrivateVars.surfCapabilities);

 fpGetPhysicalDeviceSurfacePresentModesKHR(gpu, scPublicVars.
 surface, &scPrivateVars.presentModeCount, NULL);

 scPrivateVars.presentModes.clear();
 scPrivateVars.presentModes.resize
 (scPrivateVars.presentModeCount);
 assert(scPrivateVars.presentModes.size()>=1);

 result = fpGetPhysicalDeviceSurfacePresentModesKHR
 (gpu, scPublicVars.surface,
 &scPrivateVars.presentModeCount,
 &scPrivateVars.presentModes[0]);

 fpGetPhysicalDeviceSurfacePresentModesKHR(gpu, scPublicVars.
 surface, &scPrivateVars.presentModeCount,
 scPrivateVars.presentModes);

 if(scPrivateVars.surfCapabilities.currentExtent.width ==
 (uint32_t)-1){
 // If the surface width and height is not defined,

 // then set it equal to image size.
 scPrivateVars.swapChainExtent.width =
 rendererObj->width;
 scPrivateVars.swapChainExtent.height =
 rendererObj->height;
 }
 else{
 // If the surface size is defined, then it must

 // match the swapchain size
 scPrivateVars.swapChainExtent = scPrivateVars.
 surfCapabilities.currentExtent;
 }
}

Managing presentation mode information

The color images contained by the swapchain are managed by the presentation engine using the presentation mode schemes. These schemes determine how the incoming presentation requests will be processed and queued internally. The VkPresentModeKHR() API supports four types of presentation mode:
	
Presentation mode

	
Description

	

VK_PRESENT_MODE_IMMEDIATE_KHR

	
This mode immediately renders the presentation requests without waiting for vertical blanking. No internal queue management is required for presentation requests. This mode is highly susceptible to image tearing.

	

VK_PRESENT_MODE_MAILBOX_KHR

	
Here, the presentation requests are queued up in a single entry queue, and they wait for the next vertical blanking signal that will allow the presentation engine to update the image. This mode does not cause the tearing effect. When the queue is full, the latest presentation request replaces the prior one. In the event of vertical blanking, a single queue request is popped up and is processed. Any image associated with the prior entry becomes available for reuse by the application.

	

VK_PRESENT_MODE_FIFO_KHR

	
Here, the presentation requests are queued up in a single entry queue, and they wait for the next vertical blanking to update the current image, where the front image is removed and processed (hence FIFO). Tearing cannot be observed here. A new request is added to the end of the queue and removed from the beginning.

	

VK_PRESENT_MODE_FIFO_RELAXED_KHR

	
Here, the presentation engine generally updates the current image during the vertical blanking period. If a vertical blanking period has already passed since the last update of the current image, then the presentation engine does not wait for the subsequent vertical blanking period to push the next presentation image to be processed. The next image is immediately followed for the update. This mode may result in visible tearing. New requests are appended to the end of the queue, and one request is removed from the beginning of the queue and processed during or after each vertical blanking period in which the queue is not empty.

The following code implements the presentation mode scheme. First it checks whether the MAILBOX scheme (non-tearing) is available. In case this mode is not available, then the IMMEDIATE mode is preferred. The default fallback scheme is FIFO:
void VulkanSwapChain::managePresentMode()
{
 // MAILBOX - lowest-latency non-tearing mode.If not,try

 // IMMEDIATE, the fastest (but tears). Else, fall back to FIFO.
 scPrivateVars.swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
 for (size_t i = 0; i < scPrivateVars.presentModeCount; i++) {
 if(scPrivateVars.presentModes[i]==VK_PRESENT_MODE_MAILBOX_KHR){
 scPrivateVars.swapchainPresentMode = VK_PRESENT_MODE_MAILBOX_KHR;
 break;
}
if(scPrivateVars.swapchainPresentMode!=VK_PRESENT_MODE_MAILBOX_KHR
 &&scPrivateVars.presentModes[i]== VK_PRESENT_MODE_IMMEDIATE_KHR){
 scPrivateVars.swapchainPresentMode=VK_PRESENT_MODE_IMMEDIATE_KHR;
}
 }
 // Determine the number of VkImage's to use in the swapchain
 scPrivateVars.desiredNumberOfSwapChainImages = scPrivateVars.
 surfCapabilities.minImageCount + 1;
 if ((scPrivateVars.surfCapabilities.maxImageCount > 0) &&
 (scPrivateVars.desiredNumberOfSwapChainImages >
 scPrivateVars.surfCapabilities.maxImageCount)) {
 // Application must settle for fewer images than desired:
 scPrivateVars.desiredNumberOfSwapChainImages =
 scPrivateVars.surfCapabilities.maxImageCount;
 }
 if(scPrivateVars.surfCapabilities.supportedTransforms &
 VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
 scPrivateVars.preTransform=VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
 }
 else {
 scPrivateVars.preTransform=
 scPrivateVars.surfCapabilities.currentTransform;
 }
}

Note
In the real application, it is advisable to prefer PRESENT_MODE_FIFO_RELAXED_KHR as the presentation mode as it only tears when the app misses but doesn't tear when the app is fast enough.

Retrieving the swapchain's color images

Swapchain color images are retrieved by creating the VkSwapchainKHR swapchain object using the vkCreateSwapchainKHR() API extension function pointer. The syntax to do this is as follows:
VkResult vkCreateSwapchainKHR(
 VkDevice device,
 const VkSwapchainCreateInfoKHR* createInfo,
 const VkAllocationCallbacks* allocator,
 VkSwapchainKHR* swapchain);

This API accepts the VKSwapChainCreateInforKHR control structure. This structure contains the necessary information to control the creation of the swapchain object retrieved in the VkSwapchainKHR structure. Here's the syntax of this:
typedef struct VkSwapchainCreateInfoKHR {
 VkStructureType type;
 const void* next;
 VkSwapchainCreateFlagsKHR flags;
 VkSurfaceKHR surface;
 uint32_t minImageCount;
 VkFormat imageFormat;
 VkColorSpaceKHR imageColorSpace;
 VkExtent2D imageExtent;
 uint32_t imageArrayLayers;
 VkImageUsageFlags imageUsage;
 VkSharingMode imageSharingMode;
 uint32_t queueFamilyIndexCount;
 const uint32_t* queueFamilyIndices;
 VkSurfaceTransformFlagBitsKHR preTransform;
 VkCompositeAlphaFlagBitsKHR compositeAlpha;
 VkPresentModeKHR presentMode;
 VkBool32 clipped;
 VkSwapchainKHR oldSwapchain;
} VkSwapchainCreateInfoKHR;

The VkSwapchainCreateInfoKHR structure has the following parameters:
	
Parameters

	
Description

	

type

	
This specifies the type of the structure. It must be VK_-STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR.

	

next

	
This refers to NULL or a pointer to an extension-specific structure.

	

flags

	
This must be zero. This field is reserved for future use.

	

surface

	
This is the surface to which the swapchain images will be presented.

	

minImageCount

	
This refers to the minimum number of presentable images needed by the application to implement the swapchain mechanism.

	

imageFormat

	
This is the format to be used for swapchain color images.

	

imageColor-

Space

	
This represents the color space (VkColorSpaceKHR) supported by the swapchain.

	

imageExtent

	
This refers to the swapchain's image size or dimensions specified in pixels.

	

imageArray-

Layers

	
This represents the number of views in a multiview/stereo surface.

	

imageUsage

	
This is a VkImageUsageFlagBits bit field indicating how the application will use the swapchain's presentable images.

	

imageSharingMode

	
This is the sharing mode used for the images of the swapchain.

	

queueFamily-

IndexCount

	
The refers to the number of queue families that have access to the images of the swapchain if imageSharingMode is VK_SHARING_MODE_CONCURRENT.

	

queueFamily

Indices

	
This is an array of queue family indices that have access to the images of the swapchain if imageSharingMode is VK_SHARING_MODE_CONCURRENT.

	

preTransform

	
This is a bit field of VkSurfaceTransformFlag-BitsKHR that describes the transform relative to the presentation engine's natural orientation, which is applied to the image content prior to the presentation.

	

compositeAlpha

	
This is the VkCompositeAlphaFlagBitsKHR bit field indicating the alpha-compositing mode to use when this surface is composited together with other surfaces on certain windowing systems.

	

presentMode

	
This is the presentation mode the swapchain will use.

	

clipped

	
This indicates whether the Vulkan implementation is allowed to discard the rendering operations that affect the regions of the surface that aren't visible.

	

oldSwapchain

	
This is non-null, and it specifies the swapchain that will be replaced by the new swapchain being created. Upon calling vkCreateSwapchainKHR with an old non-null swapchain, any image owned by the presentation engine and not currently being displayed will be freed immediately. Any image that is being displayed will be freed once it is no longer being displayed. This may occur even if the creation of the new swapchain fails. The application must destroy the old swapchain to free all of the memory associated with the old swapchain, including any presentable images the application currently owns. It must wait for the completion of any outstanding rendering before doing so, with the exception of rendering to presentable images that have been successfully submitted to the presentation, as described next, but that are not yet owned by the presentation engine.

In the following code, the createSwapChainColorBufferImage() function creates the swapchain using the function pointer of vkCreateSwapchainKHR (fpCreateSwapchainKHR()). Upon successful creation of the swapchain, the VkImage object image surfaces are created behind the scenes. Before acquiring the image surfaces, we allocate sufficient memory space to hold the image buffers. The number of swapchain images and physical surfaces is returned by the vkGetSwapchainImagesKHR() API extension's function pointer, namely (fpGetSwapchainImagesKHR()).
	First populate the VkSwapchainCreateInfoKHR control structure with the required field values, such as the format of the image, size, presentation mode, color space, and so on. This information is used by the fpCreateSwapchainKHR() API function pointer to create the swapchain.
	Once the VkSwapchainKHR swapchain object (swapchainImages) is created successfully, use it to acquire the image using the vkGetSwapchainImagesKHR() API. This API is called twice:	When it is called for the first time with the last parameter as NULL, it retrieves the number of image (swapchainImageCount) present in the swapchain.
	The swapchainImageCount is used to allocate sufficient memory to hold the surface image arrays (VkImage*). The same API when called the second time retrieves the image in the allocated VkImage array objects called swapchainImages, as explained in the following API description:

 VkResult vkGetSwapchainImagesKHR(
 VkDevice device,
 VkSwapchainKHR swapchain,
 uint32_t* swapchainImageCount,
 VkImage* swapchainImages);

	
Parameters

	
Description

	

device

	
This is the logical device associated with the swapchain.

	

swapchain

	
This refers to the VkSwapChainKHR object.

	

swapchainImageCount

	
This refers to the number of image the swapchain contains.

	

swapchainImages

	
This refers to the VkImage array object that retrieves the swapchain.

The following code shows the implementation of the swapchain object creation process and the retrieval of the color images. The color images are used to store the color information for each corresponding pixel:
void VulkanSwapChain::createSwapChainColorBufferImages()
 {
VkSwapchainCreateInfoKHR scInfo = {};
scInfo.sType =
 VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
scInfo.pNext = NULL;
scInfo.surface = scPublicVars.surface;
scInfo.minImageCount =
 scPrivateVars.desiredNumberOfSwapChainImages;
scInfo.imageFormat = scPublicVars.format;
scInfo.imageExtent.width =
 scPrivateVars.swapChainExtent.width;
scInfo.imageExtent.height =
 scPrivateVars.swapChainExtent.height;
scInfo.preTransform = scPrivateVars.preTransform;
scInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
scInfo.imageArrayLayers = 1;
scInfo.presentMode = scPrivateVars.swapchainPresentMode;
scInfo.oldSwapchain = VK_NULL_HANDLE;
scInfo.clipped = true;
scInfo.imageColorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
scInfo.imageUsage =
 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
 VK_IMAGE_USAGE_TRANSFER_DST_BIT;
scInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
scInfo.queueFamilyIndexCount = 0;
scInfo.pQueueFamilyIndices = NULL;

// Create the swapchain object
fpCreateSwapchainKHR(rendererObj->getDevice()->device,
 &swapChainInfo, NULL, &scPublicVars.swapChain);

// Get the number of images the swapchain has
fpGetSwapchainImagesKHR(rendererObj->getDevice()->device,
 scPublicVars.swapChain, &scPublicVars.swapchainImageCount, NULL);

scPrivateVars.swapchainImages.clear();
// Make array of swapchain image to retrieve the images
scPrivateVars.swapchainImages.resize
(scPublicVars.swapchainImageCount);
assert(scPrivateVars.swapchainImages.size() >= 1);

// Retrieve the swapchain image surfaces
fpGetSwapchainImagesKHR(rendererObj->getDevice()->device,
 scPublicVars.swapChain, &scPublicVars.swapchainImageCount,
 scPrivateVars.swapchainImages);
 }

Creating color image views

As discussed in the beginning of this chapter, images are not directly used in the form of image objects (VkImage) by the application; instead, image views are used (VkImageView). In this section, we will learn how to create an image view using image objects.
Our application implements the image view creation process in the createColorImageView() function. The image view is created using the vkCreateImageView() API. This API accepts important parameters, such as the image view format, mipmap level, level count, number of array layers, and so on. For more information on image view APIs, refer to the Creating the image view subsection under the Understanding image resources section in this chapter.
In the following implementation, for each swapchain image object (VkImage), we create a corresponding image view by iterating through the list of the image objects available in scPublicVars.swapchainImageCount. This count is retrieved using the fpGetSwapchainImagesKHR() API, as mentioned in the previous section. The created image views are then pushed back to a vector list, where they will be used later to refer to the correct front and back buffer images:
void VulkanSwapChain::createColorImageView(const
 VkCommandBuffer& cmd){
 VkResult result;
 for(uint32_t i = 0; i < scPublicVars.swapchainImageCount; i++){
 SwapChainBuffer sc_buffer;

 VkImageViewCreateInfo imgViewInfo = {};
 imgViewInfo.sType =
 VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
 imgViewInfo.pNext = NULL;
 imgViewInfo.format = scPublicVars.format;
 imgViewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
 imgViewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
 imgViewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
 imgViewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
 imgViewInfo.subresourceRange.aspectMask =
 VK_IMAGE_ASPECT_COLOR_BIT;
 imgViewInfo.subresourceRange.baseMipLevel = 0;
 imgViewInfo.subresourceRange.levelCount = 1;
 imgViewInfo.subresourceRange.baseArrayLayer = 0;
 imgViewInfo.subresourceRange.layerCount = 1;
 imgViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
 imgViewInfo.flags = 0;

 sc_buffer.image = scPrivateVars.swapchainImages[i];
 // Since the swapchain is not owned by us we cannot set

 // the image layout. Upon setting, the implementation

// may give error, the images layout were

 // created by the WSI implementation not by us.

 imgViewInfo.image = sc_buffer.image;

 result = vkCreateImageView(rendererObj->getDevice()->device,
 &imgViewInfo, NULL, &sc_buffer.view);
 scPublicVars.colorBuffer.push_back(sc_buffer);
 }
 scPublicVars.currentColorBuffer = 0;
}

Creating a depth image

The depth image surface plays an important role in 3D graphics application. It brings the perception of depth in a rendered scene using depth testing. In depth testing, each fragment's depth is stored in a special buffer called a depth image. Unlike the color image that stores the color information, the depth image stores depth information of the primitive's corresponding fragment from the camera view. The depth image's dimension is usually the same as the color image. Not a hard-and-fast rule, but in general, the depth image stores the depth information as 16-, 24-, or 32-bit float values.
Note
The creation of a depth image is different from the color image. You must have noticed that we did not use the vkCreateImage() API to obtain color image objects while retrieving swapchain images. These images were directly returned from the fpGetSwapchainImagesKHR() extension API. In this section, we will go through a step-by-step process to create the depth image.

Introduction to tiling

Image data is stored in a contiguous type of memory and is mapped to the 2D image memory where it is stored in a linear fashion. In the linear arrangement, texels are laid out in contiguous row-by-row memory locations, as shown in the following diagram:

[image: Introduction to tiling]

A pitch generally represents the width of an image, which could be more than the padding bytes that are generally added in order to meet alignment requirements. The position offset of a given texel can be calculated using its row and column position along with the given pitch, as shown in the preceding image.
This linear layout is neat as long as texels are accessed in places along the row where no neighboring texel information is required. However, in general, many applications require image information to be fetched along multiple rows. When the image is large in dimension, the pitch length increases and stretches across multiple rows in this linear layout. In a multicache-level system, this leads to a situation where the performance can drop due to slower address translation caused by translation lookaside buffer (TLB) and cache misses.
On most GPUs, this slower translation of the address is fixed by storing the texels in a swizzle format. This way of storing image texels is called Optimal tiling, where the image texels are stored in a tiled fashion representing multiple columns and rows in a continuous memory chunk. For example, in the following diagram, there are four tiles represented with different colors, where each tile has 2 x 2 rows (pitch) and columns:

[image: Introduction to tiling]

Clearly, in the linear fashion, blocks of the same color are set apart by the other blocks that comes in between; however, in the optimal layout, blocks of the same color are held together, providing a much more efficient way to access the neighboring texels without incurring performance loss. Note that this illustration of optimal tiling just mimics how the principle works; under the hood, there exist highly complex swizzling algorithms that help achieve optimal tiling.
In Vulkan, tiling is defined by VkImageTiling, and it represents linear tiling (VK_IMAGE_TILING_LINEAR) and optimal tiling (VK_IMAGE_TILING_OPTIMAL). The following is the syntax for this:
typedef enum VkImageTiling {
 VK_IMAGE_TILING_OPTIMAL = 0,
 VK_IMAGE_TILING_LINEAR = 1,
} VkImageTiling;

Let's take a look at the tiling types and their respective definitions:
	
Tiling type

	
Description

	

VK_IMAGE_TILING_OPTIMAL

	
These are opaquely tiled and provide optimal access to the underlying memory by laying out the texels in an implementation-dependent arrangement.

	

VK_IMAGE_TILING_LINEAR

	
As understood by the name, texels here are arranged in a row-major order in a linear fashion. The coherency may cause some padding in each row.

Creating a depth buffer image object

Initialize the depth format with 16-byte float values and query the format properties supported by the physical device specified by deviceObj->gpu. The retrieved properties are used to choose the optimal tiling/swizzling (VK_IMAGE_TILING_OPTIMAL) layout for the image in the memory.
The depth-related member variables are packed in a user-defined structure called Depth in the Renderer class. Here's the code that illustrates this:
 struct{
 VkFormat format;
 VkImage image;
 VkDeviceMemory mem;
 VkImageView view;
 } Depth;

The various fields of this structure are defined in the following table:
	
Parameters

	
Description

	

format

	
This refers to the depth image format, namely VkFormat.

	

image

	
This refers to the VkImage depth image object.

	

mem

	
This is the allocated memory associated with the depth image object.

	

view

	
This is the VkImageView object of the depth image object (VkImage).

The depth format, tiling information, and other parameters--such as image size and image type--are used to create the VkImageCreateInfo control structure. Since we are creating a depth buffer, we need to specify the usage as VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT in the usage field of the same structure. Use it to create the VkImage image object with the vkCreateImage() API. For more information on VkImageCreateInfo and vkCreateImage(), refer to the Creating images subsection of the Understanding image resources section in this chapter:
 VkResult result;
 VkImageCreateInfo imageInfo = {};

 // If the depth format is undefined,

 // use fall back as 16-byte value
 if (Depth.format == VK_FORMAT_UNDEFINED) {
 Depth.format = VK_FORMAT_D16_UNORM;
 }
 const VkFormat depthFormat = Depth.format;

 VkFormatProperties props;
 vkGetPhysicalDeviceFormatProperties(*deviceObj->gpu,
 depthFormat, &props);

 if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) {
 imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
 }
 else if (props.linearTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) {
 imageInfo.tiling = VK_IMAGE_TILING_LINEAR;
 }
 else {
 std::cout << "Unsupported Depth Format, try other Depth formats.\n";
 exit(-1);
 }
 imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
 imageInfo.pNext = NULL;
 imageInfo.imageType = VK_IMAGE_TYPE_2D;
 imageInfo.format = depthFormat;
 imageInfo.extent.width = width;
 imageInfo.extent.height = height;
 imageInfo.extent.depth = 1;
 imageInfo.mipLevels = 1;
 imageInfo.arrayLayers = 1;
 imageInfo.samples = NUM_SAMPLES;
 imageInfo.queueFamilyIndexCount= 0;
 imageInfo.pQueueFamilyIndices = NULL;
 imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
 imageInfo.usage =
 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
 imageInfo.flags = 0;

 // User create image info and create the image objects
 result = vkCreateImage(deviceObj->device, &imageInfo,
 NULL, &Depth.image);
 assert(result == VK_SUCCESS);

Getting the depth image's memory requirements

Query the buffer's image memory requirements using the vkGetImageMemoryRequirements() API. This will retrieve the total size required for allocating the depth image object's physical memory backing. For more information on API usage, refer to the Gathering memory allocation requirements subsection in this chapter:

 // Get the image memory requirements
 VkMemoryRequirements memRqrmnt;
 vkGetImageMemoryRequirements
 (deviceObj->device, Depth.image, &memRqrmnt);

Determining the type of memory

Use the memoryTypeBits field from the queried memory requirements, memRqrmnt, and determine the type of memory suitable for allocating the memory of the depth image using VulkanDevice::memoryTypeFromProperties():
 VkMemoryAllocateInfo memAlloc = {};
 memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
 memAlloc.pNext = NULL;
 memAlloc.allocationSize = 0;
 memAlloc.memoryTypeIndex = 0;
 memAlloc.allocationSize = memRqrmnt.size;

 bool pass;
 // Determine the type of memory required

 // with memory properties
 pass = deviceObj->memoryTypeFromProperties(memRqrmnt.
 memoryTypeBits, 0, &memAlloc.memoryTypeIndex);
 assert(pass);

The VulkanDevice::memoryTypeFromProperties() function takes three parameters as inputs. The first one (typeBits) represents the type of the memory, the second parameter (requirementsMask) specifies the user requirement for the particular memory type, and the last one (typeIndex) returns the memory index handles.
This function iterates and checks whether the requested memory type is present. Next, it checks whether the found memory satisfies the user requirements. If successful, it returns Boolean true and the index of the memory type; upon failure, it returns Boolean false:
 bool VulkanDevice::memoryTypeFromProperties(uint32_t typeBits,
 VkFlags requirementsMask, uint32_t *typeIndex)
 {
 // Search memtypes to find first index with those properties
 for (uint32_t i = 0; i < 32; i++) {
 if ((typeBits & 1) == 1) {
 // Type is available, does it match user properties?
 if ((memoryProperties.memoryTypes[i].propertyFlags
 & requirementsMask) == requirementsMask) {
 *typeIndex = i;
 return true;
 }
 }
 typeBits >>= 1;
 }
 // No memory types matched, return failure
 return false;
}

Allocating and binding physical memory to a depth image

The memory requirement guides the application to allocate a specified amount of memory for the depth image. Once the memory is allocated successfully using vkAllocateMemory(), it needs to be bound to the depth image (Depth.image), making the image the owner of the allocated memory:

 // Allocate the physical backing for the depth image
 result = vkAllocateMemory(deviceObj->device,
 &memAlloc, NULL, &Depth.mem);
 assert(result == VK_SUCCESS);

 // Bind the allocated memory to the depth image
 result = vkBindImageMemory(deviceObj->device,
 Depth.image, Depth.mem, 0);
 assert(result == VK_SUCCESS);

Image layout transition

GPU hardware that is capable of supporting optimal layouts requires transitioning from the optimal layout to the linear layout and vice versa. Optimal layouts are not directly accessible by the consumer components for read and write purposes. The opaque nature of an optimal layout requires a layout transition, which is the process of converting one type (old type) of layout into another type (new type).
Note
The CPU may store the image data in a linear layout buffer and then convert it into the optimal layout to allow the GPU to read it in a more efficient manner.

GPU hardware that supports the optimal layout allows you to store the data either in a linear or optimal layout through layout transitioning. The layout transition process can be applied using memory barriers. The memory barriers inspect the specified old and new image layouts and execute the layout transition. It may not be necessary that every layout transition triggers an actual layout conversion operation on the GPU. For instance, when an image object is created for the first time, it may have the initial layout undefined; in such a case, the GPU may only need to access memory in the optimal pattern. For more information on memory barriers, continue with the next section.

Image layout transition with memory barriers

A memory barrier is an instruction that helps synchronize data reads and writes. It guarantees that the operation specified before and after the memory barrier will be synchronized. When this instruction is inserted, it ensures that the memory operation issued before this instruction is completed prior to executing the memory instruction issued after the barrier instruction.
There are three types of memory barrier:
	Global memory barriers: This type of memory barrier type is applicable to all kinds of executional memory objects and applies to their respective memory access types. Global memory barriers are represented by the VkMemoryBarrier structure's instance.
	Buffer memory barriers: This memory barrier type is applicable to a specific range of the specified buffer objects and it applies to their respective memory access types. These memory barriers are represented by the VkBufferMemoryBarrier structure's instance.
	Image memory barriers: The image memory barrier is represented by the VkImageMemoryBarrier instance and is applicable to the different memory access types via a specific image sub-resource range of the specified image object.

The allocated image memory needs to be laid out according to its usage. The image layout helps the memory contents become accessible in an implementation-specific way, given the nature of its usage. There is a general layout available for the image that can be used for anything, but this may not be the appropriate one (VK_IMAGE_LAYOUT_GENERAL). In Vulkan, image layouts are represented using VkImageLayout. The following are the fields defined for this enumeration:
	
VkImageLayout fields

	
Description

	

VK_IMAGE_LAYOUT_UNDEFINED

	
The image content in this layout and its subrange are pretty much in an undefined state and are assumed to be in this state right after they are created.

	

VK_IMAGE_LAYOUT_GENERAL

	
This layout permits all operations on the image or its subrange, which is otherwise specified through the usage flags (VkImageUsageFlag).

	

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

	
The image in this layout can only be used with the framebuffer color attachment. It can be accessed via framebuffer color reads and can be written using draw commands.

	

VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL

	
The image in this layout can only be used with the framebuffer depth/stencil attachment. It can be accessed via framebuffer color reads and can be written using draw commands.

	

VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL

	
This layout uses the image as a read-only shader resource. So it can only be accessed by shader reads done via a sampled image descriptor, combined image sampler descriptor, or read-only storage image descriptor (VkDescriptorType).

	

VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL

	
An image (or a subrange of it) in this layout can only be used as the source operand of the commands vkCmdCopyImage, vkCmdBlitImage, vkCmdCopyImageToBuffer, and vkCmdResolveImage.

	

VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL

	
An image (or a subrange of it) in this layout can only be used as the destination operand of the commands vkCmdCopyImage, vkCmdBlitImage, vkCmdCopyBufferToImage, vkCmdResolveImage, vkCmdClearColorImage, and vkCmdClearDepthStencilImage.

The layouts in the images applied through special memory barriers are called VkImageMemoryBarrier. The memory barriers are inserted with the help of the vkCmdPipelineBarrier() API. The syntax of this API is as follows:
void vkCmdPipelineBarrier(
 VkCommandBuffer commandBuffer,
 VkPipelineStageFlags srcStageMask,
 VkPipelineStageFlags dstStageMask,
 VkDependencyFlags dependencyFlags,
 uint32_t memoryBarrierCount,
 const VkMemoryBarrier* pMemoryBarriers,
 uint32_t bufferMemoryBarrierCount,
 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
 uint32_t imageMemoryBarrierCount,
 const VkImageMemoryBarrier* pImageMemoryBarriers);

Let's see the specification of all the fields:
	
Parameters

	
Description

	

commandBuffer

	
This is the command buffer in which the memory barrier is specified.

	

srcStageMask

	
This is the bitwise mask field specifying the pipeline stages that must complete their execution before the barrier is implemented.

	

dstStageMask

	
This is the bitwise mask field specifying the pipeline stages that should not start the execution until the barrier is completed.

	

dependencyFlags

	
This refers to the VkDependencyFlagBits values that indicate whether the barrier has screen-space locality.

	

memoryBarrierCount

	
This refers to the number of memory barriers.

	

pMemoryBarriers

	
This is the VkBufferMemoryBarreir object array with the number of elements equal to memoryBarrierCount.

	

bufferMemoryBarrierCount

	
This refers to the number of buffer memory barriers.

	

pBufferMemoryBarrier

	
This refers to the VkMemoryBarreir object array with the number of elements equal to bufferMemoryBarrierCount.

	

imageMemoryBarrierCount

	
This refers to the number of image type memory barriers.

	

pImageMemoryBarriers

	
This refers to the VkImageMemoryBarrier object array with the number of elements equal to imageMemoryBarrierCount.

The following code makes use of an image barrier and sets the appropriate image layout information in the VkImageMemoryBarrier control structure (imgMemoryBarrier). This control structure is passed to the vkCmdPipelineBarrier() API, which sets the execution and applies the memory barriers. The created depth image (Depth.image) is set as a framebuffer depth/stencil attachment layout by specifying the VkImageMemoryBarrier's newLayout field as VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL.
Using the created command pool, allocate the cmdDepthImage command buffer. This command buffer will be used to record the image layout transition, as mentioned here:

 /****** void VulkanRenderer::createDepthImage()******/

 // Use command buffer to create the depth image. This includes -

 // Command buffer allocation, recording with begin/end

 // scope and submission.
 CommandBufferMgr::allocCommandBuffer(&deviceObj->device,
 cmdPool, &cmdDepthImage);
 CommandBufferMgr::beginCommandBuffer(cmdDepthImage);
 {

 // Set the image layout to depth stencil optimal
 setImageLayout(Depth.image,
 VK_IMAGE_ASPECT_DEPTH_BIT,
 VK_IMAGE_LAYOUT_UNDEFINED,
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
 (VkAccessFlagBits)0, cmdDepthImage);
 }
 CommandBufferMgr::endCommandBuffer(cmdDepthImage);
 CommandBufferMgr::submitCommandBuffer(deviceObj->queue,
 &cmdDepthImage);

The image layout is set using the setImageLayout() function. This is a helper function that records memory barriers using the vkCmdPipelineBarrier() command.
This command is recorded in the cmdDepthImage command buffer and guarantees that it will meet the requirement of proper image layouts before it allows the dependent resources to access it.
The setImageLayout() helper function transits the existing old image layout format to the specified new layout type. In the present example, the old image layout is specified as VK_IMAGE_LAYOUT_UNDEFINED because the image object is created for the first time and has no predefined layout applied. Since we are implementing the image layout for depth/stencil testing, the new intended image layout must be mentioned with the VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL usage type:
void VulkanRenderer::setImageLayout(VkImage image,
 VkImageAspectFlags aspectMask, VkImageLayout oldImageLayout,
 VkImageLayout newImageLayout, VkAccessFlagBits srcAccessMask,
 const VkCommandBuffer& cmd){

// Dependency on cmd
assert(cmd != VK_NULL_HANDLE);
// The deviceObj->queue must be initialized
assert(deviceObj->queue != VK_NULL_HANDLE);

VkImageMemoryBarrier imgMemoryBarrier = {};
imgMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imgMemoryBarrier.pNext = NULL;
imgMemoryBarrier.srcAccessMask = srcAccessMask;
imgMemoryBarrier.dstAccessMask = 0;
imgMemoryBarrier.oldLayout = oldImageLayout;
imgMemoryBarrier.newLayout = newImageLayout;
imgMemoryBarrier.image = image;
imgMemoryBarrier.subresourceRange.aspectMask = aspectMask;
imgMemoryBarrier.subresourceRange.baseMipLevel = 0;
imgMemoryBarrier.subresourceRange.levelCount = 1;
imgMemoryBarrier.subresourceRange.layerCount = 1;

if (oldImageLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
 imgMemoryBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
}

switch (newImageLayout)
{
 // Ensure that anything that was copying from this image

 // has completed. An image in this layout can only be

 // used as the destination operand of the commands
 case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
 imgMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
 break;

 // Ensure any Copy or CPU writes to image are flushed. An image

 // in this layout can only be used as a read-only shader resource
 case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
 imgMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
 imgMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
 break;

 // An image in this layout can only be used as a
 // framebuffer color attachment
 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
 imgMemoryBarrier.dstAccessMask =
 VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
 break;

 // An image in this layout can only be used as a

 // framebuffer depth/stencil attachment
 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
 imgMemoryBarrier.dstAccessMask =
 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
 break;
}

VkPipelineStageFlags srcStages= VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
VkPipelineStageFlags destStages = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
vkCmdPipelineBarrier(cmd, srcStages, destStages, 0, 0,
 NULL, 0, NULL, 1, &imgMemoryBarrier);
}

Creating the image view

Finally, we'll let the application use the depth image by means of an image view. We know very well that images cannot be used directly in a Vulkan application. They are used in the form of image views. The following code implements the creation of the image view using the vkCreateImageView() API. For more information on the API, refer to the Creating the image view subsection under the Understanding image resources section in this chapter:

 /****** void VulkanRenderer::createDepthImage()******/

 VkImageViewCreateInfo imgViewInfo = {};
 imgViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
 imgViewInfo.pNext = NULL;
 imgViewInfo.image = VK_NULL_HANDLE;
 imgViewInfo.format = depthFormat;
 imgViewInfo.components = { VK_COMPONENT_SWIZZLE_IDENTITY };
 imgViewInfo.subresourceRange.aspectMask =
 VK_IMAGE_ASPECT_DEPTH_BIT;
 imgViewInfo.subresourceRange.baseMipLevel = 0;
 imgViewInfo.subresourceRange.levelCount = 1;
 imgViewInfo.subresourceRange.baseArrayLayer = 0;
 imgViewInfo.subresourceRange.layerCount = 1;
 imgViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
 imgViewInfo.flags = 0;

 if (depthFormat == VK_FORMAT_D16_UNORM_S8_UINT ||
 depthFormat == VK_FORMAT_D24_UNORM_S8_UINT ||
 depthFormat == VK_FORMAT_D32_SFLOAT_S8_UINT) {

 imgViewInfo.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
 }

 // Create the image view and allow the application to

 // use the images.
 imgViewInfo.image = Depth.image;
 result = vkCreateImageView(deviceObj->device, &imgViewInfo,
 NULL, &Depth.view);
 assert(result == VK_SUCCESS);

Summarizing the application flow

In this section, we will summarize the flow of swapchain creation and the building of the presentation window. It consists of two parts: initialization and rendering.

Initialization

The initialization process initializes, creates, and processes the swapchain. The swapchain is not yet connected to the framebuffer render process and the primitives. Therefore, the rendered output will be a blank presentation window for now.
First, VulkanRenderer initializes the presentation window and creates a native platform-specific empty window (500 x 500). This window renders the swapchain's front buffer drawing image. Next, it initializes the swapchain to meet swapchain prerequisites. The swapchain image view layouts are created using command buffers that are allocated from the preallocated pool of command buffers.
During the initialization of the swapchain, the WSI extensions are queried and stored in the form of function pointers. The logical swapchain surface object is created and associated with the presentation window. Next, a suitable graphics queue is queried from the logical device supporting the presentation; this queue is used to draw operations and present the swapchain images to the display output window. Finally, the device is also checked for all the possible image formats that can used for swapchain images. The creation of the swapchain includes querying the swapchain surface capabilities that specify surface configurations, such as the maximum size of the drawing surface, the available presentation modes, and so on. Using this surface configuration, the swapchain image objects are retrieved. Once the swapchain retrieves the images, it can be used to render the primitives. The swapchain images are retrieved by the WSI; therefore, the application does not own these. These images are finally converted into image views to allow the application to use them in the implementation.
We will also need to create the depth image for depth/stencil testing, and unlike the swapchain image, the depth image is solely the responsibility of the application. The application owns it and therefore can apply the image layout transition on the depth image with an optimal depth layout scheme. The image transition is applied using the memory barrier command, which is packed in the command buffer and submitted to the queue for upfront processing. The memory barrier inserts special instructions that guarantees the transitioning of the layout before it gets consumed.

Rendering - displaying the output window

The following code renders the presentation window:
void VulkanRenderer::render(){
 MSG msg; // message
 while (1) {
 PeekMessage(&msg, NULL, 0, 0, PM_REMOVE);
 if (msg.message == WM_QUIT) {
 break; // If Quit message the exit the render loop
 }
 TranslateMessage(&msg);
 DispatchMessage(&msg);

 // Display the window
 RedrawWindow(window, NULL, NULL, RDW_INTERNALPAINT);
 }
}

The following is the output of the preceding code implementation:

[image: Rendering - displaying the output window]

Summary

This chapter was full of image resources. We started with a basic understanding of image resource in Vulkan and learning about image objects, image layouts, and image views. Then we created image objects and allocated device memory to them. We also used WSI extensions to implement the swapchain and retrieved the swapchain images; these images were then associated with the presentation window. Finally, we created image views out of the swapchain images.
Next in this chapter, we implemented the depth buffer image. We also understood the different Vulkan image tilings and the basic difference between them. In addition to this, we also understood image layouts and their implementations using memory barriers.
In the next chapter, we will introduce the framebuffer and render pass. The framebuffer consumes the image views of a swapchain and depth image and associates them with a color and depth attachment. This information is then used by the render pass to define a unit of work. We will also learn about a buffer resource and use it to create the geometry buffer. In addition to this, we will look at SPIR-V to learn shader programming in Vulkan.

Chapter 7. Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

In the previous chapter, we learned about Vulkan resource types; we understood what image resources (VkImage) are and implemented them in the swapchain image. In this chapter, we will discuss the second type of Vulkan resource called buffer resources (VkBuffer) and use them to prepare a simple geometry buffer.
This chapter will also introduce and implement a Render Pass and framebuffer. A Render Pass helps in assembling a single unit of work. It defines the attachments and subpasses associated with it that influence a single render job. A framebuffer consumes the created Render Pass and creates single-frame information for each corresponding swapchain image. Framebuffers associate a set of image views with the set of attachments described in a Render Pass.
Additionally, we will implement our first shader in Vulkan using SPIR-V, which is a binary intermediate language for shaders and kernels.
So, we will cover the following topics:
	Understanding the Vulkan buffer resource type
	Creating geometry with the buffer resource
	Understanding a Render Pass
	Using the Render Pass and creating the framebuffer
	Clearing the background color
	Working with a shader in Vulkan

Understanding the Vulkan buffer resource type

A buffer resource represents a contiguous array of data in a linear fashion. Buffer resources are commonly stored attribute data information, such as vertex coordinates, texture coordinates, associated colors, and more. The buffer resource in Vulkan is represented by the VkBuffer object, unlike the image resource (VkImage), which is represented in the view form (image view, VkImageView), the buffer resources can be used directly as the source of vertex data or accessed by shaders through descriptors. They need to be converted explicitly into a buffer view (VkBufferView) to allow the shaders to use buffer data contents in the formatted form. In this section, we will make use of the buffer resource directly using the API commands.
First, this section will discuss the buffer resource concepts covering the API specifications to use them in the implementation. Next, we will use these APIs and implement the buffer resources to store the geometry data of a simple triangle. This will be used in the upcoming chapters to render the geometry into the application.
Creating the buffer resource object

The buffer resource (VkBuffer) is created using the vkCreateBuffer API. The following is the syntax:
VkResult vkCreateBuffer(
 VkDevice device,
 const VkBufferCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkBuffer* buffer);

This table describes the various fields of the vkCreateBuffer() API:
	
Parameters

	
Description

	

device

	
This is the logical device responsible for creating the buffer resource.

	

pCreateInfo

	
This refers to a VkBufferCreateInfo pointer; check the following sections for more information.

	

pAllocator

	
This controls the host memory allocation process.

	

buffer

	
This returns the VkBuffer pointer after it's created.

The VkBufferCreateInfo syntax is defined here. The VkBufferCreateInfo syntax is defined here:
typedef struct VkBufferCreateInfo {
 VkStructureType type;
 const void* pNext;
 VkBufferCreateFlags flags;
 VkDeviceSize size;
 VkBufferUsageFlags usage;
 VkSharingMode sharingMode;
 uint32_t queueFamilyIndexCount;
 const uint32_t* pQueueFamilyIndices;
} VkBufferCreateInfo;

The following table describes the various fields of VkBufferCreateInfo:
	
Parameters

	
Description

	

type

	
This specifies the type of the structure; this must be of type VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO.

	

pNext

	
This is an extension-specific structure. It can also be NULL.

	

flags

	
These are VkBufferCreateFlagBits bit field flags. Refer to VkBufferCreateFlagBits in the following sections for more information on flags.

	

size

	
This refers to the total size of the buffer to be created; the size is specified in bytes.

	

usage

	
This is VkBufferUsageFlagBits specifying the bit field that describes the intended usage of the buffer resource. Refer to the following sections for more information on the usage of VkBufferUsageFlagBits.

	

sharingMode

	
This specifies the sharing mode of the buffer when it will be accessed by multiple queue families. This must be one of these values: VK_SHARING_MODE_EXCLUSIVE or VK_SHARING_MODE_CONCURRENT from VkSharingMode.

	

queueFamilyIndexCount

	
This represents the number of entries in the queueFamilyIndices array.

	

pQueueFamilyIndices

	
This is an array of queue families that will access the buffer. The sharingMode must be VK_SHARING_MODE_CONCURRENT; otherwise, just ignore it.

Destroying the buffer

When the buffer is no longer required, it can be destroyed using vkDestroyBuffer():
void vkDestroyBuffer(VkDevice device,
 VkBuffer buffer,
 const VkAllocationCallbacks* allocator);

This API accepts three parameters, which are described in the following table:
	
Parameters

	
Description

	

device

	
This is the logical device that destroys the buffer object.

	

buffer

	
This refers to the VkBuffer object that needs to be destroyed.

	

pAllocator

	
This controls the host memory deallocation process; refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

Creating a buffer view

A buffer view is created using vkCreateBufferView(). The following is the syntax of this API:
VkResult vkCreateBufferView(
 VkDevice device,
 const VkBufferViewCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkBufferView* pView);

This table describes the various fields of vkCreateBufferView:
	
Parameters

	
Description

	

device

	
This is the handle of the logical device that creates the image buffer.

	

pCreateInfo

	
This is a pointer to VkCreateBufferViewInfo; this controls the creation of VkBufferView.

	

pAllocator

	
This controls the host memory allocation process; for more information, refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pView

	
This returns the handle of the created VkBufferView object.

The buffer view is created using the vkCreateBufferView() API. The following is the syntax information:
typedef struct VkBufferViewCreateInfo {
 VkStructureType type;
 const void* pNext;
 VkBufferViewCreateFlags flags;
 VkBuffer buffer;
 VkFormat format;
 VkDeviceSize offset;
 VkDeviceSize range;
} VkBufferViewCreateInfo;

This table describes the various fields of VkBufferViewCreateInfo:
	
Parameters

	
Description

	

type

	
This refers to the type information of the structure; it must be of type VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO.

	

next

	
This is an extension-specific structure. This field could be NULL as well.

	

flags

	
This field is reserved for future use.

	

buffer

	
This is the handle of VkBuffer.

	

format

	
This specifies the format (VkFormat) of the buffer data element.

	

offset

	
This is used for the remapping of color/depth/stencil after they have been converted into color components.

	

range

	
This is used for selecting a range of mipmap levels and array layers, making them accessible to the view.

Destroying the buffer view

The buffer view could be destroyed using the vkDestroBufferView() API. This intakes three parameters. The first specifies the logical device that is responsible for destroying the buffer view indicated by the second parameter. Here is the syntax of this:
void vkDestroyBufferView(VkDevice device,
 VkBufferView bufferView,
 VkAllocationCallbacks* pAllocator);

Creating geometry with a buffer resource

In this section, we will create a simple geometrical shape--a triangle. This will be stored in the GPU memory with the help of a buffer resource. Most applications will consume buffers through uniform or storage blocks. The implementation of a buffer resource is very similar to that of an image resource, except the fact that here we would not need to create the buffer view (VkBufferView).
Preparing geometry data

Create MeshData.h and define the geometry data inside it. Declare the following structures:

/*---------------------MeshData.h-----------------------*/

// Mesh data structure and Vertex Data
struct VertexWithColor
{
 float x, y, z, w; // Vertex Position
 float r, g, b, a; // Color format Red, Green, Blue, Alpha
};

// Interleaved data containing position and color information
static const VertexWithColor triangleData[] =
{
 { 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0 },
 { 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0 },
 { -1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0 },
};

The geometry is stored in an interleaved fashion, where the three vertices are stored such that they would contain the vertex position information in the Cartesian form, followed by the color information stored in the RGB color space. The position information consists of four components: x, y, z, and w. The color information contains the r, g, b, and a components. The following diagram shows the resultant triangle:

[image: Preparing geometry data]

Creating a vertex buffer

Create a new user-defined class called VulkanDrawable. This class will be used to draw the intended geometrical shape, which in the present case is a simple triangle. The following is the header file that declares the functions used to create and destroy the buffer resource:
class VulkanDrawable
{
 // Many lines skipped, please refer to the source code
public:

 void createVertexBuffer(const void *vertexData, uint32_t
 dataSize, uint32_t dataStride, bool useTexture);
 void destroyVertexBuffer();

 // Structure storing vertex buffer metadata
 struct {
 VkBuffer buffer;
 VkDeviceMemory memory;
 VkDescriptorBufferInfo bufferInfo;
 } VertexBuffer;

 // Stores the vertex input rate
 VkVertexInputBindingDescription viIpBind;
 // Store metadata helpful in data interpretation
 VkVertexInputAttributeDescription viIpAttrb[2];
};

In addition, the class contains a special user-defined structure to aggregate the vertex buffer resource attributes defined by VertexBuffer. This structure contains the VkBuffer object. This object will be bound to VkDeviceMemory and a buffer descriptor (VkDescriptorBufferInfo) containing the necessary metadata for the allocated buffer resource, such as the buffer object, its offset, and the range.

Buffer creation overview

The buffer resource creation process is very similar to that of image resource creation. To get an overview of the image creation process, refer to the Image creation overview section in Chapter 6, Allocating Image Resources and Building a Swapchain with WSI.
Let's take a quick look at buffer creation. The following are step-by-step instructions to create the buffer resource (VkBuffer) using Vulkan APIs:
	Creating the buffer object: The buffer object (VkBuffer) is created using the vkCreateBuffer() API. This API intakes a VkCreateBufferInfo structure object that specifies important buffer metadata that is used to create the buffer object. The buffer object's VkCreateBufferInfo contains the necessary memory information, such as format, usage, size, creation flags, and so on. This information is used to allocate physical memory from the device. You may consider that the buffer object at this initial stage has no backing memory. The creation of the buffer object does not mean that the physical allocation is done automatically behind the curtains; it has to be done manually, which is described in the next step.
	Allocating buffer memory: 	Getting the memory requirements: Gather the required memory information using the vkGetBufferMemoryRequirements() API. This information is helpful in allocating the appropriate size of the memory needed by the buffer resource allocation process. This API intakes the VkBuffer created in the first step.
	Determining the memory type: Similar to an image resource, get the proper memory type from what's available and select the one that matches the user properties.
	Allocating device memory: Allocate device memory (VkDeviceMemory) with the vkAllocateMemory() API.
	Staging: Once physical memory is allocated, it needs to be mapped using vkMapMemory() to the localhost so that the geometry data can be uploaded from the host memory to the physical device memory. Once the data is copied to the physical device memory, it needs to be unmapped using vkUnmapMemory().
	Binding the allocated memory: Bind the device memory (VkDeviceMemory) to the buffer object (VkBuffer) using the vkBindBufferMemory() API.

The following diagram summarizes the complete buffer resource creation workflow:

[image: Buffer creation overview]

Implementing a buffer resource - creating the vertex buffer for the geometry

The VulkanDrawable class contains the createVertexBuffer() function that helps in storing the geometry data in the GPU memory with the help of a buffer resource. The implementation is very similar to creating an image resource, but with a little difference. In this implementation, the buffer view creation process is not required; instead, the buffer object will be used directly.
Some Vulkan implementations may offer the ability to fetch and format vertex attributes, converting vertex input data from buffers as specialized fixed-function hardware rather than performing the fetch as part of the vertex shader. Once the buffer resource is implemented, its binding points are stored in the (VkVertexInputBindingDescription) control structure. This structure describes the set of buffers that will be used to fetch the vertex.
Similarly, attributes are stored in the VkVertexInputAttributeDescription structure; this describes the format and layout of each attribute to read them from the vertex buffers to a shader variable. Both the pieces of information are consumed at the time of pipeline creation, specifying the vertex input state.
The following is the syntax information of VkVertexInputBindingDescription:
typedef struct VkVertexInputBindingDescription {
 uint32_t binding;
 uint32_t stride;
 VkVertexInputRate inputRate;
} VkVertexInputBindingDescription;

Let's look at the various fields of this structure:
	
Parameters

	
Description

	

binding

	
This field indicates an unsigned 32-bit integer-binding number that describes the control structure.

	

stride

	
This is specified in bytes; this field indicates the offset between the consecutive elements within the buffer.

	

inputRate

	
This field indicates whether the buffer attribute is specified at per vertex or instance basis. This field takes the following enum:

 typedef enum VkVertexInputRate {
 VK_VERTEX_INPUT_RATE_VERTEX = 0,
 VK_VERTEX_INPUT_RATE_INSTANCE = 1,
 } VkVertexInputRate;

	The VK_VERTEX_INPUT_RATE_VERTEX indicates that the vertex attributes will be consumed as per the vertex index basis.
	The VK_VERTEX_INPUT_RATE_INSTANCE indicates that the vertex attributes will be consumed as per the instance index basis.

Similarly, here's the syntax information of VkVertexInputAttributeDescription:
typedef struct VkVertexInputAttributeDescription {
 uint32_t location;
 uint32_t binding;
 VkFormat format;
 uint32_t offset;
} VkVertexInputAttributeDescription;

The various fields in VkVertexInputAttributeDescription are as follows:
	
Parameters

	
Description

	

location

	
This field indicates the shader-binding location of this attribute.

	

binding

	
This is the binding number from which the data is consumed by the attribute.

	

format

	
The vertex attribute's data size and type is indicated by this field.

	

offset

	
This field indicates the offset of this attribute in bytes from the start of an element in vertex input binding.

The vertex buffer is created in the createVertexBuffer() function, as shown in the following code snippet. This function accepts the host memory containing the vertex data, its size, and stride information (if any). The last parameter is a boolean flag that indicates whether the geometry data contains the texture coordinates:
void VulkanDrawable::createVertexBuffer(const void *vertexData, uint32_t dataSize, uint32_t dataStride, bool useTexture)
{
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 VulkanDevice* deviceObj = appObj->deviceObj;

 VkResult result;
 bool pass;

 // Create the Buffer resource metadata information
 VkBufferCreateInfo bufInfo = {};
 bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
 bufInfo.pNext = NULL;
 bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
 bufInfo.size = dataSize;
 bufInfo.queueFamilyIndexCount = 0;
 bufInfo.pQueueFamilyIndices = NULL;
 bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
 bufInfo.flags = 0;

 // Create the Buffer resource
 result = vkCreateBuffer(deviceObj->device, &bufInfo,
 NULL, &VertexBuffer.buf);

 // Get the Buffer resource requirements
 VkMemoryRequirements memRqrmnt;
 vkGetBufferMemoryRequirements(deviceObj->device,
 VertexBuffer.buf, &memRqrmnt);

 // Create memory allocation metadata information
 VkMemoryAllocateInfo alloc_info = {};
 alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
 alloc_info.pNext = NULL;
 alloc_info.memoryTypeIndex = 0;
 alloc_info.allocationSize = memRqrmnt.size;

 // Get the compatible type of memory
 pass = deviceObj->memoryTypeFromProperties
 (memRqrmnt.memoryTypeBits,
 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
 &alloc_info.memoryTypeIndex);

 // Allocate the physical backing for buffer resource
 result = vkAllocateMemory(deviceObj->device,
 &alloc_info, NULL, &(VertexBuffer.mem));

 VertexBuffer.bufferInfo.range = memRqrmnt.size;
 VertexBuffer.bufferInfo.offset = 0;

 // Map the physical device memory region to the host
 uint8_t *pData;
 result = vkMapMemory(deviceObj->device, VertexBuffer.mem,
 0, memRqrmnt.size, 0, (void **)&pData);

 // Copy the data in the mapped memory
 memcpy(pData, vertexData, dataSize);

 // Unmap the device memory
 vkUnmapMemory(deviceObj->device, VertexBuffer.mem);

 // Bind the allocated buffer resourece to the device memory
 result = vkBindBufferMemory(deviceObj->device,
 VertexBuffer.buf, VertexBuffer.mem, 0);

 // The VkVertexInputBinding viIpBind, stores the rate at

 // which the information will be injected for vertex input
 viIpBind.binding = 0;
 viIpBind.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
 viIpBind.stride = dataStride;

 // The VkVertexInputAttribute - Description) structure, store

 // the information that helps in interpreting the data.
 viIpAttrb[0].binding = 0;
 viIpAttrb[0].location = 0;
 viIpAttrb[0].format = VK_FORMAT_R32G32B32A32_SFLOAT;
 viIpAttrb[0].offset = 0;
 viIpAttrb[1].binding = 0;
 viIpAttrb[1].location = 1;
 viIpAttrb[1].format = useTexture ?
 VK_FORMAT_R32G32_SFLOAT : VK_FORMAT_R32G32B32A32_SFLOAT;
 viIpAttrib[1].offset = 16;
}

Understanding the code flow

Let's take a detailed view of the preceding implementation. First, the VkCreateBufferInfo structure is created and filled with vertex buffer metadata. This is where we store the buffer usage type; this usage type refers to vertex information (VK_BUFFER_USAGE_VERTEX_BUFFER_BIT). The other usage types could be index buffer, uniform buffer, texture buffer, and more. Specify the size of the vertex buffer data in bytes. Since there are no multiple queues involved, we can mark the sharing mode as VK_SHARING_MODE_EXCLUSIVE. Pass this structure to the vkCreateBuffer() API to create the vertex buffer object (VertexBuffer::buf).
Use the created buffer object (VertexBuffer::buf) as passed to the vkGetBufferMemoryRequirements() API in order to gather the memory requirements (memRqrmnt) to allocate the buffer in the API. This information is helpful in allocating the appropriate size of the memory needed by the buffer resource allocation process. This API intakes the VkCreateBufferInfo control structure.
Next, get prepared for the allocation process and create VkMemoryAllocateInfo (allocInfo) with the gathered memory requirement. Specify the allocation size information in bytes and get the compatible memory type for the allocation. The memory is allocated using vkAllocateMemory, passing in allocInfo, and retrieving the device memory of the type VkDeviceMemory in VertexBuffer.mem.
Upon the allocation of the physical memory, use vkMapMemory() to map the localhost memory so that the geometry data can be copied to the physical device memory. Once the data is copied to the physical device memory, it needs to be unmapped using vkUnmapMemory().
Use the vkBindBufferMemory() API and bind the device memory (VkDeviceMemory) to the buffer object (VkBuffer).
Note
This example does not need to create the buffer object views. Buffer views (VkBufferView) are only created when the buffer data is going to be utilized by the shaders. Use the vkCreateBufferView() API to create the buffer view.

The following is a pictorial representation of the preceding process. It shows three columns, where the first column shows the intended job, the second column defines the Vulkan APIs used to accomplish the job, and the third specifies the returned value types.

[image: Understanding the code flow]

As the final step, we need to bind the created buffer resource into the underlying pipeline so that the rate of vertex input information can be defined in viIpBind (of the type VkVertexInputBindingDescription)--the input rate could be based on a vertex or instance.
The VkVertexInputAttributeDescription structure object's viIpAttrb stores information related to the position and color attributes and is used to interpret the data. For example, in viIpAttrb, we specify the binding point, location in the binding, expected data format, and offset information. In the case of non-interleaved data, it should be 0. Since our data is in the interleaved form, it is 0 and 16 for position and color attributes, respectively; check out the following diagram. The useTexture interprets part of vertex data as either texture coordinates or colors. When specified true, it indicates that the vertex data contains texture coordinates (two components, where each component is of 32 bits) instead of color components (four components of 32 bits each).

[image: Understanding the code flow]

Understanding a Render Pass

A Render Pass tells us about the framebuffer attachments and subpasses that will be used while rendering. Attachments, such as color and depth, indicate how many color and depth images will be there. It specifies what should be the sample bits used to represent each of them and how the contents will be used in the rendering process. It also confirms how the contents would be treated at the beginning and end of each Render Pass instance. A Render Pass used in a command buffer is called a Render Pass instance. It manages the dependencies between the subpasses and defines the protocols on how the attachments should be used over the course of the subpasses.
A Render Pass consists of mainly two type of components: attachments and subpasses. The following are some facts about attachments and subpasses.
Attachments

An attachment refers to a surface region (such as color, depth/stencil, or resolve attachment to perform resolve operations) used at the time of rendering a command. There are five types of attachments described here:
	Color attachment: A color attachment represents a drawing target image where render primitives are drawn.
	Depth attachment: A depth attachment stores the depth information and uses it for the depth/stencil test operation.
	Resolve attachment: A resolve attachment is automatically downsampled from being a multisampled attachment to a corresponding single-sampled attachment at the end of a subpass. Resolve attachments correspond to multisampled color attachments and behave as if there is a vkCmdResolveImage at the end of a subpass, from a color attachment to its corresponding resolve attachment. One exception is that the driver may be able to do a better job, such as performing both the spill and resolve actions on a tiler at the same time.
	Input attachment: This consists of list attachments that will be shared with the shaders. Input attachments are like restricted textures where the only operation a shader may perform is texel fetch (texture(tex, uv))--read from the texel that corresponds to the pixel currently being shaded. Obvious cases of this are one-tap post processing filters (no blurs and so on), the lighting phase of a classic deferred renderer to read from G-buffers, and more.

	Preserve attachment: Throughout, in a given subpass, the contents inside the preserve attachment remain unchanged. Preserve attachments aren't expressed in other APIs at all. They express the requirement that the contents of some attachment be kept (as it will be used later) but shouldn't be touched at all by the current subpass. This isn't interesting at all on a desktop GPU, where render target writes go straight into the memory. However, it's very interesting for a tiler: the attachment portion of the on-chip memory can be reused in place of some other attachment during the subpass, without having to spill its contents back to the memory.

In a Vulkan API, the VkAttachmentDescription descriptor can be used to specify the various properties of an attachment. This includes its format, sample count, initial layout information, and how its contents are treated at the beginning and end of each Render Pass instance.

Subpasses

In a Render Pass, a subpass reads and writes associated attachments. A current subpass in the Render Pass execution is affected by the rendering commands:
	A subpass can read from the previously written attachment (it must be preserved) and write to the attachment currently associated with it.
	Writing in the color and depth/stencil buffer is also a part of the subpass attachment associated with a Render Pass instance.
	In order to allow a subpass attachment to be used by the subsequent passes, it is the application's responsibility to ensure that the information remains valid until it is not utilized.
	There are also preserve attachments that preserve the contents in the attachments throughout the subpass life cycle. The subpass cannot affect these attachments as they are read/write protected. In other words, they cannot be read/write during a subpass life cycle.

A subpass descriptor is defined by VkSubpassDescription. It describes the number of attachments involved in the subpass.
Note
With advanced information on a subpass, about the subpass's set in Render Pass, the Render Pass provides the underlying implementation an opportunity to optimize the storage and transfer of attachment data between the subpasses. This means multiple passes can be merged together and resolved with a single Render Pass instance.

In our sample example, we are only dealing with a single subpass; therefore, any relevant topic on its dependencies is out of the scope of this book.

Vulkan APIs for the Render Pass

In this section, we will understand the various APIs that are used to implement the Render Pass in Vulkan.
The Render Pass object is created using the vkCreateRenderPass() API. This API accepts the VkCreateRenderPassInfo control structure that defines the attachments, such as our swapchain color images and depth image. It also contains an important structure (VkRenderPassCreateInfo) that defines the protocols on how these attachments will be treated in a single Render Pass.
Let's look at the Render Pass API specification to create the Render Pass object:
VkResult vkCreateRenderPass(
 VkDevice device,
 const VkRenderPassCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkRenderPass* pRenderPass);

The following table describes the various fields of this structure:
	
Parameters

	
Description

	

device

	
This is the logical device handle for which the Render Pass is created.

	

pCreateInfo

	
This is a pointer to the VkRenderPassCreateInfo structure object.

	

pAllocator

	
This controls the host memory deallocation process. Refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pRenderPass

	
This creates the VkRenderPass object pointer.

The VkRenderPassCreateInfo structure associates the attachment and subpasses with the Render Pass object. The following is the syntax with the described fields:
typedef struct VkRenderPassCreateInfo {
 VkStructureType type;
 const void* pNext;
 VkRenderPassCreateFlags flags;
 uint32_t attachmentCount;
 const VkAttachmentDescription* pAttachments;
 uint32_t subpassCount;
 const VkSubpassDescription* pSubpasses;
 uint32_t dependencyCount;
 const VkSubpassDependency* pDependencies;
} VkRenderPassCreateInfo;

The following table describes the fields of this structure:
	
Parameters

	
Description

	

type

	
This is the type of this structure, which must be VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO.

	

next

	
This is either NULL or a pointer to an extension-specific structure.

	

flags

	
This is reserved for future use.

	

attachmentCount

	
This specifies the number of attachments used by this Render Pass instance. If zero, it means there is no attachment within this Render Pass.

	

attachments

	
This is an array of VkAttachmentDescription structures specifying the properties of the Render Pass attachments. The array size is equal to attachmentCount.

	

subpassCount

	
This specifies the number of subpasses in this Render Pass.

	

subpasses

	
This is an array of VkSubpassDescription structures describing the properties of the subpasses.

	

dependencyCount

	
This specifies the number of dependencies between the pairs of subpasses. If zero, it means no dependencies exist.

	

dependencies

	
This is an array that is equal to the dependencyCount number of the VkSubpassDependency structures, describing the dependencies between pairs of subpasses. This must be NULL if dependencyCount is zero.

To describe each attachment used in a Render Pass, Vulkan provides the VkAttachmentDescription control structure. The following is the syntax of this:
typedef struct VkAttachmentDescription {
 VkAttachmentDescriptionFlags flags;
 VkFormat format;
 VkSampleCountFlagBits samples;
 VkAttachmentLoadOp loadOp;
 VkAttachmentStoreOp storeOp;
 VkAttachmentLoadOp stencilLoadOp;
 VkAttachmentStoreOp stencilStoreOp;
 VkImageLayout initialLayout;
 VkImageLayout finalLayout;
} VkAttachmentDescription;

This table describes the various fields of this structure:
	
Parameters

	
Description

	

flags

	
This is a bitwise attachment flag of the type VkAttachmentDescriptionFlags.

	

format

	
This is the format of the image used in the attachment.

	

sample

	
This refers to the number of samples used for the attachment in a Render Pass.

	

loadOp

	
This defines the behavior of color and depth attachments, how they will be treated at the beginning of the subpass. For more information, refer to VkAttachmentStoreOp in the following section:

typedef enum VkAttachmentLoadOp {
 VK_ATTACHMENT_LOAD_OP_LOAD = 0,
 VK_ATTACHMENT_LOAD_OP_CLEAR = 1,
 VK_ATTACHMENT_LOAD_OP_DONT_CARE = 2,
} VkAttachmentLoadOp;

These flags are defined as follows:

	VK_ATTACHMENT_LOAD_OP_LOAD: The use of this flag preserves the existing contents of the attachment; this means the rendered area's content remains preserved with each Render Pass execution.
	VK_ATTACHMENT_LOAD_OP_CLEAR: The rendered area's content is cleared with the specified constant color value defined in the beginning of the Render Pass. With each execution of the Render Pass, the background is first cleared with the specified color and then primitives are drawn on top of it.
	VK_ATTACHMENT_LOAD_OP_DONT_CARE: The content inside the render area is undefined and is not preserved. This indicates that upon the completion of the Render Pass instance, the application does not require the contents of the buffer.

	

storeOp

	
This defines the behavior of the color and depth attachments, how they will be treated at the end of the subpass. For more information, refer to VkAttachmentStoreOp in the following section.

typedef enum VkAttachmentStoreOp {
 VK_ATTACHMENT_STORE_OP_STORE = 0,
 VK_ATTACHMENT_STORE_OP_DONT_CARE = 1,
} VkAttachmentStoreOp;

	VK_ATTACHMENT_STORE_OP_STORE means the contents within the render area are written to the memory and will be available for reading after the Render Pass instance is completed, that is, once the writes have been synchronized with VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT (for color attachments) or VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT (for depth/stencil attachments).

In other words, the application wants to leave the rendering result in this memory so that it can be utilized in the subsequent subpass or intended to be presented to the display.

	VK_ATTACHMENT_STORE_OP_DONT_CARE means the contents within the render area are not needed after the rendering is done and may be discarded; the contents of the attachment will be undefined inside the render area.

	

stencilLoadOp

	
This defines the behavior of the stencil aspect of a depth/stencil attachment using VkAttachmentLoadOp, how it will be treated at the beginning of the subpass.

	

stencilStoreOp

	
This defines the behavior of the stencil aspect of a depth/stencil attachment using VkAttachmentStoreOp, how it will be treated at the beginning of the subpass.

	

initialLayout

	
This defines the layout of the attachment image the subresource will be in when a Render Pass instance begins.

	

finalLayout

	
This defines the layout of the attachment image the subresource will be transitioned to when a Render Pass instance ends. In a given Render Pass instance, an attachment can use a different layout in each subpass, if required.

A subpass can reference to various attachments, such as an input, resolve, color, depth/stencil, and preserve attachment. This is described using a special control structure called VkSubpassDescription. Here is the syntax of this structure:
typedef struct VkSubpassDescription {
 VkSubpassDescriptionFlags flags;
 VkPipelineBindPoint pipelineBindPoint;
 uint32_t inputAttachmentCount;
 const VkAttachmentReference* pInputAttachments;
 uint32_t colorAttachmentCount;
 const VkAttachmentReference* pColorAttachments;
 const VkAttachmentReference* pResolveAttachments;
 const VkAttachmentReference* pDepthStencilAttachment;
 uint32_t preserveAttachmentCount;
 const uint32_t* pPreserveAttachments;
} VkSubpassDescription;

The various fields of this structure are described here:
	
Parameters

	
Description

	

flags

	
This field is not in use; it is reserved for future use.

	

pipelineBindPoint

	
This specifies whether the subpass belongs to the graphics or compute queue. It accepts a VkPipelineBindPoint value.

	

inputAttachmentCount

	
This specifies the number of input attachments.

	

pInputAttachments

	
This is an array of VkAttachmentReference structures with size equal to inputAttachmentCount. It specifies which attachments can be read at the shading stage and what will be the layout of the attachment images during the subpass.

	

colorAttachmentCount

	
This refers to the number of color attachments.

	

pColorAttachments

	
This is an array of VkAttachmentReference structures with size equal to colorAttachmentCount, containing the Render Pass's attachments that will be used as color attachments in the subpass. Also, it specifies the layouts the attachment images will be in during the subpass.

	

pResolveAttachments

	
This is a pointer to an array of VkAttachmentReference structures. Each of its elements (with the same index in colorAttachments) corresponds to a color attachment.

	

pDepthStencilAttachment

	
This specifies which attachment will be used for depth/stencil data and the layout it will be in during the subpass; it is a pointer to VkAttachmentReference.

	

preserveAttachmentCount

	
This refers to the number of preserved attachments.

	

pPreserveAttachments

	
This is an array of the preserveAttachmentCount Render Pass attachment indices describing the attachments that are not used by a subpass; the indices rather describe whose contents must be preserved throughout the subpass.

Implementing the Render Pass

Let's implement the Render Pass in the existing VulkanRenderer class step by step:
	Include the following Render Pass methods and variables in the VulkanRender class in VulkanRenderer.h. This includes the creation/destruction of the Render Pass and the command buffer associated with the Render Pass: class VulkanRenderer
 {
 // Many lines skipped, please refer to the source code
 public:
 /***** Member functions *****/

 // Record render pass command buffer
 void createRenderPassCB(bool includeDepth);

 // Render Pass creation
 void createRenderPass(bool includeDepth, bool clear=true);

 // Destroy the render pass object when no more required
 void destroyRenderpass();

 /***** Member variables *****/

 // Render pass created object
 VkRenderPass renderPass;
 }

	At the initialization stage, create the Render Pass using VulkanRenderer:: createRenderPass(): void VulkanRenderer::initialize()
 {

 const bool includeDepth = true;
 createRenderPass (includeDepth);
 }

	The created color and depth image need to be specified in the attachments. Create an array of the VkAttachmentDescription type with the size equal to 2 for both the image types. The information specified in this structure will decide how to treat the image at the beginning and end of the Render Pass. It contains the image format, number of samples, load and store operations, and so on.
	For both the attachments, set the loadOp member to VK_ATTACHMENT_LOAD_OP_CLEAR. This tells to clear the buffer at the start of each Render Pass instance. For the color attachment, set the storeOp member to VK_ATTACHMENT_STORE_OP_STORE, indicating that the rendered output be kept in the buffer that will be used to display it.
	Next, for both the attachments, specify the binding points in the Render Pass. This allows the Render Pass to know where to look for a specific attachment. The binding points are defined with the help of VkAttachmentReference; the other piece of information this control structure intakes is the image layout information that will be used for image layout transitioning. Specify the image layout with VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL and VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for color and depth buffer, respectively. The layout informs the underlying engine to store the image in the optimal memory to give the best performance possible.
	All the attachments are specified in the subpass using VkSubpassDescription. Here, specify the color, depth, resolve, and preserve attachments. Finally, all the attachments and subpass-specific information is accumulated in VkRenderPassCreateInfo and passed to the vkCreateRenderPass() API to create the Render Pass object: void VulkanRenderer::createRenderPass(bool isDepthSupported,
 bool clear)
 {
 // Dependency on VulkanSwapChain::createSwapChain() to

 // get the color image and VulkanRenderer::

 // createDepthImage() to get the depth image.

 VkResult result;
 // Attach the color buffer and depth buffer as an

 // attachment to render pass instance
 VkAttachmentDescription attachments[2];
 attachments[0].format = swapChainObj->scPublicVars.format;
 attachments[0].samples= NUM_SAMPLES;
 attachments[0].loadOp = clear ? VK_ATTACHMENT_LOAD_OP_CLEAR
 : VK_ATTACHMENT_LOAD_OP_DONT_CARE;
 attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
 attachments[0].stencilLoadOp =
 VK_ATTACHMENT_LOAD_OP_DONT_CARE;
 attachments[0].stencilStoreOp =
 VK_ATTACHMENT_STORE_OP_DONT_CARE;
 attachments[0].initialLayout =
 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
 attachments[0].finalLayout =
 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
 attachments[0].flags = 0;

 // Is the depth buffer present the define attachment

 // properties for depth buffer attachment.
 if (isDepthSupported)
 {
 attachments[1].format = Depth.format;
 attachments[1].samples = NUM_SAMPLES;
 attachments[1].loadOp = clear ?
 VK_ATTACHMENT_LOAD_OP_CLEAR :
 VK_ATTACHMENT_LOAD_OP_DONT_CARE;
 attachments[1].storeOp =
 VK_ATTACHMENT_STORE_OP_STORE;
 attachments[1].stencilLoadOp =
 VK_ATTACHMENT_LOAD_OP_LOAD;
 attachments[1].stencilStoreOp=
 VK_ATTACHMENT_STORE_OP_STORE;
 attachments[1].initialLayout =
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
 attachments[1].finalLayout =
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
 attachments[1].flags = 0;
 }

 // Define the color buffer attachment binding point

 // and layout information
 VkAttachmentReference colorReference = {};
 colorReference.attachment = 0;
 colorReference.layout =
 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

 // Define the depth buffer attachment binding point and

 // layout information
 VkAttachmentReference depthReference = {};
 depthReference.attachment = 1;
 depthReference.layout =
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

 // Specify the attachments - color, depth,

 // resolve, preserve etc.
 VkSubpassDescription subpass = {};
 subpass.pipelineBindPoint =
 VK_PIPELINE_BIND_POINT_GRAPHICS;
 subpass.flags = 0;
 subpass.inputAttachmentCount = 0;
 subpass.pInputAttachments = NULL;
 subpass.colorAttachmentCount = 1;
 subpass.pColorAttachments = &colorReference;
 subpass.pResolveAttachments = NULL;
 subpass.pDepthStencilAttachment = isDepthSupported ?
 &depthReference : NULL;
 subpass.preserveAttachmentCount = 0;
 subpass.pPreserveAttachments = NULL;

 // Specify the attachement and subpass associate with

 // render pass
 VkRenderPassCreateInfo rpInfo = {};
 rpInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
 rpInfo.pNext = NULL;
 rpInfo.attachmentCount = isDepthSupported ? 2 : 1;
 rpInfo.pAttachments = attachments;
 rpInfo.subpassCount = 1;
 rpInfo.pSubpasses = &subpass;
 rpInfo.dependencyCount = 0;
 rpInfo.pDependencies = NULL;

 // Create the render pass object
 result = vkCreateRenderPass(deviceObj->device, &rpInfo,
 NULL, &renderPass);

 assert(result == VK_SUCCESS);
 }

	At the deinitialization stage, destroy the Render Pass object using the vkDestroyRenderPass() API:void VulkanApplication::deInitialize()
{
 rendererObj->destroyRenderpass();

}
void VulkanRenderer::destroyRenderpass()
{
 vkDestroyRenderPass(deviceObj->device, renderPass, NULL);
}

Using the Render Pass and creating the framebuffer

Once the Render Pass is created, it is used to create the framebuffer. Ideally, for each swapchain color image, we need a framebuffer associated with it. For example, if we have a double buffer swapchain image, then we need two framebuffers: one for the front buffer and another for the back buffer image.
The framebuffer in Vulkan is created using the vkCreateFrameBuffer() API. Like with other Vulkan APIs, this also has a create info control structure called VkFrameBufferCreateInfo. Refer to the following for more information on its syntax and usage:
VkResult vkCreateFrameBuffer(
 VkDevice device,
 const VkFramebufferCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkFramebuffer* pFrameBuffer);

The following table describes the various fields of the vkCreateFrameBuffer() API:
	
Parameters

	
Description

	

device

	
This is the logical device handle to which the framebuffer is associated.

	

pCreateInfo

	
This is the pointer to the VkFrameBufferCreateInfo structure object.

	

pAllocator

	
This controls the host memory deallocation process. Refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pFrameBuffer

	
This creates the VkFrameBuffer object and returns the pointer.

The VkFrameBufferCreateInfo control structure is described in the following syntax:
typedef struct VkFramebufferCreateInfo {
 VkStructureType type;
 const void* pNext;
 VkFramebufferCreateFlags flags;
 VkRenderPass renderPass;
 uint32_t attachmentCount;
 const VkImageView* pAttachments;
 uint32_t width;
 uint32_t height;
 uint32_t layers;
} VkFramebufferCreateInfo;

The following table describes the various fields of this structure:
	
Parameters

	
Description

	

type

	
This refers to the type of this structure, which must be VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO.

	

next

	
This is either NULL or a pointer to an extension-specific structure.

	

flag

	
This must be 0; it is reserved for future use.

	

renderPass

	
This is the VkRenderPass object that we created in the previous section.

	

attachment-Count

	
This refers to the number of attachments associated with the framebuffer.

	

attachment

	
This is an array of VkImageView handles for the corresponding image, each of which will be used as the corresponding attachment in the Render Pass instance.

	

width

	
This refers to the width of the framebuffer in pixels.

	

height

	
This refers to the height of the framebuffer in pixels.

	

layers

	
This refers to the layers in the framebuffer.

Implementing the framebuffer

The implementation of a framebuffer is simple; follow these steps:
	Create the following functions and variables in the VulkanRenderer class. The cmdFrameBuffer declares the command buffer responsible for creating the framebuffer (frameBuffer): class VulkanRenderer
 {
 public:
 // Member functions
 void createFrameBuffer(bool includeDepth,bool clear= true);
 void destroyFrameBuffer ();

 // Number of frame buffer corresponding to each swap chain
 std::vector<VkFramebuffer> framebuffers;
 }

	During the initialization, create the framebuffer using the createFrameBuffer() function: void VulkanRenderer::initialize()
 {
 const bool includeDepth = true;
 createFrameBuffer(includeDepth);
 }

	For each swapchain color image, create its corresponding framebuffer. This is done using the vkCreateFrameBuffer() API. This API intakes VkFrameBufferCreateInfo in which we specify the depth and color image views as an attachment. Also, pass the created Render Pass object along with the dimensions of the framebuffer in this structure: void VulkanRenderer::createFrameBuffer(bool includeDepth)
 {
 // Dependency on createDepthBuffer(), createRenderPass()

 // and recordSwapChain()
 VkResult result;
 VkImageView attachments[2];
 attachments[1] = Depth.view;

 VkFramebufferCreateInfo fbInfo = {};
 fbInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
 fbInfo.pNext = NULL;
 fbInfo.renderPass = renderPass;
 fbInfo.attachmentCount = includeDepth ? 2 : 1;
 fbInfo.pAttachments = attachments;
 fbInfo.width = width;
 fbInfo.height = height;
 fbInfo.layers = 1;

 uint32_t i;

 framebuffers.clear();
 framebuffers.resize(swapChainObj->scPublicVars.
 swapchainImageCount);

 for (i = 0; i < swapChainObj->scPublicVars
 .swapchainImageCount; i++) {
 attachments[0] = swapChainObj->scPublicVars.
 colorBuffer[i].view;

 result = vkCreateFramebuffer(deviceObj->device,
 &fbInfo, NULL, &framebuffers.at(i));

 assert(result == VK_SUCCESS);
 }
 }

	At the application de-initialization stage, destroy all the framebuffers using the vkDestroyFrameBuffer() API: void VulkanApplication::deInitialize()
 {
 rendererObj->destroyRenderpass();

 }

 void VulkanRenderer::destroyFramebuffers()
 {
 for (uint32_t i = 0; i < swapChainObj
 ->scPublicVars.swapchainImageCount; i++) {
 vkDestroyFramebuffer(deviceObj->device,
 framebuffers.at(i), NULL);
 }
 framebuffers.clear();
 }

Clearing the background color

In this section, we use the created Render Pass and framebuffer object and implement the Render Pass instance. This Render Pass instance is very simple and will only clear the background image with a specified color. For each swapchain image, different colors can be specified using the pClearValues field of the VkRenderPassBeginInfo structure; this structure is then passed to the Render Pass instance.
The Render Pass instance is implemented during the preparation stage in which the command buffers are created. For each swapchain image, a corresponding command buffer object is created. This means, for n swapchain images, we need to create n command buffer objects.
The preparation is done using the VulkanDrawable::prepare() function, and the rendering of the swapchain images will be performed using the VulkanDrawable::render() function.
The following diagram shows the call stack of the prepare() and render() function:

[image: Clearing the background color]

The following class declaration shows the new member variables and functions added to the VulkanDrawable class. The prepare() function produces the command buffers in the vecCmdDraw vector and records the drawing commands; these are used in the render() function where the command buffer executes and renders the swapchain images. The recordCommandBuffer() function records the commands in the Render Pass instance.
Note
For a detailed understanding of the preparation and rendering of a drawing object, refer to the Preparing the drawing object and Rendering the drawing object sections in Chapter 9, Drawing Objects.

class VulkanDrawable
{
public:
 // Prepares the drawing object before rendering

 // Allocate, create, record command buffer
 void prepare();

 // Renders the drawing object
 void render();

private:
 // Command buffer for drawing
 std::vector<VkCommandBuffer> vecCmdDraw;
 // Prepares render pass instance
 void recordCommandBuffer(int currentImage,
 VkCommandBuffer* cmdDraw);
};

Setting the background color in the Render Pass instance

In this section, we will implement the prepare() function of VulkanDrawable. Inside this, the command buffer wrapper class (CommandBufferMgr) is used to manage (allocate, record, and submit) the command buffers (vecCmdDraw). The following code implements the prepare() function:
void VulkanDrawable::prepare()
{
 VulkanDevice* deviceObj = rendererObj->getDevice();
 vecCmdDraw.resize(rendererObj->getSwapChain()->scPublicVars
 .colorBuffer.size());

 // For each swapbuffer color image buffer

 // allocate the corresponding command buffer
 for (int i = 0; i < rendererObj->getSwapChain()->scPublicVars.
 colorBuffer.size(); i++){
 // Allocate, create and start command buffer recording
 CommandBufferMgr::allocCommandBuffer(&deviceObj->device,
 *rendererObj->getCommandPool(), &vecCmdDraw[i]);
 CommandBufferMgr::beginCommandBuffer(vecCmdDraw[i]);

 // Create the render pass instance
 recordCommandBuffer(i, &vecCmdDraw[i]);

 // Finish the command buffer recording
 CommandBufferMgr::endCommandBuffer(vecCmdDraw[i]);
 }
}

The implementation first checks the number of color images supported by the swapchain and creates the same number of command buffer objects, associating each one of them logically with the corresponding swapchain image. The clearing of the swapchain image is always performed on the back image (back buffer), while the front image (front buffer) is used to display the rendered contents. Once the back image is cleared and rendered (if any), it is swapped with the front buffer.
Use the created command buffer (vecCmdDraw) and record the commands inside the recordCommandBuffer() function. This function specifies the clear color value for each swapchain image using the pClearValues field of the VkRenderPassBeginInfo data structure that is passed into the vkCmdBeginRenderPass() API. The vkCmdBeginRenderPass() and vkCmdEndRenderPass() APIs define a scope under which the Render Pass instance commands are recorded.
Note
For more information on Render Pass commands and its associated APIs, refer to the Recording the Render Pass commands section in Chapter 9, Drawing Objects.

There are two objects of the clear values (VkClearValue). The first one specifies the clear color value of the associated swapchain image indicated by the currentImage index. The second object specifies the clear color value to be used for the depth image:
void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer* cmdDraw)
{
 // Specify the clear color value
 VkClearValue clearValues[2];
 switch (currentImage)
 {
 case 0: clearValues[0].color = { 1.0f,0.0f,0.0f,1.0f };break;
 case 1: clearValues[0].color = { 0.0f,1.0f,0.0f,1.0f };break;
 case 2: clearValues[0].color = { 0.0f,0.0f,1.0f,1.0f };break;
 default:clearValues[0].color = { 0.0f,0.0f,0.0f,1.0f };break;
 }

 // Specify the depth/stencil clear value
 clearValues[1].depthStencil.depth = 1.0f;
 clearValues[1].depthStencil.stencil = 0;

 // Define the VkRenderPassBeginInfo control structure
 VkRenderPassBeginInfo renderPassBegin = {};
 renderPassBegin.sType=VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
 renderPassBegin.renderPass = rendererObj->renderPass;
 renderPassBegin.framebuffer = rendererObj->
 framebuffers[currentImage];
 renderPassBegin.renderArea.extent.width = rendererObj->width;
 renderPassBegin.renderArea.extent.height= rendererObj->height;
 renderPassBegin.clearValueCount = 2;
 renderPassBegin.pClearValues = clearValues;

 // Start recording the render pass instance
 vkCmdBeginRenderPass(*cmdDraw, &renderPassBegin,
 VK_SUBPASS_CONTENTS_INLINE);

 // End of render pass instance recording
 vkCmdEndRenderPass(*cmdDraw);
}

Rendering the colored background

The cleared swapchain images are rendered one by one inside the render() function, as implemented in the following code snippet. The WSI windowing system extension vkAcquireNextImageKHR() is used to query the next available swapchain image index. This index indicates which swapchain image will be available for drawing. Using this index, the corresponding command buffer is selected and submitted to the queue. Once processed on the GPU, the swapchain image is ready for displaying purposes using the presentation engine. The presentation is performed using the WSI extension fpQueuePresentKHR. This API intakes the VkPresentInfoKHR structure; this contains the swapchain object and the index of the swapchain image that needs to be displayed on the window.
Note
Rendering the drawing object is a separate topic altogether and is out of the scope of this chapter. For more information on this topic and the associated WSI extensions with their related data structures, refer to the Rendering the drawing object section in Chapter 9, Drawing Objects.

The following code implements the clearing where the background color is cleared every second with red, blue and green background color:
void VulkanDrawable::render()
{
 VulkanDevice* deviceObj = rendererObj->getDevice();
 VulkanSwapChain* swapChainObj = rendererObj->getSwapChain();

 uint32_t& currentColorImage = swapChainObj->scPublicVars.
 currentColorBuffer;
 VkSwapchainKHR& swapChain = swapChainObj->scPublicVars.
 swapChain;
 // Render each background color for 1 second.
 Sleep(1000);

 // Get the index of the next available swapchain image:
 VkResult result = swapChainObj->fpAcquireNextImageKHR
 (deviceObj->device, swapChain, UINT64_MAX, VK_NULL_HANDLE,
 VK_NULL_HANDLE, ¤tColorImage);

 // Queue the command buffer for execution
 CommandBufferMgr::submitCommandBuffer(deviceObj->queue,
 &vecCmdDraw[currentColorImage], NULL);

 // Present the image in the window
 VkPresentInfoKHR present = {};
 present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
 present.swapchainCount = 1;
 present.pSwapchains = &swapChain;
 present.pImageIndices = ¤tColorImage;

 // Queue the image for presentation,
 result = swapChainObj->fpQueuePresentKHR
 (deviceObj->queue, &present);
 assert(result == VK_SUCCESS);
}

The following is the output of the implemented exercise. The output will display various background colors, and each image will be displayed for one second.

[image: Rendering the colored background]

Working with a shader in Vulkan

Shaders are the means by which the programmable stage is controlled in the graphics and compute pipeline.
The graphics pipeline includes vertex, tessellation, geometry, and fragment shaders. Collectively, the first four-vertex, tessellation control, tessellation evaluation, and geometry shaders-are responsible for the vertex-processing stages. These are followed by the fragment shader, which is executed after rasterization.
Here's a bit about the graphics pipeline shaders:
	Vertex shaders: The graphics pipeline executes the vertex shader as a result of the primitive assembly. It is used to process geometric vertices. It manipulates the data that may be required by the subsequent shaders (if enabled), such as lighting information by the fragment shader.
	Tessellation shaders: This is a vertex-processing stage. When enabled, it subdivides the patches of vertex data into smaller primitives governed by the control and evaluate shaders.
	Geometry shaders: This shader when enabled has the capability to produce new geometry at the execution time by using the output from the previous shader stages (tessellation and vertex shaders).
	Fragment shaders: The rasterizer (fixed function) produces the fragments using the processed vertices from the previous stages. These fragments are then processed by the fragment shader, which is responsible for coloring them.
	Compute shaders: Compute shaders are invoked in the workgroup for computing arbitrary information in a massive parallel computation format. The compute pipeline only consists of the compute shader.

Unlike OpenGL, where GLSL is the official shading language, Vulkan uses SPIR-V, which is a whole new approach to shaders and computing kernels.
Introduction to SPIR-V

Unlike OpenGL shading language (GLSL), which is a human-readable form for a shader, Vulkan totally relies on SPIR-V, which is a low-level binary intermediate representation (IR). As the high-level language is no more a requirement for SPIR-V, it reduces the driver complexity significantly. This allows an application to accept any high-level language (GLSL or HLSL) as long as the GPU vendor provides the compiler to convert it into the SPIR-V form.
SPIR-V is a binary intermediate language used to represent graphical shader stages and compute kernels for multiple APIs. It stores the information in a stream of 32-bit words. It consists of mainly two parts: header and payload. The header consists of the first five slots (5 x 4 bytes = 20 bytes) that are helpful in recognizing the input source as the SPIR-V input stream. However, the payload represents variable length instructions containing the source data.
SPIR-V is a platform-independent intermediate language that can be used for multiple languages that feed multiple drivers under the hood, as shown in the following diagram. Compilers to SPIR-V exist for multiple source languages, such as GLSL or HLSL, or even for reading compute kernels. The shader module provides multiple entry points that can provide good wins in terms of shader code size and disk I/O requirement.

[image: Introduction to SPIR-V]

The following diagram used from Khronos's official SPIR-V specification provides an overview of the SPIR-V file format:

[image: Introduction to SPIR-V]

Although SPIR-V is a high-level language, it is also simple enough to bypass all of the text or string parsing, which is a good thing to achieve higher performance. According to the official specification, SPIR-V first encodes a set of annotations and decorations and then a collection of functions. Each function encodes a control flow graph (CFG) of basic blocks with additional instructions to preserve source-code-structured control flow. Load/store instructions are used to access declared variables, which include all of the I/O. Intermediate results bypassing load/store use the static single assignment (SSA) representation. Data objects are represented logically with hierarchical-type information. There is no flattening of aggregates or assignments to physical register banks and so on. Selectable addressing models establish whether general pointers may be used or whether memory access is purely logical.

Compiling a GLSL shader into SPIR-V

In this section, we will implement a very simple vertex and fragment shader in GLSL and convert it into the SPIR-V form in order to utilize it in our Vulkan program. There are two ways in which the GLSL shader can be converted into the SPIR-V binary form-offline and online. The former uses an executable to covert a GLSL source into the SPIR-V native format file; this file is then injected into the running Vulkan program. The latter makes use of a dynamic library to compile the GLSL into the SPIR-V form.
Offline compilation with the glslangValidator executable

The precompiled Lunar-G SDK's binaries include the glslangValidator executable, which can be used to convert GLSL into SPIR-V's .spv format. This does not require runtime compilation of the data and can be injected upfront. In this approach, the developers cannot change the GLSL program, and seeing the effects that take place upfront, it has to be recompiled again with every change added. This way is suitable for product releases where not to many changes are expected.
For a development cycle, where frequent changes are expected, the online method is suitable. Refer to the next section for more information on this. Also, refer to the following points:
	Location: The glslangValidator can be located in <Vulkan SDK Path >\<Vulkan SDK Version>\Bin on Windows. For a 32-bit platform implementation, refer to the Bin32 folder instead.

	Usage: Its usage is defined as glslangValidator [option]... [file]....

Here, each file ends in .<stage>, where <stage> is one of the following:
	
Stage

	
Meaning

	

.conf

	
To provide an optional configuration file that replaces the default configuration

	

.vert

	
For a vertex shader

	

.tesc

	
For a tessellation control shader

	

.tese

	
For a tessellation evaluation shader

	

.geom

	
For a geometry shader

	

.frag

	
For a fragment shader

	

.comp

	
For a compute shader

	An example: Refer to the following instruction to compile the GLSL source file into the SPIR-V format (.spv):	Open the terminal, go to the source folder (let's say the one containing the vertex shader Tri.vert), and type the following command; this will result into the Tri-Vert.spv SPIR-V format:

glslangValidator.exe -V Tri.vert -o Tri-Vert.spv

Note
The glslangValidator.exe can also be built using the LunarG SDK glslang source code.

Online compilation with SPIR-V tool libraries

The Lunar SDK also provides on-the-fly compilation using GLslang libraries. We need to compile these libraries from the SDK source code and include them in our source project. This exposes some special APIs that can be used to pass the GLSL shader source code into the project, making it available to the Vulkan shader module in the SPIR-V format behind the curtains.
In order to build the source code and compile them into libraries, you need the following:
	Location: Locate the SPIR-V-tool folder using the <Vulkan SDK Path >\<Vulkan SDK Version>\glslang path.
	CMake: The GLslang folder contains CMakelists.txt, which can be used to build the platform-specific project. After you build CMake, the following projects will be created: glslang, glslangValidator, OGLCompiler, OSDependent, SPIRV, and spirv-remap. Upon the compilation of the project in the debug and release mode, it will produce the necessary static libraries in the destination build folder.
	Required libraries: The following libraries (on Windows) are required in order to support the online compilation of the GLSL files into SPIR-V:	SPIRV.lib
	glslang.lib
	OGLCompiler.lib
	OSDependent.lib
	HLSL.lib

Implementing a shader

It's time to bring some shader capabilities in our example. This section will help us achieve this step by step. Follow the instructions given here:
Go to the sample application's CMakeLists.txt file and make the following changes:
	A project name: Give the recipe a proper name and set Vulkan SDK path:

 set (Recipe_Name "7e_ShadersWithSPIRV")

	Header files: Include the header file specified in the glslang directory. This will allow us to include the SPIRV/GlslangToSpv.h required in the source program:

	Static libraries: From the Vulkan-SDK-compiled projects, we need SPIRV, glslang, HLSL OGLCompiler, and OSDependent static libraries.

	The link library path: Provide the path to the solution where it can pick the static libraries specified in the preceding point. The variable name, VULKAN_PATH, specifies the path for the Lunar SDK:
	The following CMake code adds the required libraries for GLSL to SPIR-V conversion. You can convert a GLSL code into .spv form in two ways:
a) Offline: Using Vulkan SDK's glslangValidator.exe, this tool does not require additional libraries, the Vulkan-1.lib is more than enough. This mode is useful when the project is in the deployment stage where shaders are not undergoing the development cycle's dynamic changes
b) Online: Auto-converting GLSL into .spv on runtime using glslang helper functions. At project development stage, the developers do not need to compile the GLSL shader offline for desire shader code changes. The glslang helper functions automatically compiles the GLSL into .spv form. This mode requires a few libraries these are: SPIRV, glslang, OGLCompiler, OSDependent, HLSL.Using CMake's BUILD_SPV_ON_COMPILE_TIME variable you can choose either of the desired options to convert the GLSL shader into .spv form. For more information, please add the below code in existing CMakeLists.txt and follow through the inline comments:

 # BUILD_SPV_ON_COMPILE_TIME - accepted value ON or OFF
 # ON - Reads the GLSL shader file and auto convert in SPIR-V form
 (.spv). This requires additional libraries support from VulkanSDK
 like SPIRV glslang OGLCompiler OSDependent HLSL
 # OFF - Only reads .spv files, which need to be compiled offline
 using glslangValidator.exe.
 #For example: glslangValidator.exe <GLSL file name> -V -o <output
 filename in SPIR-V(.spv) form>
 option(BUILD_SPV_ON_COMPILE_TIME "BUILD_SPV_ON_COMPILE_TIME" OFF)

 if(BUILD_SPV_ON_COMPILE_TIME)

 # Preprocessor flag allows the solution to use glslang
 library functions
 add_definitions(-DAUTO_COMPILE_GLSL_TO_SPV)

 # GLSL - use Vulkan SDK's glslang library for compling GLSL to SPV
 # This does not require offline coversion of GLSL shader to
 SPIR-V(.spv) form
 set(GLSLANGDIR "${VULKAN_PATH}/glslang")

 get_filename_component(GLSLANG_PREFIX "${GLSLANGDIR}" ABSOLUTE)

 # Check if glslang directory exists
 if(NOT EXISTS ${GLSLANG_PREFIX})
 message(FATAL_ERROR "Necessary glslang components do not
 exist: "${GLSLANG_PREFIX})
 endif()

 # Include the glslang directory
 include_directories(${GLSLANG_PREFIX})

 # If compiling GLSL to SPV using we need the following libraries
 set(GLSLANG_LIBS SPIRV glslang OGLCompiler OSDependent HLSL)

 # Generate the list of files to link, per flavor.
 foreach(x ${GLSLANG_LIBS})
 list(APPEND VULKAN_LIB_LIST debug ${x}d
 optimized ${x})
 endforeach()

 # Note: While configuring CMake for glslang we created the
 binaries in a "build" folder inside ${VULKAN_PATH}/glslang.
 # Therefore, you must edit the below lines for your custom path
 like <Your binary path>/OGLCompilersDLL,
 <Your binary path>/OSDependent/Windows
 link_directories(${VULKAN_PATH}/glslang/build/OGLCompilersDLL)
 link_directories(${VULKAN_PATH}/glslang/build/glslang/
 OSDependent/Windows)
 link_directories(${VULKAN_PATH}/glslang/build/glslang)
 link_directories(${VULKAN_PATH}/glslang/build/SPIRV)
 link_directories(${VULKAN_PATH}/glslang/build/hlsl)
 endif()
Implement the user-defined shader custom class called VulkanShader in VulkanShader.h/.cpp to manage all the shader activities. Refer to the implementation here:

 /************** VulkanShader.h **************/
 #pragma once
 #include "Headers.h"

 // Shader class managing the shader conversion, compilation, linking
 class VulkanShader
 {
 public:

 VulkanShader() {} // Constructor
 ~VulkanShader() {} // Destructor
 // Entry point to build the shaders
 void buildShader(const char *vertShaderText,
 const char *fragShaderText);

 // Convert GLSL shader to SPIR-V shader
 bool GLSLtoSPV(const VkShaderStageFlagBits shaderType,
 const char *pshader, std::vector<unsigned int> &spirv);

 // Kill the shader when not required
 void destroyShaders();

 // Type of shader language. This could be - EShLangVertex,

 // Tessellation Control, Tessellation Evaluation, Geometry,

 // Fragment and Compute
 EShLanguage getLanguage
 (const VkShaderStageFlagBits shaderType);

 // Initialize the TBuitInResource
 void initializeResources(TBuiltInResource &Resources);

 // Vk structure storing vertex & fragment shader information

 VkPipelineShaderStageCreateInfo shaderStages[2];
 };

The user-defined VulkanShader class exposes the buildShader() function, which allows you to inject the GLSL shaders in order to compile them into the Vulkan project. Behind the curtains, the function makes use of the GLslang SPIR-V library functions to convert them into the native form.
This function builds the shader in four steps:
	Initialize the GLSL language shader library using glslang::InitializeProcess(). Note that this function needs to be called exactly once per process before you use anything else.
	Convert the GLSL shader code into a SPIR-V shader byte array. This includes the following: 	Parsing the GLSL source code
	Adding the parse shader to the program object
	Linking to the project object
	Using glslang::GlslangToSpv() to covert the compiled binary shader into the SPIR-V format

	Use the converted SPIR-V shader intermediate binary code to create the shader module using vkCreateShaderModule().
	Finalize the processing using glslang::FinalizeProcess() during the tear down. This function must be called once per process.

This function takes two arguments as parameter input, specifying the vertex and fragment shader. The shaders are used to create the shader module VkShaderModule with the help of the vkCreateShaderModule() API. This API intakes the VkPipelineShaderStageCreateInfo control structure as primary input containing the necessary information of the shader.
For more information, follow the syntax and parameter description given here:
VKAPI_ATTR VkResult VKAPI_CALL vkCreateShaderModule(
 VkDevice device,
 const VkShaderModuleCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkShaderModule* pShaderModule);

The following table describes the various fields of this function:
	
Parameters

	
Description

	

device

	
This is the logical device handle to which the shader module is associated.

	

pCreateInfo

	
This is the pointer to the VkShaderModuleCreateInfo structure object.

	

pAllocator

	
This controls the host memory allocation process. For more information, refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pShaderModule

	
This refers to the created VkShaderModule object.

typedef struct VkShaderModuleCreateInfo {
 VkStructureType type;
 const void* next;
 VkShaderModuleCreateFlags flags;
 size_t codeSize;
 const uint32_t* code;
} VkShaderModuleCreateInfo;

The following table describes the various fields of this structure:
	
Parameters

	
Description

	

type

	
This refers to the type of the structure. This must be of the type VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO.

	

next

	
This is either NULL or a pointer to an extension-specific structure.

	

flags

	
This is reserved for future use.

	

codeSize

	
This refers to the source code size in bytes. The source is pointed by code.

	

code

	
This refers to the source code that will be used to create the shader module.

The following code describes the implementation of the shader used in the sample example. The implementation is done in the buildShader() function; this helper function presently supports only vertex and fragment shaders, whose source code is passed as parameters into this function in the GLSL form. The following is the implementation:

/************** VulkanShader.cpp **************/

 // Helper function intaking the GLSL vertex and fragment shader.
 // It prepares the shaders to be consumed in the SPIR-V format

// with the help of glslang library helper functions.
void VulkanShader::buildShader(const char *vertShaderText, const char *fragShaderText)
{
 VulkanDevice* deviceObj = VulkanApplication::GetInstance()
 ->deviceObj;

 VkResult result;
 bool retVal;

 // Fill in the control structure to push the necessary

 // details of the shader.
 std::vector<unsigned int> vertexSPV;
 shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_
 SHADER_STAGE_CREATE_INFO;
 shaderStages[0].pNext = NULL;
 shaderStages[0].pSpecializationInfo = NULL;
 shaderStages[0].flags = 0;
 shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
 shaderStages[0].pName = "main";

 glslang::InitializeProcess();

 retVal = GLSLtoSPV(VK_SHADER_STAGE_VERTEX_BIT,
 vertShaderText, vertexSPV);
 assert(retVal);

 VkShaderModuleCreateInfo moduleCreateInfo;
 moduleCreateInfo.sType =
 VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
 moduleCreateInfo.pNext = NULL;
 moduleCreateInfo.flags = 0;
 moduleCreateInfo.codeSize = vertexSPV.size() *
 sizeof(unsigned int);
 moduleCreateInfo.pCode = vertexSPV.data();
 result = vkCreateShaderModule(deviceObj->device,
 &moduleCreateInfo, NULL, &shaderStages[0].module);
 assert(result == VK_SUCCESS);

 std::vector<unsigned int> fragSPV;
 shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_
 SHADER_STAGE_CREATE_INFO;
 shaderStages[1].pNext = NULL;
 shaderStages[1].pSpecializationInfo = NULL;
 shaderStages[1].flags = 0;
 shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
 shaderStages[1].pName = "main";

 retVal = GLSLtoSPV(VK_SHADER_STAGE_FRAGMENT_BIT,
 fragShaderText, fragSPV);
 assert(retVal);

 moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER
 _MODULE_CREATE_INFO;
 moduleCreateInfo.pNext = NULL;
 moduleCreateInfo.flags = 0;
 moduleCreateInfo.codeSize = fragSPV.size() *
 sizeof(unsigned int);
 moduleCreateInfo.pCode = fragSPV.data();
 result = vkCreateShaderModule(deviceObj->device,
 &moduleCreateInfo, NULL, &shaderStages[1].module);
 assert(result == VK_SUCCESS);

 glslang::FinalizeProcess();
}

The vkCreateShaderModule() takes the SPIR-V form as an input; therefore, we need the GLslang helper function to convert the GLSL shaders into the native format binary form supported by SPIR-V.
Before you call any glslang function, the library needs to be initialized once per process. This is done by calling glslang::InitializeProcess(). Next, the input shader is converted into the stream of SPIR-V bits using the user-defined function VulkanShader::GLSLtoSPV(), as mentioned in the following code:
bool VulkanShader::GLSLtoSPV(const VkShaderStageFlagBits shader_type, const char *pshader, std::vector<unsigned int> &spirv)
{
 glslang::TProgram& program = *new glslang::TProgram;
 const char *shaderStrings[1];
 TBuiltInResource Resources;
 initializeResources(Resources);

 // Enable SPIR-V and Vulkan rules when parsing GLSL
 EShMessages messages = (EShMessages)(EShMsgSpvRules
 | EShMsgVulkanRules);

 EShLanguage stage = findLanguage(shader_type);
 glslang::TShader* shader = new glslang::TShader(stage);

 shaderStrings[0] = pshader;
 shader->setStrings(shaderStrings, 1);

 if (!shader->parse(&Resources, 100, false, messages)) {
 puts(shader->getInfoLog());
 puts(shader->getInfoDebugLog());
 return false;
 }

 program.addShader(shader);

 // Link the program and report if errors...
 if (!program.link(messages)) {
 puts(shader->getInfoLog());
 puts(shader->getInfoDebugLog());
 return false;
 }

 glslang::GlslangToSpv(*program.getIntermediate(stage),
 spirv);

 return true;
}

The GLSLtoSPV function needs to be compiled for each type of shader to convert its GLSL source code into its SPIR-V form. First it creates an empty shader object and initializes the shader resource structure. Using the shader type passed to the GLSLtoSPV function parameter, determine the shader language using the findLanguage() helper function (see the following code snippet) and create a TShader shader object. Pass the GLSL shader source code to this shader and parse it to check for any potential issues. In case errors are found, report the error to help the user rectify it:
EShLanguage VulkanShader::findLanguage(const VkShaderStageFlagBits shader_type)
{
 switch (shader_type) {
 case VK_SHADER_STAGE_VERTEX_BIT:
 return EShLangVertex;

 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
 return EShLangTessControl;

 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
 return EShLangTessEvaluation;

 case VK_SHADER_STAGE_GEOMETRY_BIT:
 return EShLangGeometry;

 case VK_SHADER_STAGE_FRAGMENT_BIT:
 return EShLangFragment;

 case VK_SHADER_STAGE_COMPUTE_BIT:
 return EShLangCompute;

 default:
 printf("Unknown shader type specified: %d. Exiting!",
 shaderType);
 exit(1);
 }
}

Add the shader object in the program object to compile and link it. Upon the successful linking of the glslang::GlslangToSpv() API called, convert the GLSL source program into the intermediate shader (.spv) form.
Finally, upon exiting from the application, don't forget to delete the shaders. The shader can be destroyed using the vkDestroyShaderModule() API. Refer to the following implementation for more information:
void VulkanShader::destroyShaders()
{
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 VulkanDevice* deviceObj = appObj->deviceObj;

 vkDestroyShaderModule(deviceObj->device,
 shaderStages[0].module, NULL);
 vkDestroyShaderModule(deviceObj->device,
 shaderStages[1].module, NULL);
}

Here is the syntax of the vkDestroyShaderModule() API:
VKAPI_ATTR void VKAPI_CALL vkDestroyShaderModule(
 VkDevice device,
 VkShaderModule shaderModule,
 const VkAllocationCallbacks* allocator);

The following table describes the various fields of this API:
	
Parameters

	
Description

	

device

	
This is the logical device to be used to destroy the shader module object.

	

shaderModule

	
This is the handle of the shader module that needs to be destroyed.

	

allocator

	
This controls the host memory deallocation process. For more information, refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

Summary

Following the image resource creation process from the previous chapter, this chapter begins with another type of Vulkan resource called a buffer resource. We not only understood the concept, but also implemented the geometry vertex buffer using it and also looked into the Render Pass and framebuffer to define a unit render job in Vulkan. Finally, we closed the chapter down with the introduction of SPIR-V, which is a new way of specifying the shaders and kernels in the Vulkan. We implemented our first shader in the SPIR-V form, where we input the vertex and fragment shader into GLSL and converted them into the SPIR-V format using the Lunar-G SDK's glslangValidator.
In the next chapter, we will look at the descriptor and descriptor sets. These are the interfaces between the created resources and the shaders. We will use a descriptor to connect our created vertex buffer resource information to the SPIR-V shader implemented in this chapter.
In the next chapter we will cover the pipeline state management in Vulkan. In this we control the hardware setting by means of pipeline states (rasterizer state, blend state, and depth stencil state) and plan the input data for rendering purposes.

Chapter 8. Pipelines and Pipeline State Management

In the previous chapter, we understood the buffer resource in Vulkan and used it to store geometry data information in the form of a vertex buffer on the physical device memory. We implemented a Render Pass and framebuffer object. Also, we learned about SPIR-V, which is a new way of specifying shaders in Vulkan. In addition, we used the SPIR-V tool library to convert GLSL shaders into the SPIR-V intermediate language at the time of compilation.
We will take this chapter one notch up from what we've learned so far—we'll understand the concept of a pipeline and pipeline state management. In this chapter, we will begin describing the types of pipeline supported by the Vulkan API. There are two types of pipeline—compute and graphics. These pipelines are created using pipeline cache objects, which will be the next topic. As we approach the end of this chapter, we will implement the graphics pipeline and thoroughly understand the various types of pipeline state associated with it.
In this chapter, we will cover the following topics:
	Getting started with pipelines
	Caching the pipeline objects with pipeline cache object (PCO)
	Creating the graphics pipeline
	Understanding the compute pipeline
	Pipeline state objects in Vulkan
	Implementing the pipeline

Getting started with pipelines

A pipeline refers to a succession of fixed stages through which a data input flows; each stage processes the incoming data and hands it over to the next stage. The final product will be either a 2D raster drawing image (the graphics pipeline) or updated resources (buffers or images) with computational logic and calculations (the compute pipeline).
Vulkan supports two types of pipeline—graphics and compute.

	The graphics pipeline: This pipeline takes in a set of Vulkan commands through command buffers and draws a 2D raster image of the 2D/3D scene.
	The compute pipeline: This pipeline takes in Vulkan commands through command buffers and processes them for computational work.

The following redrawn diagram from the official Vulkan specification (https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram) shows the Vulkan graphics and compute pipelines:

[image: Getting started with pipelines]

The pipeline journey begins at Input Assembler, where the input vertex data is assembled in the form of a point, line, and triangle based on the primitive topology specified. Using the Vertex Shader programmable stage, the input vertex data is transformed into a clip space. The geometry is tessellated in the Tessellation Control Shader and Tessellation Evaluation Shader assembler. Geometry Shader has the unique capability of producing multiple primitives out of a single incoming primitive.
Next, Primitive Assembler takes all the transformed coordinates from the previous stage and arranges them in line with the specified draw or primitive-type (point, line, and triangle) information provided at the input stage. The primitives are clipped when the associated vertex coordinates fall outside the viewing volume, and when this happens, the clipped fragments (outside the view) are discarded.

Rasterization is the process of converting transformed screen space primitives (point, line, and triangle) into discrete elements called fragments. These fragments are controlled by the next stage, called Fragment Shader. Fragment shaders perform computation on a single fragment. These fragments finally become a part of the framebuffer, which is collectively subjected to a number of conditional updates, such as depth testing, stenciling, and fragment blending.
The buffer and image memory types can be processed in a separate pipeline in the form of a 1D/2D/3D workgroup called the compute pipeline. The compute pipeline is extremely powerful in accomplishing jobs in parallel processing; it is primarily used in the field of image processing and physics computation. Both the buffer and image memory can be modified (read/write) by the compute pipeline.
This pipeline broadly consists of three concepts: pipeline state objects, pipeline cache objects, and pipeline layouts. These can be used to effectively control the underlying pipeline operations:
	Pipeline state objects (PSO): The physical device or the GPU is capable of doing several types of operation directly in the hardware. Such operations may include rasterizers and conditional updates, such as blending the depth test, stenciling, and so on. Vulkan offers the ability to control these hardware settings with the help of PSOs. The other hardware-base-controlled operations may include the assembly of the primitive topology type (point/line/triangle) on a given geometrical shape, viewport control, and more.
	Pipeline cache objects (PCOs): The pipeline cache provides a mechanism for faster retrieval and reuse of stored pipelines. This gives an application a better chance of avoiding the redundancy of creating similar or duplicate pipeline objects.
	Pipeline layouts: The buffer and images are indirectly connected to the shader and can be accessed using shader resource variables. The resource variables are connected to the buffer and image views. These resource variables are managed through descriptors and the descriptor set layout. Within the pipeline, the pipeline layouts manage the sequence of descriptor set layouts.

Note
A descriptor is an interface between the stored resource and the shader stage. The resources are connected to the logical layout bindings defined by the descriptor set layout, and the pipeline layout provides unprecedented access to descriptor sets within the pipeline. Descriptors will be covered in detail in Chapter 10, Descriptors and Push Constant, where we will learn to use uniforms.

VulkanPipeline - the pipeline implementation class

In this chapter, we are introducing a new user-defined class called VulkanPipeline. This class will manage pipeline implementation for Vulkan applications. Pipeline creation is a performance-critical path as it deals with a lot of pipeline state management objects; therefore, the reusability of pipeline objects is highly advisable. The Vulkan pipeline provides a pipeline-caching mechanism through a PCO. This reduces the overhead in creating similar pipelines—the driver looks for a closer match and creates the new pipeline using the base pipeline.
The pipeline implementation must be placed at a level where drawing an object can easily access the PCO in a centralized manner to enhance the chance of pipeline reusability. For this, there are two choices: place the VulkanPipeline class inside VulkanApplication (at the application level, this may be the primary thread) or VulkanRenderer (for each independent renderer thread). Both the options are fine as long as the application manages the pipeline objects correctly with proper handling of memory leaks and thread synchronization. This book follows the latter option, so we place VulkanPipeline in VulkanRenderer to avoid thread synchronization, making it simpler for beginners.
The following block diagram shows a pictorial view that represents the application system with the integration of the user-defined VulkanPipeline class:

[image: VulkanPipeline - the pipeline implementation class]

The following is the declaration of the VulkanPipeline header file (VulkanPipeline.h):

/************ VulkanPipeline.h ************/
class VulkanPipeline
{
public:
 // Creates the pipeline cache object and stores pipeline object
 void createPipelineCache();

 // Returns the created pipeline object, it takes the drawable

 // object which contains the vertex input rate and data

 // interpretation information, shader files, Boolean flag to

 // check depth is supported or not, and a flag to check if the
 // vertex input are available.
 bool createPipeline(VulkanDrawable* drawableObj,
 VkPipeline* pipeline, VulkanShader* shaderObj,
 VkBool32 includeDepth, VkBool32 includeVi = true);

 // Destruct the pipeline cache object
 void destroyPipelineCache();
 public:
 // Pipeline cache object
 VkPipelineCache pipelineCache;

 // References to other user defined class
 VulkanApplication* appObj;
 VulkanDevice* deviceObj;
};

The header file declaration contains the helper functions that allow you to create the pipeline cache object (VkPipelineCache) and produce the pipelines (VkPipeline).

Caching pipeline objects with a PCO

A pipeline cache is a pool that stores baked pipelines. It enables an application to reduce the pipeline creation overhead between pipeline runs and also between the subsequent application run. The following is the difference between the two:
	Between pipelines: The pipeline construction can be reused when new pipelines are created. The pipeline cache object is passed as a parameter to the pipeline creator API (vkCreateGraphicsPipelines). By doing so, the underlying mechanism ensures that it reuses the pipeline if a similar one exists. This is widely useful in the creation of drawing objects that are redundant in nature, for example, paint brush strokes, sprites, mesh geometries, and so on.
	Between applications: While creating a pipeline, you deal with a lot of pipeline state objects, which is an expensive path. Reusability across running applications is a wise design and is efficient in terms of execution time and memory space. A pipeline cache inside a Vulkan application can be effectively reused by serializing the pipeline cache objects. The application retrieves the stored pipeline object from the serialized pipeline cache and preinitializes it. In subsequent runs, the same serialized PCOs can be reused across multiple application runs.

For more information on the specification and implementation of a pipeline cache object, refer to the following subsections.
Creating a pipeline cache object

A PCO can be used to create either a graphics (vkCreateGraphicsPipelines) or compute pipeline (vkCreateComputePipelines). Creating these pipelines with a PCO ensures the reusability of the pipeline objects. If the PCO does not contain a similar pipeline, then it creates a new one and adds it to its pool.
A PCO can be created using the vkCreatePipelineCache() API. Upon its successful creation, it returns a VkPipelineCache object. This API accepts four parameters, as described here:
VkResult vkCreatePipelineCache(
 VkDevice device,
 const VkPipelineCacheCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkPipelineCache* pPipelineCache);

The following are the various parameters accepted by the vkCreatePipelineCache() API:
	
Parameters

	
Description

	

device

	
This is an object of the logical device (of the type VkDevice) that is used to create the pipeline cache object (VkPipelineCache).

	

pCreateInfo

	
This is the VkPipelineCacheCreateInfo control structure that contains the metadata or state information that will be used to create the PCO object.

	

pAllocator

	
This controls host memory allocation. For more information, refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pPipelineCache

	
This returns the created VkPipelineCache object pointer.

The second parameter of the vkCreatePipelineCache() API is of the type VkPipelineCacheCreateInfo; this control structure contains the state/metadata information necessary to create and initialize the pipeline cache object. The following is the syntax of this structure:
typedef struct VkPipelineCacheCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCacheCreateFlags flags;
 size_t initialDataSize;
 const void* pInitialData;
} VkPipelineCacheCreateInfo;

Let's look at this structure's various fields:
	
Parameters

	
Description

	

sType

	
This is the type information of the control structure. It must be specified as VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
This field is reserved for future use.

	

initialDataSize

	
This is the length of the data (in bytes) indicated by initialData. If this field value is 0, then it signifies that the pipeline cache will be initially empty. Then pInitialData is ignored.

	

pInitialData

	

This field indicates the retrieved

datafrom some previously created pipeline cache. This will be used for initializing the contents of the newly created pipeline cache object. The initialization contents of the created pipeline cache object may remain empty if the data of pInitialData is incompatible with the device.

Merging pipeline caches

Two pipeline caches can be merged together into one using the vkMergePipelineCaches() API. This API merges a destination pipeline cache into the source pipeline cache. It intakes four parameters. The first parameter device is the logical device for which the merging will be carried out. The number of source pipeline caches is specified by pSrcCaches with a count equal to srcCacheCount. The final merging cache is stored in the destination pipeline cache called dstCache.
The following is the syntax of this API:
VkResult vkMergePipelineCaches(
 VkDevice device,
 VkPipelineCache dstCache,
 uint32_t srcCacheCount,
 const VkPipelineCache* pSrcCaches);

Retrieving data from pipeline caches

A pipeline cache object can save its information in the form of streams of bytes. This stored information can be reused in future, when an application reruns or is executed again. The pipeline cache data can be retrieved using the vkGetPipelineCacheData() API:
VkResult vkGetPipelineCacheData(
 VkDevice device,
 VkPipelineCache pipelineCache,
 size_t* dataSize,
 void* data);

The following table describes each parameter of this API:
	
Parameters

	
Description

	

device

	
This refers to the logical device that is used to create the pipeline cache object.

	

pipelineCache

	
This is the pipeline cache object from which the data is to be retrieved.

	

dataSize

	
When data is NULL, this field is used to query the size of the pipeline cache data in bytes from the pipelineCache object.

	

data

	
When dataSize is non-zero, this API reads the dataSize bytes from the pipelineCache object and retrieves the data.

The stored PCO information can be reused to preinitialize and populate the pipeline cache objects when the application starts. The compilation results may depend on the vendor and other device details. In order to ensure the application is compatible with the pipeline cache data, the header information can be used.
The retrieved data contains a header and a payload. The header provides the necessary information about the written data to ensure there is compatibility when an application runs the next time. The following diagram shows the format of the stored pipeline cache object:

[image: Retrieving data from pipeline caches]

The header consists of five fields, which may change in line with the specification. The header size is not fixed as per the specification but is read as the first four bytes from the data. This byte information encodes the length of the entire pipeline cache object's retrieved data header (in bytes), including each and every field in the header.
The following table specifies these fields' specification along with their size in bytes:
	
Offset

	
Size

	
Meaning

	
0

	
4

	
This specifies the pipeline cache header's length in bytes. This 4-byte array of information is written with the least significant byte placed first in the sequence.

	
4

	
4

	
This represents the header version (VkPipelineCacheHeaderVersion) of the pipeline cache. This is an array of bytes with the least significant byte placed first.

	
8

	
4

	
This specifies the vendor ID, which is the same as VkPhysicalDeviceProperties::vendorID. This is a 4-byte array with the least significant byte placed first.

	
12

	
4

	
This specifies the device ID, which is the same as VkPhysicalDeviceProperties::deviceID. This is also a 4-byte array with the least significant byte placed first.

	
16

	
4

	
This specifies a unique identifier that represents the pipeline cache object. The ID is equal to VkPhysicalDeviceProperties::pipelineCacheUUID.

Implementing the PCO

The PCO is implemented in VulkanPipeline.cpp in the createPipelinceCache() function. VkPipelineCacheCreateInfo is initialized and passed to the vkCreatePipelineCache() API. The initialDataSize is 0 and pInitialData is NULL, as there is no old, retrievable PCO data to be used in the initialization of the created PCO:
void VulkanPipeline::createPipelineCache()
{
 VkResult result;
 VkPipelineCacheCreateInfo pipelineCacheInfo;
 pipelineCacheInfo.sType = VK_STRUCTURE_TYPE_PIPELINE
 _CACHE_CREATE_INFO;
 pipelineCacheInfo.pNext = NULL;
 pipelineCacheInfo.initialDataSize = 0;
 pipelineCacheInfo.pInitialData = NULL;
 pipelineCacheInfo.flags = 0;

 // Create the pipeline cache using VkPipelineCacheCreateInfo
 result = vkCreatePipelineCache(deviceObj->device,
 &pipelineCacheInfo, NULL, &pipelineCache);
 assert(result == VK_SUCCESS);
}

Creating a graphics pipeline

A graphics pipeline consists of programmable, fixed-function pipeline stages, Render Passes, subpasses, and pipeline layouts. The programmable stages include multiple shader stages, such as the vertex, fragment, tessellation, geometry, and compute shaders. The fixed-function states consist of multiple pipeline state objects (PSOs) that represent the dynamic, vertex input, input assembly, rasterization, blending, viewport, multisampling, and depth-stencil states.
A graphics pipeline object (VkPipeline) is created using the vkCreateGraphicsPipelines() API. This API intakes the programmable stages, fixed-function pipeline stages, and pipeline layouts through a metadata control structure called VkGraphicsPipelineCreateInfo. The following is the syntax of the vkCreateGraphicsPipelines() API:
VkResult vkCreateGraphicsPipelines(
 VkDevice device,
 VkPipelineCache pipelineCache,
 uint32_t createInfoCount,
 const VkGraphicsPipelineCreateInfo* pCreateInfos,
 const VkAllocationCallbacks* pAllocator,
 VkPipeline* pPipelines);

Let's look at the various fields of the vkCreateGraphicsPipelines() API:
	
Parameters

	
Description

	

device

	
This is the logical device for which the pipeline object is to be created.

	

pipelineCache

	
This is a valid pointer to the pipeline cache object. If this value is NULL, then the pipeline cache will not be used to create the pipeline object.

	

createInfoCount

	
This represents the number of graphics pipelines (VkGraphicsPipelineCreateInfo) in the pCreateInfos array.

	

pCreateInfos

	
This is the VkGraphicsPipelineCreateInfo array.

	

pAllocator

	
This field controls host memory allocation. For more information, refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pPipelines

	
This returns the VkPipeline object array containing the graphics pipeline objects. The number of objects depends on createInfoCount.

Here is the syntax of the metadata control structure VkGraphicsPipelineCreateInfo, we discussed earlier:
typedef struct VkGraphicsPipelineCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreateFlags flags;
 uint32_t stageCount;
 const VkPipelineShaderStageCreateInfo* pStages;
 const VkPipelineVertexInputStateCreateInfo* pVertexInputState;
 const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState;
 const VkPipelineTessellationStateCreateInfo* pTessellationState;
 const VkPipelineViewportStateCreateInfo* pViewportState;
 const VkPipelineRasterizationStateCreateInfo* pRasterizationState;
 const VkPipelineMultisampleStateCreateInfo* pMultisampleState;
 const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState;
 const VkPipelineColorBlendStateCreateInfo* pColorBlendState;
 const VkPipelineDynamicStateCreateInfo* pDynamicState;
 VkPipelineLayout layout;
 VkRenderPass renderPass;
 uint32_t subpass;
 VkPipeline basePipelineHandle;
 int32_t basePipelineIndex;
} VkGraphicsPipelineCreateInfo;

Let's look at the various fields for this structure:
	
Parameters

	
Description

	

sType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	

This field provides hints to help the implementation understand how the pipeline will be generated. These hints are provided using the VkPipelineCreateFlagBits enum.

The VkPipelineCreateFlagBits enum has three fields:

	VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT: The pipelines created from this flag will not be optimized. Since there is no optimization path, the overall time to create this pipeline may be reduced.
	VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT: The pipeline created using this flag is permitted to be the parent of the subsequent pipelines that are going to be created using the vkCreateGraphicsPipelines() API.
	VK_PIPELINE_CREATE_DERIVATIVE_BIT: The pipeline created using this flag becomes the child of the previously created pipeline.

	

stageCount

	
This indicates the number of shaders to be used in the current pipeline.

	

pStages

	
This field indicates what all shader stages need to be included in the pipeline using an array of VkPipelineShaderStageCreateInfo. The total size of this array is equal to stageCount.

	

pVertexInputState

	
This field indicates the vertex input pipeline state through the VkPipelineVertexInputStateCreateInfo pointer object.

	

pInputAssemblyState

	
This field determines the behavior of the input assembly state using the VkPipelineInputAssemblyStateCreateInfo pointer object.

	

pTessellationState

	
This field indicates the tessellation control and evaluation shader stages' states. These states are specified using the VkPipelineTessellationStateCreateInfo pointer object. This must be NULL if the tessellation control and evaluation shader stages are not included in the pipeline.

	

pViewportState

	
This field indicates the vertex states through the VkPipelineViewportStateCreateInfo pointer object. This field must be NULL if the pipeline has rasterization disabled.

	

pRasterizationState

	
This field indicates the pipeline rasterization state using the VkPipelineRasterizationStateCreateInfo structure's pointer object.

	

pMultisampleState

	
This refers to the VkPipelineMultisampleStateCreateInfo object pointer. This field must be NULL if the pipeline has rasterization disabled.

	

pDepthStencilState

	
This field indicates the pipeline's depth/stencil state by using a pointer to the VkPipelineDepthStencilStateCreateInfo control structure. This would be NULL if rasterization is disabled or the subpass in the Render Pass does not use a depth/stencil attachment.

	

pColorBlendState

	

This is a pointer to VkPipelineColorBlendStateCreateInfo indicating the pipeline color's blend state.

This field must be NULL if the pipeline has rasterization disabled or if the subpass in the Render Pass does not use any color attachments.

	

pDynamicState

	
This is a pointer to VkPipelineDynamicStateCreateInfo, which indicates the pipeline's dynamic states. This field can be changed independently of other pipeline states. If no dynamic states are specified, then this field can be specified as NULL, notifying the pipeline that there is no dynamic states to be considered in this pipeline.

	

layout

	
This field specifies the binding locations used by the pipeline and the descriptor sets.

	

renderPass

	
This field specifies the subpasses and attachments that will be used by the pipeline.

	

subPass

	
This notifies the pipeline about the Render Pass's subpass index under which it will be used.

	

basePipelineHandle

	
This field specifies the base pipeline from where this pipeline will be derived.

	

basePipelineIndex

	
This field specifies the index of the pCreateInfos parameter in the base pipeline. It will be used to derive this pipeline object.

Implementing a graphics pipeline

Graphics pipelines are implemented in the createPipeline() function of VulkanPipeline. This function takes four parameters. The first parameter contains the vertex input and data interpretation. The second parameter contains the return value in which the array of pipelines will be created. The third parameter is a Boolean flag indicating depth testing. And the last parameter is used to specify whether to consider the vertex input or not.
The graphics pipeline consists of several pipeline state objects, render passes, shader objects, and subpasses, as shown in the following diagram. The implementation of the pipeline is done by creating a VkGraphicsPipelineCreateInfo object (pipelineInfo) and specifying all the various state objects, shader objects, and render pass object into it. Finally, the pipeline object is consumed by the vkCreateGraphicsPipelines() API to create the pipeline. The following diagram shows the graphics pipeline and all its interface controllers:

[image: Implementing a graphics pipeline]

This is the code implementation of the graphics pipeline object:
bool VulkanPipeline::createPipeline(VulkanDrawable* drawableObj, VkPipeline* pipeline, VulkanShader* shaderObj, VkBool32 includeDepth, VkBool32 includeVi)
{
 // Please refer to Dynamic State for more info
 VkPipelineDynamicStateCreateInfo dynamicState = {};

 // Please refer to Vertex Input States subsection for more info
 VkPipelineVertexInputStateCreateInfo vertexInputStateInfo = {};
 . . .

 // Please refer to Input Assembly States subsection for more info
 VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo = {};

 // Please refer to Rasterization State subsection for more info
 VkPipelineRasterizationStateCreateInfo rasterStateInfo = {};

 // Please refer to Color Blend Attachment for more info
 VkPipelineColorBlendAttachmentState
 colorBlendAttachmentStateInfo[1] = {};

 // Please refer to Color Blend State subsection for more info
 VkPipelineColorBlendStateCreateInfo colorBlendStateInfo = {};

 // Please refer to Viewport State subsection for more info
 VkPipelineViewportStateCreateInfo viewportStateInfo = {};

 // Please refer to Depth Stencil state subsection for more info
 VkPipelineDepthStencilStateCreateInfo depthStencilStateInfo = {};

 // Please refer to Multi Sample state subsection for more info
 VkPipelineMultisampleStateCreateInfo multiSampleStateInfo = {};

 // Populate the VkGraphicsPipelineCreateInfo structure to specify

 // programmable stages, fixed-function pipeline stages render

 // pass, sub-passes and pipeline layouts
 VkGraphicsPipelineCreateInfo pipelineInfo = {};
 pipelineInfo.sType =
 VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
 pipelineInfo.pVertexInputState = &vertexInputStateInfo;
 pipelineInfo.pInputAssemblyState = &inputAssemblyInfo;
 pipelineInfo.pRasterizationState = &rasterStateInfo;
 pipelineInfo.pColorBlendState = &colorBlendStateInfo;
 pipelineInfo.pTessellationState = NULL;
 pipelineInfo.pMultisampleState = &multiSampleStateInfo;
 pipelineInfo.pDynamicState = &dynamicState;
 pipelineInfo.pViewportState = &viewportStateInfo;
 pipelineInfo.pDepthStencilState = &depthStencilStateInfo;
 pipelineInfo.pStages = shaderObj->shaderStages;
 pipelineInfo.stageCount = 2;
 pipelineInfo.renderPass = appObj->rendererObj->
 renderPass;
 pipelineInfo.subpass = 0;

 // Create the pipeline using the meta-data store in the

 // VkGraphicsPipelineCreateInfo object
 if (vkCreateGraphicsPipelines(deviceObj->device, pipelineCache,
 1, &pipelineInfo, NULL, pipeline) == VK_SUCCESS){
 return true;
 }
 else {
 return false;
 }
}

Destroying pipelines

A created pipeline can be destroyed using the vkDestroyPipeline API. This API accepts three parameters. The first parameter specifies the logical device (VkDevice) that will be used to destroy the pipeline. The second parameter is an object of pipeline (VkPipeline), which is intended to be destroyed. The third parameter pAllocator controls host memory allocation. For more information, refer to the Host memory section Chapter 5, Command Buffer and Memory Management in Vulkan:
void vkDestroyPipeline(
 VkDevice device,
 VkPipeline pipeline,
 const VkAllocationCallbacks* pAllocator);

Understanding compute pipelines

A compute pipeline consists of a single static compute shader stage and the pipeline layout. The compute shader stage is capable of doing massive parallel arbitrary computations. On the other hand, the pipeline layout connects the compute pipeline to the descriptor using the layout bindings. The vkCreateComputePipeline() API can be used to create a compute pipeline:
VkResult vkCreateComputePipelines(
 VkDevice device,
 VkPipelineCache pipelineCache,
 uint32_t createInfoCount,
 const VkComputePipelineCreateInfo* pCreateInfos,
 const VkAllocationCallbacks* pAllocator,
 VkPipeline* pPipelines);

The following table describes the various fields of the vkCreateGraphicsPipelines() API:
	
Parameters

	
Description

	

device

	
This is the logical device (VkDevice) from which the compute pipeline object is going to be created.

	

pipelineCache

	
This is a valid pointer to the pipeline cache object. If this value is NULL, then the pipeline cache will not be used to create the compute pipeline object.

	

createInfoCount

	
This represents the number of compute pipelines (VkComputePipelineCreateInfo) in the pCreateInfos array.

	

pCreateInfos

	
This refers to the VkComputePipelineCreateInfo structure array's objects.

	

pAllocator

	
This field controls host memory allocation. For more information, refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pPipelines

	
This returns the VkPipeline object array containing the number of compute pipelines created.

The VkComputePipelineCreateInfo structure defines the state information of the compute pipeline that is consumed by the vkCreateComputePipelines() API to create the compute pipeline object. The syntax of this API is as follows:
typedef struct VkComputePipelineCreateInfo {
 VkStructureType type;
 const void* next;
 VkPipelineCreateFlags flags;
 VkPipelineShaderStageCreateInfo stage;
 VkPipelineLayout layout;
 VkPipeline basePipelineHandle;
 int32_t basePipelineIndex;
} VkComputePipelineCreateInfo;

Let's look at the various fields of the VkComputePipelineCreateInfo structure:
	
Parameters

	
Description

	

sType

	
This is the type information of the VkComputePipeline-CreateInfo structure. It must be specified as VK_STRUCTURE_TYPE_COMPUTE_PIPELINE-_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	

This field provides the hints that help the implementation understand how the pipeline will be generated. These hints are provided in the form of the VkPipelineCreateFlagBits enum.

The VkPipelineCreateFlagBits enum has three fields:

	VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT: The compute pipeline created from this flag will not be optimized. In the absence of the optimization path, the overall time to create the pipeline is expected to be reduced.
	VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT: The compute pipeline created using this flag is permitted to be the parent of the subsequent compute pipelines that are going to be created using the vkCreateGraphicsPipelines() API.
	VK_PIPELINE_CREATE_ DERIVATIVE_BIT: The compute pipeline created using this flag becomes the child of the previously created pipeline.

	

stage

	
This specifies the compute shader using the VkPipelineShaderStageCreateInfo structure.

	

layout

	
This field specifies the binding locations used by the pipeline and the descriptor sets.

	

basePipelineHandle

	
This field specifies the base pipeline from where this pipeline will be derived.

	

basePipelineIndex

	
This field specifies the index of the pCreateInfos parameter in the base pipeline that will be used to derive this pipeline object.

The VkPipelineShaderStageCreateInfo structure used in the compute pipeline specifies vital information about the compute shader that is going to be used in the compute pipeline. It contains the type of shader, which must be VK_SHADER_STAGE_COMPUTE_BIT. In addition, it also specifies the shader source in the form of a shader module and the entry point function in the compute shader source:
typedef struct VkPipelineShaderStageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineShaderStageCreateFlags flags;
 VkShaderStageFlagBits stage;
 VkShaderModule module;
 const char* pName;
 const VkSpecializationInfo* pSpecializationInfo;
 } VkPipelineShaderStageCreateInfo;

Let's look at the various fields of this structure:
	
Parameters

	
Description

	

sType

	
This is the type information of this structure. It must be specified as VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
This field is reserved for future use.

	

stage

	
This specifies the pipeline stage using the VkShaderStageFlagBits structure.

	

Module

	
This is the VkShaderModule object, which contains the intended compute shader.

	

pName

	
This is the name (UTF-8 formatted string) of the entry point in the compute shader.

	

pSpecializationInfo

	
This is the VkSpecializationInfo pointer object.

Pipeline State Objects (PSO) in Vulkan

Pipeline state objects in a pipeline are the means by which the hardware settings of the physical devices are controlled. There are various types of pipeline state objects specified in the pipeline; which work in a predefined order. The input data and resources in these stages are subjected to changes in line with user-specified behavior. Each stage processes the input and passes it on to the next one. Depending upon application requirements, the pipeline state stage can be bypassed as per the user's choice. This is entirely configurable through VkComputePipelineCreateInfo.
Let's have an overview of these pipeline state objects before we cover them in detail:
	The dynamic state: This specifies the dynamic states used in this pipeline
	The vertex input state: This specifies the data input rate and its interpretation
	The input assembly state: This assembles the vertex data into the primitive's topology (line, point, and triangle variants)
	The rasterization state: This operation is related to rasterization, such as polygon fill mode, front facing information, culling mode information, and so on
	The color blend state: This specifies the blending factor and operation between the source and destination fragments
	The viewport state: This defines viewports, scissors, and dimensions
	The depth/stencil state: This specifies how to carry out the depth/stencil operation
	The multisampling state: This controls the samples to be used in pixel depiction during the rasterization for anti-aliasing purposes

The following diagram specifies each stage in the PSO:

[image: Pipeline State Objects (PSO) in Vulkan]

In the following subsections, we will discuss each stage in detail. We will cover the concept of pipeline states, their official specification, and sample code implementation.
We will implement all the pipeline state objects in VulkanPipeline class inside the createPipeline() function. This function first sets up the pipeline state objects, these objects are used to create the graphics pipeline.
Dynamic states

The dynamic state specifies the total number of dynamic states used in the present pipeline and their respective objects in the pipeline. It includes the viewport, stencil, line widths, blending constants, stencil comparison masks, and so on. Each dynamic state in Vulkan is represented using the VkDynamicState enum.
Tip
The updates on dynamic states are not expensive; in contrast, the static states must be carefully set to avoid the performance-critical paths.

The following is the syntax of the dynamic state API:
typedef struct VkPipelineDynamicStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineDynamicStateCreateFlags flags;
 uint32_t dynamicStateCount;
 const VkDynamicState* pDynamicStates;
} VkPipelineDynamicStateCreateInfo;

Let's look at the various fields of this structure:
	
Parameters

	
Description

	

sType

	
This field specifies the type of the current structure. The value of this field must be VK_STRUCTURE_TYPE_-PIPELINE_DYNAMIC_STATE_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
This is a reserved field for future use.

	

dynamicStateCount

	
This refers to the count of VkDynamicState objects specified in pDynamicStates.

	

pDynamicStates

	
This is an array of VkDynamicState enums that represent all the dynamic states that will use the values from the dynamic state command instead of the values from the pipeline state's CreateInfo command.

In the next subsection, we will use this API and implement dynamic states.
Implementing dynamic states

The very first pipeline state implemented in the VulkanPipeline::createPipeline() function is the dynamic state. First, it creates an empty array of VkDynamicState called dynamicStateEnables and fills it up with the dynamic states. This array informs the pipeline about those states that can be changed at runtime. For example, the following implementation contains two dynamic states: viewport (VK_DYNAMIC_STATE_VIEWPORT) and scissor (VK_DYNAMIC_STATE_SCISSOR). This implementation specifies the viewport and scissor parameters and that they can be changed at runtime.
The dynamicStateEnables is pushed into the VkPipelineDynamicStateCreateInfo control structure object, which will later be consumed by pipelineInfo (VkGraphicsPipelineCreateInfo) to create the graphics pipeline. The following is the code implementation:

 /********** VulkanPipeline.cpp /**********/

 // Inside VulkanPipeline::createPipeline()

 // Initialize the dynamic states, initially it's empty
 VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_RANGE_SIZE];
 memset(dynamicStateEnables, 0, sizeof (dynamicStateEnables));

 // Specify the dynamic state information to pipeline through

 // VkPipelineDynamicStateCreateInfo control structure.
 VkPipelineDynamicStateCreateInfo dynamicState = {};
 dynamicState.sType =
 VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
 dynamicState.pNext = NULL;
 dynamicState.pDynamicStates = dynamicStateEnables;
 dynamicState.dynamicStateCount = 0;

 // Specify the dynamic state count and VkDynamicState enum

 // stating which dynamic state will use the values from dynamic

 // state commands rather than from the pipeline state creation info.
 dynamicStateEnables[dynamicState.dynamicStateCount++] =
 VK_DYNAMIC_STATE_VIEWPORT;
 dynamicStateEnables[dynamicState.dynamicStateCount++] =
 VK_DYNAMIC_STATE_SCISSOR;

Once the dynamic states are constructed, we can go ahead and build the next pipeline state object. The next stage in this process is the vertex input stage, which is described in the following section.

Vertex input states

The vertex input state specifies input binding (VkVertexInputBindingDescription) and vertex attribute descriptors (VkVertexInputAttributeDescription). Input binding helps the pipeline access the resource through the binding at the rate at which the data is consumed. On the other hand, the vertex attribute descriptor stores important information such as the location, binding, format, and so on. This is used to interpret vertex data. For more information, refer to the Implementing the buffer resource - creating the vertex buffer for the geometry section in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V.
The preceding information is wrapped into the VkPipelineVertexInputStateCreateInfo structure object, which will be used later to create the graphics pipeline. For a detailed explanation of this structure, refer to the following specification. Here's the syntax of this structure:
typedef struct VkPipelineVertexInputStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineVertexInputStateCreateFlags flags;
 uint32_t vertexBindingDescriptionCount;
 const VkVertexInputBindingDescription*
 pVertexBindingDescriptions;
 uint32_t vertexAttributeDescriptionCount;
 const VkVertexInputAttributeDescription*
 pVertexAttributeDescriptions;
} VkPipelineVertexInputStateCreateInfo;

The following table specifies each field of this control structure:
	
Parameters

	
Description

	

sType

	
This is the type information of the structure. It must be specified as VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
This field is reserved for future implementation.

	

vertexBindingDescriptionCount

	
This is the total number of vertex binding instances specified in the VkVertexInputBindingDescription object (pVertexBindingDescriptions).

	

pVertexBindingDescriptions

	
This is a pointer to an array of VkVertexInputBindingDescription objects.

	

vertexAttributeDescriptionCount

	
This is the total number of vertex attribute descriptions specified in the VkVertexInputAttributeDescription object (pVertexAttributeDescriptions).

	

pVertexAttributeDescriptions

	
This is a pointer to an array of VkVertexInputAttributeDescription.

Let's understand the implementation of the vertex input state in the following subsection.
Implementing vertex input states

In the VulkanPipeline::createPipeline() function, the vertex input states are implemented as demonstrated in the following code. This state helps the pipeline understand how the data sent will be interpreted using the vertex attribute descriptions specified in the VkVertexInputAttributeDescription object. Another piece of information it contains is the rate at which the vertex data will be consumed for processing, which is specified in the input binding description (VkVertexInputBindingDescription). There are two ways in which the data can be consumed: per-vertex or per-instance basis. The last createpipelines argument drawableObj (of the type VulkanDrawable) contains the vertex attribute descriptions and vertex input binding description:

 /********** VulkanPipeline.cpp **********/

 // Inside VulkanPipeline::createPipeline(VulkanDrawable*

 // drawableObj, VkPipeline* pipeline, VulkanShader*

 // shaderObj, VkBool32 includeDepth, VkBool32 includeVi)
 VkPipelineVertexInputStateCreateInfo vertexInputStateInfo = {};
 vertexInputStateInfo.sType =
 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
 vertexInputStateInfo.pNext = NULL;
 vertexInputStateInfo.flags = 0;
 vertexInputStateInfo.vertexBindingDescriptionCount = 1;
 vertexInputStateInfo.pVertexBindingDescriptions =
 &drawableObj->viIpBind;
 vertexInputStateInfo.vertexAttributeDescriptionCount = 2;
 vertexInputStateInfo.pVertexAttributeDescriptions =
 drawableObj->viIpAttrb;

Following the vertex input state, we have the input assemble state. This stage assembles the incoming data into meaningful shapes with the help of basic primitives, such as a point, line, or triangle.

Input assembly states

When the graphics pipeline receives the vertex data, it is very similar to a bucket filled with unassembled Lego bricks. These vertices are connected in the form of point, line, and triangle variants to give any arbitrary shape as per the user specification. This shape then affects the rasterization stage to produce the corresponding fragments associated with the shape primitives. This whole process is similar to assembling Lego bricks to make a sensible geometrical shape out of them.
These vertices assemble into primitives at a stage called input assembly, which is specified using the VkPipelineInputAssemblyStateCreateInfo structure. This contains the necessary primitive topology information to help vertices to connect with each other, based on the rules specified. The input assembly structure specifies the topology in the VkPrimitiveTopology structure. Refer to the following syntax and the implementation:
typedef struct VkPipelineInputAssemblyStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineInputAssemblyStateCreateFlags flags;
 VkPrimitiveTopology topology;
 VkBool32 primitiveRestartEnable;
} VkPipelineInputAssemblyStateCreateInfo;

Let's look at the various fields of this structure:
	
Parameters

	
Description

	

type

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO.

	

next

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flag

	
This field is reserved for future implementation.

	

topology

	
This field specifies the type of the primitive topology being used, using the VkPrimitiveTopology enums.

	

primitiveRestartEnable

	
This Boolean flag determines whether a special marker or vertex index is used as the primitive restart feature. The special index value should either be 0xFFFFFFFF or 0xFFFF when vkCmdBindIndexBuffer is VK_INDEX_TYPE_UINT32 or VK_INDEX_TYPE_UINT16, respectively. For list-based topologies, primitive restart is not applicable.

Implementing input assembly states

Specify the primitive topology for the drawing object using the VkPipelineInputAssemblyStateCreateInfo function in VulkanPipeline::createPipeline(). In the following implementation, we used VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, which uses a set of three vertices to produce a filled triangle. Next, we specify whether the primitive restart feature is enabled or not:

 /********** VulkanPipeline.cpp /**********/

 // Inside VulkanPipeline::createPipeline()
 VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo = {};
inputAssemblyInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_- ASSEMBLY_STATE_CREATE_INFO;
 inputAssemblyInfo.pNext = NULL;
 inputAssemblyInfo.flags = 0;
 inputAssemblyInfo.primitiveRestartEnable = VK_FALSE;
 inputAssemblyInfo.topology =VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;

Let's understand what primitive restart is in detail.
Primitive restart

Primitive restart are applicable to only index geometries and used with (vkCmdDrawIndexed and vkCmdDrawIndexedIndirect) drawing APIs.
This feature uses a special marker in a single index array data to recognize disconnected geometries of the same drawing type in a single batch. This is useful in cases where you may have multiple small drawing geometries with a low number of vertices; these multiple geometries can be combined into one index array with each geometry separated using the special reset marker.
The marker used by the primitive restart feature to separate geometries is the highest value of the data type unsigned short (0xFFFF (65535)) or unsigned int (0xFFFFFFFF (4294967295)); with these, the element index array is specified:
	Applicable topology: The primitive restart feature is applicable in the following topologies; the key rule to remember is that it is not applicable on list-type primitive topologies. For more information on topologies, refer to the next section, Primitive topologies:	VK_PRIMITIVE_TOPOLOGY_LINE_STRIP
	VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP
	VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN
	VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY
	VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY

	Usage: The primitive restart feature can be used by enabling the primitiveRestartEnable field (with VK_TRUE) of the VkPipelineInputAssemblyStateCreateInfo structure and specifying a valid topology in the topology field of the same structure.

Let's see the effect of primitive restart on a triangle strip topology. The following diagram uses a set of 11 continuous indices to draw a long and single geometry shape. These indices do not contain any primitive restart markers:

[image: Primitive restart]

However, interestingly, when the 5th index (4) is replaced using the primitive restart marker 0xFFFF, then it divides this single index list into two. The first half (left of the reset marker) is a new geometry shape that is disconnected from the second half (right of the reset marker), producing another new shape. The Vulkan implementation marches through the start of the index list; when it finds the reset marker, it disconnects the visited indices from the rest of the list and treats them as a separate index list to form a new disconnected shape, as shown in the following image:

[image: Primitive restart]

In the next section, we will understand the Vulkan topology and learn about the basic primitives: point, line, and triangle and their related variants.

Primitive topologies

The primitive topology defines the rules that are applied to connect the vertices to produce arbitrary shapes. These shapes comprise a single or several basic primitives: points, lines, and triangles. A primitive topology is specified using VkPrimitiveTopology:
typedef enum VkPrimitiveTopology {
 VK_PRIMITIVE_TOPOLOGY_POINT_LIST = 0,
 VK_PRIMITIVE_TOPOLOGY_LINE_LIST = 1,
 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP = 2,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST = 3,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP = 4,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN = 5,
 VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY = 6,
 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY = 7,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY = 8,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY = 9,
 VK_PRIMITIVE_TOPOLOGY_PATCH_LIST = 10,
} VkPrimitiveTopology;

Primitive topologies can be divided into two types: adjacency and non-adjacency. In the former type, special mathematical rules are used to identify adjacent vertices in a set of vertices that are used for drawing primitives. The adjacent vertices are accessible in the geometric shaders. On the other hand, the latter type does not have the concept of adjacency vertices.
Primitives topologies with no adjacency

Let's take a quick look at each of these primitives in the following table:
	
Primitive topology types

	
Description

	

VK_PRIMITIVE_TOPOLOGY_POINT_LIST

	
Each incoming vertex position represents a point primitive. For this, the provoking vertex index is i.

[image: Primitives topologies with no adjacency]

	

VK_PRIMITIVE_TOPOLOGY_LINE_LIST

	
Each pair of vertices is used to render a line between them. For this, the provoking vertex index is 2i.

[image: Primitives topologies with no adjacency]

	

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP

	
Each vertex makes a line between itself and the vertex that precedes it. For this, the provoking vertex index is i.

[image: Primitives topologies with no adjacency]

	

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST

	
A set of three vertices is used to form a filled triangle. For this, the provoking vertex index is 3i.

[image: Primitives topologies with no adjacency]

	

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP

	
Every vertex makes a triangle with the preceding two vertices. For this, the provoking vertex index is i.

[image: Primitives topologies with no adjacency]

	

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN

	
Every vertex makes a triangle with the first vertex and the vertex that precedes it. This generates a fan-like pattern. For this, the provoking vertex index is i+1.

[image: Primitives topologies with no adjacency]

Primitives topologies with adjacency

In this section, we will understand line and triangle primitives with the adjacency rule:
	VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: This enum type defines a line list with adjacency. Here, for a given N number of vertices, each of the 4i+1st and 4i+2nd vertices is used to draw a line segment. The 4i+0th and 4i+3rd vertices are considered as adjacency vertices of the 4i+1st and 4i+2nd vertices, respectively; here, i ranges from 0 to N-1. If the geometry shader stage is active, then these adjacency vertices are accessible in the geometry shader; if not, they are ignored:

[image: Primitives topologies with adjacency]

	VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: This type of line enum defines a line strip with adjacency. For a given N+3 vertices, each of the i+1st to i+2nd vertices are used to draw a line segment. The number of vertices must be more than four; otherwise, the drawing is ignored. For each line segment i, the i+0th and i+3rd vertices are considered the adjacency vertices of the i+1st and 4i+2nd vertices, respectively.

[image: Primitives topologies with adjacency]

	VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: This enum type defines the triangle list with the adjacency. Here, for a given 6n+k vertices, the 6ith, 6i+2nd, and 6i+4th vertices resolve into a triangle (refer to the following diagram: 0, 2 and 4), where i ranges from 0, 1, 2,... to n-1, and k could be either 0, 1, 2, 3, 4, or 5. If k is not zero, then the last k vertices are ignored.

For each determined triangle, the i, 6i+1st, 6i+3rd, and 6i+5st vertices (refer to the following diagram: 0, 1, 3 and 5) have their adjacent edges produced by the pair of vertices 6i and 6i+2nd, 6i+2nd and 6i+4th, and 6i+4th and 6ith. In the diagram, these adjacent edges are represented by 0 to 2, 2 to 4, and 4 to 6. If the geometry shader stage is active, then the adjacent vertices of each triangle are accessible in a geometry shader; if not, they will be ignored.

[image: Primitives topologies with adjacency]

	VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: This is another type of adjacency triangle enum. For a given 2(n+2)+k vertices, there are n triangles drawn such that k can take either 0 or 1. The final vertex is ignored if k is equal to 1. If the geometry shader stage is active, then the adjacent vertices of each triangle are accessible in a geometry shader; if not, they are ignored.

The following rule table describes the triangle strip with the adjacency vertices' drawing order for each triangle:

[image: Primitives topologies with adjacency]

The following diagram shows the rendering of the primitive under the triangle strip with the adjacency rule:

[image: Primitives topologies with adjacency]

In this next section, we will turn primitives into fragments using rasterization.

Rasterization

Fragments are produced using primitive topologies in the rasterization stage. A rasterized image consists of tiny squares called fragments, arranged in grid fashion. Fragments are a logical combination of the (x, y) position in the framebuffer, corresponding to a depth (z) along with the related data and attributes added by the fragment shaders.
Each primitive goes through the rasterization process and the corresponding fragments are determined according to the topology shape. In this, each primitive's integer position is computed, resulting in the corresponding point or square on the framebuffer grid. Along with the position, one or more depth values with their attributes, which are responsible for determining the final fragment color, are stored in the framebuffer. There can be one or more depth values for each computed point; this indicates that there are multiple overlapped primitives (fully or partially) contending for the same position. These fragments are then resolved based on the depth and associated attributes.
The fragments could be non-square, and this does not affect how the rasterization process works. Rasterization is independent of the aspect ratio of the fragments. The fragments are assumed to be squares since a square simplifies antialiasing and texturing.
The final computed fragment is a pixel that corresponds to the framebuffer. Any fragment that belongs outside the framebuffer dimension is discarded and never considered in the later stages of the pipeline, including any of the early per-fragment tests. The fragment shader processes the surviving fragments and modifies the existing depth value and the associated data with the fragments.
Rasterization states

Rasterization is managed through the rasterization state, which can be programmatically controlled using the VkPipelineRasterizationStateCreateInfo structure. This structure provides vital information associated with the rasterization stage—such as the polygon fill mode, front facing, and culling mode—and checks whether the depth is enabled in the rasterization process. It also checks whether the discarded fragments are enabled. Here is the syntax information:
typedef struct VkPipelineRasterizationStateCreateInfo {
 VkStructureType pType;
 const void* pNext;
 VkPipelineRasterizationStateCreateFlags flags;
 VkBool32 depthClampEnable;
 VkBool32 rasterizerDiscardEnable;
 VkPolygonMode polygonMode;
 VkCullModeFlags cullMode;
 VkFrontFace frontFace;
 VkBool32 depthBiasEnable;
 float depthBiasConstantFactor;
 float depthBiasClamp;
 float depthBiasSlopeFactor;
 float lineWidth;
} VkPipelineRasterizationStateCreateInfo;

The following table describes each of the parameters of this structure:
	
Parameters

	
Description

	

pType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_PIPELINE_-RASTERIZATION_STATE_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
This field is reserved for future implementation.

	

depthClamp-Enable

	
This Boolean flag controls whether the fragment's depth values are clamped with the z planes of the frustum instead of the clipping primitives.

	

rasterizer-DiscardEnable

	
Before the rasterization stage is reached, this flag value can be used to control whether the corresponding primitives are to be discarded.

	

polygonMode

	
The triangle primitive can be rendered in various modes, such as point, filled, or outline. This mode is represented by the VkPolygonMode enum, which has the VK_POLYGON_MODE_FILL, VK_POLYGON_MODE_LINE, and VK_POLYGON_MODE_POINT values for fill, line, and point representation, respectively.

	

cullMode

	

This indicates the culling mode for primitives using VkCullModeFlagBits. It has VK_CULL_MODE_NONE, VK_CULL_MODE_FRONT_BIT, VK_CULL_MODE_BACK_BIT, and VK_CULL_MODE_FRONT_AND_BACK

enum values that specify no culling, front triangle face culling, back triangle face culling, and both front and back face culling, respectively.

	

frontFace

	
This indicates that the direction of the triangle vertices' orientation is to be considered as front-facing using the VkFrontFace enum; this indicates clockwise (VK_FRONT_FACE_CLOCKWISE) and counter-clockwise (VK_FRONT_FACE_COUNTER_CLOCKWISE) orientation.

	

depthBiasEnable

	
The bias fragment's depth values can be controlled using this field.

	

depthBias-ConstantFactor

	
For each fragment's depth value, a constant depth can be added using this scalar factor.

	

depthBiasClamp

	
This field is a scalar factor that is used to represent the highest or lowest depth bias of a fragment.

	

depthBiasSlope-Factor

	
This field is a scalar factor that applies to the depth bias calculation on the fragment's slope.

	

lineWidth

	
This is the scalar value that controls the rasterized line segments width.

Implementing rasterization states

In this section, we will implement the rasterization state inside the VulkanPipeline:: createPipeline() function. Rasterization produces the fragments associated with the primitives involved in this stage. The following implementation specifies that the primitives need to be render-filled. It culls out the back faces where the front face is determined by the front-facing rule, which considers the vertices to be ordered in a clockwise direction:

 /********** VulkanPipeline.cpp **********/

 // Inside VulkanPipeline::createPipeline()
 VkPipelineRasterizationStateCreateInfo rasterStateInfo = {};
 rasterStateInfo.sType =
 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
 rasterStateInfo.pNext = NULL;
 rasterStateInfo.flags = 0;
 rasterStateInfo.polygonMode = VK_POLYGON_MODE_FILL;
 rasterStateInfo.cullMode = VK_CULL_MODE_BACK_BIT;
 rasterStateInfo.frontFace = VK_FRONT_FACE_CLOCKWISE;
 rasterStateInfo.depthClampEnable = includeDepth;
 rasterStateInfo.rasterizerDiscardEnable = VK_FALSE;
 rasterStateInfo.depthBiasEnable = VK_FALSE;
 rasterStateInfo.depthBiasConstantFactor = 0;
 rasterStateInfo.depthBiasClamp = 0;
 rasterStateInfo.depthBiasSlopeFactor = 0;
 rasterStateInfo.lineWidth = 1.0f;

In the next section, we will look at the color-blending state in the Vulkan API and its implementation.

Blending

Blending is a process in which a source fragment is merged into a destination fragment with some special rules that are determined by the blending factors. Both the source and destination fragment consist of four components; among these, three correspond to the color components (R, G, B) and one to the alpha component that controls opacity.
For each given sample location in the framebuffer, the incoming source fragment (Rs, Gs, Bs, As) are merged into the destination fragment (Rd, Gd, Bd, Ad) and stored in the fragment location (x, y) in the framebuffer.
The blending computations are performed with higher precession; they are always carried out on the floating point basis, where the precession is not lower than the destination components. Therefore, any signed and unsigned normalized fixed point is converted into a floating point first to achieve the highest precession possible.
Blending is controlled by the blending operation, blending factor, and blend constants:
	Blending operations: These define the basic math equations that are used to combine the source and destination values, for example, addition (VK_BLEND_OP_ADD), subtraction (VK_BLEND_OP_SUBTRACT), and reverse subtraction (VK_BLEND_OP_REVERSE_SUBTRACT).
	Blending factors: The weighting of each component is determined by the blending factors. These factors can be used to modify the blending operation used.
	Blending constants: This is a constant color component (R, G, B, A) that is used for blending and produces a new set of color components.

Color blend states

Inside the graphics pipeline, the blend state is specified using the VkPipeline-ColorBlendStateCreateInfo control structure:
typedef struct VkPipelineColorBlendStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineColorBlendStateCreateFlags flags;
 VkBool32 logicOpEnable;
 VkLogicOp logicOp;
 uint32_t pAttachmentCount;
 const VkPipelineColorBlendAttachmentState* attachments;
 float blendConstants[4];
} VkPipelineColorBlendStateCreateInfo;

The following table describes the various fields of this structure:
	
Parameters

	
Description

	

sType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
This field is reserved for future use.

	

logicOpEnable

	
This is a Boolean flag to determine whether to apply logical operations or not.

	

logicOp

	
If logicOpEnable is enabled, then this field specifies which logical operation to apply.

	

attachmentCount

	
This indicates the total number of object elements in pAttachments of the type VkPipelineColorBlendAttachmentState.

	

pAttachments

	
This is an array of elements (of the type VkPipelineColorBlend-AttachmentState).

	

blendConstants

	
Based on the blend factors used, this indicates the four color values (R, G, B, A) used in the blending.

The VkPipelineColorBlendStateCreateInfo control structure takes VkPipelineColorBlendAttachmentState as an input. It specifies the blend factor and blend operation for each color attachment in the number of subpasses used in the present pipeline. Here is the syntax of this:
typedef struct VkPipelineColorBlendAttachmentState {
 VkBool32 blendEnable;
 VkBlendFactor srcColorBlendFactor;
 VkBlendFactor dstColorBlendFactor;
 VkBlendOp colorBlendOp;
 VkBlendFactor srcAlphaBlendFactor;
 VkBlendFactor dstAlphaBlendFactor;
 VkBlendOp alphaBlendOp;
 VkColorComponentFlags colorWriteMask;
} VkPipelineColorBlendAttachmentState;

The various fields of VkPipelineColorBlendAttachmentState are as follows:
	
Parameters

	
Description

	

blendEnable

	
This indicates whether blending is enabled for the corresponding color attachment. The source fragment's color remains unmodified when blending is disabled.

	

srcColorBlendFactor

	
This field specifies the blend factor that is applied to calculate the source factors (Sr, Sg, Sb).

	

dstColorBlendFactor

	
This field specifies the blend factor that is applied to calculate the destination factors (Dr, Dg, Db).

	

colorBlendOp

	
This indicates which blend factor to apply on the source's and destination's color to calculate and write the final color value (RGB) into the color attachment.

	

srcAlphaBlendFactor

	
This field specifies the blend factor that is applied to calculate the source's alpha channel, namely Sa.

	

dstAlphaBlendFactor

	
This field specifies the blend factor that is applied to calculate the destination's alpha channel, namely Da.

	

alphaBlendOp

	
This field specifies which blend factor is applied on the source's and destination's alpha channel to compute and write the final alpha value (A) into the color attachment.

	

colorWriteMask

	
This field specifies the color channel's (R, G, B, A) bitmask value that is used to write into the color attachment buffer.

Implementing color blend states

The process of color blending is implemented in the VulkanPipeline::createPipeline() function. This function defines the blending attributes for the color attachment with the VkPipelineColorBlendAttachmentState structure object (colorBlendAttachmentStateInfo). This structure determines whether the color blending is enabled or disabled. If enabled, then various properties, such as alpha and color blending operations, are specified. There are multiple blend operation (VkBlendOp) equations that can be used to merge the two, such as adding, subtracting, reverse subtracting, and so on. In addition, for both the source and destination fragments, color and alpha blend factors are initialized here.
Next, create the VkPipelineColorBlendStateCreateInfo object's colorBlendStateInfo and pass colorBlendAttachmentStateInfo into it. This structure specifies the color attachments that will be treated using color blending state information. In addition, the logical blending operation is also initialized using logicOp (of the type VkLogicOp). The other important piece of information specified is the color blend constant. Refer to the following code implementation:

 /********** VulkanPipeline.cpp **********/

 // Inside VulkanPipeline::createPipeline()

 // Create the color blend attachment information
 VkPipelineColorBlendAttachmentState
 colorBlendAttachmentStateInfo[1] = {};
 colorBlendAttachmentStateInfo[0].colorWriteMask = 0xf;
 colorBlendAttachmentStateInfo[0].blendEnable = VK_FALSE;

 // Define color and alpha blending operation.
 colorBlendAttachmentStateInfo[0].alphaBlendOp = VK_BLEND_OP_ADD;
 colorBlendAttachmentStateInfo[0].colorBlendOp = VK_BLEND_OP_ADD;

 // Set the source and destination color/alpha blend factors
 colorBlendAttachmentStateInfo[0].srcColorBlendFactor =
 VK_BLEND_FACTOR_ZERO;
 colorBlendAttachmentStateInfo[0].dstColorBlendFactor =
 VK_BLEND_FACTOR_ZERO;
 colorBlendAttachmentStateInfo[0].srcAlphaBlendFactor =
 VK_BLEND_FACTOR_ZERO;
 colorBlendAttachmentStateInfo[0].dstAlphaBlendFactor =
 VK_BLEND_FACTOR_ZERO;

 VkPipelineColorBlendStateCreateInfo colorBlendStateInfo = {};
 colorBlendStateInfo.sType = VK_STRUCTURE_TYPE-
 _PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
 colorBlendStateInfo.flags = 0;
 colorBlendStateInfo.pNext = NULL;
 colorBlendStateInfo.attachmentCount = 1;
 // Specify the color blend attachment state object
 colorBlendStateInfo.pAttachments = colorBlendAttachmentStateInfo;
 colorBlendStateInfo.logicOpEnable = VK_FALSE;
 colorBlendStateInfo.blendConstants[0] = 1.0f;
 colorBlendStateInfo.blendConstants[1] = 1.0f;
 colorBlendStateInfo.blendConstants[2] = 1.0f;
 colorBlendStateInfo.blendConstants[3] = 1.0f;

Now we move on to pipeline states. We start with discussing viewport management.

Viewport management

A viewport is a portion of the surface region on which the rendering of the primitives will be performed. It defines the physical dimensions in pixels using the VkViewport structure, which states a 2D presentation region and the depth range. These two are combined and then used to perform the viewport transformation.
Now for a bit about viewport transformation. During the viewport transformation process, the normalized device coordinates are converted into framebuffer coordinates using the viewport's 2D region and depth range defined in VkViewport.
The viewport state

The viewport transformation process is part of the graphics pipeline and is controlled using the VkPipelineViewportStateCreateInfo control structure. This structure not only defines the viewports, but the scissors as well.
Using this structure, more than one viewport can be specified; the maximum number of viewports can be determined using VkPhysicalDeviceLimits::maxViewports minus one. The following is the syntax for this:
typedef struct VkPipelineViewportStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineViewportStateCreateFlags flags;
 uint32_t viewportCount;
 const VkViewport* pViewports;
 uint32_t scissorCount;
 const VkRect2D* pScissors;
} VkPipelineViewportStateCreateInfo;

Let's look at the various fields of this structure:
	
Parameters

	
Description

	

sType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
This field is reserved for future implementation and must be specified as NULL; this field is currently not in use.

	

viewportCount

	
This indicates the total number of viewports in the pViewports array used by the pipeline.

	

pViewports

	
This is a pointer to an array of viewports (of the type VkViewport) indicating the dimension of each viewport. This value is ignored if the viewport state is dynamic.

	

scissorCount

	
This indicates the number of scissors used in the pipeline. This must be equal to the number of viewports specified by viewportCount.

	

pScissors

	
This is a pointer to an array of rectangular bounding regions for each corresponding viewport specified by the VkRect2D control structure.

In the following subsection, we will implement the viewport's state object.

Implementing the viewport state

The following is the viewport implementation in the VulkanPipeline::createPipeline() function. First, create the VkPipelineViewportStateCreateInfo object and assign the number of viewports and scissors used by this pipeline. In the beginning of this section, we declared that the viewport state is a dynamic state. This indicates to the pipeline that the viewport parameters are subject to changes and will be set using vkSetCmdViewport() in the initViewport() function. Therefore, the pViewports and pScissors parameters are NULL by default:

 /********** VulkanPipeline.cpp **********/

 // Inside VulkanPipeline::createPipeline()

 // Define the number of viewport, this must be equal to number

 // of scissors should be equal.
 #define NUMBER_OF_VIEWPORTS 1
 #define NUMBER_OF_SCISSORS NUMBER_OF_VIEWPORTS

 // Create the viewport state create info and provide the

 // the number of viewport and scissors being used in the

 // rendering pipeline.
 VkPipelineViewportStateCreateInfo viewportStateInfo = {};
 viewportStateInfo.sType = VK_STRUCTURE_TYPE_-
 PIPELINE_VIEWPORT_STATE_
 CREATE_INFO;
 viewportStateInfo.pNext = NULL;
 viewportStateInfo.flags = 0;

 // Number of viewports must be equal to number of scissors.
 viewportStateInfo.viewportCount = NUMBER_OF_VIEWPORTS;
 viewportStateInfo.scissorCount = NUMBER_OF_SCISSORS;
 viewportStateInfo.pScissors = NULL;
 viewportStateInfo.pViewports = NULL;

Depth and stencil tests

A depth test is a stored fragment that may contain different depth values belonging to each of the overlapped primitives on the same framebuffer location. These values are compared and stored in the depth buffer attachment. This is done to conditionally clip out the fragments based on the value stored in the depth buffer attachment; for a given fragment, the value is generally stored at the location (xf, yf) in the framebuffer.
A stencil test makes use of the depth/stencil attachment and compares the value stored at the framebuffer location (xf, yf) with a given reference value. Depending upon the stencil test state, the stencil value and the stencil write masks are updated in the stencil/depth attachments.
The depth and stencil states are controlled using the VkPipelineDepthStencil-StateCreateInfo structure. Depth and stencil tests can be enabled or disabled using the member variables depthBoundsTestEnable and stencilTestEnable.
Depth and stencil states

The following is the syntax and description of VkPipelineDepthStencilState-CreateInfo:
typedef struct VkPipelineDepthStencilStateCreateInfo {
 VkStructureType SType;
 const void* pNext;
 VkPipelineDepthStencilStateCreateFlags flags;
 VkBool32 depthTestEnable;
 VkBool32 depthWriteEnable;
 VkCompareOp depthCompareOp;
 VkBool32 depthBoundsTestEnable;
 VkBool32 stencilTestEnable;
 VkStencilOpState front;
 VkStencilOpState back;
 float minDepthBounds;
 float maxDepthBounds;
} VkPipelineDepthStencilStateCreateInfo;

Let's look at the various fields of this structure:
	
Parameters

	
Description

	

sType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
This field is reserved for future implementation and must be specified as NULL; this field is currently not in use.

	

depthTestEnable

	
This is the Boolean flag to check whether the depth test is enabled.

	

depthWriteEnable

	
This field checks whether the depth writes are enabled.

	

depthCompareOp

	
This field is the comparison operator that will be used in the depth test.

	

depthBoundsTestEnable

	
This is the Boolean flag that checks whether the depth bound test is enabled or disabled.

	

stencilTestEnable

	
This checks whether the stencil test is enabled or disabled.

	

front

	
This is the parameter that corresponds to the front control of the stencil test.

	

back

	
This is the parameter that corresponds to the back control of the stencil test.

	

minDepthBounds

	
This is the minimum range of values used in the depth bounds test.

	

maxDepthBounds

	
This is the maximum range of values used in the depth bounds test.

At the beginning of this function (createPipeline()), we defined some dynamic states (VkDynamicState) that indicate to the pipeline which states will be controlled dynamically in the pipeline. If the depth state (VK_DYNAMIC_STATE_DEPTH_BOUNDS) is not defined dynamically, then the depth bounds test is defined by the minDepthBounds and maxDepthBounds members of VkPipelineDepthStencilStateCreateInfo.
On the other hand, if the dynamic depth bound test is enabled, then the depth bound range can be set at runtime using the vkCmdSetDepthBounds API. This API takes three parameters. The first parameter is the command buffer, and the next two parameters specify the minimum and maximum depth bounding values. Here's the syntax of this API:
void vkCmdSetDepthBounds(
 VkCommandBuffer commandBuffer,
 float minDepthBounds,
 float maxDepthBounds);

Implementing depth stencil states

The next state defined in createPipeline() is the depth/stencil state. In the following code, VkPipelineDepthStencilStateCreateInfo is created, and it determines whether the depth and stencil tests are enabled using the includeDepth boolean flag. In the present case, the depth test is enabled; therefore, we should provide more information to the pipeline specify how to carry out the depth and stencil operation. This information may include a depth comparison operation, which tells how the depth buffer values are compared to the incoming depth values to update the depth buffer when the depth write is enabled. Similarly, some of the other fields that are defined are compare masks and the minimum and maximum depth bound ranges. Refer to the implementation in the following code:

 /********** VulkanPipeline.cpp **********/

 // Inside VulkanPipeline::createPipeline()
 VkPipelineDepthStencilStateCreateInfo depthStencilStateInfo = {};
 depthStencilStateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE-
 _DEPTH_STENCIL_STATE_CREATE_INFO;
 depthStencilStateInfo.pNext = NULL;
 depthStencilStateInfo.flags = 0;
 depthStencilStateInfo.depthTestEnable = includeDepth;
 depthStencilStateInfo.depthWriteEnable = includeDepth;
 depthStencilStateInfo.depthCompareOp = VK_COMPARE_OP_LESS
 _OR_EQUAL;
 depthStencilStateInfo.depthBoundsTestEnable = VK_FALSE;
 depthStencilStateInfo.stencilTestEnable = VK_FALSE;
 depthStencilStateInfo.back.failOp = VK_STENCIL_OP_KEEP;
 depthStencilStateInfo.back.passOp = VK_STENCIL_OP_KEEP;
 depthStencilStateInfo.back.compareOp = VK_COMPARE_OP_ALWAYS;
 depthStencilStateInfo.back.compareMask = 0;
 depthStencilStateInfo.back.reference = 0;
 depthStencilStateInfo.back.depthFailOp = VK_STENCIL_OP_KEEP;
 depthStencilStateInfo.back.writeMask = 0;
 depthStencilStateInfo.minDepthBounds = 0;
 depthStencilStateInfo.maxDepthBounds = 0;
 depthStencilStateInfo.stencilTestEnable = VK_FALSE;
 depthStencilStateInfo.front = depthStencilStateInfo.back;

In the next section, we will look at the multisampling state, which controls the appearance of rastered images in order to improve the quality of the presentation.

Multisample states

Multisampling is a mechanism that removes the aliasing effects produced during the Vulkan primitive rasterization. The antialiasing takes multiple samples from the geometry for a given pixel to generate a smooth approximation such that it minimizes the stair-step case effect and makes the edges appear smooth.
Antialiasing is a technique in computer graphics that improves the quality of the rendered image or video output displayed on the screen by minimizing jagged lines or the stair-step case effect. The raster framebuffer is composed of hundreds of tiny square pixels arranged in a grid format. During image rasterization, the geometry is sampled for a given pixel using a sampling scheme, which will be discussed later in this section. Basically, the cause of antialiasing is point sampling. These samples are represented by rectangular pixels, which are not sufficient to produce curved shapes. Edges in the image, which are round (not horizontal or vertical), are responsible for this stair-step case effect, as they end up coloring the pixels as in a stair arrangement. The aliasing problem is not much noticeable when an image or scene is still, but as soon as they are in motion, jagged edges are highly visible.
Once the primitives (points, lines, and triangles) are baked into the final presentation pixels, they are treated with the multisampling process. This allows you to make the Vulkan primitive antialiased by making the edges appear smoother, not jagged. This efficient technique saves a tremendous amount of computation cost)among many other antialiasing techniques). It is the number-one choice of GPU hardware vendors. A multisample takes more than one sample in the computation process for a given pixel in a single pass. In multisampling, a given pixel in the primitive is sampled multiple times where each sampling can utilize the color, depth, and/or stencil values independently, which are later resolved into a single combined color.
In line with the Vulkan specification, the rasterization rules for single-sample modes in Vulkan have been defined in such a way that they are equivalent to a multisample mode with a single sample in the center of each pixel.
Multisampling can be organized within the pipeline using the VkPipeline-MultisampleStateCreateInfo structure. Refer to the following subsection to understand the API specification and its implementation. First, let's look at the syntax of this structure:
typedef struct VkPipelineMultisampleStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineMultisampleStateCreateFlags flags;
 VkSampleCountFlagBits rasterizationSamples;
 VkBool32 sampleShadingEnable;
 float minSampleShading;
 const VkSampleMask* pSampleMask;
 VkBool32 alphaToCoverageEnable;
 VkBool32 alphaToOneEnable;
} VkPipelineMultisampleStateCreateInfo;

Let's look at the various fields of this structure:
	
Parameters

	
Description

	

sType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_-PIPELINE_MULTISAMPLE_STATE_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
This field is NULL; it is reserved for future use.

	

rasterizationSamples

	
This field indicates the number of samples used per pixel in the rasterization.

	

sampleShadingEnable

	
The Boolean flags indicate whether the fragment shading will be executed according to a per-sample or per-fragment basis. If the value is VK_TRUE, it is per-sample, otherwise per-fragment.

	

minSampleShading

	
This specifies the minimum number of unique samples required to shade for each fragment.

	

pSampleMask

	
This field is the bitmask that is used for ANDing the static coverage information with the rasterization-generated coverage information.

	

alphaToCoverageEnable

	
This field controls whether the value of the alpha component of the fragment's first color output can be used to generate a temporary coverage value.

	

alphaToOneEnable

	
This controls whether the multisampling coverage can replace the alpha component value of the fragment's first color output.

Implementing multisample states

The last state defined in the VulkanPipeline::createPipeline() function is the multisampling state. First, define the VkPipelineMultisampleStateCreateInfo structure with the correct type information to help the underlying implementation understand the kind of object that is passed in. The sType must be specified as VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO. Next, indicate the number of samples used as coverage values per pixel in rasterizationSample, which is VK_SAMPLE_COUNT_1_BIT in the present case.
Various pixel sampling schemes exists. When the standardSampleLocations member of
VkPhysicalDeviceFeatures
 is VK_TRUE, then the sample counts are defined using the samples shown in the following screenshot:

[image: Implementing multisample states]

There could be different sample schemes based on the number of samples in a given pixel, which could vary from 1 to 64 samplings. Samplings contain various positions that contribute weights based on a position relative to an origin in the upper left corner of the pixel. When rasterizationSamples is VK_SAMPLE_COUNT_1_BIT, sampling uses the pixel center:

 /************ VulkanPipeline.cpp *************/

 // Inside VulkanPipeline::createPipeline()
 VkPipelineMultisampleStateCreateInfo multiSampleStateInfo = {};
 multiSampleStateInfo.sType =
 VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
 multiSampleStateInfo.pNext = NULL;
 multiSampleStateInfo.flags = 0;
 multiSampleStateInfo.rasterizationSamples = NUM_SAMPLES;

So far, in the Creating a graphics pipeline section and the Pipeline state objects in Vulkan section, we learned how to create a graphics pipeline and specify various pipeline state objects into it. In the next section, we will understand the execution model of creating the pipeline in our sample application.

Implementing the pipeline

The graphics pipeline is implemented at the initialization stage of the application in the VulkanRenderer class. The VulkanRenderer::createPipelineStateManagement() function is responsible for executing the creation of the pipeline. Inside this function, the cmdPipelineStateMgmt command buffer object is created into which the pipeline creation process's commands are recorded. These recorded commands are then submitted to the graphics queue, that is, to the underlying implementation.
The following diagram shows the execution process. Here, first the command buffer is allocated for managing the pipeline operation. Under this, the pipeline cache object is created using the VulkanPipeline::createPipelineCache() function; once this is done, the pipeline is created in VulkanPipeline::createPipeline(). The following diagram shows the calling sequence:

[image: Implementing the pipeline]

Each drawing object (we will implement drawing objects in the next chapter) is associated with the created pipeline object (pipeline). If there are multiple drawing objects, they can reuse the pipeline object instead of creating a new one for each object. Therefore, it is the application's responsibility to control the redundancy of the pipeline object association with each drawing object:

// Create the pipeline and manage the pipeline state objects
void VulkanRenderer::createPipelineStateManagement()
{
 // Create the pipeline cache
 pipelineObj.createPipelineCache();

 const bool depthPresent = true;
 // For the each drawing object create the associated pipeline.
 for each (VulkanDrawable* drawableObj in drawableList){
 VkPipeline* pipeline=(VkPipeline*)malloc(sizeof(VkPipeline));
 if (pipelineObj.createPipeline(drawableObj, pipeline,
 &shaderObj, depthPresent)){
 pipelineList.push_back(pipeline);
 drawableObj->setPipeline(pipeline);
 }
 else
 {
 free(pipeline);
 pipeline = NULL;
 }
 }
}

When the pipeline object is no longer required, it can be deleted. In the following sample implementation, when the application closes, it deletes all the pipeline objects along with the associated pipeline cache in the deInitialization() function:
void VulkanApplication::deInitialize(){
 // Destroy all the pipeline objects
 rendererObj->destroyPipeline();

 // Destroy the associate pipeline cache
 rendererObj->getPipelineObject()->destroyPipelineCache();

}

// Destroy each pipeline object existing in the renderer
void VulkanRenderer::destroyPipeline(){
 for each (VkPipeline* pipeline in pipelineList){
 vkDestroyPipeline(deviceObj->device, *pipeline, NULL);
 free(pipeline);
 }
 pipelineList.clear();
}

// Destroy the pipeline cache object when no more required
void VulkanPipeline::destroyPipelineCache(){
 vkDestroyPipelineCache(deviceObj->device, pipelineCache, NULL);
}

Summary

In this chapter, we learned about the various pipelines available in the Vulkan API. We understood the graphics and compute pipelines and implemented one of the former in our sample example. We also learned about the pipeline cache object, which is a pool of pipelines that help in achieving better performance. The pipeline cache object can be stored in binary form and can be later uploaded and reused between application runs.
The graphics pipeline comprises many pipeline state objects. In this chapter, we covered all the states in detail along with their implementation. As part of these pipeline state objects, we discussed the dynamics state, vertex input state, input assembly state, rasterization, blending, viewport management, depth and stencil test, and multisampling state.
Finally, we used the pipeline cache object and pipeline state objects to build a graphics pipeline object.
In the next chapter, we will make use of the created graphics pipeline object and render our first Vulkan drawing object on the display. Drawing the object consists of two major tasks: preparing and rendering the drawing object. The preparation includes defining the Render Pass, binding the graphics pipeline, supplying geometry, viewport/scissoring, and building the drawing commands. While rendering, a swapchain is acquired and the prepared drawing commands are executed; this renders the drawing object on the presentation layer. In addition, we will understand Vulkan synchronization primitives; at this point, we will discuss fences, semaphores, and events.

Chapter 9. Drawing Objects

In the last two chapters, we implemented the Render Pass instance and displayed swapchain images with specified background colors. In the previous chapter, we put various pipeline states together along with Render Pass in the graphics pipeline. In this chapter, we will put all previous implementations together to build the first Hello World! program in Vulkan and display our first rendering object on the display output.
This chapter thoroughly covers the process of drawing objects in Vulkan; it comprises recording and executing the drawing object's command buffers. The recording associates the Render Pass, framebuffer, and the pipeline together with the viewport and geometry data. Command buffer execution involves submitting the command buffer in the device queue and presenting the drawn swapchain image onto the presentation engine. Toward the end of this chapter, we will discuss various synchronization primitives available in the Vulkan API.
In this chapter, we will cover the following topics:
	Overview of the drawing process in Vulkan
	Preparing the drawing object
	Rendering the drawing object
	Rendering an indexed geometry
	Understanding synchronization primitives in Vulkan
	Resizing the display window

Overview of the drawing process in Vulkan

Implementing a drawing object in Vulkan is simple; it consists of two phases: preparation, or building the drawing object, and rendering it. The former phase produces the command buffer and records the drawing commands. In the latter phase, the command buffer executes these drawing commands to render the object. Let's take a look at these phases in detail:
	Preparing the drawing object: This phase produces the command buffers required to draw objects:	Command buffer creation: For each swapchain color image, create a corresponding command buffer object. For example, if the swapchain is a double buffer, then it will contain two color images. As a result, we should be creating two command buffers that correspond to each image.
	Command buffer recording: For the command buffer created, record the Render Pass instance commands single subpass at ; refer to the following steps:	Associate the created Render Pass object and framebuffer with the required dimensions of the presentation's render area.
	Specify the scalar values for clearing the background color and depth image. We implemented this step in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V. For more information, please refer to the Clearing the background color section.
	Bind the graphics pipeline object.
	Bind the resources used by the pipeline, including vertex buffers and descriptor sets.
	Define the viewport and scissoring region.
	Draw the object.

	Rendering the drawing object: Here, the created command buffers in the preparation phase are reused and executed again and again to render the drawing object:	Get the swapchain image that is available to perform rendering on it.
	Submit the command buffer to render the object.
	Display the rendered drawing image on the presentation engine.

The preparation and rendering of the drawable object are implemented through the prepare() and render() functions of the VulkanDrawable class.
Walking through the header declaration

In this section, we will take a look at the header file declaration for VulkanDrawable. Please follow through the inline comments to understand the functionality and purpose of each function and variable. As we proceed through the chapter, we will implement these functions and discuss them in detail. The following are the new member variables and functions added:
class VulkanDrawable
{
 public:
 // Prepares the drawing object before rendering,

 // allocate, create, record command buffer
 void prepare();

 // Renders the drawing object
 void render();

 // Initialize the viewport parameters here
 void initViewports(VkCommandBuffer* cmd);

 // Initialize the scissor parameters here
 void initScissors(VkCommandBuffer* cmd);

 // Destroy the drawing command buffer object
 void destroyCommandBuffer();
 private:
 // Command buffer for drawing
 std::vector<VkCommandBuffer> vecCmdDraw;

 // Prepares render pass instance
 void recordCommandBuffer(int currentImage,
 VkCommandBuffer* cmdDraw);

 // Viewport and Scissor variables
 VkViewport viewport;
 VkRect2D scissor;
 VkSemaphore presentCompleteSemaphore;
 VkSemaphore drawingCompleteSemaphore;
};

The prepare() function creates the command buffer objects, which are used in the render() function to draw the object. The prepare() function allocates the memory for the command buffer (vecCmdDraw) from the command pool (VulkanRenderer::cmdPool) and creates the command buffer object. The command buffer commands are recorded inside the recordCommandBuffer() function; this creates the Render Pass instance and other important jobs, such as associating the graphics pipeline with the drawing object and specifying the viewport and scissoring management through initViewport() and initScissor().
The render() function uses the prepared recorded command buffer and renders the drawing on the available swapchain color image. Once the drawing is finished on the swapchain's color image, then it is given to the presentation engine for display purposes.

Preparing the drawing object

The preparation of the drawing object is implemented in the prepare() function; this function has already been covered in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V. For more information, please refer to the subsection Setting the background color in Render Pass instance under Clearing the background color.
Recording Render Pass commands

The Render Pass instance records the command's single subpass at a time. A Render Pass may contain one or more subpasses. For each subpass, the commands are recorded using the vkCmdBeginRenderPass() and vkCmdEndRenderPass() APIs. These two APIs together define a scope under which iterating through different subpasses will record the commands for that particular subpass.
Beginning Render Pass instance recording

The vkCmdBeginRenderPass() API begins Render Pass instance command recording for a given subpass. The following is the specification:
void vkCmdBeginRenderPass(
 VkCommandBuffer commandBuffer,
 const VkRenderPassBeginInfo* pRenderPassBegin,
 VkSubpassContents contents);

The vkCmdBeginRenderPass API accepts three parameters. The first parameter—commandBuffer of the VkCommandBuffer type—indicates the command buffer into which the commands are recorded. The second parameter—pRenderPassBegin—is a VkRenderPassBeginInfo type control structure into which Render Pass metadata is passed (more information is provided in the following section). The last parameter is of the VkSubpassContents type and indicates where and how the contents will be recorded in the subpass execution.
The following are the two types of VkSubpassContents:
	VK_SUBPASS_CONTENTS_INLINE: In this type, the primary command buffer directly records the subpass contents and doesn't permit the secondary command buffer to execute within this subpass
	VK_SUBPASS_CONTENTS_SECONDARY_COMMAND: Here, the secondary command buffer is invoked through primary command buffers and is responsible for recording the subpass contents

Tip

What are primary and secondary command buffers?

The primary command buffer does not have any parent command buffer. However, the secondary command buffers are always executed from the primary command buffers behaving as its parent. The secondary command buffers are not directly submitted into the device queue; these are recorded into the primary command buffer and executed using the vkCmdExecuteCommands() API. void vkCmdExecuteCommands(
 VkCommandBuffer commandBuffer,
 uint32_t commandBufferCount,
 const VkCommandBuffer* pCommandBuffers);

This API takes three arguments. The first argument—commandBuffer (of type Vk
CommandBuffer)—is the primary command buffer object handle. The second parameter—commandBufferCount(of typeuint32_t)—indicates the total number of secondary command buffers that needs to be invoked under the primary command buffer. The last parameter—pCommandBuffers (of type VkCommandBuffer*)—specifies a complete list of the secondary command buffer objects to be passed in.

Tip

How are secondary command buffers useful?
Secondary command buffers are useful in recording common operations into modular units. These modular capsules can be attached to any of your desired primary buffer as required. In the absence of the secondary command buffer, such common operations will be recorded as part of the primary buffer, making them bulky and resulting in redundancy pollution.

Let's take a look at the VkRenderPassBeginInfo structure syntax and its parameters:
typedef struct VkRenderPassBeginInfo {
 VkStructureType sType;
 const void* pNext;
 VkRenderPass renderPass;
 VkFramebuffer framebuffer;
 VkRect2D renderArea;
 uint32_t clearValueCount;
 const VkClearValue* pClearValues;
} VkRenderPassBeginInfo;

The following are the various parameters of the VkRenderPassBeginInfo structure:
	
Parameters

	
Description

	

sType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or could be NULL.

	

renderPass

	
The Render Pass instance consumes the Render Pass object to begin the recording.

	

framebuffer

	
The Render Pass is also associated with a VkFramebuffer object that contains color and depth attachments.

	

renderArea

	
This field indicates the rectangular region affected as a result of the Render Pass execution.

	

clearValueCount

	
This indicates the number of clear values for color or depth.

	

pClearValues

	
This field contains the clear values associated with attachments specified in the framebuffer.

Note
While defining the renderArea in the Render Pass instance, if the rendering region is smaller than the framebuffer, then it may cause a performance penalty. In such case, it's advisable either to keep the render area equal to the framebuffer region or to qualify the granularity for the Render Pass. Render area granularity can be checked using the vkGetRenderAreaGranularity() API.

void vkGetRenderAreaGranularity(
 VkDevice device,
 VkRenderPass renderPass,
 VkExtent2D* pGranularity);

This API accepts three parameters: the first parameter—device—is the VkDevice that is associated with renderPass; the second parameter is the renderPass object; the last parameter retrieves the granularity size in pGranularity.

Transitioning to the next subpass

In a given Render Pass instance, when a subpass recording is finished, the application can switch or transit to the next subpass using the vkCmdNextSubpass() API.
void vkCmdNextSubpass(
 VkCommandBuffer commandBuffer,
 VkSubpassContents contents);

This API accepts two parameters as shown in the following table:
	
Parameters

	
Description

	

commandBuffer

	
This indicates the command buffer into which the commands are recorded.

	

contents

	
This indicates where and how the contents will be provided in the next subpass execution. For more information on VkSubpassContents, please refer to the previous subsection—Beginning the Render Pass instance.

Finishing Render Pass instance recording

The vkCmdEndRenderPass() API ends the Render Pass instance command buffer recording for the subpass that is currently being executed. This API takes one parameter specifying the handle of the command buffer on which the recording must be stopped.
void vkCmdEndRenderPass(
 VkCommandBuffer commandBuffer);

Implementation

The current subpass is specified with a clear black color, which will paint the swapchain image with this value, making the background appear black. In addition, other parameters, such as the Render Pass object, framebuffer, and dimension, are also specified. There are many other commands that get executed in the Render Pass instance; this will be discussed in the next section, the following implementation shows the Render Pass instance recording using the vkCmdBeginRenderPass()and vkCmdEndRenderPass() APIs:
void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer* cmdDraw)
{
VulkanDevice* deviceObj= rendererObj->getDevice();
// Specify the clear color value
VkClearValue clearValues[2];
clearValues[0].color.float32[0]= 0.0f;
clearValues[0].color.float32[1]= 0.0f;
clearValues[0].color.float32[2]= 0.0f;
clearValues[0].color.float32[3]= 0.0f;

// Specify the depth/stencil clear value
clearValues[1].depthStencil.depth = 1.0f;
clearValues[1].depthStencil.stencil = 0;

// Define the VkRenderPassBeginInfo control structure
VkRenderPassBeginInfo renderPassBegin;
renderPassBegin.sType =
 VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassBegin.pNext = NULL;
renderPassBegin.renderPass = rendererObj->renderPass;
renderPassBegin.framebuffer = rendererObj->
 framebuffers[currentImage];
renderPassBegin.renderArea.offset.x = 0;
renderPassBegin.renderArea.offset.y = 0;
renderPassBegin.renderArea.extent.width = rendererObj->width;
renderPassBegin.renderArea.extent.height= rendererObj->height;
renderPassBegin.clearValueCount = 2;
renderPassBegin.pClearValues = clearValues;

// Start recording the render pass instance
vkCmdBeginRenderPass(*cmdDraw, &renderPassBegin,
 VK_SUBPASS_CONTENTS_INLINE);

// Execute the commands as per requirement
. . . .
// pipeline bind, geometry, viewport, scissoring

// End of render pass instance recording
vkCmdEndRenderPass(*cmdDraw);
. . . .
}

Binding pipeline object

In the Render Pass instance, the first thing we will need to do is bind the pipeline using the vkCmdBindPipeline() API. This API binds a specific pipeline (either Graphics or Compute) with the current command buffer that is using this command.
void vkCmdBindPipeline(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,
 VkPipeline pipeline);

	
Parameters

	
Description

	

commandBuffer

	
This indicates the command buffer object (used in Render Pass recording) that will be bound to the pipeline object.

	

pipelineBindPoint

	
This field indicates the type of the pipeline binding point to which the pipeline object will be bounded. This field is of type VkPipelineBindPoint and can take one of the following two given values:

typedef enum VkPipelineBindPoint {
VK_PIPELINE_BIND_POINT_GRAPHICS = 0,
VK_PIPELINE_BIND_POINT_COMPUTE = 1,
} VkPipelineBindPoint;

The first value indicates the bind point for graphics pipeline and the second for the compute pipeline.

	

pipeline

	
This indicates the pipeline object to which the command buffer will be bounded.

Each pipeline—graphics or compute—is very specific to the commands that it affect once bounded:
	Compute pipeline: When the pipeline is bound to VK_PIPELINE_BIND_POINT_COMPUTE, only the vkCmdDispatch and vkCmdDispatchIndirect commands behavior can be controlled. Any other command under this pipeline state will remain unaffected. For more information on these commands, please refer to the official Vulkan specification documentation at https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html.
	Graphics pipeline: When the pipeline is bound to VK_PIPELINE_BIND_POINT_GRAPHICS, the vkCmdDraw, vkCmdDrawIndexed, vkCmdDrawIndirect, and vkCmdDrawIndexedIndirect commands can be controlled. Any other command under this pipeline state will remain unaffected.

Implementation

The following code shows the binding of the graphics pipeline with the existing command buffer object cmdDraw, The pipeline object is connected with the graphics bind point (VK_PIPELINE_BIND_POINT_GRAPHICS):
void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer* cmdDraw){

 // Bound the command buffer with the graphics pipeline
 vkCmdBindPipeline(*cmdDraw, VK_PIPELINE_BIND_POINT_GRAPHICS,
 *pipeline);

}

Note
For more information on pipeline creation and the pipeline object specified in the implementation, please refer to Chapter 8, Pipelines and Pipeline State Management.

Specifying drawing object geometry information

The geometry information for the drawing object can be specified using the vertex buffer. Remember, we built the buffer resource in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V and stored the vertex information in the VertexBuffer.buf of the VulkanDrawble class.
Note
For more information on , and to recap, vertex buffer building, please refer to the Understanding the buffer resource and Creating geometry with buffer resource section in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V.

Vertex data contains vertex position and color information together in an interleaved form. Bind this vertex data to the command buffer under the graphics pipeline state using the vkCmdBindVertexBuffers() API. This command bounds a specific vertex buffer to a command buffer on a per-draw basis.
void vkCmdBindVertexBuffers(
 VkCommandBuffer commandBuffer,
 uint32_t firstBinding,
 uint32_t bindingCount,
 const VkBuffer* pBuffers,
 const VkDeviceSize* pOffsets);

The following table lists the fields and indicates the description of each parameter:
	
Parameters

	
Description

	

commandBuffer

	
This is the command buffer object into which the vkCmdBindVertexBuffers command will be recorded.

	

firstBinding

	
This field indicates the index of the vertex input binding, which will be updated by the command.

	

bindingCount

	
This indicates the number of vertex input bindings whose state will be updated by the command.

	

pBuffers

	
This field is an array of the VkBuffer vertex buffer handles that are passed into.

	

pOffsets

	
This field is an array of vertex buffer offsets.

Implementation

Bind the command buffer object with the necessary information to pick the geometry data using the vkCmdBindVertexBuffer() API; this API takes the vertex buffer information of the drawing object that we are interested in to draw on the display:
void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer* cmdDraw){

 // Bound the vertex buffer with the command buffer
 vkCmdBindVertexBuffers(*cmdDraw, 0, 1, &VertexBuffer.buf,
 offsets);

}

Defining a dynamic viewport

A viewport determines the portion of the drawing surface region on which the drawing object primitives will be rendered. In Chapter 8, Pipelines and Pipeline State Management, we learned to manage viewport state under the graphics pipeline in the Viewport management subsection under Understanding the
Pipeline State Objects (PSO) and created a pipeline state object. Viewport parameters can be controlled statically or dynamically:
	Statical control: If the dynamic state VK_DYNAMIC_STATE_VIEWPORT is disabled, then the viewport parameters are not supposed to be changed and specified once the viewport pipeline state object is created using the VkPipelineViewportStateCreateInfo class' member variable pViewport.
	Dynamical control: On the other hand, when the dynamic state VK_DYNAMIC_STATE_VIEWPORT is enabled while creating the pipeline state object, then the viewport transformation parameters are allowed to be changed at runtime. These parameters can be controlled dynamically at runtime using the vkCmdSetViewport() API. The following is the syntax and description of this API:

void vkCmdSetViewport(
 VkCommandBuffer commandBuffer,
 uint32_t firstViewport,
 uint32_t viewportCount,
 const VkViewport* pViewports);

The fields and a description of each parameter follow:
	
Parameters

	
Description

	

commandBuffer

	
This field specifies the command buffer object that will be used to record this command.

	

firstViewport

	
The firstViewport is an index into the internal viewports array, indicating the first viewport that requires to be updated.

	

viewportCount

	
These are the total number of viewports in the pViewport whose parameters will be updated by the command.

	

pViewports

	
This is a pointer array of the VkViewport structure specifying the dimensions of the viewport region.

typedef struct VkViewport {
 float x;
 float y;
 float width;
 float height;
 float minDepth;
 float maxDepth;
} VkViewport;

The fields and a description of each parameter follow:
	
Parameters

	
Description

	

x, y

	
This is the upper-left corner of the viewport (x, y).

	

width, height

	
This indicates the width and height of the viewport.

	

minDepth, maxDepth

	
This is the depth range for the viewport. minDepth could be greater than or equal to maxDepth.

Implementation

The viewport is initialized using the initViewport() function by passing the current command buffer object into which the vkCmdSetViewport() command will be recorded. The vkCmdSetViewport() API sets the viewport parameters, which are dynamically set in the viewport region, specifying the upper-left dimension and depth information of the viewable region:
void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer* cmdDraw){

 // Define the dynamic viewport here.
 initViewports(cmdDraw);

}

void VulkanDrawable::initViewports(VkCommandBuffer* cmd)
{
 viewport.height = (float)rendererObj->height;
 viewport.width = (float)rendererObj->width;
 viewport.minDepth = (float) 0.0f;
 viewport.maxDepth = (float) 1.0f;
 viewport.x = 0;
 viewport.y = 0;
 vkCmdSetViewport(*cmd, 0, NUMBER_OF_VIEWPORTS, &viewport);
}

Scissoring

A scissor defines a rectangular region; any framebuffer fragment's location (x, y) falling outside this rectangular region is discarded.
If this pipeline state object is not created with the dynamic state VK_DYNAMIC_STATE_VIEWPORT enabled, then scissor rectangles are controlled using the VkPipelineViewportStateCreateInfo class's member variable pScissors. On the other hand, if the pipeline state object is created with the dynamic state VK_DYNAMIC_STATE_VIEWPORT enabled, then the scissor rectangle parameter can be specified and controlled dynamically using the vkCmdSetScissor() API.
Similar to viewport parameters, scissor parameters can be controlled statically or dynamically:
	Static control: When viewport parameters are not expected to change, then it means the viewing dimensions are fixed. This can be indicated to the underlying pipeline using dynamic states by disabling the VK_DYNAMIC_STATE_VIEWPORT. Such a case informs the pipeline about the static nature of the viewport, which could be beneficial for decision-making and avoiding any kind of housekeeping that the viewports dynamic factors required. For static viewport configuration, the scissor parameters read from the viewport pipeline state object VkPipelineViewportStateCreateInfo class's member variable pScissors.

	Dynamical control: On the other hand, if the dynamic state VK_DYNAMIC_STATE_VIEWPORT is enabled, scissor parameters can be changed dynamically and specified through a special API called vkCmdSetViewport(). The following is the syntax and description of this API:

 void vkCmdSetScissor(
 VkCommandBuffer commandBuffer,
 uint32_t firstScissor,
 uint32_t scissorCount,
 const VkRect2D* pScissors);

The fields and a description of each parameter follow:
	
Parameters

	
Description

	

commandBuffer

	
This field specifies the command buffer object that will be used to record this command.

	

firstScissor

	
The firstScissor is an index to the internal scissors array, indicating the first scissor to be updated.

	

scissorCount

	
This is the total number of scissors in the pScissors array, whose parameters will be updated by the command.

	

pScissors

	
This is a pointer to an array of the VkRect2D structure specifying the 2D dimensions of the scissor area.

Implementation

Scissoring is initialized using the initScissors() function specifying the non-clipping region. Anything outside this rectangular region will be discarded. The vkCmdSetScissor() API sets the scissoring parameters, which can be dynamically set, indicating the rectangular dimensions used for single or multiple scissoring:
void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer* cmdDraw){

 // Define the scissor here.
initScissors(cmdDraw);

}
void VulkanDrawable::initScissors(VkCommandBuffer* cmd)
{
 scissor.extent.width = rendererObj->width;
 scissor.extent.height = rendererObj->height;
 scissor.offset.x = 0;
 scissor.offset.y = 0;
 vkCmdSetScissor(*cmd, 0, NUMBER_OF_SCISSORS, &scissor);
}

Draw command

The draw command helps in assembling the primitives. Vulkan supports index- and nonindex-based draw commands. A draw command can affect the framebuffer by the order in which fragments are ordered. In cases where multiple instances of a draw command are used, the API order is used to process the draw commands. For nonindex-based commands, the rule is to put primitives with lowered number instances earlier in the order. For index-based commands, the primitive with a lower number of vertex index values is placed earlier in the API order.
Vulkan renders drawing objects by recording draw commands in the command buffer. There are four different drawing commands available in Vulkan, which are broadly divided into the following two types of categories:
	The first type (vkCmdDraw and vkCmdDrawIndexed) specifies the drawing parameters in the command buffer object itself
	In contrast, the second type (vkCmdDrawIndirect and vkCmdDrawIndexedIndirect) uses buffer memory to read the parameters from a drawing API, which is suffixed with the Indirect keyword and is of the latter type; otherwise, it's the former one

vkCmdDraw command

The vkCmdDraw() API reads the drawing parameters from the command buffer; the vertex information is accessed in the form of an array in sequential order, starting from the first vertex (firstVertex) to the total number of vertices specified by the vertexCount. The vkCmdDraw API renders primitives specified by the input assembly state under the pipeline state object using vertex array data information.
This API supports instancing, which allows efficient rendering of an object multiple times without calling multiple draw commands. Such drawing features are very helpful in situations such as crowd simulation, tree rendering, clone patterns, and so on. The total number of drawing instances is specified using instanceCount, starting from the first instance index indicated by firstInstance.
void vkCmdDraw(
 VkCommandBuffer commandBuffer,
 uint32_t vertexCount,
 uint32_t instanceCount,
 uint32_t firstVertex,
 uint32_t firstInstance);

The fields and a description of each parameter follow:
	
Parameters

	
Description

	

commandBuffer

	
This field specifies the command buffer object (VkCommandBuffer) into which the recording is performed.

	

vertexCount

	
This is the total count of the vertex intended to draw.

	

instanceCount

	
This field indicates the total number of instances to be drawn using this command.

	

firstVertex

	
This field specifies the very first vertex index from which the vertices are read in order to draw them.

	

firstInstance

	
This field specifies the very first instance ID of the instance to draw.

The present example in this chapter makes use of the following command:
vkCmdDraw(*cmdDraw, 3, 1, 0, 0);

This command consumes the following triangle data, which represents three vertices in the interleaved form, hence the second parameter is specified as 3; since there is only one instance, the third parameter is 1. The drawing should start from the first vertex, which is indicated by index 0 as the fourth parameter. The last parameter is 0, pointing to the first instance ID:
struct VertexWithColor
 {
 float x, y, z, w; // Vertex Position
 float r, g, b, a; // Color format Red, Green, Blue, Alpha
 };

 static const VertexWithColor triangleData[] =
 {
 { 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0 },/*Vertex0*/
 { 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0 },/*Vertex1*/
 {-1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0 },/*Vertex2*/
 };

Note
Another type of drawing command used in this chapter is the vkCmdDrawIndexed() API. This API renders indexed geometry. For detailed information, please refer to the Rendering an indexed geometry section at the end of this chapter. But before jumping to this section, you must work through all the remaining sections to understand the rendering of drawing objects in Vulkan.

Implementing drawing object preparation

The drawing object's preparation process is executed inside the recordCommandBuffer function of the VulkanDrawable class. This function records the commands associated with the drawing object for each swapchain buffer in a separate command buffer object (cmdDraw). The process includes the following steps.
Record the Render Pass instance using the vkCmdBeginRenderPass() API; this accepts the VkRenderPassBeginInfo class's object (renderPassBegin) as an input parameter, which contains the Render Pass and framebuffer objects that indicate the attachments, subpasses, and image views associated with this Render Pass instance. For more information on Render Pass and framebuffer objects, please refer to Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V.
The other information the renderPassBegin carries is the extent of the drawing region on the framebuffer. In addition, the clear values for color, depth, or stencil image are also set inside. This information clears the buffer attachments associated with the specified clear value. For example, the clear value associated with the color buffer attachment works like a background color.
Note
The last parameter passed into the vkCmdBeginRenderPass is VK_SUBPASS_CONTENTS_INLINE; it indicates that only primary command buffers are supposed to record the subpass contents, and within this subpass, the secondary commands will not be executed.

Use vkCmdBindPipeline()and bind the command buffer with the graphics pipeline object that we created in Chapter 8, Pipelines and Pipeline State Management.
For dynamically setting the viewport and scissoring region, use initViewports() and initScissors() and set the vkCmdSetViewport() and vkCmdSetScissor() APIs with the required rectangular region dimensions.
Note
When the vkCmdSetViewport() and vkCmdSetScissor()APIs are used during runtime to specify the viewport and scissor dimensions, the dynamic states (VkDynamicState) must be enabled with VK_DYNAMIC_STATE_VIEWPORT.

Specify the draw command using the non-indexed drawing API vkCmdDraw(). The first argument specifies the command buffer object (VkCommandBuffer) into which the drawing command will be recorded. The second argument 3 specifies the number of vertices the geometry is intended to draw. The third argument 1 specifies that there needs to draw single instance at a time. The fourth argument specifies the first vertex index (0) to draw; the last argument 0 specifies the first index to be used for instance-based drawing responsible for controlling the rate at which data advances from an instanced array.
Finish the Render Pass instance recording using vkCmdEndRenderPass()and passing the current command buffer object into it.
The recording of the command buffer is implemented as follows:
void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer* cmdDraw)
{
 VulkanDevice* deviceObj = rendererObj->getDevice();
 VkClearValue clearValues[2];
 clearValues[0].color.float32[0] = 0.0f;
 clearValues[0].color.float32[1] = 0.0f;
 clearValues[0].color.float32[2] = 0.0f;
 clearValues[0].color.float32[3] = 0.0f;
 clearValues[1].depthStencil.depth = 1.0f;
 clearValues[1].depthStencil.stencil = 0;

 VkRenderPassBeginInfo renderPassBegin;
 renderPassBegin.sType = VK_STRUCTURE_TYPE_
 RENDER_PASS-_BEGIN_INFO;
 renderPassBegin.pNext = NULL;
 renderPassBegin.renderPass = rendererObj->renderPass;
 renderPassBegin.framebuffer = rendererObj->
 framebuffers[currentImage];
 renderPassBegin.renderArea.offset.x = 0;
 renderPassBegin.renderArea.offset.y = 0;
 renderPassBegin.renderArea.extent.width = rendererObj->width;
 renderPassBegin.renderArea.extent.height = rendererObj->height;
 renderPassBegin.clearValueCount = 2;
 renderPassBegin.pClearValues = clearValues;

 // Start recording the render pass instance
 vkCmdBeginRenderPass(*cmdDraw, &renderPassBegin,
 VK_SUBPASS_CONTENTS_INLINE);

 // Bound the command buffer with the graphics pipeline
 vkCmdBindPipeline(*cmdDraw, VK_PIPELINE_BIND_POINT_GRAPHICS,
 *pipeline);

 // Bound the command buffer with the graphics pipeline
 const VkDeviceSize offsets[1] = { 0 };
 vkCmdBindVertexBuffers(*cmdDraw, 0, 1, &VertexBuffer.buf,
 offsets);

 // Define the dynamic viewport here
 initViewports(cmdDraw);

 // Define the scissoring
 initScissors(cmdDraw);

 // Issue the draw command with 3 vertex, 1 instance starting

 // from first vertex
 vkCmdDraw(*cmdDraw, 3, 1, 0, 0);

 // End of render pass instance recording
 vkCmdEndRenderPass(*cmdDraw);

}

Rendering the drawing object

Once the Render Pass instance is prepared and recorded successfully in the drawing object's command buffer, we can reuse it each time to draw the object.
Drawing an object comprises three steps. First, we will need to acquire the index to the next available swapchain image onto which the primitive will be drawn or rasterized. Second, we will need to submit the command buffer to the graphics queue to execute the recorded command on the GPU; the GPU executes these commands and paints the available swapchain drawing images with the draw commands. Finally, the drawn image is handed over to the presentation engine, whichrenders the output onto the attached display window. The following subsections will describe each of these three steps in detail.
Acquiring the swapchain image

Before executing the Render Pass instance-recorded commands, we will need to acquire a swapchain image onto which the drawings will be performed. For this, we will need to query the index of the swapchain image that will be available from the system using the WSI extension vkAcquireNextImageKHR(); this will return the index of the swapchain image that your application will render to. This extension is available in the form of a function pointer of type PFN_vkAcquireNextImageKHR.
Upon the API call, it acquires the presentable image onto which the current command buffer will be used to paint and notifies the application that the target presentable image has changed.
Note
Multiple factors influence the availability of presentable images when the API is called. This includes presentation engine implementation, how the VkPresentModeKHR is being used, the total number of images in the swapchain, the number of images that the application owns at any given time, and of course the application's performance.

VkResult vkAcquireNextImageKHR(
 VkDevice device,
 VkSwapchainKHR swapchain,
 uint64_t timeout,
 VkSemaphore semaphore,
 VkFence fence,
 uint32_t* pImageIndex);

The fields and a description of each parameter follow:
	
Parameters

	
Description

	

device

	
This indicates the logical VkDevice, which is associated with the swapchain object.

	

swapchain

	
This indicates the swapchain object (VkSwapchainKHR) from which the drawing image will be acquired.

	

timeout

	
This parameter indicates whether the API is blocking or nonblocking. When a time-out (in nanosecond) is specified, it indicates for how long the function waits or blocks, if no image is available. If the time-out is 0, then this API will not block and return the success or failure error. This field guarantees that the vkAcquireNextImageKHR() API never blocks the system and returns the ownership after a finite time in case of failure.

	

semaphore

	
This is the VkSemaphore object and must be unsignaled and should not have any uncompleted signal or wait operations pending. It will be signaled when the presentation engine has released ownership of the image and the device can modify its contents. If not used in the API, this can be equal to VK_NULL_HANDLE.

	

fence

	
This is a VkFence object and must be unsignaled and not have any uncompleted signal operations pending. It will become signaled when the presentation engine has released ownership of the image. If not used in the API, this can be equal to VK_NULL_HANDLE. This can be used to measure the frame generation work that matches the presentation rate.

	

pImageIndex

	
This retrieves the index of the next presentable image. This index belongs to the index into the array of image handles returned by the vkGetSwapchainImagesKHR() API. If the API does not return the VK_SUCCESS instance, it means the pointed index is not modified.

Note

vkAcquireNextImageKHR() cannot have both semaphore and fence specified as VK_NULL_HANDLE; one of them must be a valid input.

The following table specifies the return value from the vkAcquireNextImageKHR() API, which depends on the timeout field:
	
Return value

	
Description

	

VK_SUCCESS

	
This means that it has successfully acquired the presentable image.

	

VK_ERROR_SURFACE_LOST_KHR

	
This appears when the presentable surface is no longer available.

	

VK_NOT_READY

	
This indicates that no image is available and when timeout is 0.

	

VK_TIMEOUT

	
When timeout is a nonzero mean (> 0 and <UINT64_MAX), this indicates that no presentable image is available in the allowed duration.

	

VK_SUBOPTIMAL_KHR

	
In this case, the returned presentable image no longer matches with swapchain surface properties, but it can still be used.

	

VK_ERROR_OUT_OF_DATE_KHR

	
Here, the returned presentable image is no longer compatible with the swapchain and thus cannot be further used for presentation with swapchain. In this case, the application must query the compatible surface properties and recreate the swapchain with the required surface properties in order to continue with presentation service.

Executing the drawing command buffer object

The drawing command buffer object is executed by submitting it into the graphics queue using the CommandBufferMgr::submitCommandBuffer() function, which internally calls the vkQueueSubmit() API to submit the command buffer.
Note
For more information on the submitCommandBuffer() API and its usage, please refer to Chapter 5, Command Buffer and Memory Management in Vulkan. In this chapter, you can refer to the subsection Submitting the command to queue under Implementing the wrapper class for command buffer.

Displaying the output with the presentation engine

When the drawing object's command buffer is executed, the target presentation image is painted with the recorded commands. This image is then queued to the presentation engine using the vkQueuePresentKHR() API, which renders the output presentation image onto the display output.
VkResult vkQueuePresentKHR(
 VkQueue queue,
 const VkPresentInfoKHR* pPresentInfo);

The following parameters are used inside the vkQueuePresentKHR()API:
	
Parameters

	
Description

	

queue

	
This is a VkQueue object, which is capable of presentation and has graphics queue capabilities. Also, this queue belongs to the same device as the image's swapchain.

	

pPresentInfo

	
This is a pointer to a VkPresentInfoKHR structure specifying the presentation metadata.

The following is the syntax and description of VkPresentInfoKHR():
typedef struct VkPresentInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t waitSemaphoreCount;
 const VkSemaphore* pWaitSemaphores;
 uint32_t swapchainCount;
 const VkSwapchainKHR* pSwapchains;
 const uint32_t* pImageIndices;
 VkResult* pResults;
} VkPresentInfoKHR;

The fields and a description of each parameter follow:
	
Parameters

	
Description

	

sType

	
This specifies the type of this structure; this must be VK_STRUCTURE_TYPE_PRESENT_INFO_KHR.

	

pNext

	
This could be a valid pointer to an extension-specific structure or could be NULL.

	

waitSemaphoreCount

	
This field indicates the count of semaphores the presentation engine should wait on before displaying the image.

	

pWaitSemaphores

	
This specifies the semaphores to wait on before issuing the present request. This is a Non-NULL VkSemaphore object array with size equal to waitSemaphoreCount.

	

swapchainCount

	
There can be more than one swapchain presented; this field indicates the number of swapchains that will be presented using this API command.

	

pSwapchains

	
This indicates an array of the VkSwapchainKHR objects with size equal to the swapchainCount entries.

	

pImageIndices

	
This is an array of presentable image indices of each swapchain's presentable images, with total entries specified by swapchainCount. Each entry in the index array indicates the presentable image that will be used in the presentation.

	

pResults

	
This field, if non-NULL, returns the status (VkResult typed) for each presentable image; the number of entries is equal to swapchainCount. If an application does not require the per-swapchain results, the pResults can be set as NULL.

Note
The vkQueuePresentKHR is capable of presenting multiple presentable images from corresponding swapchains. It releases the ownership of the images (indicated by pImageIndices; refer to the following VkPresentInfoKHR) to the presentation engine. These presented images must not be used again until the application regains control of them using the vkAcquireNextImageKHR() API (and must wait until the returned semaphore is signaled, or fence is completed).

The presentation images sent to the queue are always processed in order; the transfer of the ownership of a presentation image to the presentation engine happens with the submission in the queue. These presentable images are only performed if the submitted semaphore is signaled, indicating that no prior rendering operation is pending. The presentation time is very implementation-specific; it may be affected by the semantics of the presentation engine and the native platform in use.
The following table specifies the return value from the vkQueuePresentKHR() API:
	
Return value

	
Description

	

VK_SUCCESS

	
This means that it has successfully acquired the presentable image.

	

VK_ERROR_SURFACE_LOST_KHR

	
This appears when the presentable surface is no longer available.

	

VK_SUBOPTIMAL_KHR

	
In this case, the returned presentable image no longer matches with swapchain surface properties, but it can still be used for paint purposes successfully.

	

VK_ERROR_OUT_OF_DATE_KHR

	
Here, the returned presentable image is no longer compatible with the swapchain and thus cannot be further used for presentation with the swapchain. In this case, the application must query the compatible surface properties and recreate the swapchain with the required surface properties in order to continue with the presentation service.

When a presentable image is given to the presentation engine, the presentation does not change the contents of this image. If this image is again reacquired using vkAcquireNextImageKHR() and the transitioning is taken away from the VK_IMAGE_LAYOUT_PRESENT_SRC_KHR layout, even then the contents remain the same as they were before transitioning. In contrast, if some other mechanism modifies the platform window other than Vulkan, then the contents of all the presentable images in the swapchain become undefined.

Implementing drawing object rendering

Let's understand the implemented rendering code. First, acquire the presentable image index using the vkAcquireNextImageKHR() API extension; the index is returned in the currentColorImage variable. This swapchain extension is stored as a function pointer (fpAcquireNextImageKHR) in the VulkanRenderclass.
Note
For more information on querying swapchain extensions, please refer to the subsection Querying swapchain extensions in Chapter 6, Allocating Image Resources and Building a Swapchain with WSI.

You must provide at least one of the sync objects (semaphore or fence); otherwise, you will have no idea when you can use the image. For example, your image will still be read by the presentation engine when you try to acquire it. The vkAcquireNextImageKHR() is permitted to return as soon as it has identified the image that it has to give you next, not when that image is actually usable. For this reason, synchronization is very important at this step. Vulkan provides two ways to synchronize the swapchain image using semaphore and fences. When semaphore and fences are used, they ensure that when the image is acquired it has no previous pending operation (such as the presentation engine reading it).
In this example, we used a semaphore object (presentCompleteSemaphore) for synchronization purposes; this object is passed into the vkAcquireNextImageKHR() to be associated with the image, and this semaphore is signaled when the image can be rendered.
Use the retrieved image index (currentColorImage) and get the corresponding command buffer from the vecCmdDraw vector. Create the VkSubmitInfo control structure and specify the create semaphore object (presentCompleteSemaphore) in order to submit the command buffer. Upon submission, the commands will only begin execution when a semaphore is signaled; in other words, the image is ready to paint with drawing commands.
As a final approach, the painted image is then queued in the presentation engine for display purposes using the fpQueuePresentKHR API (vkQueuePresentKHR), transferring the ownership to the presentation engine. It is very important to ensure that when an image is used by the presentation engine it is not being painted or has any pending operations since the last command buffer submission. This can be simply checked using another semaphore object called drawingCompleteSemaphore; this object is passed into the VkSubmitInfo class pSignalSemaphores field before the command buffer is submitted into the queue. This semaphore is signaled when the command buffer is successfully processed, removing any chance to overlap with the presentation engine's ownership. Once the presentable image is displayed, the presentation engine relinquishes the ownership. vkAcquireNextImageKHR() can query the same image again and get the ownership.
The following is the implementation code that demonstrates the rendering of the object in Vulkan:
void VulkanDrawable::render()
{
 VulkanDevice* deviceObj = rendererObj->getDevice();
 VulkanSwapChain* swapChainObj= rendererObj->getSwapChain();
 uint32_t¤tColorImage = swapChainObj->
 scPublicVars.currentColorBuffer;
 VkSwapchainKHR& swapChain = swapChainObj->
 scPublicVars.swapChain;

 VkFence nullFence = VK_NULL_HANDLE;

 // Get the index of the next available swapchain image:
 VkResult result = swapChainObj->fpAcquireNextImageKHR(
 deviceObj->device, swapChain,UINT64_MAX,
 presentCompleteSemaphore, VK_NULL_HANDLE,
 ¤tColorImage);

 VkPipelineStageFlags submitPipelineStages =
 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;

 // Prepare the submit into control structure
 VkSubmitInfo submitInfo = {};
 submitInfo.sType= VK_STRUCTURE_TYPE_SUBMIT_INFO;
 submitInfo.pNext= NULL;
 submitInfo.waitSemaphoreCount = 1;

 submitInfo.pWaitSemaphores= &presentCompleteSemaphore;
 submitInfo.pWaitDstStageMask= &submitPipelineStages;
 submitInfo.commandBufferCount= (uint32_t)sizeof(&vecCmdDraw
 [currentColorImage]) / sizeof(VkCommandBuffer);
 submitInfo.pCommandBuffers = &vecCmdDraw[currentColorImage];
 submitInfo.signalSemaphoreCount= 1;

 submitInfo.pSignalSemaphores = &drawingCompleteSemaphore;

 // Queue the command buffer for execution
 CommandBufferMgr::submitCommandBuffer(deviceObj->queue,
 &cmdDraw[currentColorImage],&submitInfo);
 // Present the image in the window
 VkPresentInfoKHR present;
 present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
 present.pNext = NULL;
 present.swapchainCount= 1;
 present.pSwapchains= &swapChain;
 present.pImageIndices= ¤tColorImage;
 present.pWaitSemaphores= &drawingCompleteSemaphore;

 present.waitSemaphoreCount= 1;
 present.pResults= NULL;
 // Queue the image for presentation,
 result = swapChainObj->fpQueuePresentKHR
 (deviceObj->queue, &present);
 assert(result == VK_SUCCESS);
}

The semaphore objects are created in the constructor of the drawable class and reused throughout the application as shown in the following.
VulkanDrawable::VulkanDrawable(VulkanRenderer* parent) {
 memset(&VertexBuffer, 0, sizeof(VertexBuffer));
 rendererObj = parent;

 // Prepare the semaphore create info data structure

 VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo;
 presentCompleteSemaphoreCreateInfo.sType =
 VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
 presentCompleteSemaphoreCreateInfo.pNext = NULL;
 presentCompleteSemaphoreCreateInfo.flags = 0;

 VkSemaphoreCreateInfo drawingCompleteSemaphoreCreateInfo;
 drawingCompleteSemaphoreCreateInfo.sType =
 VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
 drawingCompleteSemaphoreCreateInfo.pNext = NULL;
 drawingCompleteSemaphoreCreateInfo.flags = 0;

 VulkanDevice* deviceObj = VulkanApplication::GetInstance()->
 deviceObj;

 vkCreateSemaphore(deviceObj->device,

 &presentCompleteSemaphoreCreateInfo, NULL,

 &presentCompleteSemaphore);

 vkCreateSemaphore(deviceObj->device,

 &drawingCompleteSemaphoreCreateInfo, NULL,

 &drawingCompleteSemaphore);
}

These semaphore objects can be destroyed using the user-defined destroySynchronizationObjects() function during the de-initialization process:
void VulkanDrawable::destroySynchronizationObjects()
{
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 VulkanDevice* deviceObj = appObj->deviceObj;
 vkDestroySemaphore(deviceObj->device,
 presentCompleteSemaphore, NULL);
 vkDestroySemaphore(deviceObj->device,
 drawingCompleteSemaphore, NULL);
}

The following is the output of the program:

[image: Implementing drawing object rendering]

Rendering an indexed geometry

In this section, you will learn to use the vkCmdDrawIndexed() draw command. This command is used for drawing the index geometry.The vkCmdDrawIndexed() API is an index buffer's draw command. In an index buffer, each vertex is represented using an index number. This fashion of representing mesh data requires less memory and storage space to represent connected meshes when the mesh has shared vertices (such as enclosed shapes).
For example, a square geometry rendered using two triangles shares two common vertices as shown in the following example; as you can see, the first and third vertices are repeated:
static const VertexWithColor squareData[] =
{
 { -0.5f, 0.5f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0 },
 { 0.5f, 0.5f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0 },
 { 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0 },
 { -0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0 },
};

uint16_t squareIndices[] = { 0,3,1, 3,2,1 }; // 6 indices

In this section, we will use the geometry data and indices to demonstrate the use of the vkCmdDrawIndexed() API. The following is the syntax:
void vkCmdDrawIndexed(
 VkCommandBuffer commandBuffer,
 uint32_t indexCount,
 uint32_t instanceCount,
 uint32_t firstIndex,
 int32_t vertexOffset,
 uint32_t firstInstance);

Let's take a look at the different fields used in this API and their respective descriptions:
	
Parameter

	
Description

	

commandBuffer

	
This field specifies the command buffer object (VkCommandBuffer) into which the recording is performed.

	

indexCount

	
This is the total count of the index elements in the index list of the buffer resources that are intended to be drawn.

	

instanceCount

	
This field indicates the total number of instances to be drawn using this command.

	

firstIndex

	
This field specifies the first index (into the indices) from where the indices are read.

	

vertexOffset

	
This field specifies an offset value that will be added into the vertex index to produce a resultant index. This computed index then is used to read the vertex from the vertex buffer.

	

firstInstance

	
This field specifies the very first instance ID into the instances to draw.

The following are the steps to render an indexed draw:
	Using squareData and squareIndices, create a buffer resource (VkBuffer). Store VkBuffer's handles in VertexBuffer::buf and VertexIndex::idx. For more information, please refer to the Indexed Draw example provided in this chapter.
	Bind the vertex buffer using vkCmdBindVertexBuffers() and pass VertexBuffer.buf into it.
	Similarly, the index buffer (VertexIndex.idx) is bound using the vkCmdBindIndexBuffer() API command.
	Draw the object using vkCmdDrawIndexed().

vkCmdDrawIndexed() is used in conjunction with the vkCmdBindIndexBuffer() API. Similar to vkCmdBindVertexBuffers(), which binds the vertex buffer, this command binds the index buffer. The following is the syntax of this API; for more information on the vkCmdBindVertexBuffers() API, please refer to the Specifying the drawing object geometry information
 section.
void vkCmdBindIndexBuffer(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkIndexType indexType);

Let's take a look at the different fields used in this API and their respective descriptions:
	
Parameter

	
Description

	

commandBuffer

	
This specifies the command buffer object into which this command—vkCmdBindIndexBuffer()—will be recorded.

	

buffer

	
This indicates the handle of the index buffer (VkBuffer) that will be bound to this API.

	

offset

	
This is the starting offset specified in bytes in the index buffer that will be used for index buffer address calculation.

	

indexType

	

This field indicates whether the indices are 16-bits or 32-bits wide.

This must be one of the VkIndexType types:

typedef enum VkIndexType {
VK_INDEX_TYPE_UINT16 = 0,
VK_INDEX_TYPE_UINT32 = 1,
} VkIndexType;

Similar to the createVertexBuffer() function, we have created a new function called createIndexBuffer(); it creates the index buffer and stores the index buffer handle in VertexIndex.idx. For a detailed implementation of this function, please refer to the accompanying source code. The implementation of createIndexBuffer() is very similar to createVertexBuffer(); for a detailed understanding on the implementation of this function, please refer to Implementing the buffer resource—creating the vertex buffer for the geometry in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V.
The following code demonstrates the rendering of the indexed geometry object:

// Local data structure in VulkanDrawable class

// for storing vertex buffer and index buffer metadata
struct {
 VkBuffer buf;
 VkDeviceMemory mem;
 VkDescriptorBufferInfo bufferInfo;
} VertexBuffer;

struct {
 VkBuffer idx;
 VkDeviceMemory mem;
 VkDescriptorBufferInfo bufferInfo;
} VertexIndex;

// Create the VkBuffer and store the handle in

// VertexBuffer.buf and VertexIndex.idx
. . . .
// Bind the vertex buffer
const VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(*cmdDraw, 0, 1,&VertexBuffer.buf,
 offsets);

// Bind the Index buffer
vkCmdBindIndexBuffer(*cmdDraw, VertexIndex.idx,
 0, VK_INDEX_TYPE_UINT16);

// Draw the object
vkCmdDrawIndexed(*cmdDraw, 6, 1, 0, 0, 0);

The output of the preceding geometry data will be displayed as follows; for detailed code, please refer to the Indexed Draw example in this chapter:

[image: Rendering an indexed geometry]

The vkCmdDrawIndirect and vkCmdDrawIndexedIndirect draw commands are very similar to vkCmdDraw and vkCmdDrawIndexed, except that the parameters here are read from the buffer memory. For more information on these APIs, please refer to the official Vulkan specification.

Understanding synchronization primitives in Vulkan

Synchronization is key to bringing order and discipline into asynchronous system. It not only improves resource utilization, it also benefits from parallelism by reducing CPU and GPU idle time.
Vulkan offers the following four types of synchronization primitive for concurrent execution:
	Fences: Offer synchronization between the host and device
	Semaphores: Synchronize between and within queues
	Events: Between queue submissions
	Barriers: Within a command buffer between commands

In this section, we will learn about synchronization primitives and understand their API specification. The drawing object example that we implemented in this chapter makes use of semaphores to synchronize swapchain image writing. In the next chapter, we will learn to draw textures and implement fence to synchronize the host and device.
Fences

When a host submits a command in a queue, it gets scheduled for device processing. Sometimes it may require to know the status of command execution on the GPU in order to control the execution of the next batch, to ensure that it never overlaps with the previous batch of commands, which may produce undefined results or a situation that causes resource access violation.
Fence provides synchronization between the host and the GPU; using this, an application instructs the host to wait until a certain submitted operation is completed. This way, the GPU can be prevented from piling up more operations into the command queues:

Creating the fence object: The fence object can be created using the vkCreateFence()API.
VkResult vkCreateFence(
 VkDevice device,
 const VkFenceCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkFence* pFence);

Let's take a look at the different fields used in this API and their respective descriptions:
	
Parameter

	
Description

	

device

	
This is the logical device object, which will be used to create the fence object.

	

pCreateInfo

	
This is a pointer to an array of the VkFenceCreateInfo control structure.

	

pAllocator

	
This controls the host memory allocation. You can refer to Host memory, Chapter 5, Command Buffer and Memory Management in Vulkan for more information.

	

pFence

	
This is the handle of the created fence object.

The vkCreateFence() API takes VkFenceCreateInfo containing metadata, which is used to control the creation of the fence objects. Following is the syntax of this control structure:
typedef struct VkFenceCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkFenceCreateFlags flags;
} VkFenceCreateInfo;

It has three fields: the first field sType indicates the type information of this structure, which must be VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; the second field pNext is not in use and must be NULL; the last parameter is VkFenceCreateFlagBits (see the following code snippet), which indicates whether the created fence object will be in a signaled or nonsignaled state. The signal state is specified using VK_FENCE_CREATE_SIGNALED_BIT.
typedef enum VkFenceCreateFlagBits {
 VK_FENCE_CREATE_SIGNALED_BIT = 0x00000001,
} VkFenceCreateFlagBits;

Waiting on the fence object: Once a valid fence object is created, the host can inject this into a command and wait for it using the vkWaitForFences()API until it is not processed by the device. The device signals the fence object as soon as it processes the associated command, allowing the host to unblock the waiting state. Following is the API syntax:
VkResult vkWaitForFences(
 VkDevice device,
 uint32_t fenceCount,
 const VkFence* pFences,
 VkBool32 waitAll,
 uint64_t timeout);

The vkWaitForFences API takes the following parameters:
	
Parameters

	
Description

	

device

	
This is the logical device object (VkDevice) that will be used to destroy the fence object.

	

fenceCount

	
This is number of the fence object that needs to be destroyed.

	

PFences

	
This is an array of fence objects handles that needs to be destroyed. The array size must be equal to fenceCount.

	

waitAll

	
The block can be unblocked using this Boolean flag. When this flag value is:

	VK_TRUE: It indicates that all the pFences must be signaled in order to successfully unblock the waiting.
	VK_FALSE: At least one fence object in the pFences array must be signaled for successfully unblocking the wait state.

	

timeOut

	
This is the time-out period, specified (in nano seconds), which will be used to unblock the wait state if the fence object never got signaled. This field guarantees that the system never falls into an infinite blocking state that will bring the application to a halt.

Destroying the fence object: Once the fence is used and no longer required, it can be destroyed using the vkDestroyFence()API; this API takes three parameters—the first parameter device is the logical device that will be used to destroy the fence object, which is indicated by the second parameter called fence; the last parameter (pAllocator) manages host memory deallocation:
void vkDestroyFence(
 VkDevice device,
 VkFence fence,
 const VkAllocationCallbacks* pAllocator);

Resetting the fence object: The application can also preserve the created fence object and reuse it by resetting them using vkResetFences(). This API takes three parameters as an input—the first parameter indicates the logical device to be used to reset the given fence objects. The number of fence objects that need to be reset is pointed by the second parameter called fenceCount. The last parameter pFences is a pointer of the array of fence objects that will be reset by this API. The following is the syntax of this API:
VkResult vkResetFences(
 VkDevice device,
 uint32_t fenceCount,
 const VkFence* pFences);

Let's move to the next synchronization primitive: semaphores.

Semaphores

Semaphores give the flexibility to achieve synchronization at the queue level; they are used to synchronize one or more queues. A Semaphore has two states: signaled and unsignaled. Signaled semaphores are specified in the queue submission command vkQueueSubmit(); it blocks the rest of the batch until the semaphores are not unsignaled by the device. A created semaphore is visible across multiple queues. If two or more queue submission commands are waiting upon the same semaphore, then only one will receive the signaled state; others may continue to wait, ensuring atomicity.

Creating
semaphore object: Semaphores are created using the vkCreateSemaphore() API; the following is the syntax of this API:
VkResult vkCreateSemaphore(
 VkDevice device,
 const VkSemaphoreCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSemaphore* pSemaphore);

The vkCreateSemaphore API takes the following parameters:
	
Parameter

	
Description

	

device

	
This is the logical device object, which will be used to create the semaphore object.

	

pCreateInfo

	
This is the pointer to an array of the VkSemaphoreCreateInfo control structure.

	

pAllocator

	
This controls host memory allocation. You can refer to Host memory, Chapter 5, Command Buffer and Memory Management in Vulkan for more information.

	

pSemaphore

	
This is the handle of the created semaphore object.

The VkSemaphoreCreateInfo type structure has three parameters—the first parameter sType indicates the type information of this control structure; the second parameter is pNext, which could be a valid pointer to an extension-specific structure or could be NULL. The last parameter is a flag value (flags), which is currently not being used and is reserved for future purposes. The following is the syntax of this structure:
typedef struct VkSemaphoreCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkSemaphoreCreateFlags flags;
} VkSemaphoreCreateInfo;

Destroying a semaphore: The created semaphore is destroyed using vkDestroySemaphore() as declared in the following syntax. This API takes three parameters. The first parameter device is the logical device that will destroy the semaphore object specified in the second parameter (semaphore). The last parameter (pAllocator) manages host memory deallocation:
void vkDestroySemaphore(
 VkDevice device,
 VkSemaphore semaphore,
 const VkAllocationCallbacks* pAllocator);

Note
In this chapter, we used semaphores to ensure that a given swapchain image is only being used if it is not read by the presentation engine, in other words, when the presentation has finished reading the swapchain image and is ready to render it. For this, we created a semaphore object and passed it into vkAcquireNextImageKHR(); this API signals the semaphore when the image is ready to render. This signaled semaphore is next passed to vkQueueSubmit() using the VkSubmitInfo control structure; this ensures that drawing commands must only be drawn to the presentation image when it is not being used. The vkQueueSubmit() unsignals the semaphore, unblocking the next command (vkQueuePresentKHR) to be executed; this command renders the image to the output display.

Events

Events controls fine-grained synchronization and can exist in both signaled and unsignaled states. It allows synchronization of work within a single command buffer or sequence of command buffers submitted to a queue. Both the host and device can signal or reset the events. Similarly, both can wait on the event object; however, the device is only allowed to wait at some specific pipeline stage within the pipeline. You will learn more as we will proceed through the API specification:

Creating the event object: The event can be created using vkCreateEvent() API. This API accepts three parameters; the syntax is provided as follows:
VkResult vkCreateEvent(
 VkDevice device,
 const VkEventCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkEvent* pEvent);

The vkCreateEvent API takes four parameters as described in the following table:
	
Parameter

	
Description

	

device

	
This is the logical device object, which will be used to create the event object.

	

pCreateInfo

	
Thhis is the pointer to an array of VkEventCreateInfo control structures.

	

pAllocator

	
This controls host memory allocation. You can refer to Host memory, Chapter 5, Command Buffer and Memory Management in Vulkan for more information.

	

pSemaphore

	
This is the handle of the created event object.

The VkEventCreateInfo structure has three parameters: the first parameter (sType) describes the type information of this create info data structure; it must be VK_STRUCTURE_TYPE_EVENT_CREATE_INFO. The second parameter is pNext; this could be a valid pointer to an extension-specific structure or could be NULL. The last parameter is flag value (flags), which is currently not being used and reserved for future purposes. Following is the syntax of this structure:
typedef struct VkEventCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkEventCreateFlags flags;
} VkEventCreateInfo;

Destroying the event object: The created event is destroyed using vkDestroyEvent()when the event is no longer in use. This API takes three parameters—the first parameter device is the logical device that will destroy the event object specified by the second parameter (semaphore). The last parameter (pAllocator) manages host memory deallocation.
void vkDestroyEvent(
 VkDevice device,
 VkEvent event,
 const VkAllocationCallbacks* pAllocator);

Querying the event status: The event can be queried to check whether it is in the signaled or nonsignaled state. This is done using the vkGetEventStatus()API; the first parameter (device) of this API is the logical device (VkDevice) that owns the event object; the second parameter (event) is the event handle whose status is being queried. The following is the syntax of this API:
VkResult vkGetEventStatus(
 VkDevice device,
 VkEvent event);

This API returns VK_EVENT_SET, which indicates the event is signaled; for an unsignaled event, it returns VK_EVENT_RESET.

Setting and resetting events: Events can be set using vkSetEvent() and vkResetEvent(). Both APIs accept the same input parameters as described above for the vkGetEventStatus() API; for more information, please refer to vkSetEvent and vkResetEvent syntax:
	
vkSetEvent API

	
vkResetEvent API

	

VkResult vkCmdSetEvent(
VkDevice device,
VkEvent event);

	

VkResult vkSetEvent(
VkDevice device,
VkEvent event);

Signaling and unsignaling an event from a device: An event can be updated to set or reset on the device using command buffers. The vkCmdSetEvent()and vkCmdResetEvent()APIs are used to signal and unsignal the events, respectively; following is the syntax of these APIs:
	
vkCmdSetEvent API

	
vkCmdResetEvent API

	

VkResult vkCmdSetEvent(
VkCommandBuffer
commandBuffer,
VkEvent
event,
VkPipelineStageFlags
stageMask);

	

VkResult vkCmdResetEvent(
VkCommandBuffer
commandBuffer,
VkEvent
event,
VkPipelineStageFlags
stageMask);

Both APIs accept the following three parameters: the first parameter (commandBuffer) specifies the command buffer in which this command will be recorded. The second parameter (event) indicates the handle of the event object, which needs to be signaled or unsignaled. The last parameter (stageMask) is the VkPipelineStageFlags pipeline stage, indicating the point at which the event's state will be updated.

Waiting on event objects: One or more event objects can be waited upon to signal using the vkCmdWaitEvents()API. The following is the syntax of this API:
void vkCmdWaitEvents(
 VkCommandBuffer commandBuffer,
 uint32_t eventCount,
 const VkEvent* pEvents,
 VkPipelineStageFlags srcStageMask,
 VkPipelineStageFlags dstStageMask,
 uint32_t memoryBarrierCount,
 const VkMemoryBarrier* pMemoryBarriers,
 uint32_t bufferMemoryBarrierCount,
 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
 uint32_t imageMemoryBarrierCount,
 const VkImageMemoryBarrier* pImageMemoryBarriers);

The fields and a description of each parameter follow:
	
Parameter

	
Description

	

commandBuffer

	
This is the command buffer object into which this command will be captured or recorded.

	

eventCount

	
This is the number of event objects to be waited upon.

	

pEvents

	
This is the array of the VkEvent objects; the size of the array must be equal to eventCount.

	

srcStageMask

	
This is the bitwise mask field that specifies the pipeline stages that will signal the event objects specified in the pEvents array.

	

dstStageMask

	
This is the bitwise mask field that specifies the pipeline stage at which the waiting should be performed.

	

memoryBarrierCount

	
This refers to the number of memory barriers.

	

pMemoryBarriers

	
This is the VkBufferMemoryBarreir object array that has the number of elements equal to memoryBarrierCount.

	

bufferMemoryBarrierCount

	
This refers to the number of buffer memory barriers.

	

pBufferMemoryBarriers

	
This refers to the VkMemoryBarreir object array that has the number of elements equal to bufferMemoryBarrierCount.

	

imageMemoryBarrierCount

	
This refers to the number of image type memory barriers.

	

pImageMemoryBarriers

	
This refers to the VkImageMemoryBarrier object array that has the number of elements equal to imageMemoryBarrierCount.

Note
Barrier have already been discussed and implemented in Chapter 6, Allocating Image Resources and Building a Swapchain with WSI; for more information, please refer to the Image layout transition with memory barriers section.

Resizing the display window

When a display window resizes, the Vulkan application is given the new window dimensions to re-paint the drawing images. On the Windows platform, the WM_SIZE message of the associated window's procedure can be used to indicate the change in the dimension size as shown in the following highlighted code. The new changes added to the WndProc() function are highlighted with bold; the new dimension size is updated to the VulkanSwapChain class using the setSwapChainExtent() function, which will be later used to recreate the new swapchain images with the indicated dimensions:
LRESULT CALLBACK VulkanRenderer::WndProc(HWND hWnd, UINT uMsg,
WPARAM wParam, LPARAM lParam)
{
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 switch (uMsg)
 {
 case WM_CLOSE:
 PostQuitMessage(0);
 break;
 case WM_PAINT:
 // Many lines skipped please, refer to the source code
 case WM_SIZE:

 if (wParam != SIZE_MINIMIZED) {

 appObj->rendererObj->width = lParam & 0xffff;

 appObj->rendererObj->height = (lParam &

 0xffff0000) >> 16;

 appObj->rendererObj->getSwapChain()->

 setSwapChainExtent(appObj->rendererObj->

 width, appObj->rendererObj->height);

 appObj->resize()

 }

 break;

 default:
 break;
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}

The VulkanApplication class is added with a new function called resize(); this function handles resize activities. The Vulkan application's resize function is called by the VulkanRenderer::WndProc()when a resize event happens.
The resize() function destroys created resources and recreates them again. The resource preparation status can be checked using the isPrepared flag in VulkanApplication; if this flag is false, it means resources are not prepared yet and resizing cannot be performed.
When the resources are recreated,the old swapchain images are destroyed and created again to match the new window size.
Note
A swapchain image must only be recreated when it is not being used by any pending command or presentation operation. This can be ensured by calling the vkDeviceWaitIdle() API; this API guarantees that there is no pending operation on this device. This API keeps the host waiting until the device become idle.

When the waiting in resize function finishes, it can go ahead and recreate the swapchain images; but before doing so we will also need to destroy and recreate the framebuffer, command pool, graphics pipeline, Render Pass, depth buffer image, image view, vertex buffer, and so on. The following is the implementation of the resize function showing this:
void VulkanApplication::resize()
{
 // If prepared then only proceed for
 if (!isPrepared) {
 return;
 }

 isResizing = true;

 vkDeviceWaitIdle(deviceObj->device);
 rendererObj->destroyFramebuffers();
 rendererObj->destroyCommandPool();
 rendererObj->destroyPipeline();
 rendererObj->getPipelineObject()->destroyPipelineCache();
 rendererObj->destroyRenderpass();
 rendererObj->getSwapChain()->destroySwapChain();
 rendererObj->destroyDrawableVertexBuffer();
 rendererObj->destroyDepthBuffer();
 rendererObj->initialize();
 prepare();

 isResizing = false;
}

The application must prevent any render operation when resizing is going on; for this purpose, the isResizing flag can be used to indicate the resizing status. The reinitialization is performed by calling the VulkanRender'sinitialize() function. The drawing commands are recorded in the Vulkan application's prepare function:
void VulkanRenderer::initialize()
{
 // We need command buffers, so create a command buffer pool
 createCommandPool();

 // Let's create the swap chain color images and depth image
 buildSwapChainAndDepthImage();

 // Build the vertex buffer
 createVertexBuffer();

 const bool includeDepth = true;
 // Create the render pass now..
 createRenderPass(includeDepth);

 // Use render pass and create frame buffer
 createFrameBuffer(includeDepth);

 // Create the vertex and fragment shader
 createShaders();

 // Manage the pipeline state objects
 createPipelineStateManagement();
}
void VulkanApplication::prepare()
{
 isPrepared = false;
 rendererObj->prepare();
 isPrepared = true;
}

The following screenshot shows the output of the resize window implementation:

[image: Resizing the display window]

Summary

In this chapter, we rendered our first Hello World! program in Vulkan. Drawing it consists of two stages—preparation and rendering (execution). Preparation records the command buffers and the rendering executes them. The command buffers are recorded once and executed multiple times unless there is an explicit change in the pipeline state objects.
The preparation of the command buffer involves recording the Render Pass and graphics pipeline binding and drawing parameters, such as vertex buffers, viewport, scissor, and so on. Finally, the drawing API command is specified; we demonstrated both index- and nonindex-based drawing APIs using the sample application.
The recorded command buffer is executed in the rendering stage. The execution process acquires the swapchain image and submits the command buffer into the graphics queue. Painting is done on the acquired swapchain image. Once this is complete the image is sent to the presentation engine to be displayed on the output display. This chapter also demonstrated API commands for drawing indexed and non-indexed geometries. Towards the end of this chapter, we covered synchronization primitives in Vulkan and you learned how to perform synchronization in between the host and device, and queues and command buffers.
In the next chapter, we will learn about descriptors and the push constant, which allows the sharing of resource contents with the Shader program.

Chapter 10. Descriptors and Push Constant

In the previous chapter, we rendered our first drawing object on the display output. In this chapter, we will take the previous implementation ahead and implement some 3D transformations on the rendered geometry with the help of Uniforms. Uniforms are read-only blocks of data accessible in the shader, and their value is constant for an entire draw call.
Uniforms are managed by descriptors and descriptor pools. A descriptor helps connect the resources with the shaders. But it may be expected to change frequently; therefore, the allocation is performed through a preallocated descriptor buffer called the descriptor pool.
In this chapter, we will also implement a push constant. A push constant allows you to update the constant data in the shader using an optimized high-speed path.
We will cover the following topics:
	Understanding the concept of descriptors
	How to implement Uniforms in Vulkan
	Push constant updates

Understanding the concept of descriptors

A descriptor consists of descriptor set objects. These objects contain storage for a set of descriptors. A descriptor set connects a given resource—such as a uniform buffer, sampled image, stored image, and so on—to the shader helping it read and interpret the incoming resource data through the layout bindings defined using the descriptor set layout. For example, resources such as image textures, sampler and buffers are bound to the shader using descriptors.
Descriptors are opaque objects and define a protocol to communicate with the shaders; behind the curtain, it provides a silent mechanism to associate the resource memory with the shaders with the help of location binding.
VulkanDescriptor - a user-defined descriptor class

In this chapter, we will introduce a new user class called VulkanDescriptor and keep our descriptor-related member variable and function here. This will be helpful in keeping the descriptor code separate from the rest of the implementation, providing a much cleaner and easier way to understand the descriptor functionality.
The following is the header declaration of the VulkanDescriptor class in VulkanDescriptor.h /.cpp. As we proceed through the various sections, we will discuss the purpose and implementation of declared functions and variables in this class in detail. Refer to the inline comments for a quick grasp:

// A user define descriptor class implementing Vulkan descriptors
class VulkanDescriptor
{
public:
 VulkanDescriptor(); // Constructor
 ~VulkanDescriptor(); // Destructor
 // Creates descriptor pool and allocate descriptor set from it
 void createDescriptor(bool useTexture);
 // Deletes the created descriptor set object
 void destroyDescriptor();

 // Defines the descriptor sets layout binding and

// create descriptor layout
 virtual void createDescriptorLayout(bool useTexture) = 0;
 // Destroy the valid descriptor layout object
 void destroyDescriptorLayout();

 // Creates the descriptor pool that is used to

// allocate descriptor sets
 virtual void createDescriptorPool(bool useTexture) = 0;

 // Deletes the descriptor pool
 void destroyDescriptorPool();

 // Create the descriptor set from the descriptor pool allocated

 // memory and update the descriptor set information into it.
 virtual void createDescriptorSet(bool useTexture) = 0;
 void destroyDescriptorSet();

 // Creates the pipeline layout to inject into the pipeline
 virtual void createPipelineLayout() = 0;
 // Destroys the create pipelineLayout
 void destroyPipelineLayouts();

 public:
 // Pipeline layout object
 VkPipelineLayout pipelineLayout;

 // List of all the VkDescriptorSetLayouts
 std::vector<VkDescriptorSetLayout> descLayout;

 // Decriptor pool object that will be used

// for allocating VkDescriptorSet object
 VkDescriptorPool descriptorPool;

 // List of all created VkDescriptorSet
 std::vector<VkDescriptorSet> descriptorSet;

 // Logical device used for creating the

// descriptor pool and descriptor sets
 VulkanDevice* deviceObj;
};

Descriptor set layout

A descriptor set layout is a collection of zero or more descriptor bindings. It provides an interface to read the resource in the shader at the specified location. Each descriptor binding has a special type that indicates the kind of resource it is handling, the number of descriptors in that binding, the sampler descriptor arrays, and the respective shader stages to which it is associated with. This metadata information is specified in VkDescriptorSetLayoutBinding. Following is the image showing descriptor set layout which contains various resources layout binding in it where each resource is specified with a binding number uniquely identified in that descriptor layout:

[image: Descriptor set layout]

A descriptor set layout is created using the vkCreateDescriptorSetLayout() API. This API accepts the VkDescriptorSetLayoutCreateInfo control structure into which the preceding metadata information for zero or more descriptor sets is specified using the VkDescriptorSetLayoutBinding structure. The following is the syntax of this structure:
VkResult vkCreateDescriptorSetLayout(
 VkDevice device,
 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDescriptorSetLayout* pSetLayout);

Here are the parameters defined in the vkCreateDescriptorSetLayout() API:
	
Parameters

	
Description

	

device

	
This field specifies the logical device (VkDevice) that is responsible for creating the descriptor set layout.

	

pCreateInfo

	
This field specifies the descriptor set layout metadata using the pointer to an object of the VkDescriptorSetLayoutCreateInfo structure.

	

pAllocator

	
This controls host memory deallocation. Refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pSetLayout

	
The created descriptor set layout objects are returned in the form of VkDescriptorSetLayout handles.

Let's understand the VkDescriptorSetLayoutCreateInfo structure, which is given here:
typedef struct VkDescriptorSetLayoutCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSetLayoutCreateFlags flags;
 uint32_t bindingCount;
 const VkDescriptorSetLayoutBinding* pBindings;
} VkDescriptorSetLayoutCreateInfo;

The various fields of the VkDescriptorSetLayoutCreateInfo structure are defined in this table:
	
Parameters

	
Description

	

sType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_DESCRIPTOR-_SET_LAYOUT_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

flags

	
This field is of the VkDescriptorSetLayoutCreateFlags type and is presently not in use; it is reserved for future use.

	

bindingCount

	
This refers to the number of entries in the pBindings array.

	

pBindings

	
This is a pointer to the structure array of VkDescriptorSetLayoutBinding.

The following is the syntax of the VkDescriptorSetLayoutBinding structure:
typedef struct VkDescriptorSetLayoutBinding {
 uint32_t binding;
 VkDescriptorType descriptorType;
 uint32_t descriptorCount;
 VkShaderStageFlags stageFlags;
 const VkSampler* pImmutableSamplers;
} VkDescriptorSetLayoutBinding;

The various fields of the VkDescriptorSetLayoutBinding structure are defined in the following table:
	
Parameters

	
Description

	

binding

	
This is the binding index that indicates the entry of this resource type, and this index must be equal to the binding number or index used in the corresponding shader stage.

	

descriptorType

	
This indicates the type of the descriptor being used for binding. The type is expressed using the VkDescriptorType enum.

	

descriptorCount

	
This indicates the number of descriptors in the shader as an array, and it refers to the shader that is contained in the binding.

	

stageFlags

	
This field specifies which shader stages can access the value for both the graphics and compute state. This shader stage is indicated by the bit field of VkShaderStageFlagBits. If the value is VK_SHADER_STAGE_ALL, then all the defined shader stages can access the resource via the specified binding.

	

pImmutableSamplers

	

This is a pointer to an array of sampler handles represented by the corresponding binding that will be consumed by the descriptor set layout.

This field is used for initializing a set of immutable samplers if the descriptorType specified is either VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER. If descriptorType is not one of these descriptor types, then this field (pImmutableSamplers) is ignored. Once immutable samplers are bounded, they cannot be bounded into the set layout again. The sampler slots are dynamic when this field is NULL, and the sampler handles must be bound to the descriptor sets using this layout.

The following is the complete set of the VkDescriptorType enum signifying the various descriptor types. The enumeration name of each type is self-explanatory; each of them shows the type of resource it is associated with:
typedef enum VkDescriptorType {
 VK_DESCRIPTOR_TYPE_SAMPLER = 0,
 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER = 1,
 VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE = 2,
 VK_DESCRIPTOR_TYPE_STORAGE_IMAGE = 3,
 VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER = 4,
 VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER = 5,
 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER = 6,
 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER = 7,
 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC = 8,
 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC = 9,
 VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT = 10,
} VkDescriptorType;

Let's go ahead and implement the descriptor set in the next subsection.
Implementing the descriptor set layout

The descriptor layout is implemented in the createDescriptorLayout() function of the VulkanDrawable class. This function is a pure virtual function that is declared in the VulkanDescriptor class. The VulkanDrawable class inherits the VulkanDescriptor class. The following is the implementation of this:
void VulkanDrawable::createDescriptorLayout(bool useTexture)
{
 // Define the layout binding information for the

 // descriptor set(before creating it), specify binding point,

 // shader type(like vertex shader below), count etc.
 VkDescriptorSetLayoutBinding layoutBindings[2];
 layoutBindings[0].binding = 0; // DESCRIPTOR_SET_BINDING_INDEX
 layoutBindings[0].descriptorType =
 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
 layoutBindings[0].descriptorCount = 1;
 layoutBindings[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
 layoutBindings[0].pImmutableSamplers = NULL;

 // If texture is being used then there exists a

 // second binding in the fragment shader
 if (useTexture)
 {
 layoutBindings[1].binding = 1;
 layoutBindings[1].descriptorType =
 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
 layoutBindings[1].descriptorCount = 1;
 layoutBindings[1].stageFlags =
 VK_SHADER_STAGE_FRAGMENT_BIT;
 layoutBindings[1].pImmutableSamplers = NULL;
 }

 // Specify the layout bind into the VkDescriptorSetLayout-

 // CreateInfo and use it to create a descriptor set layout
 VkDescriptorSetLayoutCreateInfo descriptorLayout = {};
 descriptorLayout.sType =
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
 descriptorLayout.pNext = NULL;
 descriptorLayout.bindingCount = useTexture ? 2 : 1;
 descriptorLayout.pBindings = layoutBindings;

 VkResult result;
 // Allocate required number of descriptor layout objects and

 // create them using vkCreateDescriptorSetLayout()
 descLayout.resize(numberOfDescriptorSet);
 result = vkCreateDescriptorSetLayout(deviceObj->device,
 &descriptorLayout, NULL, descLayout.data());
 assert(result == VK_SUCCESS);
}

Before you create the descriptor set object, the layout bindings need to be defined. There are two VkDescriptorSetLayoutBinding objects (an array) created in the preceding implementation.
The first layout binding, layoutBindings[0], is used to bind the uniform block with the resource index specified in the shader. In the present case, the index of our uniform block in the vertex shader is 0, which is the same value that is specified in the layoutBindings[0].binding field. The other fields of the object indicate that the binding point is attached to the vertex shader stage (stageFlags), and the number of descriptors (descriptorCount) are attached as an array in the shader that is contained within the binding.
The second array object, layoutBindings[1], indicates the layout binding for texture support in our geometry; however, this sample example only implements the uniform block to demonstrate a 3D transformation. In order to use the current implementation for texture support, the useTexture flag parameter of the createDescriptorLayout() function must be set to the boolean true. In the present example, although we are using two descriptor sets, only one is used, that is, useTexture is false. In the upcoming chapter, we will implement texture support.

Destroying the descriptor set layout

The descriptor layout can be destroyed using the vkDestroyDescriptorSetLayout() API. Here's the syntax for this:
void vkDestroyDescriptorSetLayout(
 VkDevice device,
 VkDescriptorSetLayout descriptorSetLayout,
 const VkAllocationCallbacks* pAllocator);

The vkDestroyDescriptorSetLayout() API takes the following parameters:
	
Parameters

	
Description

	

device

	
This is a logical device that destroys the descriptor set layout.

	

descriptorSetLayout

	
This is the descriptor set layout object to be destroyed.

	

pAllocator

	
This controls host memory deallocation. Refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

Understanding pipeline layouts

Pipeline layouts allow a pipeline (graphics or compute) to access the descriptor sets. A pipeline layout object is comprised of descriptor set layouts and push constant ranges (refer to the Push constant updates section in this chapter), and it represents the complete set of resources that can be accessed by the underlying pipeline.
The pipeline layout object information needs to be provided in the VkGraphicsPipelineCreateInfo structure before the pipeline object is created using the vkCreateGraphicsPipelines() API. This information is set in the VkGraphicsPipelineCreateInfo::layout field. This is a compulsory field. If the application does not use descriptor sets, then you must create an empty descriptor layout and specify it in the pipeline layout to suffice the pipeline object (VkPipeline) creation process. For more information on the pipeline creation process, refer to the Creating graphics pipeline subsection in Chapter 8, Pipelines and Pipeline State Management.
The pipeline layout can contain zero or more descriptor sets in sequence, with each having a specific layout. This layout defines the interfaces between the shader stages and shader resources. The following image shows pipeline layout which comprises of multiple descriptor layouts contains various layout bindings for each resource:

[image: Understanding pipeline layouts]

Creating a pipeline layout

A pipeline layout object can be created with the help of the vkCreatePipelineLayout () API. This API accepts VkPipelineLayoutCreateInfo, which contains the descriptor set's state information. This creates one pipeline layout. Let's take a look at the syntax of this API:
VkResult vkCreatePipelineLayout(
 VkDevice device,
 const VkPipelineLayoutCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkPipelineLayout* pPipelineLayout);

The various fields of the vkCreatePipelineLayout structure are defined as follows:
	
Parameters

	
Description

	

device

	
This indicates the logical device (VkDevice) that is responsible for creating the pipeline layout.

	

pCreateInfo

	
This field is the metadata of the pipeline layout object specified using the pointer to the VkPipelineLayoutCreateInfo structure.

	

pAllocator

	
This controls host memory deallocation. Refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pPipelineLayout

	
This returns the VkPipelineLayout object handle after the API is successfully executed.

Implementing the pipeline layout creation

The VulkanDrawable class implements the createPipelineLayout() interface from VulkanDrawble, which allows a drawable class to implement its own implementation based on the drawing object resource requirements.
First, VkPipelineLayoutCreateInfo is created (pPipelineLayoutCreateInfo) and specified with the descriptor layout objects (descLayout), which was created using the vkCreateDescriptorSetLayout() API. The descriptor set binding information is accessed with the pipeline layout within the pipeline (VkPipeline).
The created pPipelineLayoutCreateInfo is set into the vkCreatePipelineLayout() API to create the pipelineLayout object. During pipeline creation, this object will be passed to VkGraphicsPipelineCreateInfo::layout in order to create the graphics pipeline object (VkPipeline):

// createPipelineLayout is a virtual function from

// VulkanDescriptor and defined in the VulkanDrawable class.

// virtual void VulkanDescriptor::createPipelineLayout() = 0;

// Creates the pipeline layout to inject into the pipeline
void VulkanDrawable::createPipelineLayout()
{
 // Create the pipeline layout using descriptor layout.
 VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {};
 pPipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE-
 _LAYOUT_CREATE_INFO;
 pPipelineLayoutCreateInfo.pNext = NULL;
 pPipelineLayoutCreateInfo.pushConstantRangeCount= 0;
 pPipelineLayoutCreateInfo.pPushConstantRanges = NULL;
 pPipelineLayoutCreateInfo.setLayoutCount =
 numberOfDescriptorSet;
 pPipelineLayoutCreateInfo.pSetLayouts = descLayout.data();

 VkResult result;
 result = vkCreatePipelineLayout(deviceObj->device,
 &pPipelineLayoutCreateInfo, NULL, &pipelineLayout);
 assert(result == VK_SUCCESS);
}

Destroying the pipeline layout

The created pipeline layout can be destroyed using the vkDestroyPipelineLayout() API in Vulkan. The following is its description:
void vkDestroyPipelineLayout(
 VkDevice device,
 VkPipelineLayout pipelineLayout,
 const VkAllocationCallbacks* pAllocator);

The various fields of the vkDestroyPipelineLayout structure are defined here:
	
Parameters

	
Description

	

device

	
This is the VkDevice logical object used to destroy the pipeline layout object.

	

pipelineLayout

	
This indicates the pipeline layout object (VkPipelineLayout) that needs to be destroyed.

	

pAllocator

	
This controls host memory allocation. Refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

Let's use this API and implement it in the next section.

Implementing the pipeline layout destruction process

The VulkanDescriptor class provides a high-level function to destroy the created pipeline layout: the destroyPipelineLayouts() function. The following is the code implementation:

// Destroy the create pipeline layout object
void VulkanDescriptor::destroyPipelineLayouts()
{
 vkDestroyPipelineLayout(deviceObj->device, pipelineLayout, NULL);
}

Descriptor pool

In Vulkan, descriptor sets cannot be created directly; instead, these are first allocated from a special pool called a descriptor pool. A descriptor pool is responsible for allocating the descriptor set objects. In other words, it is a collection of descriptors from which the descriptor set is allocated.
Note
Descriptor pools are useful in efficient memory allocation of several objects of the descriptor set without requiring global synchronization.

Creating a descriptor pool

Creating a descriptor pool is simple; use the vkCreateDescriptorPool API. The following is the API specification, followed by the implementation of this API in our sample recipe:
VkResult vkCreateDescriptorPool(
 VkDevice device,
 const VkDescriptorPoolCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDescriptorPool* pDescriptorPool);

The various fields of the vkCreateDescriptorPool structure are defined here:
	
Parameters

	
Description

	

device

	
This specifies the logical device (VkDevice) that is responsible for creating the descriptor pool.

	

pCreateInfo

	
This field is the metadata of the descriptor pool object, which is specified using a pointer to an object of the VkDescriptorPoolCreateInfo structure.

	

pAllocator

	
This controls host memory allocation. Refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan.

	

pDescriptorPool

	
This indicates the created descriptor pool object's handle of the type (VkDescriptorPool), which is a result of the execution of this API.

Implementing the creation of the descriptor pool

The createDescriptorPool
() is a pure virtual function exposed by the VulkanDescriptor class. This function is implemented in the VulkanDrawble class, which is responsible for creating the descriptor pool in our Vulkan application sample. Let's understand the working of this function:
	First, the descriptor pool's size structure is defined indicating the number of pools that need to be created within the descriptor pool for allocating each type of descriptor set. There are two types of descriptor sets that are being used in the following implementation; thus, two VkDescriptorPoolSize objects are created. The first object indicates the descriptor pool that it needs to provide the allocation for the uniform buffer descriptor types. This pool will be used to allocate the descriptor set objects that bind to the uniform block resource types.
	The second object indicates the descriptor pool for texture samplers. We will implement the texture in the next chapter.
	These created objects (descriptorTypePool) are then specified in the descriptor pool's CreateInfo structure (descriptorPoolCreateInfo) to indicate the types of descriptor sets (with other state information as well) that are going to be supported by the created descriptor pool. Finally, the descriptorTypePool object is used by the vkCreateDescriptorPool() API to create the descriptor pool object descriptorPool.

The implementation of the descriptor pool is given here:

// Creates the descriptor pool, this function depends on -

// createDescriptorSetLayout()
void VulkanDrawable::createDescriptorPool(bool useTexture)
{
 VkResult result;
 // Define the size of descriptor pool based on the

 // type of descriptor set being used.
 VkDescriptorPoolSize descriptorTypePool[2];

 // The first descriptor pool object is of type Uniform buffer
descriptorTypePool[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
 descriptorTypePool[0].descriptorCount = 1;

 // If texture is supported then define the second object with

 // descriptor type to be Image sampler
 if (useTexture){
 descriptorTypePool[1].type= VK_DESCRIPTOR_TYPE_-
 COMBINED_IMAGE_SAMPLER;
 descriptorTypePool[1].descriptorCount = 1;
 }

 // Populate the descriptor pool state information

 // in the create info structure.
 VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = {};
 descriptorPoolCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_-
 POOL_CREATE_INFO;
 descriptorPoolCreateInfo.pNext = NULL;
 descriptorPoolCreateInfo.maxSets = 1;
 descriptorPoolCreateInfo.poolSizeCount= useTexture ? 2 : 1;
 descriptorPoolCreateInfo.pPoolSizes = descriptorTypePool;

 // Create the descriptor pool using the descriptor

 // pool create info structure
 result = vkCreateDescriptorPool(deviceObj->device,
 &descriptorPoolCreateInfo, NULL, &descriptorPool);
 assert(result == VK_SUCCESS);
}

Destroying the descriptor pool

The descriptor pool can be destroyed using the vkDestroyDescriptorPool() API. This API accepts three parameters. The first parameter, device, specifies the logical device (VkDevice) that owns the descriptor pool and will be used to destroy descriptorPool. The second parameter, descriptorPool, is the descriptor pool object that needs to be destroyed using this API. The last parameter, pAllocator, controls host memory allocation. You can refer to the Host memory section in Chapter 5, Command Buffer and Memory Management in Vulkan, for more information:
void vkDestroyDescriptorPool(
 VkDevice device,
 VkDescriptorPool descriptorPool,
 const VkAllocationCallbacks* pAllocator);

Implementing the destruction of the descriptor pool

In the present sample application, the desctroyDescriptorPool() function from VulkanDescriptor can be used to destroy the created descriptor pool object:

// Deletes the descriptor pool
void VulkanDescriptor::destroyDescriptorPool()
{
 vkDestroyDescriptorPool(deviceObj->device, descriptorPool, NULL);
}

Creating the descriptor set resources

Before the descriptor sets are created, it's compulsory to create the resources in order to associate or bound them with it. In this section, we will create a uniform buffer resource and later associate it with the descriptor set we will create in the following, Creating the descriptor sets, section.
All the descriptor-related resources are created in the createDescriptorResources() interface of the VulkanDescriptor class. Based on the requirements, this interface can be implemented in the derived class.
In the present example, this interface is implemented in the VulkanDrawable class, which creates a uniform buffer and stores a 4 x 4 transformation into it. For this, we need to create buffer type resources. Remember, there are two types of resources in Vulkan: buffers and images. We created the buffer resource in the Understanding the buffer resource section in Chapter 7, Buffer resource, Render Pass, Framebuffer, and Shaders with SPIR-V. In the same chapter, we created the vertex buffer (see the Creating geometry with buffer resource section). We will reuse our learning from this chapter and implement a uniform buffer to store the uniform block information.
The following code implements createDescriptorResources(), where it calls another function, createUniformBuffer(), which creates the uniform buffer resource:

// Create the Uniform resource inside. Create Descriptor set

// associated resources before creating the descriptor set
void VulkanDrawable::createDescriptorResources()
{
 createUniformBuffer();
}

The createUniformBuffer() function produces the transformation matrices information using the glm library helper functions. It computes the correct Model, View, and Project matrices as per the user specification and stores the result in the MVP matrix. MVP is stored in the host memory and needs to be transferred to the device memory using the buffer object (VkBuffer). The following are step-by-step instructions to create the buffer resource (VkBuffer) of MVP:
	Creating the buffer object: Create a VkBuffer object (UniformData.buffer) using the vkCreateBuffer() API. This API intakes a VkCreateBufferInfo structure object (bufInfo) that specifies the important buffer metadata used to create the buffer object. For example, it indicates the usage type in bufInfo.usage as VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT since MVP is treated as a uniform block resource in the vertex shader. The other important piece of information it needs is the size of the buffer; this will be required to hold the complete MVP buffer information. In the present case, it is equal to the size of a 4 x 4 transformation matrix. At this stage, when the buffer object is created (UniformData.buffer), no physical backing is associated with it. In order to allocate physical memory, proceed to the next steps.
	Allocating physical memory for the buffer resource: 	Get the memory requirements: Allocate the appropriate size of the memory required by the buffer resource. Query the essential memory by passing the VkBuffer object to the vkGetBufferMemoryRequirements API. This will return the required memory information in the VkMemoryRequirements type object (memRqrmnt).
	Determining the memory type: Get the proper memory type from the available options and select the one that matches the user properties.
	Allocating device memory: Allocate the physical memory (in UniformData::memory of the VkDeviceMemory type) for the buffer resource using the vkAllocateMemory() API.
	Mapping the device memory: Map the physical device memory to the application's address space using the vkMapMemory() API. Upload the uniform buffer data to this address space. Invalidate the mapped buffer to make it visible to the host using vkInvalidateMappedMemoryRanges(). If the memory property is set with VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, then the driver may take care of this; otherwise, for non-coherent mapped memory, vkInvalidateMappedMemoryRanges() needs to be called explicitly.
	Binding the allocated memory: Bind the device memory (UniformData::memory) to the buffer object (UniformData::buffer) using the vkBindBufferMemory() API.

The following diagram provides an overview of the described process:

[image: Creating the descriptor set resources]

Once the buffer resource is created, it stores the necessary information in the local data structure for housekeeping purposes:
class VulkanDrawable : public VulkanDescriptor
{
. . . .
 // Local data structure for uniform buffer house keeping
 struct {
 // Buffer resource object
 VkBuffer buffer;

 // Buffer resourece object's allocated device memory
 VkDeviceMemory memory;

 // Buffer info that need to supplied into

 // write descriptor set (VkWriteDescriptorSet)
 VkDescriptorBufferInfo bufferInfo;

 // Store the queried memory requirement

 // of the uniform buffer
 VkMemoryRequirements memRqrmnt;

 // Metadata of memory mapped objects
 std::vector<VkMappedMemoryRange> mappedRange;
 // Host pointer containing the mapped device

 // address which is used to write data into.
 uint8_t* pData;
 } UniformData;

. . . .
};

void VulkanDrawable::createUniformBuffer()
{
 VkResult result;
 bool pass;
 Projection = glm::perspective(radians(45.f), 1.f, .1f, 100.f);
 View = glm::lookAt(
 glm::vec3(10, 3, 10), // Camera in World Space
 glm::vec3(0, 0, 0), // and looks at the origin
 glm::vec3(0, -1, 0));// Head is up

 Model = glm::mat4(1.0f);
 MVP = Projection * View * Model;

 // Create buffer resource states using VkBufferCreateInfo
 VkBufferCreateInfo bufInfo = {};
 bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
 bufInfo.pNext = NULL;
 bufInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
 bufInfo.size = sizeof(MVP);
 bufInfo.queueFamilyIndexCount = 0;
 bufInfo.pQueueFamilyIndices = NULL;
 bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
 bufInfo.flags = 0;

 // Use create buffer info and create the buffer objects
 result = vkCreateBuffer(deviceObj->device, &bufInfo, NULL,
 &UniformData.buffer);
 assert(result == VK_SUCCESS);

 // Get the buffer memory requirements
 VkMemoryRequirements memRqrmnt;
 vkGetBufferMemoryRequirements(deviceObj->device,
 UniformData.buffer, &memRqrmnt);

 VkMemoryAllocateInfo memAllocInfo = {};
 memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
 memAllocInfo.pNext = NULL;
 memAllocInfo.memoryTypeIndex = 0;
 memAllocInfo.allocationSize = memRqrmnt.size;

 // Determine the type of memory required

 // with the help of memory properties
 pass = deviceObj->memoryTypeFromProperties
 (memRqrmnt.memoryTypeBits,
 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
 &memAllocInfo.memoryTypeIndex);
 assert(pass);

 // Allocate the memory for buffer objects
 result = vkAllocateMemory(deviceObj->device, &memAllocInfo,
 NULL, &(UniformData.memory));
 assert(result == VK_SUCCESS);

 // Map the GPU memory on to local host
 result = vkMapMemory(deviceObj->device, UniformData.memory,
 0, memRqrmnt.size, 0, (void **)&UniformData.pData);
 assert(result == VK_SUCCESS);

 // Copy computed data in the mapped buffer
 memcpy(UniformData.pData, &MVP, sizeof(MVP));

 // We have only one Uniform buffer object to update
 UniformData.mappedRange.resize(1);

 // Populate the VkMappedMemoryRange data structure
 UniformData.mappedRange[0].sType =
 VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
 UniformData.mappedRange[0].memory = UniformData.memory;
 UniformData.mappedRange[0].offset = 0;
 UniformData.mappedRange[0].size = sizeof(MVP);

 // Invalidate the range of mapped buffer in order

 // to make it visible to the host.
 vkInvalidateMappedMemoryRanges(deviceObj->device, 1,
 &UniformData.mappedRange[0]);

 // Bind the buffer device memory
 result = vkBindBufferMemory(deviceObj->device,
 UniformData.buffer, UniformData.memory, 0);
 assert(result == VK_SUCCESS);

 // Update the local data structure with uniform

 // buffer for house keeping
 UniformData.bufferInfo.buffer = UniformData.buffer;
 UniformData.bufferInfo.offset = 0;
 UniformData.bufferInfo.range = sizeof(MVP);
 UniformData.memRqrmnt = memRqrmnt;
}

Next, we will create the descriptor set and associate the created uniform buffer with it.

Creating the descriptor sets

The descriptor set creation process comprises two steps:
	Descriptor set allocation: This allocates the descriptor set from the descriptor pool.
	Resource assignment: Here, the descriptor set is associated with the created resource data.

Allocating the descriptor set object from the descriptor pool

The descriptor set is allocated from the descriptor pool using the vkAllocateDescriptorSets() API. This API intakes three parameters. The first parameter (device) specifies the logical device (of the type VkDevice) that owns the descriptor pool. The second parameter (pAllocateInfo) is a pointer to an object of the VkDescriptorSetAllocateInfo structure describing the various parameters that will be helpful in the allocation process of the descriptor pool. The last parameter (pDescriptorSets) is a pointer to an array of VkDescriptorSet; this will be filled by the API with the handles of each allocated descriptor set:
VkResult vkAllocateDescriptorSets(
 VkDevice device,
 const VkDescriptorSetAllocateInfo* pAllocateInfo,
 VkDescriptorSet* pDescriptorSets);

Destroying the allocated descriptor set objects

The allocated descriptor set objects can be freed using the vkFreeDescriptorSets() API. This API accepts four parameters. The first parameter (device) is the logical device that owns the descriptor pool. The second device is the descriptor pool (descriptorPool) that was used to allocate the descriptor sets. The third parameter (descriptorSetCount) indicates the number of elements in the last parameter. The last parameter (pDescriptorSets) is the VkDescriptorSet object's array that needs to be freed:
VkResult vkFreeDescriptorSets(
 VkDevice device,
 VkDescriptorPool descriptorPool,
 uint32_t descriptorSetCount,
 const VkDescriptorSet* pDescriptorSets);

In this current sample implementation, the vkFreeDescriptorSets() API is exposed through the destroyDescriptorSet() helper function in the VulkanDescriptor class. The following is the implementation code:
void VulkanDescriptor::destroyDescriptorSet()
{
 vkFreeDescriptorSets(deviceObj->device, descriptorPool,
 numberOfDescriptorSet, &descriptorSet[0]);
}

Associating the resources with the descriptor sets

The descriptor sets can be associated with the resources information by updating them using the vkUpdateDescriptorSets() API. This API uses four parameters. The first parameter, device, is the logical device that will be used to update the descriptor sets. This logical device should be the one that owns the descriptor sets. The second parameter, descriptorWriteCount, specifies the element count in the pDescriptorWrites array (of the VkCopyDescriptorSettype). The third parameter, pDescriptorWrites, is a pointer to an array of VkWriteDescriptorSet in the pDescriptorCopies array. The last parameter, pDescriptorCopies, is a pointer to the array objects (the VkCopyDescriptorSet structures) describing the descriptor sets to copy between:
void vkUpdateDescriptorSets(
 VkDevice device,
 uint32_t descriptorWriteCount,
 const VkWriteDescriptorSet* pDescriptorWrites,
 uint32_t descriptorCopyCount,
 const VkCopyDescriptorSet* pDescriptorCopies);

The update is an amalgamation of two operations, namely write and copy:
	Write: The allocated descriptor set is updated by filling an array of zero or more VkWriteDescriptorSet control structures with the resource information, such as buffer data, count, binding index, and more. The write operation is specified in the vkUpdateDescriptorSets() API. This API intakes the filled VkWriteDescriptorSet data structure.
	Copy: The copy operation uses the existing descriptor sets and copies their information to the destination descriptor set. The copy operation is specified by the VkWriteDescriptorSet control structure. There could be zero or more write operations possible.

Note
The write operations are executed first, followed by the copy operations. For each operation type (write or copy), zero or more operations are represented in the form of arrays, and within these arrays, the operations are performed in the order that they appear.

The following is the specification of VkWriteDescriptorSet:
typedef struct VkWriteDescriptorSet {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSet dstSet;
 uint32_t dstBinding;
 uint32_t dstArrayElement;
 uint32_t descriptorCount;
 VkDescriptorType descriptorType;
 const VkDescriptorImageInfo* pImageInfo;
 const VkDescriptorBufferInfo* pBufferInfo;
 const VkBufferView* pTexelBufferView;
} VkWriteDescriptorSet;

The various fields of the VkWriteDescriptorSet structure are defined as follows:
	
Parameters

	
Description

	

sType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

dstSet

	
This is the destination descriptor set that will be updated.

	

dstBinding

	
This specifies the descriptor binding within the set. This should be the same as the binding index specified in the shader for a given shader stage.

	

dstArrayElement

	
This field indicates the starting element index in the array of descriptors within a single binding.

	

descriptorCount

	
This is the count of the descriptors to be updated in any of these: pImageInfo, pBufferInfo, or pTexelBufferView.

	

descriptorType

	
This field indicates the type of each participating descriptor (pImageInfo, pBufferInfo, or pTexelBufferView).

	

pImageInfo

	
This is an array of VkDescriptorImageInfo structures that represent the image resource. This field must be VK_NULL_HANDLE if not specified.

	

pBufferInfo

	
This is an array of VkDescriptorBufferInfo structures or it can be VK_NULL_HANDLE if not specified.

	

pTexelBufferView

	
This is an array containing VkBufferView handles, or it can be VK_NULL_HANDLE if not specified.

Let's take a look at the VkCopyDescriptorSet specification:
typedef struct VkCopyDescriptorSet {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSet srcSet;
 uint32_t srcBinding;
 uint32_t srcArrayElement;
 VkDescriptorSet dstSet;
 uint32_t dstBinding;
 uint32_t dstArrayElement;
 uint32_t descriptorCount;
} VkCopyDescriptorSet;

The various fields of the VkCopyDescriptorSet structure are defined here:
	
Parameters

	
Description

	

sType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET.

	

pNext

	
This could be a valid pointer to an extension-specific structure or NULL.

	

srcSet

	
This specifies the source descriptor set that will be copied from.

	

srcBinding

	
This specifies the binding index within the source descriptor set.

	

srcArrayElement

	
This indicates the starting array element within the first updated binding.

	

dstSet

	
This specifies the destination descriptor set into which the source descriptor will be copied.

	

dstBinding

	
This specifies the binding index within the destination descriptor set.

	

dstArrayElement

	
This field indicates the starting index in the array of descriptors within a single binding.

	

descriptorCount

	
This refers to the total count of descriptors that will be copied from the source to the destination.

Implementing descriptor set creation

Descriptor sets are created in the VulkanDrawable class, which inherits the createDescriptorSet() interface from the VulkanDescriptor class and implements it.
First, the VkDescriptorSetAllocateInfo control structure (dsAllocInfo) is created and specified within the descriptor pool to allocate descriptorSet from the intended descriptor pool. The second important thing that needs to be specified is the descriptor layout information that we created and stored in the descLayout object. The descriptor layout provides an interface to read the resource in the shader.
The allocated descriptor sets are empty and do not hold any valid information. They are updated using the write or copy descriptor structures (Vk<Write/Copy>DescriptorSet). In this implementation, the write descriptor write[0] is specified with the uniform data buffer (UniformData::bufferInfo) along with other state information. This information includes the destination descriptor set object, descriptorSet[0], into which this uniform buffer needs to be bound and the destination binding index to which it should be attached. The dstBinding must be equal to the index specified in the shader stage. The update operation is performed using vkUpdateDescriptorSets(), specifying the write descriptor into it:

// Creates the descriptor sets using descriptor pool.

// This function depends on the createDescriptorPool()

// and createUniformBuffer().
void VulkanDrawable::createDescriptorSet(bool useTexture)
{
 VulkanPipeline* pipelineObj = rendererObj->getPipelineObject();
 VkResult result;
 // Create the descriptor allocation structure and specify

 // the descriptor pool and descriptor layout
 VkDescriptorSetAllocateInfo dsAllocInfo[1];
 dsAllocInfo[0].sType =
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
 dsAllocInfo[0].pNext = NULL;
 dsAllocInfo[0].descriptorPool = descriptorPool;
 dsAllocInfo[0].descriptorSetCount = 1;
 dsAllocInfo[0].pSetLayouts = descLayout.data();

 // Allocate the number of descriptor set needs to be produced
 descriptorSet.resize(1);

 // Allocate descriptor sets
 result = vkAllocateDescriptorSets(deviceObj->device,
 dsAllocInfo, descriptorSet.data());
 assert(result == VK_SUCCESS);

 // Allocate two write descriptors for - 1. MVP and 2. Texture
 VkWriteDescriptorSet writes[2];
 memset(&writes, 0, sizeof(writes));

 // Specify the uniform buffer related

 // information into first write descriptor
 writes[0] = {};
 writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
 writes[0].pNext = NULL;
 writes[0].dstSet = descriptorSet[0];
 writes[0].descriptorCount = 1;
 writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
 writes[0].pBufferInfo = &UniformData.bufferInfo;
 writes[0].dstArrayElement = 0;
 writes[0].dstBinding = 0;

 // If texture is used then update the second

 // write descriptor structure. We will use this descriptor

 // set in the next chapter where textures are used.
 if (useTexture)
 {
 // In this sample textures are not used
 writes[1] = {};
 writes[1].sType = VK_STRUCTURE_TYPE_WRITE-
 _DESCRIPTOR_SET;
 writes[1].dstSet = descriptorSet[0];
 writes[1].dstBinding = 1;
 writes[1].descriptorCount = 1;
 writes[1].descriptorType = VK_DESCRIPTOR_TYPE_-
 COMBINED_IMAGE_SAMPLER;
 writes[1].pImageInfo = NULL;
 writes[1].dstArrayElement = 0;
 }

 // Update the uniform buffer into the allocated descriptor set
 vkUpdateDescriptorSets(deviceObj->device,
 useTexture ? 2 : 1, writes, 0, NULL);
}

How to implement Uniforms in Vulkan?

In this section, we will understand the requirements and execution model for a Uniform implementation in Vulkan. We will also describe the step-by-step instructions to apply 3D transformations on the rendered object using Uniforms. Reuse the sample recipe from the previous chapter and follow the given instructions.
Prerequisites

Let's check out the requirements first.

3D Transformation: This implementation uses the glm mathematics library to achieve 3D transformation using the library's inbuilt transformation functions. GLM is a header-only C++ mathematics library for graphics software based on the GLSL specification. You can download this library from http://glm.g-truc.net. In order to use it, perform the following changes:
	CMakeLists.txt: Add GLM support by adding the following lines to the project's CMakeLists.txt file:

 # GLM SETUP

 set (EXTDIR "${CMAKE_SOURCE_DIR}/../../external")
 set (GLMINCLUDES "${EXTDIR}")
 get_filename_component(GLMINC_PREFIX "${GLMINCLUDES}" ABSOLUTE)
 if(NOT EXISTS ${GLMINC_PREFIX})
 message(FATAL_ERROR "Necessary glm headers do not exist: "
 ${GLMINC_PREFIX})
 endif()
 include_directories(${GLMINC_PREFIX})

	Header files: Include the header files for GLM in the Headers.h file:

 /*********** GLM HEADER FILES ***********/
 #define GLM_FORCE_RADIANS
 #include "glm/glm.hpp"
 #include <glm/gtc/matrix_transform.hpp>

Applying transformations: The transformations are executed just before the rendering happens. Introduce an update() function in the current design and call it just before the render() function is executed. Add update() to VulkanRenderer and VulkanDrawable and implement main.cpp as follows:
int main(int argc, char **argv)
 {
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 appObj->initialize();
 appObj->prepare();
 bool isWindowOpen = true;
 while (isWindowOpen) {
 // Add the update function here..

 appObj->update();
 isWindowOpen = appObj->render();
 }
 appObj->deInitialize();
}

The descriptor class: The VulkanDrawable class inherits VulkanDescriptor, bringing all the descriptor-related helper functions and user variables together, yet keeping the code logic separate. At the same time, it allows different implementation-drawable classes to extend it as per their requirements:

[image: Prerequisites]

Execution model overview

This section will help us understand the execution model for Uniforms using the descriptor sets in Vulkan. The following are the step-by-step instructions:
	Initialization: When an application is initialized, it calls the renderer's initialize() function. This function creates all the descriptors associated with each drawable object. The VulkanDrawable class is inherited from VulkanDescriptor, which contains the descriptor sets and the descriptor pool along with the related helper functions. The descriptor sets are allocated from the descriptor pool.
	Creating the descriptor layout: Descriptor layouts define the descriptor bindings. This binding indicates the metadata about the descriptor, such as what kind of shader it is associated with, the type of the descriptor, the binding index in the shader, and the total number of descriptors of this type.
	The pipeline layout: Create the pipeline layout; the descriptor set is specified in the pipeline object through pipeline layouts.
	Creating a uniform buffer for the transformation: The transformation information is specified in a 4 x 4 transformation matrix. This is created (createUniformBuffer()) in a uniform buffer in the device memory that is used by the vertex shader to read the transformation information and apply it to the geometry vertices.
	Creating the descriptor pool: Next, create a descriptor pool from which the descriptor sets will be allocated.
	Creating the descriptor set: Allocate the descriptor set from the created descriptor pool (step 5) and associate the uniform buffer data (created in step 4) with it.
	Updating the transformation: The transformation is updated in each frame where the uniform buffer GPU memory is mapped and updated with new transformation data contents.

Initialization

Initialization includes vertex and fragment shader implementation, the building of the uniform buffer resource, and the creation of the descriptor set from the descriptor pool. The descriptor set creation process includes building the descriptor and pipeline layout.
Shader implementation

The transformation is applied through a vertex shader using the uniform buffer as an input interface through the uniform block (bufferVals) with the layout binding index 1, as highlighted in bold in the following code.
The transformation is calculated by the product of the model view project matrix of bufferVals—mvp (layout binding = 0)—and the input vertices—pos (layout location = 0):

// Vertex shader
#version 450
layout (std140, binding = 0) uniform bufferVals {
mat4 mvp;
} myBufferVals;

layout (location = 0) in vec4 pos;
layout (location = 1) in vec4 inColor;
layout (location = 0) out vec4 outColor;
void main() {
 outColor = inColor;
 gl_Position = myBufferVals.mvp * pos;
 gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0;
}

There is no change required in the fragment shader. The input color received at location 0 (color) is used as the current fragment color specified by the output, location 0 (outColor):

// Fragment shader
#version 450
layout (location = 0) in vec4 color;
layout (location = 0) out vec4 outColor;
void main() {
 outColor = color;
}

Creating descriptors

When the renderer is initialized (using the initialize() function), the descriptors are created in the helper function called createDescriptors(). This function first creates the descriptor layout for each drawable object by calling the createDescriptorSetLayout() function of VulkanDrawable. Next, the descriptor object is created inside the createDescriptor() function of VulkanDrawable. In this example, we are not programming textures; therefore, we send the parameter value as Boolean false:

// Create the descriptor sets
void VulkanRenderer::createDescriptors()
{
 for each (VulkanDrawable* drawableObj in drawableList)
 {
 // It is up to an application how it manages the

 // creation of descriptor. Descriptors can be cached

 // and reuse for all similar objects.
 drawableObj->createDescriptorSetLayout(false);

 // Create the descriptor set
 drawableObj->createDescriptor(false);
 }
}

void VulkanRenderer::initialize()
{

 // Create the vertex and fragment shader
 createShaders();

 // Create descriptor set layout

 createDescriptors();

 // Manage the pipeline state objects
 createPipelineStateManagement();

}

The createDescriptorSetLayout() function must be executed before you create the graphics pipeline layout. This ensures the descriptor layout is properly utilized while the pipeline layout is being created in the VulkanDrawable::createPipelineLayout() function. For more information on createPipelineLayout(), refer to the Implementing the pipeline layout creation subsection of the Pipeline layouts section in this chapter.
Descriptor set creation comprises of three steps—first, creating the uniform buffer; second, creating the descriptor pool; and finally, allocating the descriptor set and updating the descriptor set with the uniform buffer resource:
void VulkanDescriptor::createDescriptor(bool useTexture)
{
 // Create the uniform buffer resource
 createDescriptorResources();

 // Create the descriptor pool and

 // use it for descriptor set allocation
 createDescriptorPool(useTexture);

 // Create descriptor set with uniform buffer data in it
 createDescriptorSet(useTexture);
}

For more information on the creation of the uniform resource, refer to the Creating the descriptor set resources section in this chapter. In addition, you can refer to the Creating the descriptor pool and Creating the descriptor sets sections for a detailed understanding of descriptor pools and descriptor sets' creation.

Rendering

The created descriptor set needs to be specified in the drawing object. This is done when the command buffer of the drawing object is recorded (VulkanDrawable::recordCommandBuffer()).
The descriptor set is bound with the recorded command buffer inside recordCommandBuffer() using the vkCmdBindDescriptorSets() API. This API is called after the pipeline object is bound (vkCmdBindPipeline()) with the current command buffer and before you bind the vertex buffer (vkCmdBindVertexBuffers()) API:
void VulkanDrawable::recordCommandBuffer(int currentBuffer,
 VkCommandBuffer* cmdDraw)
{
 // Bound the command buffer with the graphics pipeline
 vkCmdBindPipeline(*cmdDraw, VK_PIPELINE_BIND_POINT_GRAPHICS,
 *pipeline);
 // Bind the descriptor set into the command buffer

 vkCmdBindDescriptorSets(*cmdDraw,VK_PIPELINE_BIND_POINT_GRAPHICS,

 pipelineLayout, 0, 1, descriptorSet.data(), 0, NULL);

 const VkDeviceSize offsets[1] = { 0 };
 vkCmdBindVertexBuffers(*cmdDraw, 0, 1,
 &VertexBuffer.buf, offsets);

}

For more information on the vkCmdBindDescriptorSets() API specification, refer to the following subsection, Binding the descriptor set.
Binding the descriptor set

One or more created descriptor sets can be specified in the command buffer using vkCmdBindDescriptorSets():
void vkCmdBindDescriptorSets(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,
 VkPipelineLayout layout,
 uint32_t firstSet,
 uint32_t descriptorSetCount,
 const VkDescriptorSet* pDescriptorSets,
 uint32_t dynamicOffsetCount,
 const uint32_t* pDynamicOffsets);

The various fields of the vkCmdBindDescriptorSets structure are defined as follows:
	
Parameters

	
Description

	

commandBuffer

	
This is the command buffer (VkCommandBuffer) to which the descriptor sets will be bound.

	

pipelineBindPoint

	
This field is a binding point to the pipeline of the type VkPipelineBindPoint, which indicates whether the descriptor will be used by the graphics pipeline or the compute pipeline. The respective binding points for the graphics and compute pipeline do not interfere with each other's work.

	

Layouts

	
This refers to the VkPipelineLayout object used to program the bindings.

	

firstSet

	
This indicates the index of the first descriptor set to be bound.

	

descriptorSetCount

	
This refers to the number of elements in the pDescriptorSets arrays.

	

pDescriptorSets

	
This is an array of handles for the VkDescriptorSet objects describing the descriptor sets to write to.

	

dynamicOffsetCount

	
This refers to the number of dynamic offsets in the pDynamicOffsets array.

	

pDynamicOffsets

	
This is a pointer to an array of uint32_t values specifying the dynamic offsets.

Update

Once the command buffer (bounded with the descriptor set) is submitted to the queue, it executes and renders the drawing object with the transformation specified in the uniform buffer. In order to update and render a continuous update transformation, the update() function can be used.
Note
Updating the descriptor set could be a performance-critical path; therefore, it is advisable to partition multiple descriptors based upon the frequency with which they are updated. It can be divided into the scene, model, and drawing levels, where the update frequency is low, medium, and high, respectively.

Updating the transformation

The transformation is updated in each frame inside the update() function of the drawable class (VulkanDrawable), which acquires the memory location of the uniform buffer and updates the transformation matrix with the new information. The uniform buffer memory location is not available directly because it is a resident of the GPU memory; therefore, the GPU memory is allocated by means of memory mapping, where a portion of the GPU memory is mapped to the CPU memory. Once the memory is updated with it, it is remapped to the GPU memory. The following code snippet implements the update() function:
void VulkanDrawable::update()
{
 VulkanDevice* deviceObj = rendererObj->getDevice();
 uint8_t *pData;
 glm::mat4 Projection = glm::perspective(glm::radians(45.0f), 1.0f,
 0.1f, 100.0f);
 glm::mat4 View = glm::lookAt(
 glm::vec3(0, 0, 5), // Camera is in World Space
 glm::vec3(0, 0, 0), // and looks at the origin
 glm::vec3(0, 1, 0)); // Head is up

 glm::mat4 Model = glm::mat4(1.0f);
 static float rot = 0;
 rot += .003;
 Model = glm::rotate(Model, rot, glm::vec3(0.0, 1.0, 0.0))
 * glm::rotate(Model, rot, glm::vec3(1.0, 1.0, 1.0));

 // Compute the ModelViewProjection transformation matrix
 glm::mat4 MVP = Projection * View * Model;

 // Map the GPU memory on to local host
 VkResult result = vkMapMemory(deviceObj->device, UniformData.
 memory, 0, UniformData.memRqrmnt.size, 0,
 (void **)&pData);
 assert(result == VK_SUCCESS);

 // The device memory we have kept mapped it,

 // invalidate the range of mapped buffer in order

 // to make it visible to the host.
 VkResult res = vkInvalidateMappedMemoryRanges(deviceObj->device,
 1, &UniformData.mappedRange[0]);
 assert(res == VK_SUCCESS);

 // Copy computed data in the mapped buffer
 memcpy(pData, &MVP, sizeof(MVP));

 // Flush the range of mapped buffer in order to

 // make it visible to the device. If the memory

 // is coherent (memory property must be

 // VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) then the driver

 // may take care of this, otherwise for non-coherent

 // mapped memory vkFlushMappedMemoryRanges() needs

 // to be called explicitly to flush out the pending

 // writes on the host side
 res = vkFlushMappedMemoryRanges(deviceObj->device,
 1, &UniformData.mappedRange[0]);
 assert(res == VK_SUCCESS);
}

In the preceding implementation, once the uniform buffer is mapped, we do not unmap it until the application stops using the uniform buffer. In order to make the range of uniform buffer visible to the host, we invalidate the mapped range using vkInvalidateMappedMemoryRanges(). After the new data is updated in the mapped buffer, the host flushes out any pending writes using vkFlushMappedMemoryRanges() and makes the mapped memory visible to the device.
Finally, don't forget to unmap the mapped device memory when it is no longer needed using the vkUnmapMemory() API. In this present example, we unmap it before destroying the uniform buffer objects:
void VulkanDrawable::destroyUniformBuffer()
{
 vkUnmapMemory(deviceObj->device, UniformData.memory);
 vkDestroyBuffer(rendererObj->getDevice()->device,
 UniformData.buffer, NULL);
 vkFreeMemory(rendererObj->getDevice()->device,
 UniformData.memory, NULL);
}

The following is the output showing the revolving cube:

[image: Updating the transformation]

Push constant updates

Push constants are specially designed to update the shader constant data using the command buffer instead of updating the resources with the write or copy descriptors.
Note
Push constants offer a high-speed optimized path to update the constant data in the pipeline.

In this section, we will quickly implement an example to demonstrate a push constant. We will learn how push constants are used with command buffers to update the resource contents in the shader. This example defines two types of resources in the fragment shader—constColor and mixerValue—within the push constant uniform block pushConstantsColorBlock. The constColor resource contains an integer value that is used as a flag to render the rotating cube in a solid color (red, green, or blue). The mixerValue resource is a floating value that mixes with the cube color.
Defining the push constant resource in the shader

The push constant resource in the shader is defined using the push_constant keyword in a layout that indicates it is a push constant block. In the following code, we have modified the existing fragment shader and added two push constant variables, namely constColor and mixerValue. If the value of constColor is either 1, 2, or 3, then a solid geometry color (red, green, or blue) is rendered. Otherwise, the original color is mixed with mixerValue:

// Fragment shader
#version 450
layout (location = 0) in vec4 color;
layout (location = 0) out vec4 outColor;
layout(push_constant) uniform colorBlock {

 int constColor;

 float mixerValue;

} pushConstantsColorBlock;

vec4 red = vec4(1.0, 0.0, 0.0, 1.0);

vec4 green = vec4(0.0, 1.0, 0.0, 1.0);

vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);

void main() {
 if (pushConstantsColorBlock.constColor == 1)

 outColor = red;

 else if (pushConstantsColorBlock.constColor == 2)

 outColor = green;

 else if (pushConstantsColorBlock.constColor == 3)

 outColor = blue;

 else

 outColor = color*pushConstantsColorBlock.mixerValue;
}
In the next section, we will update this shader push constant resource in the pipeline layout.

Updating the pipeline layout with the push constant

Update the pipeline layout indicating the push constant ranges. The push constant range is defined in a single pipeline layout using the VkPushConstantRange structure. The pipeline layout also needs to be informed how many push constants can be accessed by each stage of the pipeline.
The following is the syntax of this structure:
typedef struct VkPushConstantRange {
 VkShaderStageFlags stageFlags;
 uint32_t offset;
 uint32_t size;
} VkPushConstantRange;

The various fields of the VkPushConstantRange structure are defined here:
	
Parameters

	
Description

	

stageFlags

	
This field indicates the shader stage to which this push constant range belongs. If stageFlags is not defined with the shader stage, then accessing the push constant resource member from that shader stage will produce an instance where undefined data would be read.

	

offset

	
This is the start offset of the push constant range specified in bytes and is a multiple of four.

	

size

	
This field is also specified in bytes and is a multiple of four, indicating the size of the push constant range.

Update pushConstantRangeCount of VkPipelineLayoutCreateInfo with the push constant range count and pPushConstantRanges with a pointer to an array of VkPushConstantRange:
void VulkanDrawable::createPipelineLayout()
{
 // Setup the push constant range

 const unsigned pushConstantRangeCount = 1;

 VkPushConstantRange pushConstantRanges[pushConstantRangeCount]={};

 pushConstantRanges[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;

 pushConstantRanges[0].offset = 0;

 pushConstantRanges[0].size = 8;
 // Create the pipeline layout with the help of descriptor layout.
 VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {};
 pPipelineLayoutCreateInfo.sType =
 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
 pPipelineLayoutCreateInfo.pNext = NULL;
 pPipelineLayoutCreateInfo.pushConstantRangeCount =

 pushConstantRangeCount;

 pPipelineLayoutCreateInfo.pPushConstantRanges =

 pushConstantRanges;
 pPipelineLayoutCreateInfo.setLayoutCount =
 (uint32_t)descLayout.size();
 pPipelineLayoutCreateInfo.pSetLayouts = descLayout.data();

 VkResult result;
 result = vkCreatePipelineLayout(deviceObj->device,
 &pPipelineLayoutCreateInfo, NULL, &pipelineLayout);
 assert(result == VK_SUCCESS);
}

Updating the resource data

The resource data can be updated using the vkCmdPushConstants() API. In order to use this API, allocate a command buffer called cmdPushConstant, update the resource data with the appropriate values, and execute vkCmdPushConstants(). The following is the syntax of this API:
void vkCmdPushConstants(
 VkCommandBuffer commandBuffer,
 VkPipelineLayout layout,
 VkShaderStageFlags stageFlags,
 uint32_t offset,
 uint32_t size,
 const void* pValues);

The various fields of the vkCmdPushConstants structure are defined here:
	
Parameters

	
Description

	

commandBuffer

	
This is the command buffer object (VkCommandBuffer) that will be used to record the push constant update.

	

layout

	
This is VkPipelineLayout object that will be used to program the push constant updates.

	

stageFlag

	
This specifies the shader stage that will utilize the push constants in the updated range. The shader stage is indicated using a bitmask of VkShaderStageFlagBits.

	

offset

	
This starts the offset in bytes specifying the push constant range for the update.

	

size

	
This refers to the size (in bytes) of the push constant range to be updated.

	

pValues

	
This is an array containing the new push constant values.

The size of the push constant must never exceed the size specified in VkPhysicalDeviceProperties::limits::maxPushConstantsSize.
The following is the implementation of the push constants where the push constant is executed using the allocated command buffer cmdPushConstant. There are two push constant resource variables: constColorRGBFlag and mixerValue. These are set with the desired values and specified in the vkCmdPushConstants() API:
void VulkanRenderer::createPushConstants()
{
 // Allocate and start recording the push constant buffer.
 CommandBufferMgr::allocCommandBuffer(&deviceObj->device,
 cmdPool, &cmdPushConstant);
 CommandBufferMgr::beginCommandBuffer(cmdPushConstant);

 enum ColorFlag {
 RED = 1,
 GREEN = 2,
 BLUE = 3,
 MIXED_COLOR = 4,
 };

 float mixerValue = 0.3f;
 unsigned constColorRGBFlag = BLUE;

 // Create push constant data, this contain a constant

 // color flag and mixer value for non-const color
 unsigned pushConstants[2] = {};
 pushConstants[0] = constColorRGBFlag;
 memcpy(&pushConstants[1], &mixerValue, sizeof(float));

 // Check if number of push constants does

 // not exceed the allowed size
 int maxPushContantSize = getDevice()->gpuProps.
 limits.maxPushConstantsSize;

 if (sizeof(pushConstants) > maxPushContantSize) {
 assert(0);
 printf("Push constant size is greater than expected,
 max allow size is %d", maxPushContantSize);
 }

 for each (VulkanDrawable* drawableObj in drawableList)
 {
 vkCmdPushConstants(cmdPushConstant,
 drawableObj->pipelineLayout,
 VK_SHADER_STAGE_FRAGMENT_BIT,
 0, sizeof(pushConstants), pushConstants);
 }

 CommandBufferMgr::endCommandBuffer(cmdPushConstant);
 CommandBufferMgr::submitCommandBuffer(deviceObj->queue,
 &cmdPushConstant);
}

The following is the output rendering the cube geometry with solid colors. In this example, constColor must be 1, 2, or 3 in order to produce the solid color:

[image: Updating the resource data]

The following is the output of the original colored cube blended with the mixer value; for this output, constColor must not be 1, 2, or 3:

[image: Updating the resource data]

Summary

In this chapter, we learned the concept of descriptor set and understood the implementation of Uniforms. We rendered a multicolor cube and added 3D transformation through uniform blocks. Uniforms are implemented using descriptor sets. We understood the role of the descriptor pool and used it to allocate the descriptor set objects.
We attached the descriptor sets to the graphics pipeline using the pipeline layouts; this allows a pipeline (graphics or compute) to access the descriptor sets. In addition, we also understood and implemented push constant updates, which is an optimized way to update the constant data using command buffers.
In the next chapter, we will play with textures. Textures are implemented in Vulkan through the image resource type. We will understand this resource type and also demonstrate how to bring these textures on the rendered geometries.

Chapter 11. Drawing Textures

In the previous chapter, we learned how to update the resource contents and read them at the shader stage using descriptors. We also covered push constant, which is an optimized way of updating the constant data at the shader stage using command buffers. In addition, by making use of descriptors, we added 3D transformations to our rendering primitives and also demonstrated an example to learn push constants.
In this chapter, we will learn and implement textures; we will wrap them around the geometry surfaces to bring realism to the scene. Textures are created using the Vulkan image resource; its data can be stored in either a linear or optimal layout. We will implement these two layouts—the latter layout uses staging. In staging, two different memory regions are used for the physical allocation process. The ideal memory placement for a resource may not be visible to the host. In this case, the application must first populate the resource in a host-visible staging buffer and then transfer it to the ideal location.
In this chapter, we will cover the following topics:
	Image resource - a quick recap
	Prerequisites for texture drawing
	Implementing the image resource with linear tiling
	Implementing the image resource with optimal tiling
	Copying data content between images and buffers
	Updating the descriptor set

Image resource - a quick recap

Images are continuous array of bytes stored in 1D, 2D, or 3D form. Unlike the buffer resource, an image is a formatted piece of information stored in the memory.
The image resource in Vulkan is represented by the VkImage object and created using the vkCreateImage API. The creation of this object does not back with the actual image contents, yet. This has to be done separately, where device memory is allocated and the image contents are stored into it. This memory is then bound to the created object.
In order to utilize the created images' objects at the shader stage, they must be converted into the image view—VkImageView. Before you convert an image into an image view, it has to be made compatible with the underlying implementation using image layouts.
The image is converted into the implementation-dependent layouts using VkImageLayout. For a given image resource, multiple image layouts can be created and used across. Different layouts might expose different performance characteristics, as they are very dedicated to the usage type. Indicating a correct usage lets the driver choose a specific memory location or portion suitable to offer optimal performance.
If you like to get a detailed introduction of image resources, refer to the very first section, namely Getting started with image resources in Chapter 6, Allocating Image Resources and Building a Swapchain with WSI. In the same chapter, you can refer to the Understanding image resource section for detailed information on images, image views, and image layouts.
Creating an image resource is simple. It consists of the following steps:
	Image object creation: First, the VkImage object is created. This object does not contain the image data, but it holds various important object states of the image resource, such as the format, dimension, image type, image's usage type, tiling fashion, and more. A given image can have multiple sub image resources, such as mipmaps. Following are the steps to create an image object:	Tiling: There are two ways in which image tiling can be specified: linear and optimal. In the linear layout, the image data is mapped to contiguous memory on the device, arranged in a linear fashion. However, in an optimal layout, the image is stored in the form of tiles, and the texels inside each tile may be arranged in either a linear or some proprietary format to offer optimal performance. For a detailed view of linear and optimal layouts, refer to the Introduction to tiling section in Chapter 6, Allocating Image Resources and Building a Swapchain with WSI.
	Allocating and assigning image data: Read the image contents and allocate the required memory to the image resource. Fill the allocated device memory with the image channel contents.
	Setting the correct layout: Create an implementation-compatible image layout. A single image and its sub resource can be specified with multiple layouts.

	Image sampler: Create samplers (VkSampler) to control texture filtering.
	Image view creation: An image resource can only be accessed in the shader in the form of an image view (VkImageView).

Prerequisites for texture drawing

Implementing textures is easy and requires only a few steps. Let's have a quick overview of this first, then we will take a deep dive into it:
	Texture coordinates: Textures are glued to the geometry surfaces using texture coordinates. For each vertex, there is a corresponding texture coordinate attached. In our implementation, we specified the vertices and texture coordinates in an interleaved form.
	The shader stage: The vertex and fragment shader are modified to bound the texture resources. The shader stage allows the fragment shader to access the texture resource and paint the fragments. Textures are shared in the form of a sampler at the shader stage.
	Loading the image files: Parse the image files and load the raw image data into the local data structure. This will be helpful in producing Vulkan image resources and sharing them at the shader stage.
	Local image data structure: The TextureData local data structure stores all the image-specific attributes.

Specifying the texture coordinates

The geometry coordinates (x, y, z, w) are interleaved with texture coordinates (u, v) in the VertexWithUV structure defined in MeshData.h:
struct VertexWithUV
{
 float x, y, z, w; // Vertex Position
 float u, v; // Texture format U,V
};

In this present sample, we will render a cube drawn with textured faces. The following code shows one of the cube faces with four vertex positions followed by two texture coordinates. Refer to MeshData.h for the complete code:
static const VertexWithUV geometryData[] = {
 { -1.0f,-1.0f,-1.0f, 1.0f, 0.0f, 1.0f }, // -X side
 { -1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f },
 { -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f },
 { -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f },
 { -1.0f, 1.0f,-1.0f, 1.0f, 0.0f, 0.0f },
 { -1.0f,-1.0f,-1.0f, 1.0f, 0.0f, 1.0f },
. . . .
// Similar, specify +X, -Y, +Y, -Z, +Z faces
}

Updating the shader program

In addition to the vertex coordinates, now our vertex shader will also take the texture coordinates under consideration. The input texture coordinates are received at the layout location 1 in the inUV attribute. These coordinates are then passed on to the fragment shading stage and received in outUV. The following code shows the modification in the existing vertex shader in bold:

// Vertex Shader
#version 450
layout (std140, binding = 0) uniform bufferVals {
 mat4 mvp;
} myBufferVals;

layout (location = 0) in vec4 pos;
layout (location = 1) in vec2 inUV;

layout (location = 0) out vec2 outUV;

void main() {
 outUV = inUV;
 gl_Position = myBufferVals.mvp * pos;
 gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0;
}
The following code implements the fragment shader where the sampled texture is received at the layout binding index 1. The received texture is used with the input texture coordinates to fetch the fragment colors:

// Fragment Shader
#version 450
layout(binding = 1) uniform sampler2D tex;

layout (location = 0) in vec2 uv;
layout (location = 0) out vec4 outColor;

void main() {
outColor = texture(tex, uv);
}

Loading the image files

The image files are loaded in our sample application using the GLI library. OpenGL Image (GLI) is a header-only C++ image library that supports the loading of KTX and DDS image files for a graphics software application. It provides various features such as texture loading and creation, texture compression, accessing of the texture texels, sample textures, convert textures, mipmaps, and more.
You can download this library from http://gli.g-truc.net/0.8.1/index.html. In order to use this library, perform the following changes:
	CMakeLists.txt: Add GLI support by adding the following lines to the project's CMakeLists.txt file:

 # GLI SETUP
 set (EXTDIR "${CMAKE_SOURCE_DIR}/../../external/gli")
 set (GLIINCLUDES "${EXTDIR}")
 get_filename_component(GLIINC_PREFIX "${GLIINCLUDES}" ABSOLUTE)
 if(NOT EXISTS ${GLIINC_PREFIX})
 message(FATAL_ERROR "Necessary gli headers do not exist:
 " ${GLIINC_PREFIX})
 endif()
 include_directories(${GLIINC_PREFIX})

	Header files: This includes the header files for GLI in the Headers.h file:

 /*********** GLI HEADER FILES ***********/
 #include <gli/gli.hpp>

Using the GLI library

The following code is the minimal usage of the GLI library in our application. This code demonstrates image loading, the querying of a dimension, mipmap levels, and the retrieval of image data:

 // Load the image
 const char* filename = "../VulkanEssentials.ktx";
 gli::texture2D image2D(gli::load(filename));
 assert(!image2D.empty());

 // Get the image dimensions at ith sub-resource
 uint32_t textureWidth = image2D[i].dimensions().x;
 uint32_t textureHeight = image2D[i].dimensions().y;

 // Get number of mip-map levels
 uint32_t mipMapLevels = image2D.levels();

 // Retrieve the raw image data
 void* rawData = image2D.data();

Local image data structure

The wrapper.h contains a user-defined TextureData structure to hold the image attributes and various pieces of image-specific information in the application. The following is the syntax and description of each field:
struct TextureData{
 VkSampler sampler;
 VkImage image;
 VkImageLayout imageLayout;
 VkMemoryAllocateInfo memoryAlloc;
 VkDeviceMemory mem;
 VkImageView view;
 uint32_t mipMapLevels;
 uint32_t layerCount;
 uint32_t textureWidth, textureHeight;
 VkDescriptorImageInfo descsImgInfo;
};

The following table describes the various fields of the user-defined structure, TextureData:
	
Parameters

	
Description

	

sampler

	
This is the VkSampler object associated with the image object.

	

image

	
This is the VkImage object.

	

imageLayout

	
This contains specific implementation-dependent layout information of the image resource object.

	

memoryAlloc

	
This stores the memory allocation information bound with associated image object (VkImage).

	

mem

	
This refers to the physical device memory allocated for this image resource.

	

view

	
This is the ImageView object of image.

	

mipMapLevels

	
This refers to the number of mipmap levels in the image resource.

	

layerCount

	
This refers to the number of layer count in the image resource.

	

textureWidth

textureHeight

	
These are the dimensions of the image resource.

	

descsImgInfo

	
This is the descriptor image information that contains the image view and sample information with proper image layout usage type.

In the next section, we will start implementing our image resource and see it in action.

Implementing the image resource with linear tiling

In this section, we will implement the image resource with linear tiling and display a textured image on the faces of our rendering cube that we implemented in the last chapter.
As we learned in the Introduction to tiling section in Chapter 6, Allocating Image Resources and Building a Swapchain with WSI, there are two types of image tiling—linear and optimal:
	Linear tiling: In this type of tiling arrangement, the image texels are laid out in a row-by-row manner (row-major order), which might require some padding to match the row pitch. A row pitch defines the width of the row; as a result, if the laid out texel row is smaller than the row pitch, then padding is needed. The VkImageCreateInfo indicates the linear tiling through the tiling field (of the type VkImageTiling). This field must be specified as VK_IMAGE_TILING_LINEAR.
	Optimal tiling: As the name suggests, the image texels are laid out in an implementation-specific way meant for offering better performance by optimal memory access. Here, the tiling field must be specified as VK_IMAGE_TILING_OPTIMAL.

Linear image tiling is implemented in the createTextureLinear() function inside the VulkanRenderer class. This function takes four parameters. The first parameter (filename) specifies which image file to load. The second parameter is a TextureData data structure into which the created image and properties should be stored. The third parameter, imageUsageFlags, indicates the hints of the image resource specifying the purpose for which it will be used. The last parameter, format, specifies the image format into which the image object must be created. Here's the syntax of this:
void VulkanRenderer::createTextureLinear(const char* filename, TextureData *texture, VkImageUsageFlags imageUsageFlags, VkFormat format);

Let's understand and implement these functions step-by-step.
Loading the image file

Use the GLI library and load the image file:

// Load the image
gli::texture2D image2D(gli::load(filename)); assert(!image2D.empty());

// Get the image dimensions
texture->textureWidth = uint32_t(image2D[0].dimensions().x);
texture->textureHeight = uint32_t(image2D[0].dimensions().y);

// Get number of mip-map levels
texture->mipMapLevels = uint32_t(image2D.levels());

Creating the image object

Create the image object (VkImage) using the vkCreateImage API. The vkCreateImage() API uses VkImageCreateInfo. This structure specifies the image resource metadata. The usage field of VkImageCreateInfo must be passed with the VK_IMAGE_USAGE_SAMPLED_BIT bitwise flag since the textures will be consumed at the shader stage in the form of samplers:

// Create image resource states using VkImageCreateInfo
VkImageCreateInfo imageCreateInfo = {};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.pNext = NULL;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent.width = image2D[0].dimensions().x;
imageCreateInfo.extent.height = image2D[0].dimensions().y;
imageCreateInfo.extent.depth = 1;
imageCreateInfo.mipLevels = texture->mipMapLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.queueFamilyIndexCount = 0;
imageCreateInfo.pQueueFamilyIndices = NULL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.usage = imageUsageFlags;
imageCreateInfo.flags = 0;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED,
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;

// Use create image info and create the image objects
vkCreateImage(deviceObj->device, &imageCreateInfo, NULL, &texture->image);

The usage bit field of the create info structure specifies how the image resource will be used, for instance, the color image type for presentation, depth image type for depth testing, source and destination image type for transfer commands, and more. This information, provided in advance, is helpful in optimal resource management.
The image's usage flag of the VkImageCreateInfo control structure is described using the VkImageUsageFlagBits enum flag. The following is the syntax and description of each type:
typedef enum VkImageUsageFlagBits {
 VK_IMAGE_USAGE_TRANSFER_SRC_BIT = 0x00000001,
 VK_IMAGE_USAGE_TRANSFER_DST_BIT = 0x00000002,
 VK_IMAGE_USAGE_SAMPLED_BIT = 0x00000004,
 VK_IMAGE_USAGE_STORAGE_BIT = 0x00000008,
 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000010,
 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000020,
 VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT = 0x00000040,
 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT = 0x00000080,
} VkImageUsageFlagBits;

Let's look at these bitwise fields in detail to understand what they mean:
	
Enum type

	
Description

	

VK_IMAGE_USAGE_TRANSFER_SRC_BIT

	
With this, the image is used by the transfer command's (copy command) source.

	

VK_IMAGE_USAGE_TRANSFER_DST_BIT

	
With this, the image is used by the transfer command's (copy command) destination.

	

VK_IMAGE_USAGE_SAMPLED_BIT

	

This image type is used as a sampler at the shading stage through the image view type, where the associated descriptor set slot (VkDescriptorSet) type could be either VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER.

The sampled image in the shader is used for address calculations, controlling the filtering behavior, and other attributes.

	

VK_IMAGE_USAGE_STORAGE_BIT

	
Use this image type for load, store, and atomic operations on the image memory. The image view is associated with a descriptor-type slot of the type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

	

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

	
The image view created from this type of image resource is appropriate for either the color attachment or the resolve attachment associated with the framebuffer object (VkFrameBuffer).

	

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

	
The image view created from this type of image resource is appropriate for either the depth/stencil attachment or the resolve attachment associated with the framebuffer object (VkFrameBuffer).

	

VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT

	
The image type represented by this flag is allocated lazily. The memory type for this must be specified as VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT. Note that if this flag is specified, then VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT must not be used.

	

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

	
The image view created from this type of image resource is appropriate for the input attachment at the shader stage and in the framebuffer. The image view must be associated with the descriptor set slot (VkDescriptorSet) of the type VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.

Note
The memory allocated with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit flag is not allocated upfront as per the requested size, but it may be allocated in a monotonic fashion where memory gradually increases as per application demand.

The flag field in the VkImageCreateInfo enum hints the underlying application how it manages various image resources, such as memory, format, and attributes, using the VkImageCreateFlagBits enum. The following is the syntax and description of each type:
typedef enum VkImageCreateFlagBits {
 VK_IMAGE_CREATE_SPARSE_BINDING_BIT = 0x00000001,
 VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
 VK_IMAGE_CREATE_SPARSE_ALIASED_BIT = 0x00000004,
 VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT = 0x00000008,
 VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT = 0x00000010,
 VK_IMAGE_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
} VkImageCreateFlagBits;
typedef VkFlags VkImageCreateFlags;

Let's understand the flag definitions:
	

Flags

	

Description

	

VK_IMAGE_CREATE_SPARSE_BINDING_BIT

	
Here, the image is fully stored using sparse memory binding.

	

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

	
Here, the image can be stored partially using sparse memory binding. In order to use this field, the image must have the VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag.

	

VK_IMAGE_CREATE_SPARSE_ALIASED_BIT

	
In this type of flag, the image is stored into sparse memory, and it also can hold multiple portions of the same image in the same memory regions. The image must be created using the VK_IMAGE_CREATE_SPARSE_BINDING_BIT flag.

	

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

	
This allows the image view's format to differ from the image's format.

	

VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT

	
This flag indicates that the VkImageView of the type VK_IMAGE_VIEW_TYPE_CUBE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY can be created from the image (VkImage) object.

Memory allocation and binding

The created image object does not have any device memory backing. In this step, we will allocate the physical device memory and bind it with the created texture->image. For more information on memory allocation and the binding process, refer to the Memory allocation and binding image resources section in Chapter 6, Allocating Image Resources and Building a Swapchain with WSI:

// Get the buffer memory requirements
VkMemoryRequirements memoryRequirements;
vkGetImageMemoryRequirements(deviceObj->device, texture->image,
 &memoryRequirements);

// Create memory allocation metadata information
VkMemoryAllocateInfo& memAlloc = texture->memoryAlloc;
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.pNext = NULL;
memAlloc.allocationSize = memoryRequirements.size;
memAlloc.memoryTypeIndex = 0;

// Determine the type of memory required

// with the help of memory properties
deviceObj->memoryTypeFromProperties
 (memoryRequirements.memoryTypeBits,
 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
 &texture->memoryAlloc.memoryTypeIndex);

// Allocate the memory for buffer objects
vkAllocateMemory(deviceObj->device,
 &texture->memoryAlloc, NULL, &(texture->mem));

// Bind the image device memory
vkBindImageMemory(deviceObj->device, texture->image,
 texture->mem, 0);

Populating the allocated device memory

Push the image data on the GPU using the mapping (vkMapMemory) and unmapping (vkUnmapMemory) function. First, query the resource layout information with the vkGetImageSubresourceLayout() API. The layout information provides the rowPitch information that is utilized to store the image data in a row-by-row fashion:
VkImageSubresource subresource = {};
subresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresource.mipLevel = 0;
subresource.arrayLayer = 0;

VkSubresourceLayout layout;
uint8_t *data;

vkGetImageSubresourceLayout(deviceObj->device,
 texture->image, &subresource, &layout);

// Map the GPU memory on to local host
error = vkMapMemory(deviceObj->device, texture->mem, 0, texture
 ->memoryAlloc.allocationSize, 0, (void**)&data);
assert(!error);

// Load image texture data in the mapped buffer
uint8_t* dataTemp = (uint8_t*)image2D.data();
for (int y = 0; y < image2D[0].dimensions().y; y++)
{
 size_t imageSize = image2D[0].dimensions().y * 4;
 memcpy(data, dataTemp, imageSize);
 dataTemp += imageSize;

 // Advance row-by-row pitch information
 data += layout.rowPitch;
}

// UnMap the host memory to push changes into the device memory
vkUnmapMemory(deviceObj->device, texture->mem);

Creating the command buffer object

The image resource objects are created using the command buffer object, cmdTexture, defined in the VulkanRenderer class:

// Command buffer allocation and recording begins
CommandBufferMgr::allocCommandBuffer(&deviceObj->device,
 cmdPool, &cmdTexture);
CommandBufferMgr::beginCommandBuffer(cmdTexture);

Setting the image layout

Set the image layout (VkImageLayout) with the setImageLayout() function. For more information on this function, refer to the Set the image layout with memory barriers section in Chapter 6, Allocating Image Resources and Building a Swapchain with WSI:
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = texture->mipMapLevels;
subresourceRange.layerCount = 1;

texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;

setImageLayout(texture->image, VK_IMAGE_ASPECT_COLOR_BIT,
 VK_IMAGE_LAYOUT_PREINITIALIZED, texture->imageLayout,
 VK_ACCESS_HOST_WRITE_BIT, subresourceRange, cmdTexture);

Submitting the command buffer

End the command buffer recording and submit the command buffer to the graphics queue. Also, create a fence that ensures the command buffer execution is completed. If the fence is signaled, it means the image object is successfully created with the specified image layout. Fences are used to synchronize the host and device operations.
In the following implementation, we create a fence object (fenceCI) on the host and submit it to the queue using the queue submission command (vkQueueSubmit). This fence will ensure that the first half of the memory operations is guaranteed to be executed before any further commands are executed. The guarantee is provided by the fence object, which is signaled by the device when the image layout is successfully created. The host must wait to execute any other operation until the fence is signaled.
Note
For more information on fences, refer to the Understanding synchronization primitives in Vulkan section in Chapter 9, Drawing Objects.

The following code snippet shows two things, first, the command buffer recording is completed and ready to be submitted in the graphics queue. Second, we created the fence object and wait upon it on the host side to let the GPU finish operations on the submitted command buffer containing the texture processing request:

// Stop command buffer recording
CommandBufferMgr::endCommandBuffer(cmdTexture);

// Create a fence to make sure that the

// copies have finished before continuing
VkFence fence;
VkFenceCreateInfo fenceCI= {};
fenceCI.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceCI.flags = 0;

vkCreateFence(deviceObj->device, &fenceCI, nullptr, &fence);

VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.pNext = NULL;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdTexture;

CommandBufferMgr::submitCommandBuffer(deviceObj->queue,
 &cmdTexture, &submitInfo, fence);

// Wait for maximum 10 seconds, if fence is not signaled
vkWaitForFences(deviceObj->device, 1, &fence,
 VK_TRUE, 10000000000);
vkDestroyFence(deviceObj->device, fence, nullptr);

Creating an image sampler

A sampler is an object that contains a set of algorithms that controls the appearance of formatted image data by controlling various parameters. These parameters control image transformation, minification and magnification filtering, mipmapping, and wrapping, and produces the final sample array of image texels.
In Vulkan, image samplers are created using the vkCreateSampler() API. This API accepts four parameters as shown in the following API syntax. The first parameter device is the logical device that is responsible for creating the sampler object. The second parameter is the image attribute controller structure of type VkSamplerCreateInfo; we will discuss this next. The third parameter (pAllocator) controls the host memory allocation; this API creates and returns the sampler object in the last parameter called pSampler:
VKAPI_ATTR VkResult VKAPI_CALL vkCreateSampler(
 VkDevice device,
 const VkSamplerCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSampler* pSampler);
These various relevant image attribute controller parameters are passed into the aforementioned API using the VkSamplerCreateInfo structure; the following is the syntax of this API:
typedef struct VkSamplerCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkSamplerCreateFlags flags;
 VkFilter magFilter;
 VkFilter minFilter;
 VkSamplerMipmapMode mipmapMode;
 VkSamplerAddressMode addressModeU;
 VkSamplerAddressMode addressModeV;
 VkSamplerAddressMode addressModeW;
 float mipLodBias;
 VkBool32 anisotropyEnable;
 float maxAnisotropy;
 VkBool32 compareEnable;
 VkCompareOp compareOp;
 float minLod;
 float maxLod;
 VkBorderColor borderColor;
 VkBool32 unnormalizedCoordinates;
} VkSamplerCreateInfo;
Let's take a look at each and every field in the following table:
	
Parameter

	
Description

	

sType

	
This is the type information of this control structure. It must be specified as VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO.

	

pNext

	
This could be a valid pointer to an extension-specific structure or could be NULL.

	

flags

	
This future reserved field is not in use at present.

	

magFilter

	
This field corresponds to the magnification filter. It is of type VkFilter enum and can take VK_FILTER_NEAREST and VK_FILTER_LINEAR values as an input. We will discuss these filtering options and see their effects later in this section.

	

minFilter

	
This field corresponds with the minification filter.

	

mipmapMode

	
This field is used to specify the mipmapping filtering modes and accepts enum values of type VkSamplerMipmapMode, as follows:

typedef enum VkSamplerMipmapMode { VK_SAMPLER_MIPMAP_MODE_NEAREST = 0, VK_SAMPLER_MIPMAP_MODE_LINEAR = 1, } VkSamplerMipmapMode;

	

addressModeU

	
This field controls image wrapping along the U coordinate, when the image texel coordinates are beyond the [0 .. 1] range.

	

addressModeV

	
This field controls image wrapping along the V coordinate when the image texel coordinates are beyond the [0 .. 1] range.

	

addressModeW

	
This field controls image wrapping along the W coordinate when the image texel coordinates are beyond the [0 .. 1] range.

	

mipLodBias

	
This is a floating bias value that is added to the mipmap level of detail (LOD) calculation.

	

anisotropyEnable

	
This Boolean field indicates whether anisotropic filtering is enabled (VK_TRUE) or disabled(VK_FALSE).

	

maxAnisotropy

	
This is the maximum anisotropic filtering value used for clamping purposes.

	

compareEnable

	
This Boolean field indicates whether to compare against the reference value while filtering lookups.

	

compareOp

	
The fetched texel data can be compared using the comparison function specified in this field before performing the desired filtering.

	

minLod

	
This indicates the minimum clamping value to be used for the computed LOD.

	

maxLod

	
This indicates the Maximum clamping value to be used for the computed LOD.

	

borderColor

	
This is the predefined color that is used to replace an existing texel with the specified border color. The border color is specified using VkBorderColor, as follows:

typedef enum VkBorderColor { VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK = 0, VK_BORDER_COLOR_INT_TRANSPARENT_BLACK = 1, VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK = 2, VK_BORDER_COLOR_INT_OPAQUE_BLACK = 3, VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE = 4, VK_BORDER_COLOR_INT_OPAQUE_WHITE = 5, } VkBorderColor;

	

unnormalizedCoordinates

	
This Boolean field indicates whether to use unnormalized texel coordinates (VK_TRUE) or normalized texel coordinates (VK_FALSE) for texel lookup.

Filtering

Texture filtering controls the appearance of the texture quality when texture is scaled-in or scaled-out. At a correct depth, one texel may corresponds with exactly one pixel onscreen. However, mapping a smaller texture on a bigger geometry may cause the texture to appear stretched. This is called magnification; in other words, the image size is smaller than the geometry size onto which it needs to be mapped. On the other hand, when the geometry shape is smaller than the image size, many texels share a few pixels, resulting in the image shrinking. This is called minification.
Magnification and minification image effects can be controlled using filtering modes; Vulkan uses the VkFilter enum. This enum has the following two fields:
	VK_FILTER_NEAREST: The sample uses the texel closest to the specified texture coordinates.
	VK_FILTER_LINEAR: This uses the weighted average of the four surrounding pixels closest to the computing texture coordinates.

[image: Filtering]

The filtering modes are specified in the magFilter and minFilter of VkSamplerCreateInfo.

Wrapping modes

Vulkan supports sample addressing modes through VkSamplerAddressMode along the U, V, and W texture coordinates when the range of texture mapping is greater than 1.0; Vulkan sampling allows the following types of wrapping address mode:
	VK_SAMPLER_ADDRESS_MODE_REPEAT: This produces repeating patterns.
	VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: This produces a repeating pattern with adjacent texels mirrored.
	VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: This repeats the border texels until edges are reached; refer to the following screenshot for more information.
	VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: The texels beyond the border are clamped.

In the following screenshot, we used texture coordinates range greater than [0 .. 1] and demonstrated the use of wrapping modes:

[image: Wrapping modes]

Addressing modes are specified in VkSamplerCreateInfo using the addressModeU, addressModeV, and addressModeW fields.
The following is the code implement sampler in the Vulkan API:

// Specify a particular kind of texture using samplers
VkSamplerCreateInfo samplerCI = {};
samplerCI.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCI.pNext = NULL;
samplerCI.magFilter = VK_FILTER_LINEAR;
samplerCI.minFilter = VK_FILTER_LINEAR;
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.mipLodBias = 0.0f;

if (deviceObj->deviceFeatures.samplerAnisotropy == VK_TRUE)
{
 samplerCI.anisotropyEnable = VK_TRUE;
 samplerCI.maxAnisotropy = 8;
}
else
{
 samplerCI.anisotropyEnable = VK_FALSE;
 samplerCI.maxAnisotropy = 1;
}

samplerCI.compareOp = VK_COMPARE_OP_NEVER;
samplerCI.minLod = 0.0f;
samplerCI.maxLod = 0.0f;
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT
 _OPAQUE_WHITE;
samplerCI.unnormalizedCoordinates = VK_FALSE;

// Create the sampler
error = vkCreateSampler(deviceObj->device, &samplerCI,
 NULL, &texture->sampler);
assert(!error);

// Specify the sampler in the texture's descsImgInfo
texture->descsImgInfo.sampler = texture->sampler;
If isotropic filtering is used, then the device must enable the samplerAnisotropy feature. This feature can be enabled when the logical device is created (VkDevice), if the physical device is capable of supporting it.
The vkGetPhysicalDeviceFeatures() API queries the features of the physical device; this API accepts two parameters. The first parameter (physicalDevice) indicates the physical device handle. The second parameter (pFeatures) is the VkPhysicalDeviceFeatures control structure; it contains the predefined feature list that will be checked again to test whether it is supported or not:
void vkGetPhysicalDeviceFeatures(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceFeatures* pFeatures);
Once the vkGetPhysicalDeviceFeatures() API is called, it stores a Boolean value for each feature, indicating whether it is supported or not. The Boolean VK_TRUE indicates that the feature is supported; the Boolean VK_FALSE means the feature is not supported by the physical device.
If VkPhysicalDeviceFeatures::samplerAnisotropy is supported by your physical device, then enable it while creating the logical device. This can be done by creating a new object of VkPhysicalDeviceFeatures and setting samplerAnisotropy to VK_TRUE if samplerAnisotropy is supported, as shown in the following code:
VkResult VulkanDevice::createDevice(std::vector<const char *>& layers, std::vector<const char *>& extensions)
{

 // Many lines skipped please refer to source code.
 VkPhysicalDeviceFeatures getEnabledFeatures;
 vkGetPhysicalDeviceFeatures(*gpu, &getEnabledFeatures);

 VkPhysicalDeviceFeatures setEnabledFeatures = { VK_FALSE };
 setEnabledFeatures.samplerAnisotropy =
 getEnabledFeatures.samplerAnisotropy;

 VkDeviceCreateInfo deviceInfo = {};
 deviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE
 _CREATE_INFO;
 deviceInfo.pNext = NULL;
 deviceInfo.queueCreateInfoCount = 1;
 deviceInfo.pQueueCreateInfos = &queueInfo;
 deviceInfo.enabledLayerCount = 0;
 deviceInfo.ppEnabledLayerNames = NULL;
 deviceInfo.enabledExtensionCount = (uint32_t) extensions.size();
 deviceInfo.ppEnabledExtensionNames = extensions.size() ?
 extensions.data() : NULL;
 deviceInfo.pEnabledFeatures = &setEnabledFeatures;

 result = vkCreateDevice(*gpu, &deviceInfo, NULL, &device);
 assert(result == VK_SUCCESS);

 return result;
}

Creating the image view

Create the image view and store it in the local TextureData object's texture. The flag field must be VK_IMAGE_VIEW_TYPE_2D:

// Specify the attribute used in create the image view
VkImageViewCreateInfo viewCI = {};
viewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCI.pNext = NULL;
viewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCI.format = format;
viewCI.components.r = VK_COMPONENT_SWIZZLE_R;
viewCI.components.g = VK_COMPONENT_SWIZZLE_G;
viewCI.components.b = VK_COMPONENT_SWIZZLE_B;
viewCI.components.a = VK_COMPONENT_SWIZZLE_A;
viewCI.subresourceRange = subresourceRange;
viewCI.flags = 0;
viewCI.image = texture->image;

// Create the image view
error = vkCreateImageView(deviceObj->device, &viewCI,
 NULL, &texture->view);
assert(!error);

The flag field indicates the type of the image view (VkImageViewType) that is going to be created. These types are provided as follows, which are self-descriptive:
typedef enum {
 VK_IMAGE_VIEW_TYPE_1D = 0,
 VK_IMAGE_VIEW_TYPE_2D = 1,
 VK_IMAGE_VIEW_TYPE_3D = 2,
 VK_IMAGE_VIEW_TYPE_CUBE = 3,
 VK_IMAGE_VIEW_TYPE_1D_ARRAY = 4,
 VK_IMAGE_VIEW_TYPE_2D_ARRAY = 5,
 VK_IMAGE_VIEW_TYPE_CUBE_ARRAY = 6,
} VkImageViewType;

Implementing the image resource with optimal tiling

Optimal tiling is implemented through the staging buffer. First, a buffer resource object is created and stored with the raw image data contents. Next, the buffer resource data contents are copied to a newly created image object using the buffer-to-image copy command. The buffer-to-image copy command (vkCmdCopyBufferToImage) copies the buffer memory contents to the image memory.
In this section, we will implement the image resources using optimal tiling. In order to create an image resource with optimal tiling our user defined function VulkanRenderer::createTextureOptimal() can be used. This function takes parameters in the same way as the createTextureLinear() function:
void VulkanRenderer::createTextureOptimal(const char* filename, TextureData *texture, VkImageUsageFlags imageUsageFlags, VkFormat format);

Let's understand and implement these functions step by step.
Loading the image file

Load the image file and retrieve its dimensions and the mipmap-level information:

// Load the image
gli::texture2D image2D(gli::load(filename)); assert(!image2D.empty());

// Get the image dimensions
texture->textureWidth = uint32_t(image2D[0].dimensions().x);
texture->textureHeight = uint32_t(image2D[0].dimensions().y);

// Get number of mip-map levels
texture->mipMapLevels = uint32_t(image2D.levels());

Buffer object memory allocation and binding

The created image object does not have any device memory backing. In this step, we will allocate the physical device memory and bind it with the created texture->image. For more information on memory allocation and the binding process, refer to the Memory allocation and binding image resources section in Chapter 6, Allocating Image Resources and Building a Swapchain with WSI:

// Create a staging buffer resource states using.

// Indicate it be the source of the transfer command.

// .usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT
VkBufferCreateInfo bufferCreateInfo = {};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = image2D.size();
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

// Get the buffer memory requirements for the staging buffer
VkMemoryRequirements memRqrmnt;
VkDeviceMemory devMemory;
vkGetBufferMemoryRequirements(deviceObj->device, buffer,
 &memRqrmnt);

VkMemoryAllocateInfo memAllocInfo = {};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAllocInfo.pNext = NULL;
memAllocInfo.allocationSize = 0;
memAllocInfo.memoryTypeIndex = 0;
memAllocInfo.allocationSize = memRqrmnt.size;

// Determine the type of memory required for

// the host-visible buffer
deviceObj->memoryTypeFromProperties(memRqrmnt.memoryTypeBits,
 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
 &memAllocInfo.memoryTypeIndex);

// Allocate the memory for host-visible buffer objects -
error = vkAllocateMemory(deviceObj->device, &memAllocInfo,
 nullptr, &devMemory);
assert(!error);

// Bind the host-visible buffer with allocated device memory -
error=vkBindBufferMemory(deviceObj->device,buffer,devMemory,0);
assert(!error);

Populating the allocated device memory

Use vkMapMemory() and populate the raw contents of the loaded image into the buffer object's device memory. Once mapped, use vkUnmapMemory() to complete the process of uploading data from the host to the device memory:

// Populate the raw image data into the device memory
uint8_t *data;
error = vkMapMemory(deviceObj->device, devMemory, 0,
 memRqrmnt.size, 0, (void **)&data);
assert(!error);

memcpy(data, image2D.data(), image2D.size());
vkUnmapMemory(deviceObj->device, devMemory);

Creating the image object

The image's create info object (VkImageCreateInfo) must be created using tiling (.tiling) options as optimal tiling (VK_IMAGE_TILING_OPTIMAL). In addition, the image's usage flag must be set with VK_IMAGE_USAGE_TRANSFER_DST_BIT, making it a destination for the copy commands to transfer data contents to texture->image from the buffer object:

// Create image info with optimal tiling

// support (.tiling = VK_IMAGE_TILING_OPTIMAL)
VkImageCreateInfo imageCreateInfo = {};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.pNext = NULL;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = texture->mipMapLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { texture->textureWidth,
 texture->textureHeight, 1 };
imageCreateInfo.usage = imageUsageFlags;

// Set image object with VK_IMAGE_USAGE_TRANSFER_DST_BIT if

// not set already. This allows to copy the source VkBuffer

// object (with VK_IMAGE_USAGE_TRANSFER_DST_BIT) contents

// into this image object memory(destination).
if (!(imageCreateInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT)){
 imageCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}

error = vkCreateImage(deviceObj->device, &imageCreateInfo,
 nullptr, &texture->image);
assert(!error);

Image object memory allocation and binding

Allocate the physical memory backing and bind it with the created texture->image. For more information on memory allocation and the binding process, refer to the Memory allocation and binding image resources section in Chapter 6, Allocating Image Resources and Building a Swapchain with WSI:

// Get the image memory requirements
vkGetImageMemoryRequirements(deviceObj->device, texture->image,
 &memRqrmnt);

// Set the allocation size equal to the buffer allocation
memAllocInfo.allocationSize = memRqrmnt.size;

// Determine the type of memory required with the help of memory properties
deviceObj->memoryTypeFromProperties(memRqrmnt.memoryTypeBits,
 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
 &memAllocInfo.memoryTypeIndex);

// Allocate the physical memory on the GPU
error = vkAllocateMemory(deviceObj->device, &memAllocInfo,
 nullptr, &texture->mem);
assert(!error);

// Bound the physical memory with the created image object
error = vkBindImageMemory(deviceObj->device, texture->image,
 texture->mem, 0);
assert(!error);

Creating a command buffer object

The image resource objects are created using the command buffer object, cmdTexture, defined in the VulkanRenderer class. Allocate the command buffer to set the image layout and start recording the command buffer:

// Command buffer allocation and recording begins
CommandBufferMgr::allocCommandBuffer(&deviceObj->device,
 cmdPool, &cmdTexture);
CommandBufferMgr::beginCommandBuffer(cmdTexture);

Setting the image layout

Set the image layout (VkImageLayout) to be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL since the data contents will be copied from the staging buffer object (source) to the image object (destination). For more information on the setImageLayout() function, refer to the Set the image layout with memory barriers section in Chapter 6, Allocating Image Resources and Building a Swapchain with WSI:
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = texture->mipMapLevels;
subresourceRange.layerCount = 1;

// Set the image layout to be

// VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL

// since it is destination for copying buffer

// into image using vkCmdCopyBufferToImage -
setImageLayout(texture->image, VK_IMAGE_ASPECT_COLOR_BIT,
 VK_IMAGE_LAYOUT_UNDEFINED,VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
 (VkAccessFlagBits)0, subresourceRange, cmdTexture);

Buffer to image copy

Create buffer image copy regions for the image object and its subresource mipmaps. Use the copy command to transfer the buffer object's (buffer) device memory contents to the image object's (texture->image) memory contents:

// List contain buffer image copy for each mipLevel
std::vector<VkBufferImageCopy> bufferImgCopyList;

uint32_t bufferOffset = 0;
// Iterater through each mip level and set buffer image copy
for (uint32_t i = 0; i < texture->mipMapLevels; i++)
{
 VkBufferImageCopy bufImgCopyItem = {};
 bufImgCopyItem.imageSubresource.aspectMask =
 VK_IMAGE_ASPECT_COLOR_BIT;
 bufImgCopyItem.imageSubresource.mipLevel = i;
 bufImgCopyItem.imageSubresource.layerCount = 1;
 bufImgCopyItem.imageSubresource.baseArrayLayer = 0;
 bufImgCopyItem.imageExtent.width =
 uint32_t(image2D[i].dimensions().x);
 bufImgCopyItem.imageExtent.height =
 uint32_t(image2D[i].dimensions().y);
 bufImgCopyItem.imageExtent.depth = 1;
 bufImgCopyItem.bufferOffset = bufferOffset;

 bufferImgCopyList.push_back(bufImgCopyItem);

 // adjust buffer offset
 bufferOffset += uint32_t(image2D[i].size());
}

// Copy the staging buffer memory data containing the

// staged raw data(with mip levels) into the image object
vkCmdCopyBufferToImage(cmdTexture, buffer, texture->image,
 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
 uint32_t(bufferImgCopyList.size()),
 bufferImgCopyList.data());

For more information on the copy commands, please refer to our next section, Understanding the copy commands.

Setting the optimal image layout

Set the image layout, indicating the new layout to be optimal tiling compatible. The underlying implementation uses this flag and chooses a suitable technique to lay out the image contents in an optimal manner:

// Advised to change the image layout to shader read

// after staged buffer copied into image memory
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
setImageLayout(texture->image, VK_IMAGE_ASPECT_COLOR_BIT,
 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
 texture->imageLayout,
 subresourceRange, cmdTexture);

Note
The layout of an image can be controlled at:
a) Creation of the image resource by specifying the initial layout
b) Specifying explicitly using memory barriers
c) Or while using it in the Render Pass

Submitting the command buffer

Finalize the command buffer recording and submit it to the graphics queue:

// Submit command buffer containing copy

// and image layout commands
CommandBufferMgr::endCommandBuffer(cmdTexture);

// Create a fence object to ensure that the command

// buffer is executed, coping our staged raw data

// from the buffers to image memory with

// respective image layout and attributes into consideration
VkFence fence;
VkFenceCreateInfo fenceCI = {};
fenceCI.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceCI.flags = 0;

error = vkCreateFence(deviceObj->device, &fenceCI, nullptr,
 &fence);
assert(!error);

VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.pNext = NULL;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdTexture;

CommandBufferMgr::submitCommandBuffer(deviceObj->queue,
 &cmdTexture, &submitInfo, fence);

error = vkWaitForFences(deviceObj->device, 1, &fence, VK_TRUE,
 10000000000);
assert(!error);

vkDestroyFence(deviceObj->device, fence, nullptr);

// destroy the allocated resoureces
vkFreeMemory(deviceObj->device, devMemory, nullptr);
vkDestroyBuffer(deviceObj->device, buffer, nullptr);

Add a fence as a synchronization primitive to ensure the image layout is prepared successfully before it could utilize the image. Release the fence object once the fence is signaled. In case the fence fails to signal, then the wait command vkWaitForFences() waits for a maximum of 10 seconds to ensure the system never halts or goes into an infinite wait condition.
Note
For more information on fences, refer to the Understanding synchronization primitives in Vulkan section in Chapter 9, Drawing Objects.

Creating an image sampler

Create an image sampler with linear filtering for minification (minFilter) and magnification (magFilter) and also enable anisotropy filtering:

// Create sampler
VkSamplerCreateInfo samplerCI = {};
samplerCI.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCI.pNext = NULL;
samplerCI.magFilter = VK_FILTER_LINEAR;
samplerCI.minFilter = VK_FILTER_LINEAR;
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.mipLodBias = 0.0f;

if (deviceObj->deviceFeatures.samplerAnisotropy == VK_TRUE)
{
 samplerCI.anisotropyEnable = VK_TRUE;
 samplerCI.maxAnisotropy = 8;
}
else
{
 samplerCI.anisotropyEnable = VK_FALSE;
 samplerCI.maxAnisotropy = 1;
}

samplerCI.compareOp = VK_COMPARE_OP_NEVER;
samplerCI.minLod = 0.0f;
samplerCI.maxLod = (float)texture->mipMapLevels;
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
samplerCI.unnormalizedCoordinates = VK_FALSE;

error = vkCreateSampler(deviceObj->device, &samplerCI, nullptr,
 &texture->sampler);
assert(!error);

// Specify the sampler in the texture's descsImgInfo
texture->descsImgInfo.sampler = texture->sampler;

Creating the image view

Create the image view and store it in the local TextureData object's texture:

// Create image view to allow shader to
// access the texture information
VkImageViewCreateInfo viewCI = {};
viewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCI.pNext = NULL;
viewCI.image = VK_NULL_HANDLE;
viewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCI.format = format;
viewCI.components.r = VK_COMPONENT_SWIZZLE_R;
viewCI.components.g = VK_COMPONENT_SWIZZLE_G;
viewCI.components.b = VK_COMPONENT_SWIZZLE_B;
viewCI.components.a = VK_COMPONENT_SWIZZLE_A;
viewCI.subresourceRange = subresourceRange;
viewCI.subresourceRange.levelCount = texture->mipMapLevels;
// Optimal tiling supports mip map levels very well set it.
viewCI.image = texture->image;

error = vkCreateImageView(deviceObj->device, &viewCI, NULL,
 &texture->view);
assert(!error);

// Fill descriptor image info that can be
// used for setting up descriptor sets
texture->descsImgInfo.imageView = texture->view;

Copying data content between images and buffers

Copy commands are special transfer commands that transfer data contents from one memory region to another. These regions could be between buffers objects, image objects, and buffer-to-image and vice versa.
Depending upon the application need, you may need to copy data between buffers and images in various situations. There are four types of copy commands available to accomplish this job:
	vkCmdCopyBuffer: Data contents are copied from the source buffer to the destination buffer object's device memory
	vkCmdCopyImage: A specific portion of the source image object is copied to the destination image region
	vkCmdCopyBufferToImage: Buffer object data contents are copied to the image objects
	vkCmdCopyImageToBuffer: Image object data contents are copied to the buffer objects

In the optimal tiling implementation, we used vkCmdCopyBufferToImage. The following is the syntax:
void vkCmdCopyBufferToImage(
 VkCommandBuffer commandBuffer,
 VkBuffer srcBuffer,
 VkImage dstImage,
 VkImageLayout dstImageLayout,
 uint32_t regionCount,
 const VkBufferImageCopy* pRegions);

This API accepts six parameters, which are explained in the following table:
	

Parameters

	

Description

	

commandBuffer

	
The vkCmdCopyImageToBuffer command will be recorded in this command buffer object.

	

srcBuffer

	
This refers to the source buffer (VkBuffer) object from where the data contents will be copied.

	

dstImage

	
This refers to the destination image (VkImage) object into which a portion of the data contents will be copied.

	

dstImageLayout

	
This is the dstImage object's image layout object (VkImageLayout).

	

regionCount

	
This is the total count of the copy regions upon which the transfer of data contents will be performed.

	

pRegions

	
This field is a pointer to an array of VkBufferCopy holding the regions' specification that will undergo data transfer.

In the next section, we will update the descriptor set with the image object, which contains the image layouts and image views, and render the image object on the 3D cube.

Updating the descriptor set

Once the texture is prepared by linear or optimal tiling, it is just a matter of updating the descriptor set with the created image resource object. This is done in the implemented VulkanDrawable::createDescriptorSet() function. The input parameter useTexture must be true to support the texture. The following highlights a single-line change that is required in this function to support the texture.
When the useTexture parameter is true, the second VkWriteDescriptorSet element (with index 1) is populated with the texture information. Here are two things that are of utmost importance:
	Setting the texture object: The pImageInfo field of VkWriteDescriptorSet must be set with the texture object's (TextureData) descsImgInfo (of the type VkDescriptorImageInfo).

	Layout binding: This must be equal to the index number specified in the fragment shader. For instance, in the present example, the sampler is received at the layout binding 1, therefore, writes[1].dstBinding= 1;:

 // Creates the descriptor sets using descriptor pool.

 // This function depend on the createDescriptorPool()

 // and createUniformBuffer().
 void VulkanDrawable::createDescriptorSet(bool useTexture)
 {
 VulkanPipeline* pipelineObj = rendererObj->getPipelineObject();
 VkResult result;

 // Create the descriptor allocation structure and specify
 // the descriptor pool and descriptor layout
 VkDescriptorSetAllocateInfo dsAllocInfo[1];
 dsAllocInfo[0].sType = VK_STRUCTURE_TYPE_DESCRIPTOR _SET_ALLOCATE_INFO;
 dsAllocInfo[0].pNext = NULL;
 dsAllocInfo[0].descriptorPool = descriptorPool;
 dsAllocInfo[0].descriptorSetCount = 1;
 dsAllocInfo[0].pSetLayouts = descLayout.data();

 // Allocate the number of descriptor set needs to be produced
 descriptorSet.resize(1);

 // Allocate descriptor sets
 result = vkAllocateDescriptorSets(deviceObj->device,
 dsAllocInfo, descriptorSet.data());
 assert(result == VK_SUCCESS);

 // Allocate two write descriptors for - 1. MVP and 2. Texture
 VkWriteDescriptorSet writes[2];
 memset(&writes, 0, sizeof(writes));

 // Specify the uniform buffer related
 // information into first write descriptor
 writes[0] = {};
 writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
 writes[0].pNext = NULL;
 writes[0].dstSet = descriptorSet[0];
 writes[0].descriptorCount = 1;
 writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
 writes[0].pBufferInfo = &UniformData.bufferInfo;
 writes[0].dstArrayElement = 0;
 writes[0].dstBinding = 0; // DESCRIPTOR_SET_BINDING_INDEX

 // If texture is used then update the second

 // write descriptor structure
 if (useTexture)
 {
 writes[1] = {};

 writes[1].sType = VK_STRUCTURE_TYPE_WRITE-

 _DESCRIPTOR_SET;

 writes[1].dstSet = descriptorSet[0];

 writes[1].dstBinding = 1;
 writes[1].descriptorCount = 1;

 writes[1].descriptorType = VK_DESCRIPTOR_TYPE_

 COMBINED_IMAGE_SAMPLER;

 writes[1].pImageInfo = &textures->descsImgInfo;

 /
 }

 // Update the uniform buffer into the allocated descriptor set
 vkUpdateDescriptorSets(deviceObj->device,
 useTexture ? 2 : 1, writes, 0, NULL);
 }

For more information on this function and the creation of the descriptor set, refer to the Creating the descriptor sets section in Chapter 10, Descriptors and Push Constant.
The following is the output of the rendered texture:

[image: Updating the descriptor set]

Summary

This chapter implemented the image resources and rendered the texture on a 3D geometry object. It opened with a quick recap of the fundamentals of image resource and covered the basic concepts of image objects, image layouts, and image views.
We implemented texture rendering with linear and optimal tiling schemes. The former is simple to implement and is purely based on the image type resource. The latter scheme is implemented using staging, where both buffer and image resources are used; in this scheme, the image is first stored in the buffer object and transferred to the image object using copy commands.

graphics/image_02_006.jpg
Heap

Memory

Image Buffer

graphics/image_08_009.jpg
—)

VO V3 e V3
VK_PRIMITIVE_TOPOLOGY_LINE_LIST

graphics/image_08_012.jpg
VO
VK PRIMITIVE TOPOLOGY TRIANGLE STRIP

graphics/image_01_009.jpg
Physical Pages

Bound object

graphics/image_07_005.jpg
VulkanApplication::render()

VulkanRenderer::render()

VulkanDrawable::render()

graphics/image_08_010.jpg
VO V3
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP

graphics/image_04_001.jpg
[[VK_DEBUG_REPORT)
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_pEBUG_REPORT]
[VK_DEBUG_REPORT]
[Vi_DEBUG_REPORT]
[Vi_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[Vi_DEBUG_REPORT]
[VK_DEBUG_REPORT]
[VK_pEBUG_REPORT]
[VK_DEBUG_REPORT]

DEBUG: [loader] Code 8 : Device Extension: VK_KHR_swapchain (C:\Windows\Systen32\nvoglvé4.dl1) version 0.0.67

DEBUG: [loader] Code © : Device Extension:
DEBUS: [loader] Code © : Device Extension
DEBUG: [loader] Code @ : Device Extension:
DEBUG: [loader] Code © : Device Extension
OBUG: [loader] Code © : Device Extension:

VKIW_g151_shader (C:\Windows\Systen32\nvoglvé4.dl1) version 0.6.1
VK_KHR_sampler._mirror_clamp_to_edge (C:\Windows\systen32\nvoglve4.dll) version ©.8.1
VK KHR_swapchain (Unknown) version ©.0.67

VKIW_gls1_shader (Unknown) version 0.6.1

VK_KHR_sampler_mirror_clamp_to_edge (Unknown) version ©.0.1

WARNING: [loader] Code © : Warning, couldn't Find layer name VK_LAYER_LUNARG_api_dumpXXX to activate
WARNING: [loader] Code @ : Warning, couldn't find layer name VK_LAYER_LUNARG_api_dumpXXX to activate

DEBUG: [loader] Code @ : device Chain: Inc

rement layer reference count for layer library C:\VulkanSDK\1.8.8.0\Bin\.\\VkLayer_swapchain.dll

INFORMATION: [loader] Code © : Insert device layer VK_LAYER LUNARG_swapchain (C:\VulkanSDK\1.9.8.0\Bin\.\\VkLayer_swapchain.dll)

DEBUG: [loader] Code © : device Chain: Inci
INFORMATION: [loader] Code © : Insert devi
DEBUG: [loader] Code @ : device Chain: Incy
INFORMATION: [loader] Code @
DEBUG: [loadar] Code © : device Chain: Inci
INFORWATION: [loader] Code 0 Insert devi
DcBUG: [losdar] Code © : device Chain: Inc
INFORMATION: [loader] Code @ : Insert devi
DEBUG: [loader] Code @ : device Che Inc
INFORUATION: [loader] Code 0 : Insert devi
DEBUG: [losdsr] Code © : device Chain: Inc
INFORMATION: [loader] Code @ : Insert devi
DEBUG: [loader] Code @ : Device Extension
OBUG: [loader] Code © : Device Extension:
DEBUG: [loader] Code © : Device Extension
INFORMATION: [OBITRACK] Code @ : 08J[2]

Press any key to continue

rement layer reference count for layer library C:\VulkanSDK\1.8.8.0\Bin\.\\VkLayer_core_validation.dll

ce layer VK_LAYER LUNARG_core_validation (C:\VulkanSDK\1.0.8.0\Bin\.\\VkLayer_core_validation.dl1)

rement layer reference count for layer library C:\VulkanSDK\1.8.8.8\8in\.\\VkLayer_image.dll

Insert device layer VK_LAYER_LUNARG_image (C:\VulkanSDK\1.0.8.0\Bin\.\\VkLayer._image.d11)
rement layer reference count for layer library C:\VulkanSDK\1.8.8.6\Bin\.\\VkLayer_object_tracker.dll

ce layer VK_LAYER_LUNARG_Object_tracker (C:\VulkanSDK\1..8.0\Bin\.\\VkLayer_object_tracker.d1l)

rement layer reference count for layer library C:\VulkansDK\1.8.8.0\Bin\.\\VkLayer_device limits.dll

ce layer VK_LAYER_LUNARG_device_limits (C:\VulkanSDK\1.0.8.8\Bin\.\\VkLayer_device limits.dll)

rement layer reference count for layer library C:\VulkanSDK\1.8.8.6\Bin\.\\VkLayer_parameter_validation.dll

ce layer VK_LAYER_LUNARG_parameter_validation (C:\VulkanSDK\1.6.8.0\Bin\.\\VkLayer_parameter_validation.dll)

rement layer reference count for layer library C:\VulkanSDK\1.6.8.0\Bin\.\\VkLayer_threading.dll

ce layer VK_LAYER GOOGLE_threading (C:\VulkanSDK\1.0.8.0\Bin\.\\VkLayer._threading.dl1)
VK_KHR_swapchain (C:\Windows\Systen32\nvoglve4.dl1) version 0.0.67
VKIW_g1s1_shader (C:\Windows\Systen32\nvoglvé4.dl1) version 0.8.1
VK_KHR_sampler._mirror_clamp_to_edge (C:\Windows\Systen32\nvoglvéd.dl1) version 0.8.1

+ CREATE VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT object 0x1f2627e5840

graphics/image_10_001.jpg
Create uniform buffer resource

Gather the buffer memory requirement
Determine the type of memory in which buffer to be allocated

Allocate the device memory using gather memory requirements

Map memory, push data,
flush host’s mapped memory pending writes

Bind device memory to created buffer resource

Create buffer view [Optional — only when used by shaders]

graphics/image_01_007.jpg
’}V@

(Image) (_window) (_Final Output)

graphics/image_06_007.jpg
Pitch

<
WNI—\O/><
O » ©
O @® +»

Image Data

-

Offset position = Y * Pitch + X

A o [< o ENEN,
SEFIFNRTIVVEY

Image Memory

graphics/image_01_002.jpg
Vulkan

Application

OpenGL

Application

graphics/image_01_003.jpg
Command Buffer 1 (CB1) Queue 1
Er—— Legend
Queue 2 . Command Buffers

Command Buffer 2 (CB2) Application

%ueue 3 Device

°
|
S
S
Q
«
°
|5
]
£
£
]
o

Application
Command Record

graphics/image_03_005.jpg
Vkinstance —

I/A{»pb s, e
Oy,
—
=

St
e,

graphics/image_01_001.jpg
,,,,,,,,, 2 BA S8 == windowsi0

Windows™® W& \indows 8

WWulkan. = P

ubuntu
SteamOS rediat

TIZEN’ |ﬁ|

graphics/image_08_018.jpg

graphics/image_01_011.jpg
Command
Buffer

Start Recording

End Recording

Commands

graphics/image_06_009.jpg
7 Swapchain presentation window ~ — O X

graphics/image_05_001.jpg
Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

Command
Buffer

graphics/image_10_002.jpg
VulkanDescriptor

1

VulkanDrawable

graphics/image_03_007.jpg
Queue Family Properties 1
(VkQueueFamilyProperties)

VkPhysicalDevice

Queue Family Propertles 2
(VkQue S

ilyProper

cover/cover.jpg
Learning
Vulkan

Discover how to build impressive 3D graphics with the
next-generation graphics API—Vulkan

graphics/image_02_003.jpg
Create Instance

Create Device

Enumerate and initialize layer
vkEnumeratelnstancelayerProperties

Enumerate instance layer extensions
vkEnumeratelnstanceExtensionProperties

Enable validation layers and
extensions for instance

Create instance object
vkCreatelnstance

—

Enumerate GPU on the system
vkEnumeratePhysicalDevices

Enumerate devicelayer extensions
vkEnumerateDeviceExtensionProperties

Enable the extensions for device

Create device object
vkCreateDevice

graphics/image_12_002.jpg
A
(0,0 (2,00

T N
7, NS T, N

(0, 2) (2, 2)

VK_SAMPLER_ADDRESS_MODE_REPEAT

A
(0, 0)

(2,0,

0,2 (22

VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

A
_f0.0__ 2,0,

I
r @ 0
|

'
' .~

0,2 (2,2

VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT

A
l
0,0 __ (2,0,

N

VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER

graphics/image_07_004.jpg
16 Byte 16 Byte 16 Byte 16 Byte 16 Byte 16 Byte
| | |] | |
\f W
X Y Z W R G B A X Y Z W R G B A X Y Z W R G B A
Position Color Position Color Position Color

graphics/image_07_001.jpg
(0.0f, 1.0f, 0.0f)

(1.0f, 0.0f, 0.0f)

+

(0.0f, 1.0f, 0.0f)

(1.0f,-1.0f,0.0f) (1.0f,-1.0f,0.0f) @

(0.0f, 0.0f, 1.0f)
[J

graphics/activity.jpg

graphics/image_01_010.jpg
Pipeline Setup

—

Descriptor and Descriptor Pool

|

Shader with SPIR-V

L

Pipeline State Management

graphics/image_06_005.jpg
Create Drawing ___

VulkanRenderer

Image

=)

(Image) (_window)

(_Final Output)

graphics/image_10_005.jpg
Orignal = RGBA Original = RGBA * 0.3f

(0.3f is push constant mixer value)

graphics/image_08_006.jpg
2 4 6 8 10
Index list with triangle strip topology

graphics/image_03_001.jpg
C:\WINDOWS\system32\cmd.exe

C:\VulkanEssentials\chapter_3\HandShake\build>cmake -G "Visual Studio 14 2015 Winé4"

graphics/image_02_011.jpg
Memory
Buffer Object <—[

Heap <+

graphics/image_02_013.jpg
Image Object

e
Image Object +—

| Image Object
| —

Buffer Object =~

Color Image 1
Color Image 2

FrameBuffer
Color Image View 1

Color Image View 2

Command
Pool

Render Pass

Memory Barrier Sync
= Render Pass Begin

: !

-1
Sl Update Vertex Buffer
-

¥

Render

H

Graphics Queue

Compute Queue -

graphics/image_08_014.jpg

graphics/image_01_005.jpg
Vulkan
Application
Programming
Model

Hardware Initialization

Windowing Presentation Surface

Resource Setup

Pipeline Setup

—

Descriptor and Descriptor Pool

|

Shader with SPIR-V

L

Pipeline State Management

Command Recordings

Submission of Command

graphics/image_02_009.jpg
Memory FrameBuffer

Image Object —> Color Image View 1

Heap

Image Object —> Color Image View 2

| Image Object —> Depth image View

graphics/image_06_001.jpg
Create image

Image memory requirement

Determine the type of memory

Allocate Memory

Bind Memory

Set Image Layout

Create Image View

— Vkimage

— VkMemoryRequirements
— Type Index

— VkDeviceMemory

|, =

— =

— VkimageView

graphics/image_02_010.jpg
static const VertexWithColor triangleData[] ={
/M x, ¥V, z w, r, g b oa}¥

{ 0.0f, 1.0f, 0.0, 1.0f, :
{ -1.0f, -1.0f, 0.0f, 1.0f, h
{ 1.0, -1.0f, 0.0f, 1.0f| }

120

graphics/image_08_011.jpg
e
VK PRIMITIVE TOPOLOGY TRIANGLE LIST

graphics/image_08_008.jpg

graphics/action.jpg

graphics/image_08_004.jpg
Vertex Input State
Input Assembly State
Rasterization State
Color Blend State
Tessellation State

Multi Sample State

Dynamic State
Viewport State
Depth Stencil State
Shader objects
Render Pass

Sub-Pass

graphics/image_08_013-1.jpg
VO V5

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN

graphics/image_06_008.jpg
Linear layout

Stored Information
sl — _ B B
==~
7LIII+-IIIIV/*

C D m—
| Optimal layout
S zE 2e o o R,
mowv/
77 L I IIIIV+-‘/‘*‘

graphics/image_07_007.jpg
" GLSL ‘ ‘ Game

New ‘
ESSL

_ engines ‘ "t'Lan uages

~ OpencCLC
—
P d
P d
P d

- Other ‘
~ Languages
Other Intermediate

Other Languages
Forms

Vulkan
Driver Y

OpenCL
Driver B

graphics/Mapt_logo.jpg

graphics/image_05_002.jpg
Thread 1

Thread 2 Thread 3

Command Buffer Pool 1 Command Buffer Pool 2 Command Buffer Pool 3

Command = Command = Command
Buffer Buffer Buffer

Command | Command | Command
Buffer Buffer Buffer

Command | Command | Command
Buffer Buffer Buffer

Command = Command = Command
Buffer Buffer Buffer

Command | Command | Command
Buffer Buffer Buffer

Command | Command | Command
Buffer Buffer Buffer

graphics/image_08_001.jpg
| Descri ptor Sets

: Framebuffer

graphics/B05579_11_1.jpg
B! Texture demo - [m}

graphics/image_07_006.jpg
Clearing the background - O X 1 Clearing the background - o X

Clearing the background o X

graphics/image_06_004.jpg
VulkanApplication

- 7
Vulkan Vulkan
Renderer Renderer
Vulkan Vulkan
Renderer Renderer

graphics/image_09_002.jpg

graphics/image_02_012.jpg
Render Pass Begin

Bind Graphics-pipeline

State Management

Bind Descriptor Set

Execute Command

Render Pass End

graphics/image_01_004.jpg
E
2l € p» Wlemenyedier || 2 Hardware/Software Initialization
© Cw Debugger 5 Presentation Initialization — € N WS'
¥S < = Vulkan.
I S o EIEEr = o) Resource Setup
Deb ° = ipeli
oL, > o ebugger g E Pipeline Setup -
© = J Descriptor and Descriptor Pool
5 Shader with SPIR-V 0 (SP|R,_ HLSL
Tracer - & Pipeline management LLVM
Debugger I Command Recordings

Submission of Command

graphics/image_01_008.jpg
Double Buffer

Swap Chain

Acquire Image from WSI

8

£ >r—xq il ‘ ° »

LE 2 © ‘é’ Application
gl & - Ay =

w Submit image to WSI

o Submit image to WSI

: 5 | - Ay -

i g Application
T = | =

o Acquire Image from WSI

-
m

o0
[1]
3
Q

abewy| 3sai4

abeuw| puosag ‘

graphics/image_10_004.jpg

graphics/image_10_003.jpg
Uniform and D

graphics/image_02_005.jpg

graphics/image_01_006.jpg
Application ‘ ‘

GPU Hardware

\ |
| »
s

graphics/image_08_015.jpg

graphics/image_03_004.jpg
C\WINDOWS\system32\cmd.exe

C:\VulkanEssentials\chapter_3\HandShake\binaries>3_@_DeviceHandshake.exe > apiDump.txt

graphics/image_08_019.jpg
VK_SAMPLE _COUNT 1 BIT VK_SAMPLE_COUNT 2 BIT VK_SAMPLE_COUNT_4_BIT

VK_SAMPLE_COUNT _8 BIT VK_SAMPLE_COUNT_16_BIT

graphics/image_03_002.jpg
— l F m E g
3.0_Device CMakeFiles Debug 3.0 Device 3.0_Device 3.0 Device
Handshake. Handshake Handshake Handshake

dir
E++ -"_'j‘ E++
3.0Device ALLBUILD ALLBUILD. cmakeinst CMakeCach ZERO_CHE ZERO.CHE
Handshake. vexproj all cmake e K CKvexproj

voxproj

graphics/image_08_005.jpg
Pipeline State Objects

graphics/note.jpg

graphics/image_06_002-1.jpg
Get supported
image formats

Query
surface
capabilities
present mode

Create Depth
image

Allocate
memory and

buffer image

bind to depth

Add pipeline
barriers

End command
buffer
recording

graphics/B05579_10_7-1.jpg
Descriptor Set

Layout 2

T 431dINVS

0 ¥3TdINIVS

€ 3dN1IX3L

¢ 3JdNLX3IL

T 3dNLX3L

0 3¥NIX3L

0¥344nd

Descriptor Set

Layout 1

0 ¥31dINVS

0Y¥3ddnd

0 3¥NIX3L

Descriptor Set

Layout O

€ d344nd

¢ d34dnd

T 4344nd

0¥344n4d

graphics/image_05_003.jpg
Command
Buffer

Start Recording (vkBeginCommandBuffer)

End Recording (vkEndCommandBuffer)

The Vulkan API calls

graphics/image_08_003.jpg
Device Pipeline

D Cache ID Pipeline cache data

T T
Header Payload

T
Retrieved data from vkGetPipelineCacheData() API

graphics/list.jpg

graphics/image_06_003.jpg
Manages the logical
device and physical
device associated
with it. Also,
addresses the

VulkanApplication

queues advertised
by the devices.
Manages the
pipeline, pipeline
cache memory ¢

barriers.

VulkanRenderer

VulkanDevice

Queues

VulkanSwapChain

VulkanPipeline

Manages the overall
application

Manages the platform
specific presentation
window and the drawing
surfaces associated with it.

Provides the swap chain
drawing surfaces and
manages the swapping of
drawing image.

graphics/image_09_001.jpg

graphics/image_02_002.jpg
Extensions Types

I
v v

Instance Device

graphics/image_09_003.jpg
Resizing window

Resizing window - o x

graphics/image_02_001.jpg
Create Instance Enumerate Physical Device Create Device

—_— e

(VkInstance Object) (VkPhysicaIDevice Object) (VkDevice Object)

graphics/image_07_002.jpg

graphics/image_02_004.jpg
Presentation Initialization

—

Create a native empty window
CreateWindowEx / xcb_create_window

Query WSI extensions — store as function pointers
vkCreateSwapchainKHR, vkCreateSwapchainKHR

Create abstract surface object for native platform
vkCreate<Win32/Wayland/Android>SurfaceKHR

Find graphics queue with presentation support
(Function pointer) vkGetPhysicalDeviceSurfaceSupportKHR’s

Query surface formats and store them in array
(Function pointer) fpGetPhysicalDeviceSurfaceFormatsKHR

graphics/image_08_017.jpg
1 —
Primitive Vertices Adjacent Vertices

Primitive 1st 12 2/3
only (i=0,n=1) 0 1 '5)
first (i=0) 0 1 6
middle (iodd)

middle (ieven)

last (i=n-1, i odd) 2i

last (i=n-1, i even) 2i

graphics/image_07_008.jpg
«— Each slot 32 bits —

<id> bound is 50

OpEntryPoint
Fragment shader
function <id> 4

Payload
Containing OpTypeFunction
variable-length <id>is3
Instructions return type <id> is 2

OpFunction
Per color code;
¢ J Result Type <id> is 2

Result <id> is 4
0
Function Type <id> is 3

graphics/image_08_002.jpg
VulkanApplication

VulkanDevice

VulkanShader

VulkanRenderer o
VulkanPipeline

VulkanSwapChain

VulkanDrawable

graphics/image_12_001.jpg
VK_FILTER_NEAREST VK_FILTER_LINEAR

graphics/image_06_006.jpg
/ vkCreateAndroidSurfaceKHR()

/kareateWayIandSurfaceKHR()

VkSurfaceKHR /

/ vkCreateWin32SurfaceKHR() /—

/ vkCreateXcbSurfaceKHR /—'

graphics/image_02_008.jpg

graphics/image_07_003.jpg
Create buffer > VkBuffer
Buffer memory requirement — VkMemoryRequirements

Determine the type of memory : Type Index

Allocate Memory ’ VkDeviceMemory

Bind Memory -
Create Buffer View VkBufferView

graphics/image_03_003.jpg
<Sample Name>gg

resource
external

source

binary

CMakelist.txt

Sample include header files

Sample source code files

CMake build folder, contains project solution
Place for generated sample executables

CMake config file for building target solutions

Stores resource type like images, icons, meshes
Contains third party source code, external libs

graphics/image_03_006.jpg
Transfer
VkQueue

Sparse
VkQueue

graphics/image_03_008.jpg
VkPhysicalDevice

Queue Family Queue Family Queue Family Queue Family
Properties 0 Properties 1 Properties 2 Properties 3

[1 1 []] []

{ Compute Transfer ‘ Compute Transfer ‘ Compute Graphics
|

VkQueue VkQueue VkQueue VkQueue VkQueue VkQu

1
Graphics Sparse Graphics Transfer
ueue VkQueue ki VkQueue

graphics/reference.jpg

graphics/image_08_020.jpg
void VulkanRenderer::initialize()

'

void VulkanRenderer::createPipelineStateManagement()

.

voidCommandBufferMgr::beginCommandBuffer(cmdPipelineStateMgmt)

'

void VulkanPipeline::createPipelineCache()

I

void VulkanPipeline::createPipeline()

|

void CommandBufferMgr::endCommandBuffer(cmdPipelineStateMgmt)

graphics/image_01_012.jpg
hread2

Threadl

BB [B 1| BB e
‘CBHCBHCBHCB"CBHCBHCBHCB‘»
_\CBHCBHCBHCB\\CBHCBHCBHCB\
|

[[cB|[c 8 [[| |

graphics/image_02_007.jpg
Memory

Heap <«— Image Object «— Image View Color Image 1

Image Object «— Image View Color Image 2

graphics/image_08_016.jpg

graphics/image_08_007.jpg
Shape 0 Shape 1

o123)(s|le|7]|8]9 |10

Reset|Marker
0 3 5 7 9

OXFFFF
1 2 6 8 10

Index list inserted with reset marker on triangle strip topology

graphics/B05579_10_6.jpg
Descriptor Set

Layout 2

T 431dINVS

0 ¥431dINVS

€ 3dN1IX3L

¢ 3JdNLX3IL

T 3dNLIX3L

0 3¥NIX3L

0¥344n4g

Descriptor Set

Layout 1

0 ¥31dINVS

0Y¥3ddnd

0 3¥N1IX3L

Descriptor Set

Layout O

€ d344nd

¢ d3ddnd

T d344nd

0Y¥344nd

