

[image:]K23310
ISBN: 978-1-4822-4019-1
9 781482 240191
90000
“David is guided by his belief that he can contribute to raising the bar for all of
us: that we can all speak the same language, understand the same concepts,
and use the same techniques, so that we can all make better games. What you
are reading now is the result of David Lightbown’s rst big mission on that very
long quest.”
—Mike Acton,
Engine Director, Insomniac Games
“User experience is the preeminent design challenge of our time and David has
captured and rened these concepts to help us produce beautifully designed
workows that are a pleasure to use. His acclaimed lectures, now demonstrated
and elaborated in this book, are brilliant and very appropriate to our industry.”
—Jason Parks,
 Owner, Continuity AI; Former Technical Artist for SCEA,
THQ, and Volition
“David Lightbown’s book shines a light on a dark corner of the games, but it’s a
corner on the path we take every day in game development. All developers owe
it to their future selves to learn to apply the process presented in this book to
their tools.”
—Corey Johnson,

Unity Technologies
“If you build games tools and are not familiar with user-centered design, then
you should read this book. ... provides a comprehensive introduction to
user-centered design with easy-to-understand explanations and plenty of
real-world examples that demonstrate the principles and best practices
you need to know to start building better tools today.”
—Tom Hoferek,

Principal User Experience Designer, Autodesk
Designing the User Experience of Game Development Tools explains
how to improve the user experience of game development tools. The rst part
of the book details the logic behind why the user experience of game tools must
be improved. The second part introduces the concept of user-centered design,
a process that revolves around understanding people’s goals, watching them
work, learning the context in which they work, and understanding how
they think.
Ideal for anyone who makes, uses, or benets from game development tools,
the book presents complex concepts in a manner that is accessible to those
new to user experience design.
Designing the User Experience of Game
Development Tools
COMPUTER GAME DEVELOPMENT / DESIGN
Designing
the User
Experience
of Game
Development
Tools
DAVID LIGHTBOWN
DESIGNING THE USER EXPERIENCE OF GAME DEVELOPMENT TOOLS
LIGHTBOWN

Designing
the User
Experience
of Game
Development
Tools

[image:]CRC Press is an imprint of the
Taylor & Francis Group, an informa business
Boca Raton London New York
Designing
the User
Experience
of Game
Development
Tools
DAVID LIGHTBOWN

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20140919
International Standard Book Number-13: 978-1-4822-4021-4 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

[image:]Dedication
When I was young, I tried to convince my parents to buy a video game
console. Instead, they bought a computer.
As a result, I played video games at my friends’ houses and in arcades.
On days when I wanted to play games at home, my only option was to
try re- creating the games on our computer. To my surprise, I found that
I enjoyed creating games as much as I did playing them. If my parents
had bought a console, I might never have discovered my passion for
game development.
My parents sacriced their time and energy (and at times, their sanity)
to teach me focus, patience, and the rewards that come from challenging
yourself. Oh, the fact that they sent me to a great school didn’t hurt either.
ey provided me with the tools—intellectual as well as electronic—so
that I could have one of the greatest gis anyone could ever ask for: a
job that I look forward to every day, where I have the privilege of making
tools to help people turn their ideas into reality.
anks, Mom and Dad. I love you!

[image:]vii
Contents
Praise for Designing the User Experience of Game
Development Tools, xi
Foreword, xiii
Introduction, xvii
THE BIG GREEN BUTTON xvii
MY STORY xviii
WHO SHOULD READ THIS BOOK? xx
COMPANION WEBSITE AND TWITTER ACCOUNT xxii
BEFORE WE BEGIN … xxii
About the Author, xxv
Chapter 1 ◾ Welcome to Designing the User Experience
of Game Development Tools 1
WHAT WILL WE LEARN IN THIS CHAPTER? 1
WHAT IS THIS BOOK ABOUT? 1
DEFINING USER EXPERIENCE 2
THE VALUE OF IMPROVING THE USER EXPERIENCE OF
OUR TOOLS 7
PARALLELS BETWEEN USER EXPERIENCE AND GAME
DESIGN 10
HOW DO PEOPLE BENEFIT FROM AN IMPROVED USER
EXPERIENCE? 12
FINDING THE RIGHT BALANCE 13
WRAPPING UP 14

[image:]viii ◾ Contents
Chapter 2 ◾ The User- Centered Design Process 15
WHAT WILL WE LEARN IN THIS CHAPTER? 15
WHAT IS THE USER- CENTERED DESIGN PROCESS? 15
THE PHASES OF THE USER- CENTERED DESIGN PROCESS 16
THE POWER OF PRE- VISUALIZATION 19
GETTING TO A BETTER USER EXPERIENCE FASTER 22
INTEGRATING THE USER- CENTERED DESIGN PROCESS
INTO AGILE 24
WHO HAS THE TIME TO DO ALL OF THIS? 25
WRAPPING UP 26
Chapter 3 ◾ What Does It Mean to Be “User- Centered”? 27
WHAT WILL WE LEARN IN THIS CHAPTER? 27
START WITH THE USERS 27
FOCUS ON THE RIGHT USERS 30
FEATURES VERSUS GOALS 32
DO ONE THING REALLY WELL 34
CHOOSE THE RIGHT FEATURES 36
WRAPPING UP 38
Chapter 4 ◾ Analysis 39
WHAT WILL WE LEARN IN THIS CHAPTER? 39
THE IMPORTANCE OF WATCHING USERS WORK 39
INTRODUCTION TO HUMAN– COMPUTER INTERACTION 43
UNDERSTANDING THE MENTAL MODEL 54
INTERVIEW STAKEHOLDERS 57
PERFORM CONTEXTUAL ANALYSES 58
CREATE TASK FLOWS 61
DISCOVER THE USERS’ MENTAL MODEL 62
ESTABLISH MEASUREMENTS 65
ADVANCED TECHNIQUES 67
WRAPPING UP 69

[image:]Contents ◾ ix
Chapter 5 ◾ Design 71
WHAT WILL WE LEARN IN THIS CHAPTER? 71
HOW THE BRAIN AND THE EYES WORK TOGETHER 72
VISUAL LANGUAGE 73
INTERACTION PATTERNS 77
HIERARCHY 80
CONSTRAINTS 83
NATURAL MAPPING 85
REPRESENTATION 87
FEEDBACK 91
FEED- FORWARD 95
GROUPING 97
CHUNKING 102
EXCISE 104
PROGRESSIVE DISCLOSURE 112
WRAPPING UP 116
Chapter 6 ◾ Evaluation 117
WHAT WILL WE LEARN IN THIS CHAPTER? 117
HOW DO WE EVALUATE THE DESIGN? 117
CHOOSING BETWEEN CODE OR PRE- VISUALIZATION 117
PRE- VISUALIZE THE INTERFACE 119
PERFORM A HEURISTIC EVALUATION 121
DO USER TESTS 126
WRAPPING UP 130
Chapter 7 ◾ Back to Analysis 131
DÉJÀ VU 131
COMPARING MEASUREMENTS 132
Chapter 8 ◾ Real- World User- Centered Design 135
INTRODUCTION 135
THE PROCESS IN ACTION 136
CALCULATING THE RETURN ON INVESTMENT 144

x ◾ Contents
CONCLUSION, 147
SUMMARY 147
CLOSING WORD 148
THANKS, 151
WORKS CITED & RECOMMENDED READING, 153
TRADEMARKS, 155

[image:]xi
Praise for Designing the
User Experience of Game
Development Tools
“As a technical artist, I’ve been espousing the benets of tools for artists and
production pipelines for more than a decade. But honestly, they’ve been
bare- bones, just- get- the- job- done kind of quality. It’s about time we attach
some professionalism to the design of our tools as well. User experience is
the preeminent design challenge of our time and David has captured and
rened these concepts to help us produce beautifully designed workows
that are a pleasure to use. His acclaimed lectures, now demonstrated and
elaborated in this book, are brilliant and very appropriate to our industry.
My toolsets going forward are going to incorporate as many of these con-
cepts as I can squeeze into them.”
—Jason Parks
Owner, Continuity AI (former Technical Artist
for SCEA, THQ, and Volition)
“Lightbown tackles some complicated cognitive and scientic concepts, but
does so in a completely conversational manner that is not only approach-
able, but fun and interesting to read. His examples are worth sharing, and
putting them into action has denitely made me a better designer.”
—Jim Brown
Epic Games

xii ◾ Praise for Designing the User Experience of Game Development Tools
“David Lightbown’s book shines a light on a dark corner of the games, but
it’s a corner on the path we take every day in game development. All devel-
opers owe it to their future selves to learn to apply the process presented in
this book to their tools.”
—Corey Johnson
Unity Technologies
“If you build games tools and are not familiar with User- Centered Design,
then you should read this book. David explains why the user experience
of the tools you make is important to your users and how it has a positive
impact on your bottom line. He provides a comprehensive introduction to
User- Centered Design with easy- to- understand explanations and plenty
of real- world examples that demonstrate the principles and best practices
you need to know to start building better tools today.”
—Tom Hoferek
Principal User Experience Designer, Autodesk
“rough honest insight and real- world pragmatism, David has provided
a wonderful entry point to the practice of User- Centered Design while
highlighting its practical application to game development tools. David
not only delivers the concepts and techniques that can be used to improve
the user experience of game development tools, he also outlines—in clear
and measurable terms—the return on investment for doing so. A must
read for anyone who’s serious about improving the eciency, creativity,
and productivity of the content creators on their team.”
—Liam Grieg
Senior UX Designer, Atlassian
“All too oen, in- house soware tools are neglected children, with baing
interfaces and steep learning curves, which translates into countless hours
of lost productivity. In this easy- to- read, comprehensive guide, David
Lightbown applies classic principles of User- Centered Design to the tool-
building process, so that developers can help users unlock the power of
their applications, and help stakeholders manage and measure their suc-
cess. A must- read, even if you’re not in the games industry.”
—AJ Kandy
Co- Founder/ Director of Design, Peterson/ Kandy

[image:]xiii
Foreword
David and I rst met just aer the Game Developers Conference in 2012.
e interface designer on my team had just given a presentation on our
experience and approach to usability for our internal development tools.
I think what sparked that rst conversation was David’s initial surprise
that there was someone else, anyone else, out there in our space that really
did care about these issues. Game development, especially in the console
space that I’m most familiar with, is oen very player- focused. We want to
do what makes for the best player experience. As an industry and a culture
we have a very long, fruitful history in that area. Much more rarely do we
take that same expertise and focus it inward. How do we take the lessons
of games and apply them to making games?
Over the last ten years or so, there has though been a growing real-
ization among developers, especially on larger teams, that the cost and
complexity of making games is itself inhibiting our collective ability to
develop the best experience for the player. In just the previous genera-
tion of AAA game development it was quite clear to everyone that these
secondary knock- on eects were actually not just signicant, but possibly
the most signicant predictor of quality. e phrase “iteration time” was
heard everywhere. We had collectively realized that in making games, like
most creative endeavors, you get it wrong the rst time. And the second
time. And the third. But you learn something important in each iteration
and the more iterations you can do, the better at it you become. is is no
surprise to anyone on an individual scale. e real change was that no one
could escape this universal truth any longer. Brute force works well to a
point and that point has passed.
Many dierent “solutions” to that problem have appeared since then.
In particular, it’s hard not to recognize the introduction of Agile meth-
odologies in particular into the game industry as a process response to
this very problem—as much as its adherents will insist it’s not a process.

xiv ◾ Foreword
While these methods from other industries brought along with them a lot
of baggage of dubious value, they did help to crystalize one important idea
into development culture: you cannot know everything in advance. is
is not to say you cannot know anything in advance, which in my experi-
ence is clearly what some Agile adherents have chosen to believe—and is
clearly stupid. But the very idea that you cannot plan for everything in a
creative project, not just that you should not, was both compelling and
self- evident in retrospect. We had never been able to plan everything. We
just pretended we could.
en in the last ve years or so, everywhere things were happening at
about the same time, which would help mature the concept of “iteration”
into one of “usability.” People were no longer asking whether they should
iterate more but rather how to make those iterations more valuable.
Usability as a discipline and usability research outside the game industry
(as well as within the game industry, but still largely focused on the player
experience) had helped to dene what we meant by iteration. How does one
improve or increase iterations not just by making long processes shorter,
but by making things better or dierently altogether? Where does a user
and her expectations t into all of this? e discipline of usability research
was growing all around us to answer these kinds of questions. In par-
ticular, the meteoric rise of webapps and mobile development (games or
otherwise) and the unprecedented success of the iPhone in particular
brought usability design into the limelight. And then came Gamication:
the much maligned, and in my view, both largely misunderstood and
completely misapplied, idea that you could take the lessons learned from
games and apply them to other things. Like making games.
It was as both David and I were preparing for GDC 2013 that I think
we found where all of this would lead us. I was preparing my presentation
“Usability Is Not Random” based on my theory that usability could be for-
malized in terms of information and information theory. We can describe
our interactions with our tools as a form of communication, which we
could measure and analyze. I could use this model to help improve and
guide my approach to developing tools with my team, in my day job as
engine director at Insomniac Games.
David, however, was driven by something even larger. at same year,
we were both part of a Google Hangout panel together. We discussed what
drove us and what was most important to us. It became clear that what
David wanted was not just to gure out how much he could improve the
usability of a specic tool or set of development tools or even for a specic

Foreword ◾ xv
team, but that he wanted to improve usability everywhere in our industry.
David is guided by his belief that he can contribute to raising the bar for all
of us: that we can all speak the same language, understand the same con-
cepts, and use the same techniques, so that we can all make better games.
What you are reading now is the result of David Lightbown’s rst big
mission on that very long quest. e rest is a co- op campaign, and he has
brought along these weapons to get us started.
Mike Acton
Engine Director
Insomniac Games
June20, 2014

[image:]xvii
Introduction
Even though they had been trying for over an hour, the two men could
not get the machine to perform its greatest trick: print a double- sided
page. ey were almost ready to give up. “We’re S.O.L.,” one of them
said, nally. Fortunately, the interaction analyst was watching, and she
got it all on videotape.
THE BIG GREEN BUTTON
In 1983, Xerox introduced their most technologically advanced pho-
tocopier, the Xerox 8200. It had many innovative features for the time:
double- sided printing and automatically collating pages, to name a few.
However, customer service representatives started reporting that cus-
tomers complained the machine was “too complicated.” Ironically, Xerox
advertised the machine as being simple to use—“All you have to do is
push the green button.”
Xerox was also one of the rst companies to hire social anthropologists
and psychologists to help with product development. is is how—a few
years before the Xerox 8200 was introduced—a doctoral student with a
background in interaction analysis started working at Xerox. Her name
was Lucy Suchman.
When the Xerox executives learned what customers were saying about
the machine, Lucy was asked to help gure out why. She requested that
one of the machines be installed at the Palo Alto Research Center so she
could watch people using it.
*
Two of the participants were specically chosen by Lucy from the inter-
nal sta. She put them in front of the machine, in a room equipped with
*
e Xerox Palo Alto Research Center, more commonly known as Xerox PARC, would play a huge
role in driving the eld of human– computer interaction forward. Michael A. Hiltzik’s Dealers of
Lightning oers a fantastic history of Xerox PARC, the people involved in its rise and fall, and all of
the companies that they would go on to inuence, including Adobe, Microso, Pixar, and Apple.

[image:]xviii ◾ Introduction
a microphone and a camera, and gave them a series of tasks to perform.
One of these tasks was to test a major selling point of the machine: duplex
print, or printing double- sided.
Aer an hour and a half of lling up the room with paper from failed
attempts, the two men concluded that they could not gure it out. One
of them expressed their frustration with a quote captured on the now-
famous video recording: “We’re S.O.L.”
e video was presented to the Xerox executive as part of Lucy’s report.
Aer watching the video, one of the executives exclaimed that the reason
the two men could not gure out how to print double- sided was that they
are not smart enough. “You must have got these guys o the loading dock!”
at’s when Lucy revealed that the two men she had chosen were actu-
ally two of the most gied computer scientists working at Xerox: Ron
Kaplan, a brilliant computational linguist, and Allen Newel, one of the
founding fathers of articial intelligence.
is was one of the rst documented accounts of applying user research
to improve an oce productivity tool.
*
 It would be many years before
these techniques would be applied to tools development in the video
games industry.
MY STORY
License to Compute
When I was a teenager, one of my rst full- time jobs was working technical
support for an Internet service provider. In the early days of the Internet,
everyone who worked in technical support could do a bit of UNIX shell
scripting and knew how to congure TCP/ IP for every imaginable operat-
ing system.
All day long, we would answer calls from people who did not know as
much about computers as we did, and we found it frustrating. To blow o
steam, we would make fun of the customers when we got o the phone.
One of the more infamous stories was that of a customer who was wor-
ried that they had “deleted the Internet,” because they had accidentally
dragged the Internet Explorer icon into the trash. Aer getting o a par-
ticularly dicult call, I remember saying to my colleagues that people
should have to pass an exam to use a computer.
*
e full version of this story can be found in Lucy Suchman’s book Human– Machine
Recongurations.

Introduction ◾ xix
I realize now what a foolish statement that was. e problem is not the
user. It is the user experience.
My Best and Worst Days in Game Development
Years later, I was fortunate enough to get my rst job in the games indus-
try. In that time, I have held a variety of roles, such as modeler, technical
artist, and technical director.
Some of my best days working as a technical director were when I would
watch how a change to a tool or pipeline could make an artist, animator,
or level designer more productive. It always made me feel good when they
would say, “at tool you worked on really saved me a lot of time, and I
was able to focus on creating!” Nothing makes me happier than enabling
content creators to do what they do best.
By contrast, some of my worst days were when I would walk by some-
one’s desk and watch them jump through multiple frustrating and ine-
cient hoops, just to make a tiny bit of progress. Even if they didn’t get
much done, at least they could feel that they accomplished something.
Seeing content creators limited in their ability to express themselves for
reasons beyond their control is extremely frustrating to watch.
At that time, I had a limited set of options at my disposal, such as writ-
ing scripts to accelerate productivity, mentoring and coaching, trying to
nd ways to streamline the pipeline, and so on. However, I always felt that
there was more that I could do to improve the tools. Without a doubt, my
experience in the games industry gave me an advantage when it came to
tools development, but no one can get it right every time. I needed to nd
a more consistent and measurable way.
is desire to help the content creators—whose work I admired so much—
led me down a path that would change my career in the games industry.
Discovering the Inmates
One of my work colleagues at the time, who knew that I was looking for
ways to make content creators more productive, handed me a copy of
e Inmates Are Running the Asylum. is book—written by Alan Cooper,
the creator of Visual Basic—had been circulating in web and desktop so-
ware development studios but had not yet made its way into game devel-
opment. When I read it, I was amazed at how perfectly it captured the
soware development culture that I had been a part of across many dier-
ent game development teams.

[image:]xx ◾ Introduction
is book also introduced me to the eld of user experience design.
From the rst day that I started working in game development, I had
thoughts and opinions on how to design game development tools that
would make the users more productive, but I was never able to pinpoint a
system or methodology to do it consistently. is book opened the door to
a world that I never even knew existed.
Aer nishing that book, I started to seek out any other books on user
experience design that I could get my hands on: Don Norman’s e Design
of Everyday ings, Steve Krug’s Don’t Make Me ink!, Dan Saer’s
Designing for Interaction, and Je Gothelf’s Lean UX, to name just a few.
It wasn’t long before I came to the realization that the concepts pre-
sented in these books had never been formally applied to tools develop-
ment in the games industry. e untapped potential for improvement
was huge.
The Main Message
I created a presentation about the impact that these concepts could have
on tools development in the games industry, and I started showing it
around to various game development studios. at presentation was
essentially my job interview. is resulted in a full- time position focus-
ing on improving the user experience of game development pipelines and
tools at Ubiso Montreal.
I would go on to give that presentation at least a dozen more times,
most notably at the Montreal International Game Summit (MIGS) and
the Game Developers Conference (GDC), where the feedback from the
attendees put it among the most highly rated presentations of both confer-
ences. A featured article on Gamasutra followed.
No long aer, I was approached to turn the presentation into a book,
which you now hold in your hands. e main message of the presentation
and of this book remains the same: the games industry needs to make the
user experience of tools a priority.
WHO SHOULD READ THIS BOOK?
is book is for anyone who makes, uses, or benets from game develop-
ment tools. However, anyone involved in the production of video games in
general should be aware of the message in this book, because it is my belief
that investing in better tools can help us make better games.

Introduction ◾ xxi
The People Who Make the Tools, or “Developers”
Some tools developers have a reputation for not caring about the user
experience of game development tools. is is largely unfair: most tools
developers want to improve the user experience but are not given the time,
lack the techniques, or do not know where to begin. is books aims to
address those issues and empower tools developers to make positive steps
toward improving the user experience of their tools.
Technical directors and technical artists are oen in one of the best
positions to initiate change, since they act as a bridge between the users
and the developers. Many of them are also tools developers in their own
right. is book will give them the knowledge to make the most of that
position and improve the process with which our tools are developed.
The People Who Use the Tools, or “Users”
e term content creators is sometimes used to describe anyone who uses
the tools to create content that will appear in the game, though most
people simply know them as “the users.” is can include modelers, ani-
mators, level designers, game designers, audio engineers, special eects
artists, and so on. is book can help them improve communication with
those responsible for making the tools and assist in identifying common
issues, as well as proposing how they can be improved.
The People Who Benet from the Tools, or “Stakeholders”
e people who benet from the content produced by the tools are some-
times called stakeholders. ese people may never use or even see the tools
we that discuss in this book. Despite this, they can be the most important
players, since they—sometimes indirectly—mandate the creation of the
tools. Creative directors, producers, and managers are a few examples of
people who belong to this group. As they are responsible for setting the
requirements for the game and providing the resources to create it, it is
of the utmost importance that they understand that improving the user
experience can reduce risk, as well as save time and money.
A Note for User Experience Designers
If you are a user experience designer coming from another industry, you
will be familiar with many of the concepts in this book. You will notice
that some concepts and techniques have been simplied in an eort to be
easier to understand for people new to user experience design.

[image:]xxii ◾ Introduction
However, this book also includes a lot of information specic to game
tools development. e games industry faces unique challenges in regard
to improving the user experience of their tools. It is those challenges that
make the work even more interesting for user experience designers: there
is a lot of work to do but also a ton of untapped potential, waiting to
be unlocked.
It Can Take Years to Become an Expert in User Experience
Although this book strives to be as thorough as possible at presenting ways
in which the user experience can be improved, it cannot turn you into a
user experience expert overnight. If your goal is to become an expert, it
will take time and dedication—and by reading this book, you are taking
your rst big step.
For the Gamers
When I visit my local game store, I make a point of listening to people in
the store talk about games. It reminds me that the content we create with
our tools is ultimately for the gamers. Hearing people get excited about
upcoming games and talking about their experiences can remind us why
we love making games in the rst place.
COMPANION WEBSITE AND TWITTER ACCOUNT
Although the content of this book is static, there are a few resources
available to make it dynamic and interactive. e companion website,
www.UXofGameTools.com, contains the latest information and revisions
for this book, as well as contact information. You can also follow the o-
cial Twitter account @UXofGameTools to see the latest updates and read a
curated list of articles related to user experience.
Your questions and comments are all welcome, so please feel free to
contact me via e-mail at UXofGameTools@gmail.com or through the
Twitter account.
BEFORE WE BEGIN …
e concepts and techniques in this book reect my approach to improv-
ing the user experience of game development tools, and it is by no means
the only way. Just as I have borrowed ideas on user experience design from
other sources and tailored them to t game tools development, you should
take what works best for you and your situation.

Introduction ◾ xxiii
In addition, this is not an academic text, so some concepts have been
simplied for those who are learning about user experience for the rst
time. Wherever possible, I have added resources in the footnotes for peo-
ple who want more details.
Some of the ideas in this book may be very new and dierent if you have
been developing game tools for a long time. Keep in mind that the goal is
not to completely change the way we work, but to enhance it. e material
presented here is to complement our existing skills, in an eort to make us
better game developers.
At the end of the day, as long as the users, stakeholders, and developers
work together to make better tools, there is no right or wrong way.
Now, let’s jump in!

[image:]xxv
About the Author
Aer spending most of his formative years in his parents’ basement try-
ing to clone 8-bit console games on an Apple IIgs, David Lightbown got a
job in the games industry. Since then, he has dedicated the majority of his
career to working on content creation tools and pipelines.
In addition to contributing to a variety of games as a technical director,
David has delivered presentations at the Game Developers Conference,
Montreal International Game Summit, and SIGGRAPH, in various cities
within Canada, the United States, and Europe.
He has also collaborated with Autodesk to create product reviews,
training manuals, tutorial videos, and masterclasses. In 2010, he received
the Autodesk Master Award for his contributions to the 3D community.
e award also included a sweet leather jacket.
David current holds the title of technical director at Ubiso Montreal.

[image:]1
Chapter 1
Welcome to Designing
the User Experience of
Game Development Tools
WHAT WILL WE LEARN IN THIS CHAPTER?
• What is this book about?
• What is a user experience?
• What is the value of improving the user experience?
• What are the parallels between user experience and games
development?
• How do people benet from improving the user experience?
• What happens when the needs of one group are prioritized over
another?
WHAT IS THIS BOOK ABOUT?
e goal of this book is to present concepts and techniques that can be
used to improve the user experience of game development tools. is book
focuses on User- Centered Design, a process that revolves around under-
standing people’s goals, watching them work, learning the context in
which they work, and understanding how they think. We will learn how
each phase of the process can contribute to improving the user experience.

[image:]2 ◾ Designing the User Experience of Game Development Tools
Finally, we will see how this process can be applied to a real- world game
development tool.
Before we learn about how to improve the user experience, it would be
reasonable to begin by describing the term user experience.
DEFINING USER EXPERIENCE
If you do a web search or read books about user experience design, you
will notice that there are many dierent ways to describe what a user expe-
rience is. One popular description comes from Elizabeth Sanders, who
suggests that tools need to be “useful, usable, and desirable.”
*
 How are
these three objectives prioritized?
The User Experience Pyramid
You may have heard about Maslow’s hierarchy of human needs, which is
oen depicted as a pyramid. Essentially, it states that physiological needs—
such as food and shelter—must be fullled before more complex needs are
met—such as creativity and condence (see the le side of Figure1.1).
†
e same goes for the user experience. e basic needs and expecta-
tions of a person using a tool must be met before considering functionality
that is more advanced. In this case, a tool should be useful before it can
be usable, and a tool should be usable before making it desirable (see the
right side of Figure1.1).
In other words, a tool may have a nice- looking user interface (desirable),
but if it is dicult to use (not usable) and does not fulll the user’s needs
(not useful), it can result in a bad user experience.
*
is was originally proposed in an article for the Design Management Journal, entitled “Converging
Perspectives.” It can be found here: http://onlinelibrary.wiley.com/ doi/10.1111/j.1948-7169.1992.
tb00604.x/ abstract.
†
You can read more about Maslow’s hierarchy of human needs here: http://en.wikipedia.
org/ wiki/ Maslow’s_hierarchy_of_needs.
De
sirable

Us
able

Usef
ul

Love/Belonging
Esteem
Self-actualization
Safety
Physiological

FIGURE 1.1 Maslow’s hierarchy of human needs (left). The user experience pyramid
(right).

[image:]Welcome to Designing the User Experience of Game Development Tools ◾ 3
Unfortunately, some game development tools only provide the base
level of the pyramid: they are useful. at also means that they are nei-
ther usable nor desirable. In the case of in- house tools, people use them
because they have no other choice. To learn how we can make tools that
people want to use, we can start by understanding the three levels.
Useful
At the core of a good user experience is something that fullls a need.
If a game development tool does not fulll a need, why does it exist
in the rst place? Ideally, these needs should come from the users and
the stakeholders.
To explain this further, we will use the analogy of a vehicle. As this is
a book about game development tools, we will use a Warthog from the
Halo franchise. A Warthog fullls a Spartan’s need to get from point A to
point B in a short amount of time. It is faster—and in the case of enemy
re, oen safer—than running. If we were to design a Warthog that simply
fullled the need to get from point A to point B, it might resemble a frame
with wheels, a turret, and an engine (see Figure1.2).
How do we make a tool that is considered useful? We start by identify-
ing the right people to design for and the context in which they work and
by understanding their goals. We will talk more about this in Chapters 3
and 4.
is Warthog gets us from point A to point B, but it has a major issue:
we are sitting on a metal platform with wheels. We have no protection, we
are not comfortable, and it is not easy to use: the only way to drive is to
reach our hands into the engine and connect the wires. ere is no visible
way to control the turret. Surely, there must be a better way! at brings us
to the next level in the pyramid: making tools that are more usable.
Usef
ul

FIGURE 1.2 A user experience that is useful.

[image:]4 ◾ Designing the User Experience of Game Development Tools
Usable
Much like user experience, there are many denitions of usability. e
vast majority of these denitions include questions such as “How ecient
is it to use?”, “How easy is it to learn?”, “How well is the user protected
from making mistakes?”, and “How satisfying is it to use?” ere are many
ways to measure improvements to usability, but in this book, we will focus
on two: eciency and learnability.
To continue with our example of the Warthog, what would be the de-
nition of making it more usable? We could add pedals and a seat that is
adjustable so the driver can sit comfortably and reach the pedals with their
feet. is would make it convenient to accelerate and decelerate, without
having to reach into the engine and connect any wires. To make it easier
to learn how to drive and shoot the turret, we could add standard controls
that any Spartan who has received basic training is familiar with: a pistol
grip and a steering wheel (see Figure1.3).
How do we improve usability? ere are a variety of techniques, based on
human factors, interaction design, cognitive psychology, and information
architecture—just to name a few—that we will learn about in Chapter5.
What else could be done to improve our Warthog? is question brings
us to the third level of the pyramid: desirability. is is oen dismissed
as simply making the interface look “cool,” but there is much more to it
than that.
Desirable
Desirability is oen the last step that we consider when designing game
development tools. Typically, the perception is that desirability is not
important or does not contribute enough to the user experience to make
it worth the cost.
However, the fact is that a tool with an aesthetic and appealing design
not only contributes to user satisfaction, but it also conrms to the user
Us
able

FIGURE 1.3 A user experience that is usable.

[image:]Welcome to Designing the User Experience of Game Development Tools ◾ 5
that the designers have taken the time to create a high- quality, profes-
sional tool. is gives the user more condence in the abilities of the tool.
Let’s return to our example of the Warthog. Features like tinted win-
dows, shining chrome, and a new paint job may seem unnecessary, but
consider this: if the windows are cracked, the labels on the controls are
peeling o, and the body is covered in rust and falling apart, how con-
dent would you be that this Warthog will protect you in battle? You might
ask yourself, “What else is wrong with the vehicle that I can’t see? Is this
going to keep me safe on the battleeld?” (see Figure1.4).
Usability and desirability are oen intertwined. We will see this when
we learn about the design techniques of hierarchy in Chapter5, or heuris-
tics such as aesthetic and minimalist design in Chapter6.
Missing Levels
Now, imagine if the Warthog was missing only the “usable” level of the
pyramid. It has wheels, an engine, and an armored shell, but you have to
crouch down inside and ddle with the wires to control the engine and
steer. Furthermore, you would be sitting on a metal plate instead of in a
seat, without a seatbelt. It might look nice, but it would not be very safe or
convenient (see the le side of Figure1.5).
Alternatively, you could have a Warthog that is missing just the “useful”
level: it has a nice seat with a seatbelt, a steering wheel, pedals, and an
armored shell, but it has no engine or wheels. It may look great and have
all of the controls you need on the inside, but it is not going to get you from
point A to point B, which is why you wanted to use it in the rst place (see
the right side of Figure1.5).
De
sirable

FIGURE 1.4 A user experience that is desirable.
FIGURE 1.5 User experiences that are neither usable (left) nor useful (right).

6 ◾ Designing the User Experience of Game Development Tools
Being “More Human”
Denitions from Cooper and Norman
Another common description of a good user experience is soware that
resembles an interaction with a human and not a machine.
In e Inmates Are Running the Asylum, Alan Cooper proposes that
we should be “purposefully designing our soware- based products to be
more human and forgiving.” An example of this would be a good friend,
who would do the following:
• Remember what you like
• Do their best to help you
• Clearly explain themselves
• Take responsibility
• Be forgiving if something goes wrong
• Be exible when trying to assist you
e articial intelligence Cortana from the Halo series and the virtual
assistant Siri from Apple are good examples of machines that appear to
possess these qualities.
What is the opposite of that? A frustrating person. Don Norman
echoes this in his book e Design of Everyday ings with examples on
how to make something dicult to use on purpose: “Be inconsistent,” “Be
impolite.” Everyone has had to deal with someone like this in their life at
one point or another. A frustrating person does the following:
• Forgets what you like
• Will not help you
• Does not communicate clearly
• Does not take responsibility
• Is not forgiving if something goes wrong
• Is not exible in helping you
e evil articial intelligence SHODAN from System Shock would be an
extreme example of this, or even GLaDOS from the game Portal.
How many tools can you think of that resemble a good friend? Now,
how many can you think of that resemble a frustrating person?

[image:]Welcome to Designing the User Experience of Game Development Tools ◾ 7
Comparing the User Experience of Normal Mapping Tools
CrazyBump (Figure1.6) is an excellent example of a content creation tool
that feels “more human.” It uses simple language that a human might use
(“Intensity” and “Very Large Detail”). It communicates clearly by using
previews to show you what will happen if you choose a specic option. It
tries to help you by choosing the best option automatically. is makes the
tool less intimidating and encourages users to make it part of their pipe-
line. Most importantly, it also means people are more likely to recommend
it to their friends and coworkers.
Another example of this is the Unity engine: when you assign a texture
that has characteristics of a normal map but you forget to ag it as such,
the engine automatically detects this and oers to ag it as a normal map.
is is a great example of soware acting like a good friend by doing its
best to help you (see the le side of Figure1.7, at the bottom).
We can compare this to the NVIDIA Normal Map Filter on the right
side of Figure1.7. It resembles an interaction with a frustrating person. It
is unclear what the options do, just like someone who does not communi-
cate clearly, the 3D View forgets the last angle that you set it to aer you
close and reopen the window, and so on.
THE VALUE OF IMPROVING THE USER EXPERIENCE
OF OUR TOOLS
In 2010, Jim Brown of Epic Games presented a talk at the Game Developers
Conference titled “Tools: Making a Better Game.” In this presentation,
he stated that even a small increase in eciency could result in a signi-
cant savings of time and money, when you look at the big picture. Some
improvements may not seem like a lot on their own, but they can add up
to hundreds of thousands of dollars and many man- months if you design
it for the right people.
To illustrate this, let us assume that we take the time to improve the e-
ciency of a tool and make it easier to learn. ose improvements result in
a savings of 20 minutes per 8-hour day. is may not seem like a lot on its
own. However, we have to consider how many people are using that tool,
and how oen. If that tool is used by 20 users per 8-hour day, 20 minutes
per day can save the following:
• 7 hours per day
• 32 hours per week
• 1,800 hours per year

[image:]8 ◾ Designing the User Experience of Game Development Tools
FIGURE 1.6 e CrazyBump interface. © Ryan Clark.

[image:]Welcome to Designing the User Experience of Game Development Tools ◾ 9
FIGURE 1.7 e Unity Inspector does its best to help you by making it easy to convert a material to a normal map (le). e NVIDIA
Normal Map Filter has an overwhelming number of options that are not communicated clearly (right).

[image:]10 ◾ Designing the User Experience of Game Development Tools
Now, when budgeting the sta for a game development team, you also
have to consider salary, oor space, equipment, soware, and many other
details. As of this writing, the typical cost per man- month on the East
Coast of North America is about $10,000. is means that if we save 20
users 20 minutes per day, aer a year we can save the following:
• 100 man- months
• $100,000
If we invest $40,000 to make these changes, the return on investment
is $60,000. In the second year, if the improvements are still saving us
20 minutes per day, we get a full $100,000. Over three years, if 20 users are
still saving 20 minutes per 8-hour day, the total return on investment is
$260,000. All for an initial $40,000 investment.
ere will always be a dierence between these predictions and the
actual results. However, even if the real numbers are half of what we pre-
dicted, we still come out ahead in the end. e bottom line is that invest-
ing in the user experience of our tools has the potential to save us time
and money.
PARALLELS BETWEEN USER EXPERIENCE AND GAME DESIGN
Some people may be surprised to learn that there are many similari-
ties between the techniques used to make games and those used in user
experience design. We are very fortunate that this is the case, because it
can make the adoption of these techniques for game development tools
less intimidating compared to other industries, such as banking, sales,
or manufacturing.
Personas and Characters
In Chapter4, you will learn about personas: proles of people that repre-
sent the average user. In situations where there are a large number of users
for a given tool, these can be very useful for making design decisions and
giving everyone a shared vision of who will use the tools.
ough some people nd the concept of using archetypes of people to
help us make design decisions strange, think about this: we create characters
in our games and consider how they think and what their goals are when

Welcome to Designing the User Experience of Game Development Tools ◾ 11
writing their dialogue, creating the environments they live in, and so on.
is has worked well for the creation of our games, so why not our tools?
Scenario Storyboards and Cinematic Storyboards
When creating game development tools, we oen xate on features without
knowing how and when those features will be used. Scenario storyboards
help to remind us of the context in which a tool is used. is can be an
extremely important and powerful concept in user experience design. We
will learn more about this in Chapter4.
While it may seem odd to some people that we would create something
like this for game development tools, keep in mind that we use story-
boards for cinematics and complex gameplay moments too. We use them
to plan and estimate risk, as opposed to going straight into implementing
everything at full quality, which can be expensive and risky. ere is no
reason our tools cannot benet from this technique as well.
Pre- Visualization and Gameplay Videos
Pre- visualizations, which we will learn more about in Chapter6, come in
all shapes and sizes with various levels of quality: sketches, paper proto-
types, interactive prototypes, and so on. Regardless of the form, the goal
is the same: simulate the user experience so we can get feedback from the
user early, to ensure we are going in the right direction. All too oen,
the rst time the user has a sense of how a tool works is when it is already
done, and that is oen one of the main reasons why a tool can have a bad
user experience.
By comparison, gameplay videos have a similar goal: creating a video that
simulates what the gameplay looks like in an eort to get feedback early.
It may even be semi- interactive: there can be several small videos used as
“branch- points” to show the outcome of dierent situations. As with pre-
visualization, the visual delity of this video can vary, but the purpose
remains the same: nd out if we are going in the right direction. If we do this
for our gameplay, why would we not apply the same concept to our tools?
Analytics and Metrics
Analytics may be more familiar to web and mobile app developers, but
they can benet game tools developers as well. Capturing statistics—such
as who is using certain features, when they use them, and how oen—can

[image:]12 ◾ Designing the User Experience of Game Development Tools
be an incredibly powerful technique for improving the user experience of
your tool.
As we will discuss in Chapter4, analytics are useful when you have
a very large number of users and need help determining where to start.
However, the results of analytics should not be the only source of infor-
mation used to make design decisions. ey should be used as a starting
point before meeting your users face- to- face. Nothing helps you to under-
stand how people use the tools like watching them work.
When a game is not running at the desired frame- rate, game developers
capture metrics for the processor, graphics, and memory and then analyze
them to identify what needs to be optimized. If you have done this before,
you may be familiar with the tools provided by Microso and Sony, or the
proler tools in Unity, just to name a few. As with analytics, metrics can
be a starting point as well. If a specic eect is causing the frame- rate to
slow down, it does not necessarily mean that we cut it immediately. We
prioritize based on how slow it is, take a closer look at why, and then see
how it can be optimized.
If this technique is useful for guring out what to optimize, we can
certainly benet from analytics to help us improve the user experience of
our tools.
HOW DO PEOPLE BENEFIT FROM AN IMPROVED
USER EXPERIENCE?
Users
If 20 users save 100 man- months, that theoretically translates to an extra
ve months per person. ink about how much more polish one person
could do in ve months. In addition, saving time can help with something
else that is all too common in game development: overtime. It would be
great if saving time resulted in users being able to work ve days a week
and go home before 6:00 to have time to themselves, or to see their family,
while still being able to deliver a game with a high level of quality.
Stakeholders
For the people who mandate the tools, improving the user experience to
save time and money is a business decision. If we can create content for
our games more eciently, and ramp up new team members faster, then
we can allocate resources more eectively to make a better game.

[image:]Welcome to Designing the User Experience of Game Development Tools ◾ 13
In addition, the process presented in this book can give everyone a bet-
ter vision of who is using the tools, and what is going to be built before we
build it. is helps to reduce risk, giving stakeholders the ability to make
better decisions.
Developers
For developers, there are multiple benets. One of the most important
benets is not so much about improving the user experience, but the tools
development process itself. In this book, we will learn about understand-
ing what the users need, applying guidelines, and getting a clearer picture
of what the tool will be before writing a single line of code. All of these
concepts and techniques help to streamline the tools development process.
Finally, tools that work well survive the test of time. If a tool is ine-
cient or dicult to learn, people will want to replace it at the rst oppor-
tunity. A good user experience will help to ensure that the tools we have
worked so hard to create are used to make great games for years to come.
FINDING THE RIGHT BALANCE
As we discussed in the introduction, tools are mandated, created, and
used by dierent groups of people who all have various needs. However,
what happens when the needs of one group are prioritized over the needs
of the others?
If the needs of the developers are prioritized, the tool could lose focus
on achieving the goals of the business (important to the stakeholders) and
could be dicult to use for creating game content (important to the users).
If the needs of the users are prioritized, the limitations of the technol-
ogy may not be respected (important to the developers) and resources
could be spent on features that are not important to creating the main
content for the game (important to the stakeholders).
If the needs of the stakeholders are prioritized, the time to create a so-
ware architecture that is easy to maintain could be limited (important
to the developers) and the tool could be unstable and frustrating to use
(important to the users).
For a tool to be truly successful, the needs of developers, stakehold-
ers, and users must all be equally balanced (see the extreme right side
of Figure1.8). One of the best ways to do this is by applying the User-
Centered Design process, which is covered in the next chapter.

[image:]14 ◾ Designing the User Experience of Game Development Tools
WRAPPING UP
In this chapter, we reviewed a few common denitions of “user experi-
ence,” and we learned the value of improving the user experience. We
also learned about the parallels between user experience design and game
development, and we discussed how dierent groups of people can benet
from improving the user experience, as well as what happens when the
needs of one of those groups is prioritized over another.
In the next chapter, we will learn about the User- Centered Design pro-
cess, which is at the heart of improving the user experience of game devel-
opment tools.
FIGURE 1.8 Finding the right balance between the needs of the users, stakeholders,
and developers.

[image:]15
Chapter 2
The User- Centered
Design Process
WHAT WILL WE LEARN IN THIS CHAPTER?
• What is the User- Centered Design process?
• How can User- Centered Design help us to achieve a better user expe-
rience faster?
• How can pre- visualization be used to improve the user experience?
• How can we integrate the User- Centered Design process into
Agile (Scrum)?
• How do we deal with a lack of time to implement the User- Centered
Design process?
WHAT IS THE USER- CENTERED DESIGN PROCESS?
e User- Centered Design process is one of the most widely used
approaches to user experience design. It has been applied in a variety of
dierent industries for many years. e majority of this book is focused on
guiding you through each step in the process and, along the way, present-
ing concepts and techniques that can be used to improve the user experi-
ence of game development tools.
e most important concept to understand about the User- Centered
Design process is that it is not a magic solution. ere is no “secret sauce”
that will provide immediate results, and it is not a “shiny coat of paint”

[image:]16 ◾ Designing the User Experience of Game Development Tools
that can be applied at the end of development. It is an iterative process.
Comparing the rst few generations of the scroll- wheel on the Apple iPod
(see Figure2.1) reminds us that even very popular products take time and
sometimes several iterations to get it right … and even then, they can
always be improved.
By applying the User- Centered Design process, we accept that we may
not get it right the rst time. However, with each quick iteration, we will
analyze the tool to nd problems, make improvements to the design, and
evaluate it with the users to conrm that we are going in the right direction.
THE PHASES OF THE USER- CENTERED DESIGN PROCESS
“It is a shi in attitude from designing for users to one of designing
with users.”
ELIZABETH SANDERS EMPHASIS ADDED
User- Centered Design is an iterative process that revolves around the
users. erefore, it should come as no surprise that the users are at the
center of the process (see Figure2.2). Everything that we do is done out of
consideration for the users.
FIGURE 2.1 Iterative improvements to the iPod Classic scroll-wheel across sev-
eral generations.
FIGURE 2.2 Each phase of the User-Centered Design process revolves around
the users.

[image:]The User- Centered Design Process ◾ 17
ere are many dierent versions of this process used in user experi-
ence design, such as the ISO 9241-210 ISO standard for human– computer
interaction.
*
 We will use a simple and straightforward process for the pur-
poses of this book, made up of the following phases: Analysis, Design,
and Evaluation.
Analysis
is phase, which is covered in Chapter4, is all about examining how
people use the tools. We will learn the importance of watching users work,
as opposed to relying only on focus groups, surveys, or simply asking the
users to tell us how they think that they work. We will also learn how the
brain processes actions and mental loads, which will help us nd ways to
make the tools better for the users.
rough a variety of techniques, we will learn how to observe and
interpret the way in which people use the tools. We are not looking for
solutions at this time; we are only focusing on identifying problems (see
Figure2.3).
Design
ere is an old saying in the eld of user experience: “Design without con-
straints is just art.” One of the most important outputs of the Analysis
phase is to provide us with those constraints, so that we can use them to
choose what to improve during the Design phase. In this phase, beginning
in Chapter5, we will learn a number of concepts and techniques that we
can use to improve the design (see Figure2.4).
*
For more on the ISO 9241-210 standard, visit the website http://www.iso.org/ iso/ catalogue_detail.
htm?csnumber=52075.
FIGURE 2.3 e Analysis phase of the User-Centered Design process.

[image:]18 ◾ Designing the User Experience of Game Development Tools
Evaluation
Finally, we can move on to the Evaluation phase, which is covered in
Chapter6. Here, we will learn what a heuristic evaluation is. We will also
learn how to build a test plan, which will allow us to determine if the
changes to the design are improving the user experience. We will also
determine when it is appropriate to go straight to code or to use pre-
visualization techniques such as sketching and prototypes (see Figure2.5).
Back to Analysis
Finally, we start over again at the Analysis phase. Remember, the goal
is quick and constant iteration. We can—and most likely will—move
back and forth around the loop. It is quite common to move between the
Analysis and Design phases a few times before going on to the Evaluation
phase. ere is no wrong way so long as we are constantly iterating and
improving based on regular feedback from the users (see Figure2.6).
FIGURE 2.5 e Evaluation phase of the User-Centered Design process.
FIGURE 2.4 e Design phase of the User-Centered Design process.

[image:]The User- Centered Design Process ◾ 19
THE POWER OF PRE- VISUALIZATION
One of the most powerful aspects of the User- Centered Design process is
pre- visualization, which allows us to learn more about the user experience
before we write any code. is helps to ensure that the time spent develop-
ing the tools is as ecient as possible.
e decision to invest in these pre- visualization techniques depends
on a variety of factors: how complex the change is, the programming
resources that are available at the time, and so on. We will discuss this in
Chapter6.
Jeff’s Block of Wood
In the mid-1990s, electronic pocket organizers were gaining in popularity.
ese devices were portable computers designed to replace your address
book, calendar, and notepad. e problem was that most of their features
were badly implemented, and some were too big to deserve the term “pocket.”
Je Hawkins was one of the founding members of Palm, and he decided
to change that. He and his team started working on a pocket- sized per-
sonal organizer that had a limited feature set. rough observation and
analysis, Hawkins identied a small set of features that he felt most people
wanted a pocket organizer to do really well.
Getting the right size and form factor for a device that ts in your pocket
is not easy. When it comes to hardware, you cannot make a change aer
a device comes o the assembly line. Getting it wrong can be disastrous.
Palm did not have unlimited resources to fabricate prototypes.
One day Je came in to work with a wood block small enough to be held
in one hand. In a meeting, he took out the wood block out and started tap-
ping on it. e next day, he came in with another wood block that was a
FIGURE 2.6 Returning back to the Analysis phase.

[image:]20 ◾ Designing the User Experience of Game Development Tools
slightly dierent size. Approaching a group of people having a discussion,
he took out the wood block and pretended to enter someone’s information
into an address book. e day aer that, he came in with a slightly smaller,
but thicker wood block. Aer making plans to meet someone, he took out
the wood block and pretended to enter a new meeting in his calendar (see
Figure2.7).
Had he lost his mind? No, quite the opposite.
*
 Je was working on nd-
ing the right size and form factor early on in the process, in an inexpensive
and fast way. Instead of going straight to manufacturing with a design that
was untested, he found a way to try out dierent options insituations sim-
ilar to those where the real device would be used. Over time, he iterated
on the wood blocks to create prototypes that were increasingly sophisti-
cated, complete with an interface printed on paper and a stylus made from
a chopstick. When he had arrived at a form factor that felt right, he was
able to use the prototypes to help people understand his vision. All of this
work contributed to the release of the rst Palm Pilot, a device that would
*
In fact, Je Hawkins knows a thing or two about the mind. In addition to being a brilliant innova-
tor, Je also has a deep understanding of the brain. In 2004, he wrote a book about how we think,
titled On Intelligence. Knowing how the brain works is useful information when you are designing
for people.
FIGURE 2.7 A prototype of the rst Palm Pilot, created by Je Hawkins. © Mark
Richards. Courtesy of the Computer History Museum.

The User- Centered Design Process ◾ 21
outsell the competition, spawn a long list of imitators, and ultimately have
a huge impact on the world of portable electronics.
e important lesson that we can learn from this is that when resources
are not available or are too expensive, pre- visualization techniques are one
way to allow everyone to have a shared vision of what the tool will be,
and understand how it will be used in context, before you start investing
resources in development.
Getting the Design Right and the Right Design
When creating a feature for a tool, it is oen considered prohibitive to
build a few alternatives in an eort to pick the best option. However, the
long- term cost of getting the feature wrong can be much higher than tak-
ing the time to create a few alternatives! Bill Buxton summarizes this per-
fectly in the subtitle of his book Sketching User Experiences: “Getting the
Design Right and the Right Design.” It is one thing to get the design right,
but make sure you are doing the right design in the rst place.
While it is true that Je’s wood blocks did not have the functionality
of a real Palm Pilot, it was enough to help him fail early and oen in a
quick and inexpensive way. Once he had learned all that he could from
that prototype, he was able to share it with other people and move on to
more sophisticated prototypes. Pre- visualization can help us do the same
for our game development tools.
Having the Same Vision
If you have worked in game development long enough, you may be famil-
iar with this situation: developers and users are gathered in a meeting
room, discussing how a tool will work. Users talk about what they need,
and developers ask questions. When everyone agrees on what to do, an
e- mail is sent out with bullet- points that summarize the decisions. e
developers make changes to the tool, and a few days later, the users get
their hands on it. e rst reaction from the users is, “is isn’t what we
asked for!” Frustrated, the developers reply, “It is! It’s written right here in
the e- mail!” When the stakeholders nd out about the situation, they say,
“Why are the users unable to produce the content we need for the game?
Why are the developers saying they need more time to make changes to
the tool?” If we do not visualize what we intend to build, there will always
be room for interpretation and misunderstanding.
For example, consider the word Letters (le side of Figure 2.8). If
you were to close your eyes and visualize what that word means to you,

[image:]22 ◾ Designing the User Experience of Game Development Tools
what would you see? A stack of paper letters in envelopes or letters of
the alphabet?
When it comes to a topic as complex as the user experience of a game
development tool, we need to visualize the meaning of our words. If we do
not, there is a good chance that we are not talking about the same thing.
GETTING TO A BETTER USER EXPERIENCE FASTER
Starting Closer
If we could track the development of a tool on a linear time graph, it might
look something like the le side of Figure2.9. e bottom represents time,
and the le side represents the target zone for a user experience that is
optimally usable, useful, and desirable. Our goal is to hit that zone as
closely as possible.
*
When we do not design for the right users or fully understand their
goals, we start far away from the target zone (represented by the triangle
on the right side of Figure2.9).
*
e book Eective UI by Anderson, McRee, Wilson, et al. uses a very similar graph to compare the
slow iteration of the waterfall process versus the fast iteration of Agile.
012345678 01234567
8

FIGURE 2.9 Starting far from the target zone increases the time it takes to
achieve an improved user experience.
Letters
FIGURE 2.8 Without visualization, a word can be interpreted in dierent ways.

[image:]The User- Centered Design Process ◾ 23
However, if we invest in the Analysis phase of the User- Centered Design
process, we start closer. is means that hitting the target zone takes less
time (represented by the circle on the le side of Figure2.10). Even if we
start a little bit later because we have chosen to invest time in the Analysis
phase, we will still have a better chance of hitting our target zone faster
(see the right side of Figure2.10) because we know what we are building
and who we are building it for.
Small, Frequent Iterations
When we do not get feedback from the users on a regular basis, every iter-
ation can result in big, time- consuming changes. Each version attempts to
realign the tool to address what the users need, and the degree of success
can vary wildly (see the le side of Figure2.11).
By comparison, the User- Centered Design process emphasizes short,
frequent repetitions of the iteration loop: analyze the situation, design one
012345678 0123
45678

FIGURE 2.10 Starting closer to the target zone means that it takes less time to
achieve an improved user experience, even if you take into account the time spent
in the User-Centered Design process.
012345678 0123
45678

FIGURE 2.11 More frequent iterations allow developers to adapt the user experi-
ence faster, and with more condence.

[image:]24 ◾ Designing the User Experience of Game Development Tools
or more focused improvements, and then evaluate the impact on the user
experience. Validating the tool with the users on a regular basis makes for
smaller, more concentrated adjustments (see the right side of Figure2.11).
is helps to achieve the goal of an ideal user experience more quickly
and eciently.
INTEGRATING THE USER- CENTERED
DESIGN PROCESS INTO AGILE
Emphasizing short, rapid iterations will feel familiar to those who work
with the Scrum framework of the Agile soware development process.
However, despite the similarities between Agile and the User- Centered
Design process, it may not be immediately apparent how to integrate
the two.
Before Joining the Sprint
At the beginning of the project, it is normal to spend a bit of time gather-
ing information about who the stakeholders and users are before going
through the phases of Analysis, Design, and Evaluation.
*
 A frequent reac-
tion to this is, “What do the developers do while that is happening?” e
fact is that there will always be programming tasks that can be done dur-
ing this time, such as work on the back- end, technical investigations, or
other things that will not aect the user interface.
Linking to the Sprint
One of the advantages of going through each phase of the User- Centered
Design process within a single sprint is that it forces small change and
rapid iteration. Here is how each of the phases can be integrated.
Iteration Loop
Once you have a plan, you can set deadlines for the Analysis, Design, and
Evaluation phases within the sprint. For example, if the sprint lasts two or
three weeks—a common length for many teams—you can set a deadline
to complete the Analysis phase before the rst third, the Design phase
before the second third, and nally, the Evaluation phase before the end of
the sprint (see Figure2.12).
*
In their article “Adapting Usability Investigations for Agile User- Centered Design” for the Journal
of Usability Studies, authors Desiree Sy and Lynn Miller call this “Cycle 0.” You can read it here:
http://www.upassoc.org/ upa_publications/ jus/2007may/ agile- ucd.pdf.

[image:]The User- Centered Design Process ◾ 25
More Complex Designs
In the case of bigger, more complex features that take more than a week
to design, there are other approaches to integrating the iteration loop into
the sprint.
One approach is to prepare designs one sprint in advance, and dedicate
an entire sprint to implementation. For example, consider Figure2.13,
which shows three consecutive sprints. During sprint B, developers are
implementing the changes from the previous Design phase. Meanwhile,
the people in charge of the User- Centered Design process do the Evaluation
phase on the latest build of the tool from sprint A. en, they look at the
results in the Analysis phase. Finally, changes are proposed in the Design
phase and delivered right before the start of sprint C, and then the cycle
shis ahead by one sprint.
WHO HAS THE TIME TO DO ALL OF THIS?
is process might seem like a lot of work. For many, this is a big shi
away from how tools development is traditionally done. However, if we
agree that the way we have been working in the past has resulted in tools
with a bad user experience, perhaps it is time to try something dierent.
Working dierently will require a culture shi, which we will discuss in
the nal chapter.
In a perfect world, there would be one person in each tools team driv-
ing the User- Centered Design process. However, when that is not pos-
sible, the team must work together and take it upon themselves to apply
AB

FIGURE 2.12 Integrating the User-Centered Design process within a single sprint.
ABC

FIGURE 2.13 Integrating the User-Centered Design process across several sprints.

[image:]26 ◾ Designing the User Experience of Game Development Tools
these concepts in an eort to show that improving the user experience is
a worthy investment.
If you studied object- oriented programming in school, you probably
started by creating class diagrams. If you studied 3D modeling, you prob-
ably started by using a front and side reference drawing. Aer a few years
of programming, you no longer needed to create a class diagram for every
single class, and you no longer needed front and side references to create
every single model. ey were useful tools in the early days, but as you
gained more experience, you internalized the process and started intui-
tively applying the concepts and techniques without needing a guide.
at is how you can apply the User- Centered Design process presented
in this book. Start by using it as a guide. Once you have applied the prin-
ciples long enough, it will naturally become part of your development
process. at is when you will begin to see big improvements to the user
experience of your tools.
WRAPPING UP
In this chapter, we learned about the User- Centered Design process and
how it can help us achieve a better user experience. We also learned how
pre- visualization can be used in certainsituations to help us improve our
design and allow everyone involved to have the same vision of what we are
going to build. Finally, we discussed how the User- Centered Design pro-
cess can be integrated into Agile and how to justify the time and resources.
In the next chapter, we will learn what it means to be “User- Centered,”
which is one of the most important aspects of improving the user experi-
ence of game development tools.

[image:]27
Chapter 3
What Does It Mean to Be
“User- Centered”?
WHAT WILL WE LEARN IN THIS CHAPTER?
• e importance of starting with the users
• How to focus on the right users
• Understanding the dierence between features and goals
• Doing one thing really well
• Why it is important to choose the right features
START WITH THE USERS
“You’ve got to start with the customer experience and work back
toward the technology—not the other way around.”
STEVE JOBS
T
 ,    by the late CEO of Apple while he
was hosting an open question- and- answer session,
*
 would dene a
new direction for the company. It would also take their shares from the
rock bottom price of four dollars to over 600 dollars in a little over a decade.
*
e full video can be seen here: “Steve Jobs on Apple Customer Experience and Innovation,”
https://www.youtube.com/ watch?v=1SIeTmORl0E.

[image:]28 ◾ Designing the User Experience of Game Development Tools
Google clearly seems to share this mindset. On the corporate section of
their webpage that lists their philosophies, one reads “Focus on the user
and all else will follow.”
*
 at mentality has also helped take them from a
small start- up to the world leader in search.
We Are Not the Users
If you are involved in the creation of game development tools, take a min-
ute to ask yourself these questions:
• Who are the people using the tools to produce nal content for
the game?
• Who uses the tools all day (and even late into the night)?
• Whose job depends on how well they can use the tools?
If you are referring to soware used to program game development tools
(such as Microso Visual Studio, Eclipse, and Apple Xcode) or design
the interfaces for game development tools (such as Adobe Photoshop,
Microso Expression Blend, and Qt Designer), then the answer is you.
However, if you are talking about anything else, then there is only one
answer: the users!
One of the biggest mistakes that we make as game tools developers is
creating tools without rst understanding the people who use them. We
can assume that we know the goals of the users and the context in which
they use the tools. Some of us may not see this as a problem because we
have worked this way for years.
†
 Changing this view is one of the rst
steps on the road to improving the user experience of our game develop-
ment tools.
We need to accept that we do not always know the answers to these
questions. Furthermore, we need to make it part of our job to nd out—
even if we have many years of experience in the industry, even if we have
previously worked in the same position, or even if we have a good rela-
tionship with someone who does now. Our opinion, or that of one or two
expert users, does not represent the reality of everyone using the tools to
produce the majority of the game’s content.
*
is comes from the Google company philosophy page, “Ten ings We Know to Be True,” http://
www.google.ca/ about/ company/ philosophy/.
†
Including myself!

[image:]What Does It Mean to Be “User- Centered”? ◾ 29
When we learn about the users, we must also share what we have
learned with everyone involved in the development of the tool. If everyone
shares the same vision of whom a tool is being developed for, they are bet-
ter prepared to work as a team to build a great user experience.
What Happens When We Do Not Know
Whom We Are Designing For?
When we do not know whom a tool is for, we end up creating a tool for
everyone. ere is an old saying about that: “When you try to please every-
one, you please no one.”
What does that mean in the context of game development tools?
Consider the following scenario: ree people are working together to
create a game development tool. Based on their own experiences, each one
has a dierent view of who uses the tool, what they need, and how they use
it. ey do not have a shared vision of whom they are building for. ey
combine their ideas together into one big list of features.
e rst person adds a few initial features (le side of Figure3.1). en,
the second person adds a few more features, because they have a dierent
view of what the users need (middle of Figure3.1). Finally, the third per-
son adds more features as well, based on their view of what the users need
(right side of Figure3.1).
Once you see this, you begin to understand why some users say that
their game development tools are overly complicated and dicult to learn!
Documentation Is Not the Magic Solution
It might seem logical to expect users to read the documentation before
saying that tool is hard to understand. at would be true, if the documen-
tation is up to date, or if it even exists. When it does exist, how many peo-
ple actually read it end to end? Oen it is the technical directors, technical
artists, and tools developers who act as the documentation. ey are also a
FIGURE 3.1 Trying to create an interface to “please everyone” usually results in
an interface that will “please no one.”

[image:]30 ◾ Designing the User Experience of Game Development Tools
single point of failure (What if they are run over by a Warthog tomorrow?).
In addition, if there are people constantly asking them questions about
how to use the tools, they have less time to solve other big problems.
A user manual is important and should be created and maintained if
the resources are available, but we also need to do our best to create tools
where the basic functionality is easy to learn without requiring the user to
read a manual.
Stop the Culture of “RTFM”
On the topic of manuals, one of the biggest challenges to improving the
user experience of game development tools is the culture of “RTFM”:
blaming the user when they do something wrong. Content creators are
good at creating content. at is already a very big responsibility and can
take years of hard work! Not only is it unrealistic for us to expect the users
to understand everything technical related to game development, it can
also be seen as hostile. is hurts communication and teamwork. Instead
of blaming the users or expecting them to become something that they are
not, we need to start understanding them.
FOCUS ON THE RIGHT USERS
As we learned earlier, when we try to please everyone, we please no one.
However, the opposite can also be true: it can be problematic to design for
only one or two people.
*
In the case of a tool that is made to be used by a lot of users with mini-
mal technical knowledge, designing for one or two people who are highly
technical and do not use the tools very oen can make this situation worse.
For example, consider that all of the users of a tool are spread among the
following two axes: technical knowledge and frequency of use (see the le
side of Figure3.2). If we only talk to the users in the upper le who are
more technical and do not use the tool very oen (for example, to set up
a pipeline or train a new user), we are missing the opinions of a large per-
centage of the user base.
e key is to work with enough users so we know the majority of the
users’ needs (highlighted area on the right of Figure3.2) and to work with
users who represent the mix of people using the tool (highlighted area on
the le of Figure3.2), so we are not trying to please everyone at once.
*
Malcolm Gladwell discusses this eect, known as the inverted U- curve, in his book David &
Goliath: Underdogs, Mists, and the Art of Battling Giants.

[image:]What Does It Mean to Be “User- Centered”? ◾ 31
Minimal Investment for Maximum Results
Earlier, we spoke about the benets of saving 20 minutes per 8-hour day
for 20 users. Let us imagine that instead we found a way to save 30 minutes
a day. is sounds like a great improvement. However, the impact changes
if that savings is only for ve users, instead of 20. Alternatively, imagine if
those users actually use the tool only two hours per day, instead of all eight
hours per day. To make matters worse, if our savings of 30 minutes comes
from the implementation of a complex new feature that only ve people
use, we have also spent a lot of time and money on development. is is a
lose/ lose scenario (see the le side of Figure3.3).
We can also imagine another scenario where we save time for 50 users.
is sounds like we are helping a large number of people! However, because
we tried to please everyone, we spent a lot of time implementing too many
features and did not have the time to optimize them. As a result, we only
save each user one minute per day. Even though it seems that we are mak-
ing things better, we are saving less overall (see the middle of Figure3.3).
More
frequent
Eﬀectiveness
Variety of users
MoreLess
Less
fr

equent
More technical
Less technical

FIGURE 3.2 Focusing on the right users: nding the right balance.
SpentSaved

FIGURE 3.3 How focusing on the right users can maximize the improvement to
the user experience, for a minimal investment.

[image:]32 ◾ Designing the User Experience of Game Development Tools
Instead, we need to nd the people who are using the tools for the most
number of hours in the day and focus on delivering a focused feature set
that satises their needs (see the right side of Figure3.3). is will give us
the maximum results for the minimum investment.
We’re Not Going to Make Everyone Happy
It is important to keep in mind that we are not going to make everyone
happy. We have to look at the big picture. We are going to make the most
frequent users more productive. at will result in the biggest impact on
the user experience overall.
FEATURES VERSUS GOALS
If you have worked in a game tools development team, at some point you
have heard someone say, “Why don’t the users know what they want? Why
can’t they just tell us?” In addition, you may be familiar with the percep-
tion that when a user is asked if they want a feature, nine times out of ten
they will say yes, regardless of the priority or usefulness.
Both of these situations highlight the problems that occur when we
focus on features instead of user goals. One important point that we need
to understand is this: it is not the user’s job to design the user interface.
However, it is their job to be able to tell us what their goals are!
Swiss Army Knife Compared to Scissors
To understand this better, let us consider two common tools: a Swiss army
knife and pair of scissors (see Figure3.4).
e Swiss army knife is a great invention. Hidden inside the average
Swiss army knife is a multitude of tools, from simple cutting blades to
FIGURE 3.4 Features versus goals: comparing a Swiss army knife to scissors.

[image:]What Does It Mean to Be “User- Centered”? ◾ 33
corkscrews, mini- scissors, toothpicks, bottle openers, and more. Swiss
army knives do a lot of great stu. ere are two trade- os, though: First,
because they do such a great variety of things, they are not necessarily very
good at any one thing in particular. Second, if you have never used a Swiss
army knife before, it is not immediately clear how it works at rst glance,
or the variety of tools contained within.
Now, let us compare that to a pair of scissors. Scissors do one thing really
well: they cut paper! However, they are not good at much else. If we needed
to open a bottle, and all we had was a pair of scissors, we would be out of
luck. However, for cutting paper, scissors are hard to beat. Unlike the Swiss
army knife, however, they are much more intuitive: e two holes suggest
where we should place our ngers. ey can only move in one axis. ey do
not hide their functionality. ey are never in a specic “mode.”
Understand What the User Is Trying to Accomplish
How does this relate to features versus goals? e truth is that many of our
tools resemble the Swiss army knife: they do many things, but they tend
to do those things moderately well from the user’s perspective. It is also
not clear what they do just by looking at them. is is because we pack
them with features without always understanding what the majority of
the users’ goals are.
If the user’s goal is to cut a piece of paper in half, and we give them the
option of either a Swiss army knife or a pair of scissors, the scissors would
be the clear choice. is illustrates the importance of understanding the
user’s goals. Before we start adding features, we need to understand what
the user is trying to accomplish. By knowing this, we can design the right
tool for the task.
A Faster Horse
When asked about the invention of the automobile, it is widely believed
that Henry Ford said, “If I had asked people what they wanted, they would
have said faster horses!” is quote is oen used to suggest that you can-
not create innovative products if you ask the users or stakeholders what
they want.
As it turns out, Henry Ford never actually said that.
*
 However, he did
say this: “If there is any one secret of success, it lies in the ability to get the
*
No references to this quote can be found in books, in web searches, and even from the historians
at the Ford Museum: http://blogs.hbr.org/2011/08/henry- ford- never- said- the- fast/.

[image:]34 ◾ Designing the User Experience of Game Development Tools
other person’s point of view and see things from that person’s angle as well
as from your own.”
Learning about people and their goals is not the same thing as letting
them design the features. If you understand what people need, you are in a
much better position to propose features that address those goals.
In other words, the user is the best person to tell you that they want to
go from point A to point B. Once you understand that, you can suggest a
faster horse or an automobile.
DO ONE THING REALLY WELL
“Good design is as little design as possible.”
DIETER RAMS
Another philosophy listed on the Google company webpage is this: “It’s
best to do one thing really, really well.” Google decided early on that their
focus would be search. Although they went on to create a variety of dier-
ent services, search has always been at their core. ey have chosen not to
do some other things so that they can allocate the necessary resources
to continue providing the best search experience.
Being Proud of the Things We Haven’t Done
Another one of the philosophies that transformed Apple into a huge suc-
cess aer the turn of the millennium was focusing on a few key prod-
ucts and features. at attitude is perfectly represented in this quote from
Steve Jobs: “I’m as proud of the things we haven’t done as the things we
have done.”
It is important to note that saying “no” does not mean, “We’ll never do
this.” It means “not yet.” Knowing what not to do helps you prioritize. One
of the best ways to know what not to do is to know who your users are and
what they need.
We are oen overwhelmed by the number of features that we feel must
be added to a tool. ere is never enough time to add everything, and the
priorities are always changing. However, if we are asking ourselves, “How
are we going to create all of these features before the deadline?” perhaps
we are not asking the right question. Instead, perhaps we should start by
asking ourselves, “Are these the right features?”
is mentality is also reected in another quote from Mr.Jobs, this
time while speaking at WWDC 1997: “e line of code that is the fastest

[image:]What Does It Mean to Be “User- Centered”? ◾ 35
to write, that never breaks, that never needs maintenance, is the line that
you never have to write.”
The Monkeys and the Banana
We have a tendency to support features simply because we have always
done so. If we have built or used a tool in the past with a certain list of
features, and it worked for the users at the time, we assume that we need
those features.
is behavior is similar to the story of the monkeys and the banana
(see Figure3.5). Imagine that there are three monkeys in a room. At one
point, a banana is placed in the room. One of the monkeys walks over to
the banana and picks it up. At that moment, a door on the ceiling opens
and a bucket of water is dumped on the other two monkeys in the room.
All of the moneys are wet, except for the one who took the banana, who
is happily munching away. Naturally, the other monkeys—now, soaking
wet—are not thrilled.
Later, another banana is placed in the room. e same thing happens:
one of the monkeys takes the banana, and the other monkeys get soak-
ing wet. e monkeys start to understand that when one monkey gets the
banana, the other monkeys are in for a bad time.
e next time a banana is placed in the room and one of the monkeys
reaches for it, the other monkeys beat him up before he can get to it. Soon
enough, all of the monkeys are afraid of going near the bananas.
Now, imagine that we take one of the monkeys out of the room and
replace it with another one who has never been in the room before. When
a banana is placed in the room, the new monkey will naturally attempt to
get it. is is when the other monkeys, knowing what will happen to them,
pile on the new monkey and beat him up. e new monkey is terried and
does not understand why the others are so angry!
Over time, imagine that we replace all of the monkeys in the room so
that all of the original monkeys are gone. e monkeys in the room know
FIGURE 3.5 e analogy of the monkeys and the banana.

[image:]36 ◾ Designing the User Experience of Game Development Tools
that the rule is “No one goes near the bananas,” but they do not know
why. at is just the way it is.
is is why we sometimes add features or design tools in a certain way
without questioning it: “We’ve just always done it this way.” However, we
have to ask ourselves, are all of those features necessary?
CHOOSE THE RIGHT FEATURES
To understand what is necessary, we need to understand the needs of the
people using the tools. If we do not do this, we may end up trying to deliver
too much at once or work on things that the users do not need right away.
All of this leaves us with less time to create a great user experience for the
things that the users really do need.
Less of What You Don’t Need, More of What You Do
In the early 2000s, laptop makers were struggling to nd ways to make
their laptops lighter while still packing in all of the common components,
such as a disc drive. ey never questioned the disc drive, because “we’ve
just always done it this way.”
Meanwhile, Apple took a step back and observed that very few people
still use disc drives on a regular basis. As a result, they started phasing out
disc drives on all of their devices. Now, if you absolutely need a disc drive,
you buy an external one.
is focus has not only allowed them to make their laptops lighter than
the competition (see Figure3.6), but they were able to ll up some of that
extra space with a larger battery. ey determined that increased battery
life is a feature that people nd more compelling than having a disc drive.
As is the case with other disruptive decisions that Apple has made, we now
see other companies following their lead and removing disc drives in favor
of larger batteries.
Before you decide what to work on rst, make certain that all of the fea-
tures are useful for the majority of users and therefore important enough
to justify your eorts. If your schedule treats features that will be useful
for 80percent of users equal to those made for one or two expert users,
*

then perhaps those priorities need to be challenged.
*
As long as the feature is not a key element related to setting up a pipeline, which could result in a
bottleneck for the rest of the content creators.

[image:]What Does It Mean to Be “User- Centered”? ◾ 37
More Features Do Not Make a Better Tool
e Apple iPod is another excellent example of this philosophy. e big-
gest competitor to the third- generation iPod was the iRiver H300. At the
time, iRiver was a rising star in the MP3 player market. eir H300 had
many impressive features. It supported a large number of le formats: Not
only could it play music from MP3, WMA, and OGG les, but it could
also play videos and view pictures. It had an FM tuner, two headphone
jacks, and a color display, just to name a few unique features. How did the
third- generation iPod compare to this? It only played music. It did not
have an FM tuner. It had one headphone jack. e display was black and
white. e iPod had fewer features, by far. (See Figure3.7.) However, not
only did the iPod outsell the H300, it also outsold every other MP3 player
on the market. Perhaps most telling is the fact that very few people talk
about iRiver these days.
FIGURE 3.6 While other manufacturers were constrained with the assumption
that all laptops must have a disc drive (bottom), Apple observed that very few
people used their laptop disc drives, and decided to use that space to make a thin-
ner laptop with better battery life (top).
Video & images

FM tuner
Two headphone jacks
Voice recording
Color display

FIGURE 3.7 e third-generation iPod (le) compared to the iRivier H300
(right).

[image:]38 ◾ Designing the User Experience of Game Development Tools
How did Apple do this? Several factors contributed to the success of the
iPod, but one thing is certain: it was not by having more features. Apple
focused all their resources on the right features, to give the iPod the best
user experience possible. Products that choose the right features, and do
them well, are in a much better position to succeed.
Exponential Complexity
We may believe that adding features makes a product more complex in a
linear fashion. However, the fact is that each new feature increases com-
plexity exponentially. (See Figure3.8.) is is because every feature will
be used in combination with all of the other existing features, which adds
an extra dimension to all those that came before it. is is why it is of the
utmost importance to choose the right features, and choose them carefully.
WRAPPING UP
In this chapter, we discussed the value of increasing the involvement of
users in the development process. We discussed the importance of accept-
ing that—more oen than not—we are not the users, as well as the dangers
of not knowing for whom we are designing. We also learned that docu-
mentation is not the magic solution and why it’s important to stop the cul-
ture of “RTFM.” In addition, we learned how focusing on the right users
allows us to get the maximum results from a minimal investment, accept-
ing that we’re not going to make everyone happy. Finally, we learned the
dierence between features and goals, the fact that more features do not
make a tool better, and why understanding the goals of the users can help
us choose the right features.
In the next chapter, we will learn important concepts and tech-
niques that we can use during the Analysis phase of the User- Centered
Design process.
Number of features
Complexity
Number of features
Complexity

FIGURE 3.8 Adding more features increases complexity exponentially.

[image:]39
Chapter 4
Analysis
WHAT WILL WE LEARN IN THIS CHAPTER?
Concepts
• e importance of watching users work
• Introduction to human– computer interaction
• Understanding the mental model of the users
Techniques
• Interviewing stakeholders
• Performing a contextual analysis
• How to create a task ow
• How to discover the mental models of the users
• Establishing how to measure improvements to the tools
THE IMPORTANCE OF WATCHING USERS WORK
Jakob Nielsen is one of the principals of the respected usability consul-
tancy Nielsen Norman Group (of which Don Norman is also a principal).
One of his more famous articles is on the importance of watching users
work. In his article, he writes, “To discover which designs work best,
watch users as they attempt to perform tasks with the user interface.”
*
 It is
*
e full article can be found here: http://www.nngroup.com/ articles/ rst- rule- of- usability- dont-
 listen- to- users/.

40 ◾ Designing the User Experience of Game Development Tools
not enough to simply ask the users about how they use the tool. ere are
aspects of the user’s world in the heat of production that are impossible to
understand unless you sit next to them and watch them work.
The Limitations of Metrics and Focus Groups
Two of the most common techniques that we may use to understand how
people work are metrics and focus groups. Unfortunately, sometimes we
base much of our tools development decisions on these techniques with-
out actually sitting down with the users watching them work. is can
have serious implications.
Metrics are a quantitative technique that make it easier to get informa-
tion about a large number of people. Metrics are very good at telling us
what is happening but not very good at telling us why it is happening.
When the metrics report that 90percent of the users never click a specic
button, we have no idea why they are not clicking on it. e users may have
a very good reason that we cannot be aware of unless we watch the users
work: for example, they may not understand the label, or the button may
be hidden behind another window.
In a focus group, the loudest and more inuential person will usually be
heard above everyone else. Even if many other people in the room have an
opinion, or actually use the tool more hours per week, their voices are not
heard. Furthermore, Jakob Nielsen’s research suggests that what people
say they do compared to what they actually do is oen quite dierent.
Metrics and focus groups can be great starting points, but they should
be complemented by sitting down with the users and watching them work.
Proximity to the Users
Outside of the games industry, having users nearby that you can watch
is considered a luxury! Many companies spend astronomical amounts of
money getting access to users so they can ask them for feedback on their
products. ey may pay for transportation, food, and even cash or a gi
card as incentive for people to participate. ey might also pay an online
service to nd users and do the analysis for them.
Game developers who work in the same building as their users are at
a huge advantage to improve the user experience of their tools. ey can
talk to their users on a regular basis and have a very tight iteration loop.
If this is your situation, you should make the most of it and sit as close as
possible to the users.

Analysis ◾ 41
ere are some situations where there are users available, but the devel-
opers do not have easy access to them. Some examples of this are if you
work for a middle- ware company, or the users are in another building or
even another country. In this case, you can use remote collaboration tools
such as WebEx, GoToMeeting, and LiveMeeting. ey provide features
that make it easier to talk to users and get feedback on your tools.
If you are an independent tools developer, you can try to nd users with
the right prole in online chat forums, such as the CGSociety forums or
PolyCount. Many people who participate in online communities would
jump at the opportunity to try out a new tool or to give their opinion on
how they would use it.
Uncovering Work- Arounds
Watching users work is also a great way to uncover work- arounds. Aer
using a tool for a long time, users forget that they do certain things auto-
matically, which could potentially result in reduced productivity. e
story of the monkeys and the banana from Chapter3 is a perfect example
of this behavior.
When you see the user doing something that seems like a work- around,
try asking them why. Every time you ask why, you dig deeper into the
root of the problem. For example, imagine this exchange between you and
a user:
User: “So, rst I’ll choose a new object from this list. Before I do that, I
have to press F5.” <user waits>
You: “OK. While we’re waiting, can you tell me why you do that?”
User: “Oh, pressing F5 refreshes the list so I see all of the latest objects.”
You: “Why do you do that?”
User: “Just in case someone added a new object since the last time I opened
the list.”
You: “Why are the new objects not added to the list automatically?”
User: “at’s a good question. I don’t know … It’s just always been that
way!”
Understanding Context
More oen than not, tools are made to work with other tools, and assets
are passed around between multiple users. Because of this, it is essential to
understand the context in which the tools are used. Taking a step back and

42 ◾ Designing the User Experience of Game Development Tools
seeing the big picture can make the dierence between a bad user experi-
ence and a good one.
Je Hawkins understood this while experimenting with his wood block.
He learned some of the dierent situations in which the Palm Pilot would
be used: in the context of a meeting, at a discussion around the water-
cooler, and when bumping into someone. He thought beyond just the
interface of the device. He understood that aer using their Palm Pilots to
store information, people would want to return to their computers and be
able to access the contacts and appointments that they added. is realiza-
tion led to the ability to easily charge and synchronize your device with
your computer, which was crucial to the success of Palm.
By being aware of context, Apple was able to think beyond how people
listen to music, and understand how people want to get music onto their
devices. is led to the creation of iTunes, one of the biggest selling points
of the iPod and a huge source of income for Apple.
e information that we learn in the Analysis phase can be invaluable
for understanding context, which can have a huge impact on improving
the user experience.
What Is the Problem That We Are Trying to Solve?
In addition to uncovering work- arounds, watching users work also helps
us to remember the problem that tool was originally made to solve. When
a tool has been used in production for a while, we may try to nd solutions
that conform to the existing interface. is tunnel vision can hinder our
ability to improve the user experience.
For example, imagine that you are working on a shader creation tool for
texture artists. e majority of beginner users are having trouble under-
standing that when they want transparency, they need to check the “Alpha
On” checkbox on the shader options. In addition, the checkbox is hidden
among a long list of variables in the Options tab for the shader. It takes
several clicks to enable, which hurts the eciency of the users.
We might think that the solution would be to rename the label from
“Alpha On” to “Enable Alpha Transparency” so it is clearer for beginners,
or to reduce the number of clicks required to get to the checkbox. ese
are both good ideas, but we must always ask ourselves, “What is the prob-
lem that we are trying to solve?” Our goal is not to make a better checkbox,
or a clearer label. What we really want to do is make it easier to enable
alpha transparency on the shader!

[image:]Analysis ◾ 43
Instead, we could automatically activate transparency when the tex-
ture map in the diuse input has an alpha channel. e diuse texture
needs to have an alpha channel anyway! is solves the real problem and
is much more eective than a clearer label or better checkbox placement.
Furthermore, this also results in one less checkbox for the tools developers
to maintain, and one less checkbox for the user to learn.
INTRODUCTION TO HUMAN– COMPUTER INTERACTION
Tools developers are very familiar with using soware and hardware to
receive an input, process it, and then send an output. For example, a com-
puter receives input from the mouse, calculates what should happen, and
then displays the result on the monitor (see the right side of Figure4.1,
clockwise from top).
Although we may be familiar with the computer side, not everyone
understands what is going on inside the user’s head while we are watching
them work. As it turns out, the human side is almost a mirror image of
the computer side: we receive an input, we process it, and then we send an
output. For example, we see what is on the monitor, we think about what it
means, and then we click the mouse. Aer our mouse click changes what
we see on the monitor, we start back at the beginning (see the le side of
Figure4.1, clockwise from bottom). is communication loop is called
the human– computer interaction model, and understanding it is key to
improving the user experience.
Finally, in between the human and the computer is the user interface
(see the middle of Figure4.1). e quality of the interface determines how
good the interaction between the human and the computer will be.
FIGURE 4.1 e quality of the interaction between the user (le) and the com-
puter (right) is determined by the interface (middle).

[image:]44 ◾ Designing the User Experience of Game Development Tools
Understanding the Action Cycle
e communication loop on the human side can be boiled down to
three phases: “Look,” “ink,” and “Act.” is is sometimes called the
“Action Cycle.”
*
Imagine for a moment that you had never used a computer mouse
before. If you were told to move the cursor on a computer screen using
the Logitech MK710 Wireless Desktop Mouse for the rst time, you might
start by looking at the shape of the mouse: along the le side, there is a
deep groove, and the top has two shallower grooves. en you might think
to yourself, “If I were to hold this object, my thumb would t into that deep
groove, and my ngers would drape over the shallower grooves.”
†
 Finally,
you would act by placing your hand over the mouse and perhaps moving
it a bit. Finally, the cycle would start back from the beginning: look at the
screen, and think to yourself, “What changed? Oh, the cursor moved!”
With enough experience, you no longer need to look at the mouse to see
where the grooves are, or think about what they mean. You spend almost
all of your time in the act phase of the action cycle. e fact that the look
and think phases are reduced means you can spend more time acting,
resulting in increased eciency (see Figure4.2).
e Logitech mouse has been designed to be easy to understand so
you can start using it immediately. However, not all computer mice are
designed this way. For instance, consider the Mad Catz R.A.T. mouse (see
Figure4.3). For someone who has never used a mouse before, the shape
*
e action cycle is part of the eld of action research, pioneered in the 1940s by Kurt Lewin, a
professor at MIT. According to Lewin, humans constantly iterate through three phases when per-
forming actions: planning, acting, and evaluating the results. More recently, Don Norman pro-
posed a “Human Action Cycle” more geared toward human– computer interaction, which features
three very similar phases: goal forming, execution, and evaluation.
†
When the shape of an object suggests how you should interact with it, this is called “Aordance,”
which you can read more about here: http://en.wikipedia.org/ wiki/ Aordance.
FIGURE 4.2 e design of a mouse can make it easier to learn, reducing the time
spent in the Action Cycle.

[image:]Analysis ◾ 45
does not make it immediately obvious how you are supposed to hold it. It
also has dierent modes, which means that it works dierently depending
on what mode the mouse is in. Another example is a novelty computer
mouse, especially those that are made to look like other objects like cars or
sports equipment. If the user is unfamiliar with what a mouse is, they will
likely spend a lot more time in the look phase trying to understand what
they are seeing. All of this wasted time could be spent in the act phase.
Novelty mice are a good example of devices that have the useful and desir-
able layer of the pyramid but are missing the usable layer.
Mental Loads
Susan Weinschenk’s book 100 ings Every Designer Needs to Know about
People presents the concept of loads, which are the three types of processes
that the brain can perform: cognitive, visual, and motor. She describes
them as follows: “ere are things you’re thinking about and remember-
ing (cognitive), things you’re looking at on the screen (visual), and buttons
you are pressing, mouse movements, and typing (motor).”
She goes on to reveal that not all loads are processed equally. Visual
loads require more resources to process than motor loads. Cognitive
loads require more resources than visual loads. erefore, the hierarchy
of loads—from most to least resources required—is cognitive, then visual,
and nally, motor (see Figure4.4).
How does this relate to the action cycle? When you are in the look
phase, you are processing a visual load. When you are in the think phase,
FIGURE 4.3 A non-standard or confusing design can increase the amount of
time spent in the Action Cycle.

[image:]46 ◾ Designing the User Experience of Game Development Tools
you are processing a cognitive load. Finally, when you are in the act phase,
you are processing a motor load. If a tool has a complicated user interface
(visual load), the user will spend a lot of time in the look phase. If the tool
requires that the user do a lot of mental calculation and remember things
(cognitive load), the user will spend a lot of time in the think phase. is
is made worse by the fact that cognitive and visual loads are more time
consuming to process compared to motor loads.
More Clicks Are Not Always Bad
Common sense tells us that adding a hundred clicks to a task is going to
reduce eciency. However, it may come as a surprise to nd that adding
just a few extra clicks—resulting in a slightly increased motor load—can
actually increase eciency. How can this be?
Susan Weinschenk supports this by describing research she did com-
paring dierent mental loads. Although the users in her research study
had to “go through more than 10 clicks to get the task done,” they con-
cluded that the task was easy, because “each step was logical and gave them
what they expected. ey didn’t have to think.”
Steve Krug, another well- respected author in the eld of user experience,
is probably best known for his book Don’t Make Me ink. e topic of the
book is exactly that: the less we have to think, the more time we spend act-
ing, and therefore the more ecient we can be. He further conrms Susan
Weinschenk’s research, stating, “It doesn’t matter how many times I have
to click, as long as each click is a mindless, unambiguous choice.”
How Does the Action Cycle Affect Efciency?
To see how the action cycle applies to improving the eciency of game
development tools, we will walk through an example. In Chapter1, we cal-
culated how saving 20 game developers 20 minutes per day could save time
FIGURE 4.4 e hierarchy of mental loads, from lightest to heaviest: motor,
visual, and cognitive.

[image:]Analysis ◾ 47
and money. Imagine that those 20 users are placing objects in a level, using
a standard level editor. e steps are as follows:
• Look: e user scans the list of objects in the object library.
• ink: Based on what they see, the user determines if they have
found the object they need.
• Act: Once the desired object is found, they select it from the list and
place it in the level.
e user interface could use the search box at the top, but in this case,
the user does not know the name of the object they are looking for (see
Figure4.5). ey will know it when they see it. ey know that the object
can be smashed into pieces by the hero. It is not equipment, a light, or a
particle eect. How can the look, think, and act phases be optimized so
that the user can nd the object that they are looking for?
*
Look
In the current interface for the object library, there are many dierent
types of objects. It can be dicult for the user to distinguish between
various object types at a glance. How can we reduce the time spent in the
look phase?
*
In the example that follows, the design techniques of hierarchy, progressive disclosure, representa-
tion, grouping, feed- forward, constraints, and excise are being applied. We will learn more about
them in Chapter5.
Ambient Light
Barrel
Crate
Fire
Point Light
Spot Light
Sword
Shield
Tree
FIGURE 4.5 Example of the interface for a tool used to place objects in a level.

[image:]48 ◾ Designing the User Experience of Game Development Tools
We could start by improving the way in which the objects are organized
so that the categories are easier to distinguish, and then use a unique color
and icon for each object type. ese changes will make it easier for the
user to identify the object they are looking for.
We could also add the ability to lter the list by object type, reducing
the number of objects that the user has to scan at once. is does add an
additional click, but remember that sometimes adding clicks can actually
reduce time spent in the look phase, thereby making the user more e-
cient overall (see Figure4.6).
Think
e names of the object categories are taken from the data structures
underneath. However, the average user is not aware of that, and so they do
not think about the categories in the same way. For example, “Breakables”
is a much more common name for the average user of this tool, compared
to “Physics_Active.” By understanding how they would group the objects
together, we can have category names that will allow the user to nd what
they are looking for more quickly (see the le side of Figure4.7).
In addition, some objects can only be placed in certain areas of the level
(for example, only boats can be placed in water zones). e user has to
think about this beforehand; otherwise the object cannot be placed. By
showing a semi- grayed- out version of the object when it is being dragged
on top of a non- valid zone, the user does not have to spend a lot of time in
PHYSICS_ACTIVE
 Barrel
 Crate
FRAG_SHDR_LIGHTS
 Ambient Light
 Point Light
 Spot Light
EQUIPMENT

PHYSICS_ACTIVE
 Barrel
 Crate
FIGURE 4.6 Improving the user experience to reduce time spent in the look
phase.

[image:]Analysis ◾ 49
the think phase, wondering if they are placing the object in the right spot
(see the right side of Figure4.7).
Act
By reducing the look and the think phases with the techniques mentioned
above, we can spend more time in the act phase: in other words, placing
objects in the level. However, that does not mean that we cannot also opti-
mize the act phase itself!
We can see that having the category lters below the list means a lot
of mouse movement up and down. Moving them up between the search
eld and the list means less travel for the mouse (see the le side of
Figure4.8).
We can also add keyboard shortcuts: one for putting the cursor in the
search eld, and one for each of the categories to toggle them on and o
(see the right side of Figure4.8).
All of these improvements in combination help to reduce the time spent
in the look, think, and act phases. is makes it much more ecient for
the user to nd the object they are looking for and add it to the level.
How Does the Action Cycle Affect Learnability?
A tool is considered to have good learnability if a new user can easily
accomplish a task on the rst attempt. e learnability of a tool can also
be assessed on a long- term basis: the speed at which an existing user can
BREAKABLES
 Barrel
 Crate
FIGURE 4.7 Improving the user experience to reduce time spent in the think
phase.

[image:]50 ◾ Designing the User Experience of Game Development Tools
remember how to use a tool aer not having used it for a while (sometimes
called memorability), or how quickly a beginner can become an expert.
*
Other than experimentation, the two most common ways that a new
user learns a game development tool are being trained by an expert user
and reading documentation. However, there are issues with both of
these approaches.
While support from expert users is common, too much can come at a
cost. Any time that an expert user spends providing training and answer-
ing questions is time that they could be doing what expert users do best:
solving complicated problems! Not to mention, the hourly wage for an
expert user can be high. Finally, they are not always available: if a new user
does not know how to do something without the help of an expert user,
they are stuck.
Documentation is always an option, but it is frequently out of date, if it
exists at all. It also goes without saying that it can be expensive to create
and maintain good documentation.
Do It the Long Way
Experts spend less time in the think phase because they have a deeper
understanding of how a tool works. However, if a tool is dicult to learn,
users may stay as beginners or intermediates for a long time.
*
For more on how Nielsen and others dene learnability, see here: http://www.measuringusability.
com/ blog/ measure- learnability.php.
BREAKABLES
 Barrel
 Crate
CTRL F
CTRL E
CTRL L
CTRL B
CTRL X
FIGURE 4.8 Improving the user experience to reduce time spent in the act phase.

[image:]Analysis ◾ 51
is situation is described perfectly in Je Johnson’s book Designing
with the Mind in Mind. In his book, he tells a story about a usability test
where he asked a user to perform a task. Aer thinking for a minute, the
user told him, “I’m in a hurry … so I’ll do it the long way.” is seems like
an unusual statement … or is it?
If you observe how people use game development tools, it is common to
see that once they learn how to accomplish a task in a specic way with-
out crashing or causing any other problems they tend to stick to it. is
method could contain a ton of work- arounds and hacks, but they know
that it works. If the tool makes it dicult to gure out a better way on their
own, they are likely to stick to the old way. Now, imagine that there is a
newer, better way, but the user cannot nd it. eir slower approach takes
an additional 20 minutes per day. How much time and money could we
save by making this tool more learnable?
Ramping Up the Learning Curve
Understanding what the user needs at each step of their learning process
is crucial to designing a tool that is easy to learn by beginners and ecient
to use by experts. is also has a relationship to the action cycle: beginners
spend a lot more time in the think phase, because they are still guring out
how the tool works. By making it easier for beginners to become experts,
they will spend less time in the think phase, making them more ecient.
Imagine a scenario with Microso Word. A beginner who has never
used Word before may look at the interface and ask, “What can this do?”
ey may see the “Font” section, and see that it contains buttons for bold,
italic, and underline. By looking at the icons, reading the tooltips, and
experimenting with the buttons, they start to understand that one of the
things Word does is format text (see Figure4.9).
FIGURE 4.9 e commands exposed in the ribbon help beginners understand
what the tool can do. Used with permission from Microso.

[image:]52 ◾ Designing the User Experience of Game Development Tools
Intermediate users already know that they can format text in Word.
ey also know that by right- clicking on some text, they get a contextual
menu with easy access to the buttons in the Font section. e contex-
tual menu is not visible all the time. It is convenient for the intermediate
user, but it does not clutter up the interface (see Figure4.10).
An expert user of Word also knows that they can format text, and they
want to do it as quickly as possible. Since they have learned the hotkeys
for bold, italic, and underline, they never use the ribbon. In fact, they have
chosen to hide it, thereby customizing their interface and allowing them
to focus on their content (see Figure4.11).
What is important to note here is that if we removed the ribbon, the
beginner user would never see the Font section, and it would take longer
for them to understand how to format text, blocking their progress toward
becoming expert users. However, if there were no hotkeys, the experts
would be less ecient and frustrated by having to move their mouse up to
the ribbon to access the bold, italics, and underline buttons. ese dier-
ent user interface elements exist to help guide the beginner to becoming
an expert.
FIGURE 4.11 Expert users can customize the interface and use hotkeys, maximiz-
ing the space used to display their content. Used with permission from Microso.
FIGURE 4.10 Contextual menus allow intermediate users to work more e-
ciently. Used with permission from Microso.

[image:]Analysis ◾ 53
Keep in mind that the expert user’s needs mostly apply to complex pro-
ductivity tools with deep functionality. A simple game development tool with
two buttons and a checkbox—such as an installer—is unlikely to require the
user to go past the criteria of the beginner or inter mediate stage.
Knowledge in the World and Knowledge in the Head
In his book e Design of Everyday ings, Don Norman compares two
types of knowledge: knowledge in the world and knowledge in the head.
Knowledge in the world could be compared to what you see in the user
interface, and knowledge in the head could be the equivalent of knowing
what a tool does already. Norman suggests that when the functionality we
are looking for is “in the world” (in other words, visible in the interface), it
is easier to learn for the rst time, but that eciency “tends to be slowed up
by the need to nd and interpret external information.” However, knowl-
edge “in the head” (something that the user already knows how to do)
“requires learning, which can be considerable,” but “can be very ecient.”
A good example of this can be seen by looking at the steps required
to add an empty audio track in Audacity 1.3 for Windows and Apple
GarageBand for iPad.
ere is no indication in the Audacity interface on how to add a track.
Right- clicking in the window does not create a contextual menu, and there
are no buttons to add a new track in the toolbar. e user must explore the
menus and nd the “Tracks → Add New → Audio Track” menu item (see
Figure4.12). Once they nd it, they know where it is. Furthermore, they
can use the hotkey “Control + Shi + N” to add a new track very quickly.
is is a very ecient way to add new tracks, but you have to know that
it is there to take advantage of it. In other words, the knowledge has to be
“in the head.”
On the other hand, Apple GarageBand for iPad makes it very easy to
learn how to add a new track. At the top of the interface, the “Instruments”
button is prominently displayed. Pressing on this button brings you to a
FIGURE 4.12 Adding a new audio track in Audacity. Audacity® soware is copy-
right © 1999–2014 Audacity Team.

[image:]54 ◾ Designing the User Experience of Game Development Tools
list of instruments, with visual representations so you know what you are
getting. From here, you can choose “Audio Recorder.” You can then return
to the tracks view to see your new track (see Figure4.13). While this is
easier to nd because it is at the top of the interface and always visible—in
other words, it is “in the world”—it requires more steps.
UNDERSTANDING THE MENTAL MODEL
Another important concept that helps us to understand how the users
think is to understand their mental models and ensure that they match
the conceptual model.
What Are the Mental Model and the Conceptual Model?
Susan Weinschenk, cognitive psychologist and author of several books
on user experience, uses the following analogy to explain the dierence
between mental models and conceptual models.
A mental model is the way in which a user understands how something
works. For example, almost everyone in the world has a mental model of a
book: it contains pages, each page has words on it, and you can turn to the
next page or the previous page.
By comparison, a conceptual model is the way in which an object or
interface actually works. For example, imagine that you handed someone
the device on top of the book in Figure4.14. ey have never seen this
object before, and they have no idea what it is.
When they examine this device, they will notice that it has buttons and
a screen. However, many other devices also have buttons and a screen:
laptops, tablets, even calculators. What is this device? What does it do? It
FIGURE 4.13 Adding a new audio track in the iPad version of Garage Band.
© Apple.

[image:]Analysis ◾ 55
might take this person a while to gure out how it works, because they have
no previous knowledge to draw on to help them understand how to use it.
Now imagine a dierent scenario where, before handing over the device,
you tell them, “is is just like a book.” As they examine the device, they
compare their mental model of a book to the conceptual model of the
device. ey look at the words on the screen and think, “is must be like
the pages on a book.” ey look at the buttons on both sides and think,
“is must be for the next page and previous page.” By referring to their
mental model, they are able to make a connection to their existing mental
model and understand what the device is—and how to use it—much more
quickly and easily.
Major dierences between the user’s mental model and the tool’s con-
ceptual model is one of the key reasons why users have diculty under-
standing how a tool works. Designing with the user’s mental model in
mind can have a big impact on improving the user experience of our game
development tools.
Why Is It Important to Understand the User’s Mental Model?
e mental models of programmers oen include technical concepts
that the user is not aware of, such as class structure and data models.
Because these concepts come naturally to them, they might forget that
the average user may not understand them. Consider the following terms:
stereoscopy, rasterize, and Gouraud shading. ese are all words that are
part of the common vocabulary of graphics programmers. However, the
majority of non- programmers may know these words as 3D imaging,
pixel- based, and smooth shading. Even though these terms may not be
FIGURE 4.14 Using the mental model of a book to accelerate the process of
learning how to use an e-reader.

[image:]56 ◾ Designing the User Experience of Game Development Tools
perfectly accurate, they are oen interchangeable and may be the most
recognizable terms for the majority of users.
e brushes palette in Adobe Photoshop provides a good example of this
(see Figure4.15). ere is plenty of technical terminology in the brushes
palette. To create or modify a brush, you can set values for abstract sound-
ing concepts such as “Roundness,” “Angle Jitter,” and “Purity.” ere are
categories with names like “Shape Dynamics,” “Transfer,” and “Dual
Brush.” Even something with a simple name like “Spacing” can cause the
user to ask, “e spacing of what? And, how much spacing do I want?”
A large proportion of the users many not think of brushes in those
terms. ere are accustomed to brushes in ne arts. ey think about
brushes visually, and how the brush will look when painting on a can-
vas. Fortunately, the bottom of the Brushes panel has a preview of what
the brush will look like when it is used to create a curved stroke, and the
upper le- hand corner of the windows shows the prole of the brush (see
the top le and bottom right of Figure4.15). is not only allows a begin-
ner to simply adjust the numbers until they see the brushstroke they are
looking for, but it also allows them to move closer to understanding what
the numbers mean by immediately seeing the eect that each setting has
on the brushstroke.
Another example is the Tree Creator in the Unity game engine. is
tool represents the tree structure in a simple way that anyone can under-
stand: it visualizes the trunk, branches, and leaves in a tree- like view (see
Figure 4.16). It is possible that underneath, the tree is represented by a
FIGURE 4.15 Adobe Photoshop uses the mental model of a paintbrush to make it
easier to learn the settings in the Brush panel, reducing the amount of time spent
in the think phase. Adobe product screenshot(s) reprinted with permission from
Adobe Systems Incorporated.

[image:]Analysis ◾ 57
complex data model, but the user does not need to know that. is con-
ceptual model is much closer to their mental model of the parts that make
up a tree.
INTERVIEW STAKEHOLDERS
One of the rst steps to improving the user experience of a tool is to inter-
view the stakeholders. It is surprising how many people forget this funda-
mental step! Here are a few suggestions on what kinds of questions to ask
the stakeholders.
How Do You Measure Success?
e rst and probably most important question to ask is how the stake-
holders measure success. Is it by making the tools more ecient, easier to
learn, or some other measurement? is information is key to determin-
ing how you will measure the success of your eorts. It is normal for these
to be more business- related as compared to the users’ goals. ese mea-
surements of success are essentially the stakeholders’ goals.
Who Are the Primary Users?
e stakeholders can also be helpful in giving you the names of people
currently using the tool, so you can watch them work. If they cannot give
you the names of primary users, they can probably give you the names
of people who work with the primary users, such as their team leads and
supervisors. is question is also important to ask because many prob-
lems in resource allocation can arise from the stakeholders being unaware
of who the primary users are.
FIGURE 4.16 e Tree Creator in the Unity engine visualizes the structure of a
tree in a way that matches the user’s mental model, reducing the time spent in
the think phase.

[image:]58 ◾ Designing the User Experience of Game Development Tools
Linking Stakeholder Goals and User Goals
Once you have identied the stakeholder goals, you will want to try to nd
a connection between their goals and the user goals, to ensure that they
can be connected. For example, imagine that one of the user goals is to
optimize the level geometry to improve performance. At the same time,
one of the stakeholder goals is to have the game run at 60 FPS. ere is a
clear connection between the two goals.
In contrast, imagine that another one of the stakeholder goals is to
improve the eciency of a tool used for creating a gritty, urban environ-
ment with minimal impact on texture memory. Meanwhile, one of the
user goals is to have an easy- to- learn tool that generates hyper- realistic
trees with high- resolution textures.
When one or more user goals have no connection to any of the stake-
holder goals, this could be a sign that tools development resources will not
be invested correctly, leading to potential problems.
PERFORM CONTEXTUAL ANALYSES
Once we have a list of users of the tool, we can watch them work using a
technique called contextual analysis. e word contextual emphasizes the
fact that we want to watch the user working in the context of their envi-
ronment, as opposed to an interview, which could take place anywhere.
In other words, we want to watch them working at their desk, with their
tools, as they normally do. is ensures that we get a sense of what it is
really like when they use the tool.
How to Perform a Contextual Analysis
To perform a contextual analysis, start by making a list of the users to meet
and booking individual meetings with them. When you sit down with a
user to watch them work, keep the following questions and ideas in mind.
*
Introduction
Some users might be uncomfortable with someone showing up at their
desk and asking questions. Remember to take the time to introduce your-
self, and ask the user about themselves. Ask them how long they have been
doing their job, or ask them about their favorite game. If they have action
*
For an in- depth approach to doing interviews and performing contextual analyses, you can also
read Steve Portigal’s book Interviewing Users.

Analysis ◾ 59
gures or toys on their desk, ask about them. Even if you know the user,
questions such as these help to ease into the contextual analysis.
It is also very common for people to believe that they are being judged
on their performance, or that this is part of their yearly review. If this
is the case, remind them that not only is it safe to make mistakes, but
that making mistakes might help to nd and x problems with the tool.
Emphasize that the tool is being evaluated, not them.
All of these things help to break the ice, which will result in the user
being more likely to tell you how they really feel, instead of what they
think you want to hear.
Ask about Goals
Aer the introduction, ask the user why they use a certain tool or how a
tool ts into their pipeline, and what they are trying to accomplish with it.
is will help to understand what their goals are. For example, a user does
not think, “I want to use the mesh exporter”; they think, “I want to add a
new object to the game engine.” at is their true goal. Focus on under-
standing what their goals are when they are using a tool. Ask why several
times if it helps to get to the root of the goal.
Master and Apprentice
Even if you know the tools that the users are using, imagine that you are
the apprentice and that they are the master. Ask them to show you how
to use the tool from their perspective. Ask them questions, and spend as
much time as you can just listening. is will give you a better idea of how
they use the tools, which can help you identify how to make them better.
Re- Direct Feature Talk to Goal Talk
If issues with specic features start to dominate the contextual analysis,
try to re- direct the discussion back to goals. For example, if the user starts
to describe how to change a feature, respond with, “How would that help
you accomplish your goal?”
Don’t Ask Leading Questions
It is important not to ask questions that could force the user into think-
ing that they must answer one way or the other. Questions like “Do you
think that this should be red?” lead the user to believe that there is a right
or wrong answer. Instead, ask an open question such as “In your opinion,
what color would mean danger or error?”

60 ◾ Designing the User Experience of Game Development Tools
Ask the User to Talk Out Loud
As the user is performing their task, ask them to talk out loud about what
they are thinking. Users can get wrapped up in what they are doing and
forget to do this. If this happens, gently remind the user by saying, “So
what are you thinking right now?” or “What’s going through your mind
at this point?” Some users will be uncomfortable with talking out loud, so
use common sense to determine how you need them to do this.
Resist the Urge to Help
It might be dicult, but it is very important to resist helping the user dur-
ing the contextual analysis. ey might have diculty with a task, or they
might say something about the tool that you know is wrong. If you correct
them, or interrupt them and tell them what to do, you may miss valuable
information that could explain why they are having trouble. at infor-
mation can help you nd a way to make the tool better.
Aer the contextual analysis is over, you may choose to tell the user
how to do the task, or correct their understanding of a certain concept.
Start Wide, Then Focus Down
If you are working on a massive, monolithic tool, remember: even the big-
gest content creation tool is made up of parts. For example, a fully fea-
tured level editor looks big, but it is essentially made up of a collection of
smaller tools that communicate with each other. If the amount of work is
overwhelming, try to start wide with the rst few contextual analyses, and
then focus down to a smaller part that you feel will give the biggest return
on investment.
Team of Two
It is also strongly recommended that you perform the contextual analysis
with two people. is has a dual purpose: e rst is that asking questions,
watching the user, and taking notes all at once is very dicult. e second
is that a contextual inquiry is a great opportunity to invite someone who
might not have the chance to watch the users work, such as a stakeholder,
or another developer. is can help to get buy- in from everyone involved.
What Can We Do after the Contextual Analyses?
When you are satised with the amount of information that you have
gathered through contextual analyses, go through your notes and make a

[image:]Analysis ◾ 61
prioritized list of the most common goals shared by the most frequent users.
If you end up with more than a dozen goals, then you are probably try-
ing to do too much at once, or you are including goals that are edge cases.
Either concentrate on a smaller part of the tool, or reevaluate who your tar-
get users are.
ese goals can be used as a starting point to create task ows, mental
models, personas, scenario storyboards, and most importantly, measure-
ments. Each of these techniques is described below.
CREATE TASK FLOWS
When attempting to accomplish a goal, a user may execute one or more
tasks. Each task is made up of a series of actions. Task ows are a way
of thinking about the ow of those actions, which can help everyone
involved in the development of the tool to have a shared vision of how the
actions are connected. is makes it easier to pinpoint where improve-
ment is needed.
How to Create a Task Flow
A task ow is essentially a owchart that represents how the user performs
a task, with each node representing an action. For each action that the
users perform, make a node. Connect it to the other actions to create a
ow. If the user branches o, split o a node and continue from there (see
Figure4.17).
You can create a task ow for each user and then merge them into one
task ow that represents the average. In the case that a signicant number
of users perform dierent actions, note the percentage of users who typi-
cally execute one action as opposed to the other, as well as the frequency at
which they perform that action. is will allow you to identify which part
of the task ow represents the majority of the users’ time, which can help
you to prioritize what to work on rst.
Action
Action
% of users, frequency

% of users, frequency
Action
Action
Action Action
FIGURE 4.17 e structure of a task ow.

[image:]62 ◾ Designing the User Experience of Game Development Tools
From the User’s Perspective
Keep in mind that a task ow is done from the user’s perspective. As a
result, the task ow should not include technical details that the users do
not understand. To help reinforce this, the text in each node should con-
tain a verb describing the action, such as “select the object” or “export to
the engine,” instead of “re a ray- cast” or “server parses XAML data.”
Adding Details
During the contextual analysis, you may have taken note of where the user
had problems or made mistakes. You can note where these issues occur in
the task ow. For each issue, also consider the following:
• Is this an eciency problem? If so, which part of the action cycle
could be the problem: the look, think, or act? Is it more than one?
• Is this a learnability problem? Will making the feature easier to learn
result in it being less ecient? Is that a problem, considering how
frequently the feature is used?
Creating an Optimized Task Flow
In addition to creating a task ow that represents the average, it could also
be useful to create an optimal task ow. To do this, you could ask, “Which
actions could be removed? Which actions could take less time? Which
actions are dicult for new users to understand?” You could then create a
new task ow that represents the optimal situation. is can be a great way
to set clear objectives for everyone involved in the development of the tool.
DISCOVER THE USERS’ MENTAL MODEL
During the contextual analysis, you can also take some time to under-
stand the mental model of the users. A few techniques can be used to
do this. ese can be used with several users, and then the results can
be combined to create an average mental model of the users that can be
shared with everyone involved in the development of the tool.
Card Sort
is technique is useful when we do not know how the user organizes dif-
ferent terms or concepts in their mind. For example, let us assume that we
are building a tool that contains a list of objects that we can place in a level.

[image:]Analysis ◾ 63
We can place many dierent types of objects: enemies, weapons, power-
ups, lights, particle eects, and trigger boxes. In the mind of a developer,
lights and enemies are related because they are derived from the same class
that represents the position of an object. For this reason, it might seem
logical to group them together. However, in the user’s mental model, lights
have more to do with trigger boxes and particle eects, because they are
used together to create the lighting and ambience of the level. e users do
not associate lights and enemies, even though they are related in the code.
Here is how a card sort can be used to do this:
 1. Write each term or concept on a card.
 2. Give the cards to a user and ask them to lay them out on a table in
groups that make sense to them (see Figure4.18).
 3. When they are done, ask them why they organized the cards the way
that they did.
 4. Finally, take a photo or write down how all the cards were organized,
and take note of the user’s name so you can ask follow- up questions
later.
 5. Repeat steps 2 through 4 with a new user. Do this with as many users
as you can.
FIGURE 4.18 Example of a card sort.

[image:]64 ◾ Designing the User Experience of Game Development Tools
Once you are done, compare the results across all users to nd trends and
common groupings. You can use a spreadsheet to do this, or you can use
web- based tools to facilitate the process.
*
User Objects
e term user object describes the mental model of a specic type of object
that the user can manipulate. e word user in user object is important
here, since this is about how the user sees it, not how it is coded. For exam-
ple, the class denition for an entity in a level editor may dene rotation
in radians with an angle- axis Vector4. However, the user may not know
what any of those words mean, and they simply think of rotation as being
between 0 and 360 degrees, on the x-, y-, and z- axes.
For each user object, we take note of how the user perceives them by
making a list of attributes and actions: the attributes of the object, and the
actions that you perform with the object. If the discussion about the user
objects turns to features requests, steer the conversation back to what the
user’s goals are, and how they can be translated into attributes and actions.
Once we have performed a contextual analysis with a few users, we
can start to identify the most common attributes and actions requested
by most users. is will help us to focus on the right features used by the
majority of users.
For example, if we worked with a user to create a user object for a point
light, the results might look like Figure4.19. is user’s mental model of a
point light is that it has the attributes of color, intensity, and range. ey
also consider the color as being set as HSV (hue, saturation, and value),
the intensity as a number (where 100 is equal to 100percent intensity), and
the range is measured in meters.
*
Two popular options are Optimal Sort (http://www.optimalworkshop.com/ optimalsort.htm) and
Websort (http://dirtarchitecture.wordpress.com/ websort/). ese services also provide an auto-
mated analysis such as most common groupings, trends, and so on.
AttributesObject

Point light
Color (HSV)
Intensity (100 = 100%)
Range (in meters)
Move light
Change the color
Set the intensity
Set range
Enable or disable
Actions

FIGURE 4.19 Example of a user object for a point light.

[image:]Analysis ◾ 65
If you have a large number of users, you could add up the results of the
user objects to determine the most common attributes and actions, in an
eort to build a shared mental model for point lights (see shaded bars in
Figure4.20).
Note that the user who created the point light user object earlier pre-
ferred 100percent intensity to be the number 100, whereas the majority
of users preferred 1.0. Remember that we are not going to make everyone
happy. Start with 1.0. If it becomes a problem to a signicant number of
users, we can always add an option to switch between 1.0 and 100.
Developers who are familiar with object- oriented programming will
notice that—although they are from the user’s perspective—creating user
objects is almost like describing a class. erefore, doing this exercise
before writing code can accelerate developer productivity, because it
provides a starting point that provides the functionality that the users
are expecting.
ESTABLISH MEASUREMENTS
One of the most important aspects of the User- Centered Design process is
measuring progress, which helps to ensure that you are going in the right
direction. e process described in Je Gothelf’s book Lean UX focuses on
doing small, rapid iterations and measuring Key Performance Indicators,
or KPIs. e ISO 9241-210 specication provides examples about what to
measure, and how. Taking the time to track these measurements is one of
the best ways to ensure that your eorts are improving the user experience.
In Chapter1, we learned that there are many dierent ways to mea-
sure usability, and that this book focuses on eciency and learnability.
Choosing what to measure depends on a variety of factors, such as the
goals of the users and the stakeholders, as well as the experience level of
the users.
HSVRGB HEX 1.0 100 0.0 MCM
Color
% of users
100% IntensityRange

FIGURE 4.20 Choosing how data is represented based upon the most common
attributes of the user objects.

66 ◾ Designing the User Experience of Game Development Tools
Measuring Efciency
If the goals of the stakeholders are related to producing assets faster with
fewer people or more assets with the same number of people, eciency
could be the right choice. During the contextual inquiry, if a large propor-
tion of the users complain that the tool is slow, or that the number of steps
required to complete specic tasks is too high, this could also point to the
decision to measure eciency.
Furthermore, if the users are mostly experts who are accustomed to
complex tools, and they have a deadline looming on the horizon, this
could further conrm a decision to measure eciency. is decision could
mean that the users are required to receive some training on the changes
to the interface, and they may require documentation. However, the inten-
tion would be higher eciency overall.
To measure eciency within the task ow, you can use a stopwatch
to time how long the user takes to perform either each task or specic
actions. Ensure that the users are working with the same assets or values,
if possible, so that the numbers are comparable. ese numbers can be
averaged across multiple users to get a baseline measurement that you can
compare against each time you go through the Analysis phase. We will
talk more about this in Chapters 6 and 7.
You may also be able to measure eciency of tasks and actions by using
metrics. However, it can be challenging to make decisions based only on
these numbers, because it may not be possible to determine if the task was
completed successfully, and because the user could be away from their
desk in the middle of an action, inating the results. As always, a combi-
nation of metrics and watching the users work can give the best results.
Measuring Learnability
If the goals of the stakeholders are to ramp up new users faster, or to
reduce support costs (such as the salaries of people writing the documen-
tation or the time spent by expert users training users and answering their
questions), learnability may be a better measurement. Additionally, if you
notice that during the contextual inquiry the users have diculty remem-
bering all of the various functions within a tool, or they make many mis-
takes that could potentially be avoided by understanding how the tool
works, this could conrm a decision to measure learnability.
In addition, if the content creators are less experienced, and the team is
still ramping up to full production mode, leaning more toward learnability

[image:]Analysis ◾ 67
could be a better choice. Keep in mind that a focus on improving learn-
ability could have an adverse eect on eciency, and the intention is to
compensate for that by making the tools easier to learn.
As we discovered earlier in the chapter, a tool is considered to have good
learnability if a new user unfamiliar with the tool can accomplish a task
on the rst attempt. is can be measured by using a stopwatch to time
how long it takes the user to complete a task successfully, with specic
assets or values.
Measuring Both
Finally, it is possible to design a tool where the majority of the features
are both easy to learn and ecient to use. is oen takes much longer
to measure and design compared to simply choosing one or the other,
because eciency and learnability can sometimes be in opposition with
each other. As a result, you may have to compromise, or choose to improve
both for only the most frequently used features in your tool.
ere is a good reason why very few tools are both ecient and learn-
able: nding a balance between the two is one of the biggest challenges in
user experience design.
ADVANCED TECHNIQUES
Personas
If you perform a contextual analysis on a large number of users and it
is dicult to communicate the goals and mental models for all of those
users, you have the option of creating personas. Personas are archetypes
of people who represent the majority of the people that use the tool. Not
only does it make it easier for you to see the big picture of whom you are
building for, but it also helps to communicate who these people are.
How to Create Personas
Here is a very basic approach to creating a persona: study your contex-
tual analysis notes and try to identify the most common goals and mental
models. Group related goals and mental models together. Each group will
become a persona. You may choose to create a separate persona per job role,
such as one for level designers and one for animators, or be more specic,
such as separate personas for AI programmers and physics programmers.
*
*
For more on creating personas, you can read Chapter5 of Cooper, Reinmann, and Cronin’s book
About Face 3, or Adlin and Pruitt’s e Essential Persona Lifecycle.

[image:]68 ◾ Designing the User Experience of Game Development Tools
It is also important to give each persona a realistic name and a natural-
looking picture. For example, giving a persona the name “Moe the
Modeler” and using a cartoon character as a photo will result in people
not taking the personas seriously.
*
Personas created to represent users of a game development tool might
look something like Figure4.21.
Scenario Storyboards
To create an even deeper understanding of context, you can also choose
to create scenario storyboards. Scenario storyboards resemble the sto-
ryboards we use when planning a game cinematic (see Figure4.22). e
*
You can auto- generate realistic names and pictures from websites like http://www.randomuser.
me, or you can use a more complete persona creation solution with tools such as http://www.
usabilitytools.com/ features- benets/ persona- creator.
Patrick
Goals
Nullam quis
 Dapibus augue
 Vitae blandit justo
 Donec malesuad
Mental Models
Ellentesque ornare
 Tincidunt felis
 At ultrices aliquam
Level Designer
Rochelle
Goals
Morbi metus sapien
 Blandit eget
 Ullamcorper tinci
Mental Models
Pellentesque quis
 Nibh in dignissim
 Elit sapien maecena
 Fasellus imperdiet
Animator
FIGURE 4.21 Example personas.
FIGURE 4.22 Example scenario storyboard.

[image:]Analysis ◾ 69
purpose of a scenario is to explore how the tool is used in a variety of
contexts. ey are very useful for ensuring that everyone involved in the
development of the tool understands and agrees on how the tool is sup-
posed to be used.
How to Create Scenario Storyboards
To create a scenario storyboard, rst choose one or more user goals or
tasks. If you have also created personas, you can choose to feature them in
the scenario storyboard. Each frame in the storyboard depicts an action
performed by the personas while they are using the tool, and it ends in the
successful completion of their task or goals.
*
Scenario storyboards do not include references to the user interface.
Instead, they show how the personas would interact with the user objects.
is keeps the scenario storyboards at a high level so that they do not
inuence us into assuming that the interface must function or look a cer-
tain way. is enables us to focus on nding the best possible design solu-
tion to achieve the users’ goals.
e quality of the drawings is not important. However, if you need some
assistance producing storyboards, many web- based tools are available.
†
WRAPPING UP
In this chapter, we learned about the Analysis phase of the User- Centered
Design process. We discussed the value of watching users work, the limi-
tations of metrics and focus groups, and the importance of thinking in
terms of the problems that we are trying to solve (not the features we want
to implement). We also learned about human– computer interaction, the
action cycle, its eects on eciency and learnability, as well as the con-
cept of the user’s mental model. Finally, we learned a variety of techniques
to be used during the Analysis phase, such as interviewing stakehold-
ers, performing contextual analyses, creating task ows, and establish-
ing measurements.
In the next chapter, we will discuss concepts and techniques to be used
during the Design phase of the User- Centered Design process.
*
For more on creating scenarios, you can also read Chapter6 of Cooper, Reinmann, and Cronin’s
book About Face 3.
†
Storyboard at (http://www.storyboardthat.com/) and Amazon Storyteller (http://studios.amazon.
com/ storyteller) are two popular examples.

[image:]71
Chapter 5
Design
WHAT WILL WE LEARN IN THIS CHAPTER?
Concepts
• Understanding how the eyes and the brain work together
• How a visual language can help humans and computers communicate
• e importance of using interaction patterns
Techniques
• How hierarchy can guide the user through the interface
• Making the interface easier to understand with natural mapping
• How to use representation to help the user work with and under-
stand complex data
• How to use feedback to let the user know what the tool is doing
• Using feed- forward to help the user learn what an action will do,
before they commit to it
• How to use grouping to associate information in a way that the
users expect
• How to use chunking to make it easier for the user to process more
information at once
• How to use excise to make the user work faster (or slower, if necessary)
• Using progressive disclosure to design an interface that is simple for
beginners and powerful for experts

[image:]72 ◾ Designing the User Experience of Game Development Tools
HOW THE BRAIN AND THE EYES WORK TOGETHER
Previous generations of the Sony PlayStation have included unique
microprocessors, such as the Emotion Engine and the Cell. Getting the
best performance out of these chips required specialized knowledge and
programming skills. Each chip had its own quirks and idiosyncrasies.
Expecting a programmer to get the best performance out of these chips
without rst understanding their architecture would be unrealistic.
Designing tools for people is no dierent. e brain is a microprocessor
in its own right and has strengths and weaknesses. Just as understand-
ing the architecture of a chip allows us to be better console developers,
understanding how the brain works can help us design tools with a better
user experience.
Our Brains Decide What We See
As tools developers, we may have had the experience of adding a new but-
ton to an interface, only to realize that very few users notice it. All the
work that was put into the feature is lost since no one knows that it is there.
You may have asked yourself, “Why don’t the users see that button?”
It may come as a surprise to learn that we do not always see what we
think we do. Our brain lls in the blanks. A great example of this is our
blind spot. On the inside of our eye are rods and cones, responsible for
detecting colors and contrast. However, at the point where the optic nerve
connects to the eyeball, there are no rods and cones. As a result, we cannot
see in that spot.
To test this, hold this book away from your face and cover your le eye.
Now, look at the cross in Figure5.1. Slowly move the book closer to your
face until the dot disappears. Where did the dot go? e answer is that
your eye does not have any rods or cones where the circle should be, so
your brain lls in the missing information.
Aer experiencing this, you can begin to understand how it is possible
that users do not see the new button that you added.
FIGURE 5.1 Testing your blind spot.

[image:]Design ◾ 73
Our Brains Are Optimized for Specic Patterns
Figure5.2 contains a series of shapes. Most people see a triangle on the
le, even though there is no triangle, only three pies. In the middle, we
recognize the shape as a circle, even though the line is broken. Finally, on
the right, our eye is immediately attracted to the cross that looks dierent.
*
Our brains are hardwired to interpret these specic visual patterns
very quickly, which is probably a result of natural selection. Consider the
image in the middle of Figure5.2: if the circle is a saber- toothed tiger and
the missing parts are trees that it is hiding behind, the ability to recognize
the shape—despite the missing parts—may have kept our ancestors alive.
VISUAL LANGUAGE
It turns out that if we want to understand visual language, video games
provide some of the best examples. e visual language for a game is made
of multiple elements, and two of the most important are shape and color.
At GDC 2008, Valve’s Jason Mitchell presented a talk
†
 about the dis-
tinct visual language of Team Fortress 2. As the game is a multiplayer rst-
person shooter, identifying the class of the enemy you are ghting from far
away is very important, and so each class has a unique shape, or silhou-
ette (see the top of Figure5.3). Finding the enemy base is also extremely
important, and so each team’s base has a distinctive architectural style:
warm colors and angular shapes for the RED team versus cool colors and
orthogonal shapes for the BLU team (see the bottom of Figure5.3). Once
you learn this language, you can see which class of enemies you are facing
and which base you are in, at a glance.
*
ese are all examples from Gestalt psychology, which you can read more about here: http://
en.wikipedia.org/ wiki/ Gestalt_psychology.
†
You can see the entire presentation here: http://www.valvesoware.com/ publications/2008/
GDC2008_StylizationWithAPurpose_TF2.pdf.
FIGURE 5.2 Examples of how our brains are optimized to interpret specic
patterns.

[image:]74 ◾ Designing the User Experience of Game Development Tools
Learning the Language
As the gamer learns how to communicate with the visual language, it
becomes a conversation: the screen shows the status of the game, and the
gamer responds with the controller. e gamer may also learn the language
faster if the same elements are seen in other games of the same genre. For
example, in the vast majority of rst- person shooter games, when we see
an arrow shape that is colored red on the edge of the screen, we know that
someone is attacking us from that angle, and we instinctively respond to
the threat with the controller.
e same can be said for game development tools. If we use familiar
and consistent shapes and colors, the user spends less time learning the
tool, and they will know what to do at a glance.
Familiar Icons
Some people believe that the save icon is outdated and should be replaced.
e typical save icon represents a 3.5″ diskette, which most people have not
used to save a le since the 1990s (see the le side of Figure5.4). Recently,
FIGURE 5.4 Familiar icons are recognized and interpreted more quickly than
new designs or “ideal” representations.
FIGURE 5.3 e visual language of Team Fortress 2. © Valve Corporation.

[image:]Design ◾ 75
some of the best designers in the world tried to design a replacement but
were unable to reach a consensus.
*
 Despite being out of date, the save icon
prevails for one important reason: because our brains are better at recog-
nizing a familiar shape than interpreting a new one, even if it is a more
appropriate representation.
Consider the iconography for “call” on a smartphone or “train crossing”
on a street sign (see the middle and right side of Figure5.4, respectively).
We do not see rotary telephone receivers or steam engines very oen these
days, yet their silhouettes are iconic—pardon the pun—and continue to be
used because they are the most familiar shapes for those concepts.
When choosing icons for your game development tools, strive for
familiarity over a new design. Although the shape of an icon may seem
out of date, it is more important that the user can recognize it as opposed
to having the perfect representation.
Color Consistency
Users of Microso Visual Studio—or any other modern IDE—are accus-
tomed to the concept of color syntax: specic keywords use the same color
consistently, making it easy to pick out variables, functions, and com-
ments. ere is no denying that using color to communicate in this way
is an extremely useful tool: for example, color makes it easier to x an
unterminated string. While we should take advantage of using color to
communicate with the user, we need to ensure that our tools use color
consistently, and that the colors match existing standards.
For example, imagine if Visual Studio had inconsistent color syntax.
In some cases, variables would be blue, and in other cases, they would be
green. is would frustrate any programmer. However, many game devel-
opment tools do not use color consistently. In one window, an object may
be purple, while in another window, it may be orange.
In Microso Excel, when the value of a cell is negative, it is colored
red to indicate a problem. is is because accountants want to see where
money is being lost. However, imagine if that color was green. All around
the world, the colors green, yellow, and red in soware interfaces are
accepted to represent OK, caution, and danger,
†
 so a problem represented
by the color green would seem unnatural. Unfortunately, some game
*
You can see that discussion here: http://branch.com/ b/redesigning- the- save- symbol- let- s-do- this.
†
ese standards were originally recommended by the Vienna Convention on Road Signs and
Signals. Read more here: http://en.wikipedia.org/ wiki/ Convention_on_Road_Signs_and_Signals.

[image:]76 ◾ Designing the User Experience of Game Development Tools
development tools use bright red insituations where there is no problem,
leading to confusion and concern among the users.
To design an interface with a better user experience, pick colors that are
consistent and match existing standards.
*
Legible Contrast
Although our brain works hard to compensate for the limitations of our
eyes, there are some things that it simply cannot do. To ensure that the
user is able to see the visual language that we have designed, we must also
consider the ability of our eyes to see contrast.
When the shade for text and the background are too close to each
other, our eyes have diculty making out the shapes (see the right side of
Figure5.5). Fortunately, there are standards for contrast that we can fol-
low and tools we can use to ensure maximum legibility.
†
A Note on Dark Interfaces
e popularity of dark interfaces has increased in the last few years, espe-
cially in the case of content creation tools. One of the rst tools to adopt
a dark interface was Autodesk Combustion. Other content creation tools
started including a “dark mode,” such as Adobe Photoshop and Autodesk
3ds max. When Apple announced a dark mode for OSX Yosemite at
WWDC 2014, it prompted cheers from the crowd. Now, dark interfaces
can even be found in tools that are not used exclusively by artists, such as
Unity and Microso Visual Studio.
e fact is that our eyes have more diculty seeing contrast when light
text is used on a dark background. To experience this eect, try using a tool
with an interface that can be switched between dark and light on a laptop
outside on a sunny day, such as one of the many tools in the Adobe suite, or
the Unity game engine. When you switch between the dark and light inter-
faces, you will notice that you can see more details on the light interface.
*
Microso’s recommendations for color can be found here: http://msdn.microso.com/ en- us/
library/ windows/ desktop/ dn742482.asp.
†
Here is a list if tools from the W3C website to verify that contrast standards are being respected:
http://www.w3.org/ TR/ UNDERSTANDING- WCAG20/visual- audio- contrast- contrast.
html#visual- audio- contrast- contrast- resources- head.
More contrast Less contrast

FIGURE 5.5 Our eyes are able to read text with stronger contrast more quickly
and accurately.

[image:]Design ◾ 77
However, this should not lead us to conclude that light interfaces are bet-
ter. To do this would be to forget the importance of watching users work.
We need to understand context in which the dark interface was developed
in the rst place: Combustion is a tool for lm compositing, typically used
in a dark editing room with no windows. e users found that a lighter
interface blinded them, and that a darker interface was more comfortable,
given the context: working in dark editing room with no windows.
e point is that light and dark interfaces each have their place, and the
best choice depends on the context of the environment of the users. When
in doubt, give the users a choice of one or the other.
INTERACTION PATTERNS
One of the rst professions to understand the signicance of humans
interacting with patterns was architecture.
*
 rough our life experience,
we have learned that a series of stacked cubes is a ight of stairs that can be
climbed, and a rectangle with a handle is a door that can be opened. Just
like a visual language, when we see these shapes, our brain recognizes the
pattern and we know what to do.
e same goes for user interfaces. For example, through experience, we
have learned the dierence between radio buttons and checkboxes: one
lets the user choose only one option at a time, while the other lets the user
choose more than one option at once (see Figure5.6). When we see them,
we know how they are supposed to work instantly.
It may be tempting to create new and unique user interface elements or
behaviors for existing controls. is might be because we feel that we know a
better way for the user to manipulate the data, or it looks like an interesting
challenge. We must do our best to resist this temptation. Not only could it
result in decreased learnability and eciency, but it will also take more time
to create and maintain the code for a control that does not already exist.
*
e book A Pattern Language by Alexander, Ishikawa, Silverstein, et al. is generally regarded as
one of the best books on the patterns of architecture and urban design.
FIGURE 5.6 e importance of following interaction guidelines and patterns:
the majority of users have learned how a radio button works (le), and how it is
dierent from a checkbox (right).

[image:]78 ◾ Designing the User Experience of Game Development Tools
For example, if your tool requires a control to switch between dierent
views, it might be appealing to develop a dial that the user can turn to
set the current view. While it is true that using a dial to switch between
views is more common for physical devices, a more standardized pat-
tern for a desktop soware- based content creation tool would be tabs (see
Figure5.7). ey are common in soware user interfaces, and most users
are familiar with them.
*
What Happens When We Do Not Follow Guidelines?
While it is true that there are rare times where the advantages of a new pat-
tern outweigh the disadvantages, we should strive for familiarity as much
as possible. is means following existing interaction patterns guidelines,
such as those created and maintained by Microso and Apple.
Imagine that we introduce a new interaction pattern to our tool. is pat-
tern is unfamiliar to all of the users and must be learned. When the user sees
the pattern, they spend more time in the think and look phases of the action
cycle. If the new pattern does not improve the eciency of the tool, this
means that the new pattern has actually made the usability of our tool worse!
Established interaction patterns do not have to be learned. We know
how they work from experience. ey have been streamlined over time.
If used correctly, users will learn the tool faster (because they are familiar
with the interface) and be more ecient (because they can jump back and
forth between dierent tools without having to adjust the way they work).
Who Establishes Interaction Patterns?
An interaction pattern becomes a standard because it works well. Just as
our brain’s ability to see visual patterns evolved to keep us from being
*
is is also dependent on the platform. For example, to toggle a value on and o, a switch control
is more common in tablets and smartphones, while a checkbox is more common in desktop so-
ware applications.
General Modeling Animation
FIGURE 5.7 Changing the current view: a non-standard pattern (le) compared
to a standard pattern (right).

[image:]Design ◾ 79
eaten by a saber- toothed tiger, interaction patterns survive because they
have proven to be some of the most eective and well- established solutions
to a given problem within a specic context.
It is unusual for new interaction patterns to be established by anyone
other than big companies such as Apple, Microso, and Adobe.
*
 Because
they have such a large market share, many people are exposed to their
products and become familiar with their interaction patterns.
†
ere are times when Apple, Adobe, and Microso deviate slightly from
their own guidelines. However, the vast majority of their applications fol-
low the guidelines and use the same patterns consistently. We should do
the same. If the interaction patterns are standardized, users can focus on
creating content, instead of learning how to use the interface.
How to Choose the Right Interaction Pattern
If you have read the books Design Patterns: Elements of Reusable Object-
Oriented Soware by Gamma, Helm, Johnson, and Vlissides or Code
Complete by Steve McConnell, you know that design patterns are a solu-
tion to a problem within a given context. Many interaction pattern librar-
ies also use this format to help you decide which one is best to use.
For example, when the problem is choosing one unique option from a
list, and the context is that there are between two and seven options, the
Microso guidelines suggest using radio buttons. However, in the context
that there are more than seven options and not a lot of space to display
them, a drop- down is suggested.
‡
 (See Figure5.8.)
Many guidelines derive from this format to help you choose the right
interaction pattern. When in doubt, implement it and watch the users
work with it.
*
e guidelines for Microso Windows and Apple OSX can be found below. To the best of my
knowledge, the design guidelines for Adobe products are not publicly available.

 http://msdn.microso.com/ library/ windows/ desktop/ dn688964.aspx

 https://developer.apple.com/ library/ mac/ documentation/ UserExperience/ Conceptual/
AppleHIGuidelines/ Intro/ Intro.html
†
In some ways, Apple’s keynote presentations—watched by millions of people all over the world—
are a training session on how to use their products. is can have a huge impact on the perception
of how easy to learn their products are!
‡
See the guidelines on radio buttons here: http://msdn.microso.com/ en- us/ library/ windows/
desktop/ dn742436%28v=vs.85%29.aspx.

[image:]80 ◾ Designing the User Experience of Game Development Tools
What to Do if a Pattern Does Not Exist in the Guidelines
ere may be times when the user interface control that you need does
not exist in the Microso or Apple guidelines. In this case, the next best
thing to do is to nd as many examples of other similar controls in other
soware, and look for similarities in the look and functionality.
For example, Microso and Apple may not have guidelines for a control
that resizes a two- dimensional object. However, if you compare almost
any image manipulation soware (especially those made by Adobe), you
will see that a rectangle around one or more selected objects, with handles
at the four corners that you can drag to resize, is a common pattern that
will be familiar to most users.
HIERARCHY
In the world of graphic design, hierarchy can be used to draw the user’s
attention to a specic part of the interface. is can be useful if you must
show a lot of information in your interface, but you want the user to focus
on a specic part that will help them to accomplish their goals.
How Can Hierarchy Improve Usability?
Efciency
By using hierarchy, we can inuence the user’s gaze. is can reduce the
amount of time spent in the look phase of the action cycle while the user is
scanning the interface to nd what they are looking for.
Learnability
We can use hierarchy to attract the user’s eye to specic parts of the inter-
face, making it easier for beginners to nd the basic functions they are
looking for when seeing the tool for the rst time.
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
3
FIGURE 5.8 An example of how guidelines help to determine when to use radio
buttons versus a drop-down menu.

[image:]Design ◾ 81
Understanding Hierarchy
Like a visual language, hierarchy uses shape and color to inuence where
the user looks. Hierarchy is dened by four properties: position, thickness,
size, and contrast (see Figure5.9, from le to right).
Position
Objects that are placed close to each other are considered grouped. is
also means that objects with a lot of white space around them will stand
out, attracting the user’s attention rst relative to the other objects.
Thickness
icker objects are oen seen as having more importance and will typi-
cally be noticed before thinner objects. A good example of this is bold text
versus regular text.
Size
A single object that is a dierent size compared to the other objects around
it is likely to be noticed rst. e ne print in an advertisement is a good
example of this. e advertisers want you to notice the text in the ad rst,
not the ne print!
Contrast
We tend to notice objects that have more contrast rst and then other
objects with less contrast aer. In fact, newborn babies see extreme con-
trast before they can see subtle contrast, which is why many baby toys have
highly contrasted shapes and colors.
What Are Examples of Patterns That Use Hierarchy?
e Google weather card is an excellent example of hierarchy (see
Figure5.10). If the user’s goal is to see the current temperature, the design
is very ecient at using all four elements of hierarchy to draw the user’s
FIGURE 5.9 Example of hierarchy, from le to right: position, thickness, size,
and contrast.

[image:]82 ◾ Designing the User Experience of Game Development Tools
attention to that information. e current temperature is by itself, sur-
rounded by white space (position), it is bigger and bolder than the other
text (size and thickness), and it is 100percent black on 100percent white
(contrast). All of these properties in combination inuence our eyes to look
at the current temperature rst and then scan the rest of the interface aer.
As you can see in Figure5.11, new e- mails in Gmail feature two proper-
ties of hierarchy: they are bold (thickness) and are written in black text on
FIGURE 5.11 e Gmail inbox uses hierarchy to make unread messages stand
out. Google and the Google logo are registered trademarks of Google Inc., used
with permission.
FIGURE 5.10 e Google Weather card uses hierarchy to help the user focus on
the most important information rst. Google and the Google logo are registered
trademarks of Google Inc., used with permission.

[image:]Design ◾ 83
a white background (contrast). By comparison, read e- mails are not bold
and are written in black text on a gray background. All of this draws your
eye to the new e- mails.
CONSTRAINTS
Constraints impose limits on what the user can do. eir purpose is to
protect the user from making mistakes, allowing them to focus on their
work without having to worry about the limitations.
How Can Constraints Improve Usability?
Efciency
Without constraints, the user may try to do something that will result in
an error. Because of this, they will spend a lot of time in the think phase
trying to understand why something is not working. Furthermore, limit-
ing the user’s choices means they spend less time in the look phase consid-
ering options that are not allowed anyway.
Learnability
Limiting the user’s options also means that they have less to learn. e
constraints make it clear what can and cannot be done.
Understanding Constraints
When we are deeply involved in the creation of a tool, we sometimes forget
that not all users are aware of the system’s technical limitations. Users will
try things that we never thought possible.
When users make mistakes, not only does it aect their eciency, but
it can also make them feel frustrated and hesitant to explore the rest of the
tool. Furthermore, constraints can protect bad assets from being shared
with the rest of the production team—which aects everyone’s productiv-
ity. Good constraints make the users more condent about using the tool,
so they can focus on creating content.
What Are Good Constraints?
Some constraints have the best intentions to protect the user but still
allow them to make mistakes. For example, USB cables use a small piece
of plastic to prevent the user from plugging it in the wrong way (see the
le side of Figure5.12). However, this merely acts as a guide, and it is
not guaranteed to work. As you may have experienced, sometimes it takes
multiple attempts of plugging and ipping to insert a USB cable properly.

[image:]84 ◾ Designing the User Experience of Game Development Tools
ere are other examples like this, such as jumper cables or component
cables: the color code might seem like it protects the user, but mistakes are
still possible.
One of the best examples of a cable that truly protects the user from
making a mistake is the Apple Lightning cable (see the right side of
Figure5.12). Unlike the USB cable design, there is no wrong way to plug
it in. You plug it in whichever way you want. Even better, the edges are
rounded, helping to guide the plug into the charging port. Constraints that
protect the user without having to think make for a better user experience.
What Are Examples of Patterns That Use Constraints?
A very basic constraint could be the use of a slider instead of a numeric input
box when the value has a minimum and maximum value (see Figure5.13).
By adding a slider, it is impossible for the user to enter an incorrect value.
Furthermore, the slider is a familiar interaction pattern, and users expect
it to limit the range of values that can be entered,
*
 as opposed to a numeric
input box that sometimes rejects or readjusts the value.
*
You can refer to Microso’s guidelines on sliders here: http://msdn.microso.com/ en- us/ library/
windows/ desktop/ bb226811%28v=vs.85%29.aspx.
0
10
5
5
12
–7
+

–
+
–
+
–
+

–
+
–
+
–

5
10
0
FIGURE 5.13 Sliders have clear constraints (le), as opposed to numeric input
boxes with minimum and maximum values (right).
FIGURE 5.12 e USB cable and Lightning cable demonstrate dierent types of
constraints.

[image:]Design ◾ 85
Another example of constraints: limiting where an object can be
dragged and dropped. For example, in the Unity game engine, you can
only drag and drop a script on the Script input of a Game Object (see the
top of Figure5.14). is makes it impossible for a user to insert a script
le in the wrong place, such as a texture map input (see the bottom of
Figure5.14).
*
NATURAL MAPPING
An interface with good natural mapping means that the placement of the
controls matches the actions that they perform. For example, buttons to
move objects le and right are placed to the le and right of each other,
instead of top and bottom.
*
You can nd guidelines for drag and drop in OSX here: https://developer.apple.com/ library/
mac/ documentation/ userexperience/ conceptual/ applehiguidelines/ TechnologyGuidelines/
TechnologyGuidelines.html#//apple_ref/ doc/ uid/ TP30000355-SW9.
FIGURE 5.14 e Inspector in the Unity Engine uses constraints to ensure that
a script can only be added where it is allowed.

[image:]86 ◾ Designing the User Experience of Game Development Tools
How Can Natural Mapping Improve Usability?
Efciency
Bad natural mapping can aect all three phases of the action cycle. e
user must spend more time in the look phase to read the specic text on
button labels, instead of quickly glancing at their overall position. e user
must also spend more time in the think phase, considering what the label
of each button means. Finally, it is also possible that the act phase could be
delayed as the user tries dierent controls until they get the right one, due
to the position of the controls feeling unnatural.
Learnability
Natural mapping can also improve learnability. If controls are laid out in a
way that matches the action that they perform, as well as the user’s mental
model, the user will understand how the controls work much faster.
*
Understanding Natural Mapping
A common keyboard conguration for rst- person shooter games is
WASD: pressing the “w” key moves you forward, “s” moves you back, and
the “a” and “d” keys strafe le and right (see the le side of Figure5.15).
Because the movement is relative to the position of the keys, this is an
example of good natural mapping.
Instead, imagine if the “w” and “s” keys strafe le and right, and the “a”
and “d” keys move forward and backward (see the right side of Figure5.15).
When your opponent res a rocket at you, and you press the “a” key expect-
ing to go le, instead you walk right into it and explode into a ludicrous
amount of giblets. You can imagine how frustrating that would be!
*
Furthermore, when it comes to memorability—the ability to remember how to use the tool aer
not having used it for a while—users tend to remember the general location of a control rst (le
side, right side, or middle of the toolbar), and then the label/ icon associated with that control.
A
W
SD A
W
SD
FIGURE 5.15 e standard WASD key conguration for rst-person shooters.

[image:]Design ◾ 87
Moving forward with the “a” key does not feel natural, because it is to
the le of the other keys. is would be an example of bad natural mapping.
What Are Examples of Patterns That Use Natural Mapping?
e Color Set Editor window in Autodesk Maya shows an example of good
natural mapping. e “Move Up” and “Move Down” buttons are positioned
relative to the actions that they perform (see the le side of Figure5.16).
Another good example is the Connection Editor window. All of the
buttons that are related to the le are positioned on the le, and all of
the buttons that are related to the right are positioned on the right (see the
middle of Figure5.16).
However, there are times when limited space can lead to compromises
to natural mapping, as can be seen in the Layers Editor. e buttons for
moving layers up and down are placed side by side (see the right side of
Figure5.16). is is not ideal natural mapping.
REPRESENTATION
Representation is a technique that can be used to help users make quicker
decisions without increasing time spent in the think phase of the action
cycle (such as doing calculations in their heads). It is oen most useful
when the user interface does not match the user’s mental model.
How Can Representation Improve Usability?
Efciency
If the user has to do calculations in their head, they will spend a lot of time
in the think phase. By presenting complex concepts in a simple way, they
can spend more time in the act phase, increasing their eciency.
Learnability
If the concepts in a tool are confusing for the user, they will have diculty
learning how to use it. By using representation to match the user’s mental
model, the interface more closely resembles how the users think, making
it easier to learn.
Understanding Representation
The Numbers Game
To understand how we can use representation, we will play a game. You
can also play this with a friend to explain the concept of representation.

[image:]88 ◾ Designing the User Experience of Game Development Tools
FIGURE 5.16 Examples of natural mapping across various editors of the Autodesk Maya interface. Autodesk screen shots reprinted
with the permission of Autodesk, Inc.

[image:]Design ◾ 89
First, one player writes down the numbers 1 through 9 on a piece of
paper. Each player takes a turn choosing a number. ey announce it to
the other player and then cross it o the list. Once a number is chosen, it
is no longer available.
e goal of the game is to keep picking numbers until one player can
add up three of their numbers to make a total of 15. For example, the game
could go like this (see Figure5.17):
 1. Player A picks 8
 2. Player B picks 6
 3. Player A picks 4
 4. Player B picks 3
 5. Player A picks 2
 6. Player B picks 9
 7. Player A picks 5
 8. e game is over: Player B picked 8, 4, 2, and 5. ey can make 15 by
adding up the numbers 8, 2, and 5.
Does that sounds a little bit complicated? Now, imagine playing the
game without writing anything down, and calculating the numbers in
your head! Add to that the fact that you also have to remember if your
opponent already picked a specic number.
Tic- Tac- Toe
Let’s forget about the numbers game and play a completely dierent game:
tic- tac- toe. By comparison, this game is very simple: you and your oppo-
nent take turns placing X’s and O’s on a three- by- three grid, and the rst
player to get three X’s or O’s in a horizontal, vertical, or diagonal line wins
(see Figure5.18). is is a game that anyone can learn in seconds and does
not require doing any calculations in your head.
1

AAB BBAA
987654
8 + 2 + 5 = 15
32

FIGURE 5.17 An example of the numbers game.

[image:]90 ◾ Designing the User Experience of Game Development Tools
Magic Square
Here is where it gets interesting: what if I told you that the two games we
just saw—the numbers game and tic- tac- toe—are actually the same game?
A magic square is a three- by- three grid, with each space containing a
dierent number from one to nine. If you add up the numbers diagonally,
vertically, and horizontally, you always end up with 15 (see Figure5.19).
Now, think back to the numbers game, and how complicated it is:
remembering your own numbers, doing math in your head, and even hav-
ing to remember what numbers your opponent picked. Now, if you simply
play tic- tac- toe with a magic square, you can pick three numbers that add
up to exactly 15 in a matter of seconds, with little eort.
at is the power of representation: presenting the user interface in
such a way that it simplies a complex concept, allowing the user to make
decisions more quickly and easily.
What Are Examples of Patterns That Use Representation?
In previous versions of Microso Oce, you had to use an interface similar
to the one you see on the le in Figure5.20 if you wanted to insert a new table.
is interface requires you to visualize the table in your head, think
about how many rows and columns you want it to have, and then translate
that into the numbers that you enter into the “Number of columns” and
“Number of rows” elds.
81 6
15 15 15
35 7
49 2
FIGURE 5.19 An example of a magic square.
FIGURE 5.18 An example of tic-tac-toe.

[image:]Design ◾ 91
Newer versions of Microso Oce provide an interesting example of
representation to build your table. is design allows the user to move
their mouse inside a grid to set the number of rows and columns for their
table visually, which matches most users’ mental model of what a table is
much more closely (see the right side of Figure5.20).
Using this technique does have a small downside: it limits the total
number of rows and columns the user can choose. is limit is likely
based on the maximum number of columns and rows that the average
user needs. For the edge case of an expert user who needs to go beyond
the maximum, the “Insert Table…” menu item is still available just below
the grid (see the right side of Figure5.20, near the bottom).
*
FEEDBACK
Feedback is all about how the tool communicates with the user. Examples
of feedback include what the tool is doing now, what just happened, and
how much time is le in a particular process.
*
If the user needs hundreds of cells in a table, maybe Microso Word is not the right tool, and they
should be using a tool that does one thing (spreadsheets) really well: Microso Excel.
FIGURE 5.20 An example of using representation to insert a table in Microso
Oce. Used with permission from Microso.

92 ◾ Designing the User Experience of Game Development Tools
How Can Feedback Improve Usability?
Efciency
Feedback helps indirectly with eciency because it lets the user know if
they can do something else while they are waiting. Furthermore, the user
is less likely to force close an application, requiring them to redo any work
that they may have lost.
Learnability
In- context feedback through carefully worded messages can help the user
learn how the tool works more quickly and make them more condent in
their understanding of the tool.
Understanding Feedback
When two humans engage in conversation, there is an exchange of infor-
mation. One person speaks, and the other listens. When one person is
done speaking, the other person replies. We are accustomed to this from
years of social interaction.
For example, a back- and- forth conversation might go something like
this:
Mario: Hello, Luigi. It’s- a me, Mario! How are you today?
Luigi: I am doing well. How are you?
Mario: I am doing very well, thank you for asking!
Now, imagine a conversation like this:
Mario: Hello, Luigi. It’s- a me, Mario! How are you today?
Luigi: I am doing well. How are you?
Mario: … (stares at Luigi)
Luigi: Mario?
Mario: … (continues staring at Luigi)
Luigi: Mario, hello?
Mario: … (blinks once)
Luigi: … oookay … (walks away)
at would make for a very awkward conversation. As humans, we are not
accustomed to interactions like this. We expect an almost instantaneous
conrmation of our presence in our social interactions. We cannot fault
Luigi for walking away.

[image:]Design ◾ 93
Likewise, as you will recall from Chapter4, an interaction between a
human and computer is a back- and- forth process. e human performs
an action, and the computer responds. e human sees what the computer
did, and they perform the next action.
However, too oen, the interaction between humans and computers
resembles the awkward social interaction: the human performs an action,
but the computer does not respond. Worse still, the user may think that
the program has crashed and close it, losing all unsaved work.
Now, imagine a third conversation like this:
Mario: Hello, Luigi. How are you today?
Luigi: I am doing well. How are you?
Mario: Just a moment, let me think …
Luigi: Sure, I can wait.
Mario: …
Luigi: Are you still thinking?
Mario: Yep, just give me a minute.
Luigi: OK! No problem. anks for letting me know.
Mario: Sorry about that. I am doing very well, thank you for asking!
is interaction is less awkward. Luigi knows that Mario is still participat-
ing in the conversation but that he is not ready to respond quite yet. Luigi
is unlikely to walk away.
Acceptable Response Time
Jakob Nielsen, whom we spoke about in Chapter4, published a book in
1993 titled Usability Engineering where he describes three important lim-
its when it comes to acceptable response times, with recommendations on
when feedback is recommended:
*
• At 0.1 second, the users “feel that the system is reacting instanta-
neously” and no feedback is necessary.
• 1 second “is about the limit for the user’s ow of thought to stay
uninterrupted.” e user will notice the delay and will “lose the feel-
ing of operating directly on the data,” which can make the tool feel
sluggish. In this case, a wait cursor is recommended.
*
Here is an article with a summary of the information: http://www.nngroup.com/ articles/
 response- times-3-important- limits/.

[image:]94 ◾ Designing the User Experience of Game Development Tools
• 10 seconds is “the limit for keeping the user’s attention.” For anything
longer, the user will forget what they were doing, which could aect
their eciency. In this case, users should receive feedback to conrm
that the computer is working, and an estimate of how much longer
they need to wait. Using a progress bar is ideal in this situation.
Perceived Wait Time
In 1985, while he was studying at the University of Toronto under Bill
Buxton, Brad Allan Myers published a paper titled “e Importance of
Percent- Done Progress Indicators for Computer– Human Interfaces.”
*

e paper describes Myers’s research on how progress bars aect our per-
ception of time. In his experiment, he asked people to perform database
searches, some of which had progress bars and some of which did not have
them. e results of the study indicate that the participants felt more con-
dent in the database searches with progress bars.
The Benets of Giving the User Feedback
As we can see in the previous examples, giving the user feedback with a
progress bar can help in multiple ways. It conrms to the user that the tool
is still working—which stops them from forcing it to close and potentially
losing unsaved work—and gives them the condence to do something else
while they are waiting, which increases their overall eciency.
Furthermore, in Chapter1 we learned how one of the qualities of a good
user experience is when the interaction is “more human.” If we compare
our awkward conversation example from before to a long wait without a
progress bar, we can see how waiting without feedback can result in a “less
human” user experience.
Feedback Overload
One of the dangers of feedback is that it can quickly turn into more noise
than signal. If you give the user too much feedback, they are likely to start
ignoring all of it and miss something important. If you are aware of the
user’s goals and mental models, you can use that knowledge to lter the
feedback you provide. If you are not, the feedback is likely to be overloaded
with information that may be important for the conceptual model, but not
to the user.
*
Note the term “percent- done progress indicators”—at the time, progress bars did not exist as we
know them now. You can nd the paper here: http://dl.acm.org/ citation.cfm?id=317459.

[image:]Design ◾ 95
What Are Some Examples of Patterns That Use Feedback?
Progress Bar
Progress bars indicate the progress of a task and give us a sense of how
much of the task is le.
*
 Perhaps one of the most recognized is the copy
progress bar in Microso Windows (see Figure5.21).
†
Some progress bars lock the tool while they are running. However, some
can show a progress bar while still allowing the user to continue working.
A good example of this is Adobe Audition: when running a multitrack
mixdown, the editor is locked and a pie- chart progress indicator appears,
with the estimated remaining time (see Figure5.22). However, the user
can still work on other aspects of the user interface while they are waiting.
Wait Cursor
Showing a wait cursor next to the mouse has the advantage of being eas-
ier for the user to notice, as their eyes are likely already on the mouse.
However, since most wait cursors do not show progress, it is best to use
this option when the wait time is relatively short.
FEED- FORWARD
Feed- forward is essentially the opposite of feedback: instead of learning
the results of their actions aer the fact, the user sees what will happen
before they commit to an action. is gives them the option of changing
their mind, which is especially useful if the action is destructive or com-
plicated to reverse.
*
Some research even suggests that animated patterns overlaid on top of the progress bar can
make it feel as though it is moving faster! http://chrisharrison.net/ projects/ progressbars2/
ProgressBarsHarrison.pdf.
†
Microso’s guidelines for progress bars can be seen here: http://msdn.microso.com/ en- us/
library/ windows/ desktop/ dn742475%28v=vs.85%29.aspx.
FIGURE 5.21 e progress bar in Windows gives feedback on the progress of a
large le being pasted. Used with permission from Microso.

[image:]96 ◾ Designing the User Experience of Game Development Tools
How Can Feed- Forward Improve Usability?
Efciency
Feed- forward is especially helpful in reducing the amount of time spent
in the think phase. ere is no need to wonder what is going to happen, as
you simply see it before you choose to commit.
Learnability
Feed- forward is an extremely eective learning technique. Previewing what
will happen allows the user to learn what a feature does instantly and with
less risk, which also invites them to explore the other features of the tool.
Understanding Feed- Forward
While the concept of feedback in user interfaces is well known, feed-
forward is less so.
*
 Research suggests that when people make a decision,
their brain “previews” the outcome of their choices to assist in choosing
the correct action.
†
 In a sense, feed- forward helps us preview decisions
in the same way that our brain does.
*
One of the rst uses of the term feed- forward in the context of user experience design comes from
Tom Djajadiningrat, in his paper “But How, Donald, Tell Us How.” If you have access to the ACM
Digital Library, you can read the article here: http://dl.acm.org/ citation.cfm?id=778752.
†
You can read more here: http://en.wikipedia.org/ wiki/ Feedforward,_Behavioral_and_Cognitive_
Science.
FIGURE 5.22 An integrated progress pie-chart gives feedback on the export
progress in Adobe Audition. Adobe product screenshot(s) reprinted with per-
mission from Adobe Systems Incorporated.

[image:]Design ◾ 97
What Are Examples of Patterns That Use Feed- Forward?
A good example of a pattern that uses feed- forward is the Styles section
of the ribbon in Microso Word. By hovering their mouse over each style,
the user can get a preview of what their text will look like with the style
applied directly in their document (see the top of Figure5.23). However,
they do not have to commit to the decision. If they are not satised, they
simply move the mouse to another style (see the middle of Figure5.23)
or out of the Styles section completely (see the bottom of Figure5.23).
However, once they nd the style they like, they can click to commit to
it. is is much more ecient than applying a style, undoing, applying a
style, undoing, and so on.
When attempting to drag and drop a material onto objects in the Unity
game engine viewport, the objects under the mouse are shown with the
material instantly, as opposed to only aer you release the mouse button
(see Figure5.24).
e numbers that indicate how many items are inside a folder is another
example of feed- forward. For example, the folder list in Gmail shows how
many unread mail items there are in each category (see Figure5.25), allow-
ing the user to skip over folders that do not contain unread items instead
of taking the time to check each one.
GROUPING
Grouping is the technique of associating similar terms, concepts, or com-
mands together in a way that matches the user’s mental model.
How Can Grouping Improve Usability?
Efciency
By grouping related items together, the user can scan through a list of items
and nd what they are looking for more quickly, reducing the amount
of time spent in the look phase. is could also reduce the think phase,
because fewer items to look at mean fewer items to think about.
Learnability
Grouping can make a tool easier to learn because the interface is orga-
nized in a logical way that matches how the user thinks, allowing them to
adapt to it faster.

[image:]98 ◾ Designing the User Experience of Game Development Tools
FIGURE 5.23 Using feed-forward to preview changes to formatting in Microso
Word. Used with permission from Microso.

[image:]Design ◾ 99
FIGURE 5.24 Feed-forward allows the user to preview how a material will change
the look of an object in the Unity Engine before committing to the change.

[image:]100 ◾ Designing the User Experience of Game Development Tools
Understanding Grouping
Grouping is one of the many techniques that make up the discipline of
information architecture. e most important factor in determining how
terms, concepts, and commands can be grouped is by understanding the
user’s mental model.
For example, by using separators, menu items can be organized to
reect how the user associates them. is allows the user to skip the menu
items that are not applicable to their immediate goals and nd what they
are looking for faster.
Some people may look at the concept of grouping menu items and say,
“Well, that’s just associating similar commands together!” at may be
true, but how they are associated is not always obvious. We may have an
opinion on how the menus should be organized, but we could be inu-
enced by the way the data is organized in the code, and not how the user
thinks about it. To help us determine how to group information from the
user’s perspective, we can do a card sort.
Using a Card Sort to Determine Groups
In Chapter4, we learned about how card sorting can help us understand
the user’s mental model. e way in which a user associates menu items is
also part of their mental model. By putting each command in our menu
onto a set of cards, and asking the user to organize them, we can get a
much better idea as to how they associate each of the commands.
When you are done, study the results and look for common trends. For
example, did the majority of users put all of the commands that create
polygon and NURBS primitives together, or did they combine the cre-
ate polygon primitives and polygon editing tools together into one group?
FIGURE 5.25 Feed-forward gives the user information about the contents of a
folder in Gmail without requiring them to click on it. Google and the Google logo
are registered trademarks of Google Inc., used with permission.

[image:]Design ◾ 101
Aerward, you can transform the groups into top- level menus and the
cards into individual menu items.
is process can be applied to window menus, contextual menus, tool-
bars, and so on.
What Are Examples of Patterns That Use Grouping?
e menu items in Autodesk Maya are grouped in such a way that matches
the user’s mental model (see Figure5.26). For example, even though the
FIGURE 5.26 e Mesh menu in Autodesk Maya demonstrates the technique of
grouping. Autodesk screen shots reprinted with the permission of Autodesk, Inc.

[image:]102 ◾ Designing the User Experience of Game Development Tools
“Smooth” command adds new vertices to the selected mesh, and the
“Average Vertices” command moves vertices, they are grouped together
because they are both related to giving the mesh a smoother appearance.
In addition, all of the commands related to transferring information
from one mesh to another are grouped together. If the user is scanning the
list of commands and is not planning to transfer information, they can
skip over that whole section to the next group.
e Microso ribbon shows yet another example of grouping. At the
top level, the commands in the ribbon are organized into tabs. For exam-
ple, all commands related to inserting charts or external resources to a
Microso Word document can be found under the “INSERT” tab. If the
user wants to insert a chart to their document, they can quickly skip over
the “VIEW” or “REFERENCES” tabs, as they do not contain the com-
mands they are looking for (see the top of the ribbon in Figure5.27).
One level below are the sections. If we return to the example of the
“INSERT” tab, we have a series of sections for dierent elements that can
be inserted: Pages, Tables, Illustrations, and so on (see the bottom of the
ribbon in Figure5.27). ese are grouped together in a way that the average
user may expect. is way, if the user is looking to insert an illustration,
they can skip over all of the commands within the “Pages” and “Tables”
groups and go directly to the commands within the “Illustrations” group.
CHUNKING
You may have heard the statistic that people are able to remember seven
items at once, plus or minus two. is number comes from research by
George A. Miller in 1956 and is oen referred to as “Miller’s Law.”
*
*
You can read more about Miller’s Law here: http://en.wikipedia.org/ wiki/ Miller%27s_law.
FIGURE 5.27 Grouping is used to organize commands in the Microso Oce
ribbon. Used with permission from Microso.

[image:]Design ◾ 103
However, new research suggests that this number is closer to four, plus
or minus two. e reason that Miller’s numbers were higher is that his
research subjects were able to clump similar items together, making them
easier to remember. is behavior is known as “chunking.”
How Can Chunking Improve Usability?
Efciency
If the information is organized in a consistent way, the user can remember
and interpret it more easily, resulting in less time spent in the think phase.
Learnability
If the information is organized in such a way that matches the user’s men-
tal model, learnability can be improved.
Understanding Chunking
To feel the dierence that chunking can make, we will play a memory
game. Study the image of letters and numbers in Figure5.28 for ten sec-
onds, and try to remember as many as you can.
Aer the ten seconds are up, close the book and get a piece of paper and
a pen. First, write down how many letters and numbers you think that
there were. Next, try to write down as many of the letters and numbers
you can remember. When you are a ready, turn to the next page.
In Figure5.28, you can see the exact same letters and numbers as in
Figure5.29. Imagine that you were asked to study those same letters and
numbers for ten seconds, but in this conguration. How many do you
think you would be able to recall? Would you get them all right?
e fact that it is easier for you to remember those same letters and
numbers this way is an example of chunking: You have a predened struc-
ture in your brain for the shortened names of these video game consoles. It
is easier to remember and decipher the letters and numbers when you can
group them together in a logical way that makes sense to you.
FIGURE 5.28 Memory game.

[image:]104 ◾ Designing the User Experience of Game Development Tools
What Are Examples of Patterns That Use Chunking?
Content creation tools allow users to work with RGBA color values in dif-
ferent ways: 0 to 255, 0.0 to 1.0, and hexadecimal. Despite the fact that
hexadecimal does not match the mental model of color for the average
person, it has become a standard for working with certain types of content.
When users are accustomed to working with hexadecimal, they are able
to pick out the red, green, blue, and alpha values quickly by chunking the
characters in groups of two. For example, a user familiar with RGBA in
hexadecimal can look at the value #FF7F00FF and determine very quickly
that the color has 100percent red (the rst and second characters) and
50percent blue (the third and fourth characters).
However, some tools do not work with hexadecimal colors in RGBA—
such as Microso Expression Blend, which uses ARGB.
*
 is can be con-
fusing to users who are accustomed to chunking RGBA colors. e previous
color would appear to be 100percent red, 100percent blue, 50percent
green, and fully transparent to someone who is used to working with
RGBA!
When designing how information will appear to the user, consider how
they will chunk it. Also, try to follow existing standards. If technical limi-
tations make this impossible, make the information familiar and easier to
chunk for the user in the interface, and then convert it to the necessary
format in the background so the user does not have to think about it.
EXCISE
Excise refers to navigating around the interface, from switching tabs to
changing windows. Anything that involves moving the cursor across the
screen to reach an element of the user interface is excise.
How Can This Technique Improve Usability?
Efciency
Reducing excise will have the biggest impact on the act phase of the action
cycle. Although it is the lightest load, reducing a repetitive task even by
*
is is likely because it was designed to work with the XAML le format, which uses ARGB.
FIGURE 5.29 Memory game, with chunking.

[image:]Design ◾ 105
one second can add up to a huge boost in eciency over time if it helps a
large number of users.
Learnability
Excise does not have a signicant impact on learnability.
Understanding Excise
One of the most consistently conrmed studies in human– computer
interaction was completed in 1954 by Paul Fitts, who proposed that the
time it takes a user to touch a target with a cursor is directly related to
the distance from the target and the size of the target. is is known as
Fitts’s Law.
*
erefore, to reduce excise, the target must be made larger and/ or closer
to the current position of the cursor.
What Are Examples of Patterns That Use Excise?
Window Menus Versus Contextual Menus
Accessing items in a menu or toolbar frequently is an example of excise
that is mainly related to target distance. e user must move their cur-
sor to the menu or toolbar and click on the item and then move the cursor
back to where it was before (see top of Figure5.30).
†
*
You can read more about Fitts’s Law here: http://en.wikipedia.org/ wiki/ Fitts%27s_law.
†
Specications for menus and contextual menus from Microso can be found here: http://msdn.
microso.com/ en- us/ library/ windows/ desktop/ dn742392%28v=vs.85%29.aspx.
File Edit View HelpFile Edit View Help
Undo
Redo
Rename
Delete
File Edit View Help
File Edit View HelpFile Edit View Help
Rename
Delete
File Edit View Help
Rename
Delete
File Edit View Help
File Edit View Help
FIGURE 5.30 Comparing the excise of a window menu (top) versus a contextual
menu (bottom).

106 ◾ Designing the User Experience of Game Development Tools
By comparison, contextual menus can help to reduce excise because
they appear right next to the user’s cursor, resulting in shorter distance
(see the bottom of Figure 5.30). In addition, as the name “contextual
menu” implies, only items that are contextually related to the item that
was clicked should be enabled in the menu, which means a shorter list,
and therefore a shorter distance to the option that the user is looking for.
Window Menu Item Order
While it might seem that organizing menu items alphabetically will make
it easy to nd a specic menu item, this approach presents two problems.
e rst is that the menu rarely matches how the user chunks informa-
tion. e second is that the items that are accessed more frequently may
be further from the cursor, because the rst letter of the command is near
the end of the alphabet.
For example, the level editor GTKRadiant has a contextual menu with
items that are ordered alphabetically. If the majority of users are frequently
required to create entities of type “worldspawn,” they must move their
mouse to the bottom of the contextual menu every single time, which
results in a lot of excise (see the le of Figure5.31).
Another very common situation is having menu items listed in the order
that they were created. In other words, when a developer adds a new com-
mand, it is placed at the bottom of the menu (see the right of Figure5.31).
A better solution is to place the most frequently used commands at
the top of the menu, reducing the travel time from the point at which the
menu was raised (see Figure5.32). When new items are added, learn the
frequency at which they will be used—either by looking at metrics or by
doing a task analysis—and place them in the appropriate position in the
menu. is can apply to window menus, contextual menus, combo boxes,
menu buttons, and more.
Bottom of the Screen
ere is one problem with ordering items in a contextual menu from
top to bottom: the mouse is not always at the top! Sometimes, a user will
invoke a contextual menu from the bottom of the screen, and the contex-

[image:]Design ◾ 107
tual menu will appear above the mouse, instead of below it. What can be
done about this?
Microso Oce presents an interesting solution to this problem: fre-
quently used formatting commands appear in a oating bar that changes
position depending on where the contextual menu was invoked. When
Preferences...
Find...
Replace...
Copy
Paste
Undo
Redo
Edit
Added earlie
r
Added later

FIGURE 5.31 Two ways in which the organization of a contextual menu can
increase excise: Alphabetical, as in GTKRadiant (le) or the order in which the
commands were added (right).
Undo
Redo
Copy
Paste
Find...
Replace...
Preferences...
More frequently
Less frequently

Edit
FIGURE 5.32 Organizing a menu based upon how oen the commands are used
can reduce excise.

[image:]108 ◾ Designing the User Experience of Game Development Tools
the cursor is at the top of the window, the oating bar appears at the top,
nearer to the cursor (see the le side of Figure5.33). However, when the
cursor is at the bottom, the oating bar appears at the bottom (see the
right side of Figure5.33).
e marking menu in Autodesk Maya is yet another approach to reduc-
ing excise (see Figure5.34). Marking menus typically have up to eight
regions,
*
 which are all the same distance from the cursor.
Contextual Menus and Learning Curve
When considering the use of contextual menus, do not forget about the
learning curve concepts that were presented in Chapter4. Because con-
textual menus are not always visible, they are dicult to discover for
beginners. For this reason, it is best to ensure that the most frequently
used commands are always visible in toolbars or menus so new users can
nd them.
*
While the number of options on the menu is limited to eight, commands can be chained together.
However, that technique is geared more toward expert users.
FIGURE 5.33 e contextual menu in Microso Oce changes based upon
where it was invoked in an eort to minimize excise. Used with permission from
Microso.

[image:]Design ◾ 109
Examples of Target Size
For an example of target size, we can look at Adobe Premiere Pro (see
Figure5.35). One of the most frequent actions is pressing the play button,
while one of the least common actions is closing the sequence that you are
currently working on.
Because the play button is a large target, it is easy to acquire with the
mouse. By comparison, the close button for a sequence is only a few pixels
across, making it dicult to click by accident.
FIGURE 5.34 e marking menu in Autodesk Maya is excellent at reduc-
ing excise, though it can be dicult for beginner users. Autodesk screen shots
reprinted with the permission of Autodesk, Inc.

[image:]110 ◾ Designing the User Experience of Game Development Tools
Hotkeys and Excise
While it may be true that using hotkeys to activate a command can reduce
excise as compared to moving the mouse to click on a button, reaching
keys on the keyboard can be excise too!
A complicated hotkey combination such as Ctrl/ Cmd+Alt+P cannot be
done one- handed by most users. It may require the user to look down at
the keyboard and take their other hand o the mouse. is may not seem
like much, but if the hotkey is for a command that is used oen, it can add
up to lost eciency like any other kind of excise.
Resting Place
Any pro gamer can tell you that optimal hotkey placement is crucial to
eciency. All of the default hotkeys for the competitive multiplayer RTS
Starcra are placed along the le side of the keyboard, near the resting
FIGURE 5.35 e size dierence of the “play” and “close sequence” buttons in
Adobe Premiere demonstrates the concept of target size excise. Adobe product
screenshot(s) reprinted with permission from Adobe Systems Incorporated.

[image:]Design ◾ 111
place of the le hand.
*
 In the case where eciency is not important, choos-
ing a hotkey based on the rst letter of the command would make sense,
such as using “M” to build a marine. However, to make the player more
ecient, the second letter in the word marine is used: “A,” because it is on
the le side of the keyboard, near the resting place of the le hand (see
Figure5.36).
You can see the same rules applied to content creation tools. For exam-
ple, the majority of 3D content creation applications use the letters Q, W,
E, and R for select, move, rotate, and scale, respectively, which are some of
the commands that are used most frequently. Another classic example is
undo, copy, cut, and paste: Ctrl/ Cmd+Z, X, C, and V.
†
When choosing hotkeys for the commands that are used most fre-
quently, try to choose hotkeys that are near the le side of the keyboard. If
the key for the rst letter of the command is on the right side, or is already
used, then use the next letter in the name of the command. Also, to avoid
confusion, don’t replace standard hotkeys like the ones for undo, copy,
cut, and paste that are listed above, as well as Ctrl/ Cmd+S, O, W, and A for
save, open, close, and select all, respectively.
Deliberately Increasing Excise to Protect the User
ere may be times when you want to increase excise on purpose. is
may be to slow down the user so that they have more time to think about a
*
As le- handed people already know, most default hotkeys are made with right- handed people in
mind. If there are a signicant number of le- handed users, you can give the option to customize
the keyboard so the resting place is on the right side instead.
†
Of course, all of this is assuming a North American QWERTY layout. Other layouts like AZERTY
would alter these rules a little bit.
QW ERTYUI
OP

ASDFGH JKL
ZXCVBNM
FIGURE 5.36 Considering the resting place of the le hand when choosing
hotkeys.

[image:]112 ◾ Designing the User Experience of Game Development Tools
potentially dangerous decision or to protect them from accidental actions.
Here are a few options.
Dialog Boxes
ere is a commonly held belief that dialog boxes should never be used,
and that the fewer dialog boxes you have, the better. However, dialog boxes
can be useful for protecting the user from errors. One such example is
a dialog box conrming that you want to delete a le. Accidental clicks
resulting in data loss can be reduced by forcing the user to change their
focus to the dialog box, move their mouse, and click.
It is extremely important to note that a dialog box should be avoided in
the case of commands that are used frequently. e slowdown in eciency
may be worse than the lack of error protection. In these cases, allowing the
user to recover or undo their choice is highly recommended.
Potentially Dangerous Menu Items
Menu items that have the potential to cause irreversible damage—such as
deleting an object—can be placed at the bottom of a menu, adding excise
to protect the user from clicking on them by accident.
Inconvenient Hotkeys
Deliberately increasing the excise for a hotkey can also protect the user.
For example, using the spacebar as a hotkey for a dangerous command
that cannot be reversed would be a very bad idea. By comparison, a com-
plex hotkey such as Ctrl/ Cmd+Alt+P usually requires two hands and
therefore has a signicantly lower chance of being pressed accidentally.
However, there are a few exceptions: standards such as the “delete” key
to delete should not be changed to protect the user, as they are so common
that changing them would just lead to confusion. Again, the best way to
protect against this is to implement a robust undo system.
PROGRESSIVE DISCLOSURE
Progressive disclosure means showing only the parts of the interface
that the user needs to see. e interface starts simple, and we allow the
user to reveal (disclose) more, one piece at a time (progressively), to suit
their needs.

Design ◾ 113
How Can Progressive Disclosure Improve Usability?
Efciency
Progressive disclosure can reduce the amount of time spent in the look
phase by reducing visual clutter in the interface. Furthermore, the less we
see, the less we have to gure out, resulting in less time spent in the think
phase. However, since showing and hiding can increase the amount of
excise—in other words, time spent in the act phase—it is important to nd
the right balance between the amount of progressive disclosure and excise.
Learnability
Progressive disclosure is one of the most powerful techniques for improv-
ing learnability. By simplifying the interface, rst- time users can get a
grasp of how a tool works without being overwhelmed by all of the features
at once, and expert users can customize the interface to suit their needs.
Understanding Progressive Disclosure
In Chapter3, we spoke about how new features add complexity exponen-
tially, not linearly. e same goes for the number of interface elements that
are visible at one time. By starting with a simple and clean interface, and
allowing the user to see more as they gain more experience, we are allow-
ing the user to control the amount of complexity.
Progressive Disclosure and the Learning Curve
To decide if progressive disclosure is the right technique to use, you must
rst look at how many interface elements there are and how oen they will
be used.
For example, for a tool that has many interface elements and will be used
all day by beginners as well as experts, using progressive disclosure makes
sense. Beginners appreciate an interface that starts simple and accessible,
and experts benet from an interface that is powerful and customizable.
However, if the tool has a smaller number of interface elements, and is
going to be used for ve minutes, once per week—for example, a tool to
update to the latest version of the game engine—progressive disclosure
may not provide signicant benets.

[image:]114 ◾ Designing the User Experience of Game Development Tools
FIGURE 5.37 Progressive disclosure can be used to hide information that most
users may not be interested in, such as technical details about the “paste” process.
Used with permission from Microso.

[image:]Design ◾ 115
FIGURE 5.38 e variety of ways in which the interface of most Adobe products can be customized is an excellent example of progres-
sive disclosure, and is appropriate for their level of complexity. Adobe product screenshot(s) reprinted with permission from Adobe
Systems Incorporated.

[image:]116 ◾ Designing the User Experience of Game Development Tools
What Are Some Examples of Patterns That Use
Progressive Disclosure?
Progressive disclosure is such an established pattern that Microso has
an entire section in their user experience guidelines dedicated to it.
*
 As
a result, you can nd examples of this technique being used to show and
hide elements all over Windows. For example, when pasting a large le,
most users only want to know if the operation is done (see the top of
Figure5.37). However, for users who want to know more—such as pre-
cisely how much time is remaining, and the le transfer speed—they can
click on the “More details” expander (see the bottom of Figure5.37). In
addition, when the paste dialog appears, the expander is closed by default,
since this information does not interest most users.
It should not come as a surprise to see extensive use of progressive dis-
closure in Adobe products such as Photoshop and Illustrator, as they are
extremely complex and have many dierent interface elements. To address
this, each panel can be individually expanded and collapsed to show
exactly what the user needs to accomplish their task (see Figure5.38).
WRAPPING UP
In this chapter, we concentrated on the Design phase of the User- Centered
Design process. We learned about how the brain and the eyes work together
and how humans have evolved to see specic patterns more eciently.
We learned about the importance of using a consistent, clear visual lan-
guage, and we also discovered the value of following design guidelines.
Finally, we learned a wide variety of design techniques, such as Hierarchy,
Constraints, Natural Mapping, Representation, Feedback, Feed- forward,
Grouping, Chunking, Excise, and Progressive Disclosure.
In the next chapter, we will discuss concepts and techniques to be used
during the Evaluation phase of the User- Centered Design process.
*
You can find it here: http://msdn.microsoft.com/ en- us/ library/ windows/ desktop/ dn742409
%28v=vs.85%29.aspx.

[image:]117
Chapter 6
Evaluation
WHAT WILL WE LEARN IN THIS CHAPTER?
Concepts
• Choosing the right evaluation strategy
• Deciding between code and pre- visualization
Techniques
• Pre- visualize the interface
• How to do a heuristic evaluation
• Performing user tests
HOW DO WE EVALUATE THE DESIGN?
Now that we have analyzed how the users use the tool and designed one
or more improvements, it is time for the Evaluation phase. One of the rst
questions to ask ourselves is if it will be more cost- eective to go straight
to code or to pre- visualize the changes to the tool. e next question to ask
is if there are current users or users with a similar prole available to vali-
date the interface. If users are available, we can do user tests. If not, we can
perform a heuristic evaluation while we wait for users to become available.
CHOOSING BETWEEN CODE OR PRE- VISUALIZATION
In Chapter 2, we learned about Je Hawkins and the power of pre-
visualizing. You might be asking yourself, “If pre- visualizing is so power-
ful, why not use it all the time?”

118 ◾ Designing the User Experience of Game Development Tools
If you are not a programmer and there are no programmers on your
team, or if there are programmers but they do not have time during the
current sprint, your only option is to pre- visualize. is will allow you
to start getting feedback from the users while you wait for programming
resources to become available.
However, if you can program or if programmers are available, your
decision to code or pre- visualize will depend on your situation. Here are a
few aspects to consider.
When to Pre- Visualize
Pre- visualization is recommended if the estimated time to make changes
to the tool is higher than the time it would take to pre- visualize. For exam-
ple, it takes a lot less time to sketch out a new type of user interface con-
trol that has never been created before compared to fully implementing it
in code.
If your goal is to measure the improvement to learnability, pre-
visualization can be a good choice. For example, the design techniques of
representation and hierarchy can be simulated by using pre- visualization
with good accuracy.
However, pre- visualization is not ideal for measuring improvements
to eciency compared to making changes directly to the code. is is
because pre- visualization techniques cannot simulate the response time
of a real computer, and, in the case of a sketch, using your nger to press a
button is not the same as clicking on the button with the mouse.
Furthermore, it is dicult to simulate a large database with pre-
visualization. For example, if your user test requires that the user is able to
search through a database containing thousands of textures, it could take
signicantly longer to pre- visualize every possible option. In these cases,
you may choose to go straight to code.
When to Code
As we learned earlier, if your main goal is to improve eciency, the best
way to measure this accurately is by making changes to the code, due to
the limited ability of pre- visualization to simulate the complete experience
of using a tool.
If the changes are relatively small, such as moving around a few controls
in the interface, this may also be a reason to make the changes directly
in code. is is because the time it would take to simulate such a small
change to the interface through pre- visualization may be higher.

[image:]Evaluation ◾ 119
However, if the changes that you want to make require a large program-
ming eort and your main interest is seeing if the users understand and
appreciate the new interface, going straight to code could be more expen-
sive in the long term, especially if the users do not like the design in the
end. In this case, pre- visualization may be the best choice.
PRE- VISUALIZE THE INTERFACE
If you have decided to pre- visualize instead of going straight to code, here
are a few techniques that you can use.
Sketch
Sketches are one of the quickest ways to pre- visualize (see Figure6.1). ey
could be on a whiteboard, in a notebook, or even on a napkin. Because
they are so fast to create, they are ideal for trying out a variety of dier-
ent options. It does not matter how you sketch, as long as you are turning
words into visuals in an eort to have a shared vision of the design.
You do not have to be a good artist to sketch. In fact, if the sketch looks
like it did not take a lot of time to create and it is easy to change, people
are more likely to be honest with their feedback, which is exactly what
you want.
However, one of the reasons that sketches are fast to create is because
they are not interactive, and they contain the least amount of detail com-
pared to other pre- visualization options. is could lead to problems dur-
ing the evaluation, if the lack of interactivity and details impairs the user’s
ability to understand the interface. e choice to use sketches depends on
the complexity of the design that you are evaluating.
FIGURE 6.1 Sketches are a quick and easy way to pre-visualize the interface.

[image:]120 ◾ Designing the User Experience of Game Development Tools
Paper Prototype
Paper prototypes are essentially interactive sketches. We can use pen,
paper, cardboard, scissors, tape, sticky notes, and other materials to create
and simulate interactive elements (see Figure6.2).
To make a paper prototype interactive, we can use what is called the
“Wizard of Oz” technique. e name comes from the movie of the same
name, because the interactivity is created by someone “behind the cur-
tain.” is technique works best with two people: one person asks the
user to accomplish a specic task, and the other simulates the inter-
activity by moving pieces of the paper prototype around in reaction to the
user’s actions.
*
Simulating interaction with a paper prototype has a few advantages
over code: Paper prototypes never get compiler or linking errors. e only
thing you need to deploy them are your own two legs. ey are easily por-
table and can be archived indenitely in a le folder. Finally, anyone can
create a paper prototype without having to learn a programming language
or a graphic design tool.
†
*
To see an example of this in action, watch this video: http://www.youtube.com/ watch?v=
GrV2SZuRPv0.
†
In fact, there is an old joke among user experience designers: if you have ever done arts and cras
in kindergarten, you can create a paper prototype.
FIGURE 6.2 Paper prototype, using the “Wizard of Oz” technique.

[image:]Evaluation ◾ 121
Interactive Prototype
ese prototypes are created and evaluated on a computer or other device,
using interactive prototype creation tools.
*
 ese tools come prepackaged
with standard controls such as buttons, drop- downs, and checkboxes.
Most allow you to add simple interactions, such as opening a dialog box
when clicking a button (see Figure6.3).
Although they cannot simulate every single type of interaction, most
interactive prototype creation tools have very powerful and versatile sys-
tems for building interactions, as well as vibrant communities where peo-
ple share recipes to simulate dierent types of behaviors.
In addition, if your users are not in the same building—or even the
same country—interactive prototypes are clearly a better choice compared
to sketches and paper prototypes, as they can be shared electronically. By
using screen sharing, you can even watch people test the prototype in real
time and get feedback as if you were sitting next to them.
Interactive prototypes can bring you closer to simulating the real tool
as compared to sketches and paper prototypes. If you are simulating a
tool that will be used on a desktop computer, interactive prototypes are
about as close as you can get to reality without actually writing code.
However, there are a few drawbacks to interactive prototypes. For most
people new to user experience design, building an interactive prototype
requires learning a new tool. In addition, making changes can sometimes
be more complicated compared to a sketch or paper prototype. ere is
also the chance that deploying a prototype on somebody else’s computer
will not work at rst. For this reason, it is recommended to test out inter-
active prototypes on another machine before doing a large number of
user tests.
PERFORM A HEURISTIC EVALUATION
In Chapter1, we learned—through the user experience pyramid—that
one of the foundations of a good user experience is usability. Heuristic
evaluation can be a useful technique when there are no users available
to evaluate the interface. It allows us to catch usability problems before the
users do.
*
Two of the most popular professional tools are Axure and Balsamiq, which you can nd at http://
www.axure.com and http://www.balsamiq.com, respectively. Another alternative is to import
a series of static screenshots into Microso PowerPoint, Apple Keynote, or Adobe Acrobat and
make them interactive by creating clickable hotspots.

[image:]122 ◾ Designing the User Experience of Game Development Tools
FIGURE 6.3 An example of an interactive prototype. Balsamiq is a registered trademark of Giacomo Guilizzoni, licensed to Balsamiq
SRL and Balsamiq Studios, LLC, used with permission.

[image:]Evaluation ◾ 123
Although there are many varieties of usability heuristics,
*
 for the pur-
poses of this book, we will learn the heuristics established by Jakob Nielsen
in 1994, which are perhaps the most popular and widely used. ey origi-
nate from his book Usability Engineering.
†
e heuristics are listed in the following sections. For each one, you
will nd a quote of what someone might say when confronting this heu-
ristic, one or more examples to help you identify the heuristic, as well as
design techniques from the previous chapter that could be used to improve
the problem.
What Are the Heuristics?
Visibility of System Status
“What is the tool doing right now? Did it crash?” ere are no progress
bars or wait cursors. e tool freezes while it is performing an action with-
out telling the user to wait. ere are no dialogs to inform the user of what
is going on. For this heuristic, the technique of feedback is recommended
to keep the user informed of what the tool is doing.
Match between System and Real World
“I don’t understand what this means.” e words and concepts used in the
tool are confusing, because they do not match the user’s mental model. In
addition, the position of the controls does not make sense relative to their
functionality (for example, up and down buttons are placed side by side).
In the case of this heuristic, natural mapping and representation can help
make the tool easier to understand by matching the users’ mental model
more closely.
User Control and Freedom
“How do I go back to where I was before?” When a mistake is made, there
is no clear way to go back to where you were before. Another common
sign: the tool does not support undo/ redo. In this case, the technique of
feed- forward can help. is is because it allows the user to see what their
action will do, which gives them the option to change their mind before
it is too late.
*
Here a re a few : htt p://e n.w i k iped i a.or g/ wi k i / Heur is tic _ e va luat ion, a s wel l a s t hose by B as tie n & Sc apin :
http://w ww.webmae s t ro. gouv. qc. c a / publ ic at ion s/ arch ive s / webedu c at ion1998-20 0 4 /2 0 00 -11/
criteres.pdf.
†
You can read more about Nielsen’s heuristics here: http://www.nngroup.com/ articles/
 ten- usability- heuristics/.

124 ◾ Designing the User Experience of Game Development Tools
Consistency and Standards
“Is this the same as that?” Two similar controls that edit the same type of
data do not work the same way. For example, one list box may only delete
selected items with the delete key on the keyboard, whereas the other list
box within the same tool only deletes selected items with a delete button
in the interface. As opposed to a specic design technique, the best way to
address this heuristic is to ensure that the tool follows guidelines and uses
interaction patterns consistently.
Error Prevention
“How can I prevent that mistake from happening again?” e interface
makes it far too easy for mistakes to occur, such as allowing an item to be
dragged and dropped where it is not supposed to, or setting the default
button for a “Exit without save changes?” dialog box to “Yes.” e design
techniques of constraints and feed- forward can be useful for xing issues
associated with this heuristic. In addition, by strategically increasing
excise, you can give the user more time to consider their options and pre-
vent them from making mistakes.
Recognition Rather Than Recall
“I can’t remember what it was called. If I had a list of options to choose
from …” e tool does not provide a visual preview for a list of 3D meshes,
so the only way to know what they are is to open them one at a time.
Another common example is forcing the user to remember syntax or
object names instead of providing suggestions. is not only hurts e-
ciency but also can lead to errors. e design technique of representation
can be useful here, since it can be used to help the user remember what
they were looking for by showing them a list of options.
Flexibility and Efciency of Use
“I wish there was a faster way to do this.” Actions that need to be per-
formed very frequently do not have shortcuts, such as a hotkey or a promi-
nent button in the interface. Improving excise is one of the most common
ways to help address problems associated with this heuristic.
Aesthetic and Minimalist Design
“Whoa, this interface is complicated. I don’t know where to start!” Every
possible feature is exposed at once, and the user does not know where to

Evaluation ◾ 125
look rst. Furthermore, there is no way to hide or simplify the user inter-
face for the rst- time user. In the case of this heuristic, the design tech-
niques of hierarchy and progressive disclosure could be used, as they can
help guide the eye of the user, as well as letting them determine how much
visual complexity they need in the interface.
Help Users Recognize, Diagnose, and Recover from Errors
“An error occurred. What do I do now?” Error messages do not clearly
indicate what the problem is or help the user to nd a solution. In this case,
the recommended design techniques would be a combination of feedback
(to let the user know how to x the error) and constraints (to help the user
avoid making the mistake in the rst place).
Help and Documentation
“I’m stuck, and there’s no one around that I can ask. What do I do?” No
documentation, such as a wiki page, training video, or help le, is avail-
able. ere is no clearly marked place to ask for assistance or log a bug.
e design technique of feedback can be used in the form of contextual
help within the application, oen seen as little question marks near a user
interface element to learn more about how it works.
How to Perform a Heuristic Evaluation
In an ideal situation, a heuristic evaluation is done by a large number of
qualied user experience designers, who then combine their eorts to nd
as many usability problems as possible. However, doing a heuristic evalu-
ation by yourself, or with a few members of the tools development team,
may be better than not doing it at all.
To perform a heuristic evaluation, look at the pre- visualization or the
working tool that you want to evaluate, and search for issues similar to
those from the list of heuristics. It can be helpful to do this by stepping
through the task ows that you created during the Analysis phase.
When you notice an issue that matches one of the heuristics, indicate
the name of the heuristic and write a short description. Optionally, you
can take a screenshot of the specic part of the interface that exhibits the
problem. You can also assign a level of severity, to indicate how much this
could aect the usability of the tool. is can help to prioritize what to
improve rst.

[image:]126 ◾ Designing the User Experience of Game Development Tools
For example, if we were to do a heuristic evaluation on the NVIDIA
Normal Map tool (see Figure6.4), we might identify the following issues:
• Aesthetic and minimalist design: All of the options are displayed at
once. Beginners do not know where to look rst, which can be very
intimidating. Severity: High.
• Consistency and standards: e “Alternate Conversions” section has
more than seven radio buttons. Microso’s design guidelines sug-
gest using a drop- down when there are more than seven options.
Severity: Low.
• Error prevention: e “Use Decal Texture” option can be checked
even when there is no texture selected. is could lead to the user
wondering why they cannot see their decal texture. Severity: Medium.
ese are just a few examples, and you may be able to identify other issues
with this particular interface.
Finally, remember that people use tools in unexpected ways. Doing
a heuristic evaluation is a good rst pass when no users are available.
However, you should make every eort to follow it up by testing with
users. Someone will work with the tool eventually, and the sooner you can
watch them work, the better!
DO USER TESTS
One of the best ways to evaluate the user experience is by doing a user
test. e rst step to doing this is to build a test plan and select the users
FIGURE 6.4 Heuristic evaluation of the NVIDIA Normal Map lter.

Evaluation ◾ 127
to test. en, you need to prepare the interface that the users will evaluate,
either by making changes directly in the code or by pre- visualizing. Finally,
you can run the tests and examine the results in the next Analysis phase.
Building a Test Plan
e simplest kind of test plan is simply a list of tasks that you assign to the
user. If you are building a test plan for the rst time, you can get an idea
of which tasks to include by looking at the user and stakeholder goals, as
well as the task ows and scenario storyboards that you created during the
Analysis phase. All of these can be used to help you determine which tasks
you will ask the users to perform.
How to Phrase Tasks
A task should be phrased in the form of a question such as “How would
you do this?” as opposed to a command: “Now do that.” is is a closer
match for the way people think when they are trying to achieve their goals.
For example, imagine that one of the user goals identied during a con-
textual inquiry is to create a new mesh with a shader assigned and add it to
the level. ree tasks are required to accomplish this goal: create the mesh,
add a shader, and add it to the level. In this case, you could phrase the three
tasks as follows: “How would you create a mesh?”, “How would you add a
shader to the object?”, and “How would you add the object to the level?”
Don’t Assign Leading Tasks
In the Analysis phase, we discussed the danger of asking leading ques-
tions, and the same applies to user tests. If the question inuences the
user, you could get inaccurate results. For example, a leading task would
be, “Use the object list to search for a tree, then drag and drop it into the
level.” e question implies where to nd the tree and how to add it. A bet-
ter alternative would be “You need to add a tree to the level. How would
you do that?”
Realism and Context
It is also important to make the questions realistic and to give them con-
text. For example, “How would you add a skyscraper in the middle of the
forest in this level?” could result in unusual feedback since it is not a very
realistic task.
Asking the user, “How would you add a large tree to the forest in this
level?” is good, but an even better alternative would be, “e art director

128 ◾ Designing the User Experience of Game Development Tools
has requested that a large tree be added to the forest. How would you do
that?” is question is more realistic, and the fact that the request comes
from the art director adds context that is appropriate to that task.
Specic Tasks Are Easier to Measure
It is important that the tasks are as specic as possible. is allows the
results of the user test to be compared not only between users but also
across future iterations of the Evaluation phase. For example, the results
of the task “How would you create a new shader?” could vary wildly if the
user adds a default shader versus a complex ocean shader requiring several
texture maps and customized properties for water movement. e task
“How would you create a lambert shader with a prebuilt texture in the dif-
fuse channel?” is much more specic and therefore can be measured and
compared with more accuracy.
Select the Users
To select which users to test, you can use the same approach as the Analysis
phase. Pick users who have a prole appropriate to the tasks. To get the
most accurate results, you want to choose users who are already using
the tool, in production.
Testing with Similar Users
In the games industry, it is very common that tool development begins
before the content creators have joined the team, and that the deadline
to deliver the tools is right before the users arrive and start producing
assets. is oen means that tools developers are scheduled to work on
other tasks shortly aer the users arrive and start using the tools for
the rst time. If the users have feedback about how the tools could be
improved, there could be no one available to make changes. Oentimes,
nothing besides the most urgent problems with the base functionality of
the tools are xed. is oen results in tools with an inferior user experi-
ence, which costs the game developer time and money in lost productivity
over the course of production.
A better alternative would be to have the equivalent tools development
resources working with the users but spread out all the way through pro-
duction, instead of a big burst of work at the beginning. is will require
that the people who manage tools developers understand the value of the
User- Centered Design process, so that they can plan tools development

[image:]Evaluation ◾ 129
tasks accordingly, which will require time and a cultural shi in the games
industry. We will talk more about that in the nal chapter.
In the meantime, if you nd yourself in this situation, selecting other
users who t a similar prole may be your best option. If you are testing
changes in code, and it is not possible to deploy the tool to the users’ com-
puters, do not let that stop you from getting feedback. Bring them to your
desk, or to any computer that has an early version of the tool running.
Alternatively, you can connect to a computer running the tool via remote
desktop (as long as doing that does not signicantly aect the user expe-
rience or measurements). e bottom line is that waiting for the perfect
moment to test could result in a missed opportunity to improve the user
experience. You should do everything that you can to ensure that the rst
time that the users lay eyes on the tool is not right before they start work-
ing with it for the rst time.
How Many Users?
According to Jakob Nielsen, user testing with more than ve users results
in diminishing returns.
*
 While there is some debate over this number,
one thing is clear: if you limit your tests to ve users, remember that those
ve users should have the same role and should do the same tasks. In
other words, if you assign ve users the task of using a level editor to place
objects, but those users are a mix of animators, 3D artists, and program-
mers, you are unlikely to get accurate results. On the other hand, if you
do this with ve users who are all level designers responsible for placing
objects in the level, you are much more likely to get accurate results.
Run the Test
Now it is time to get feedback. Meet with each user, show them the tool
or pre- visualization, and go through your test plan one task at a time. As
in the contextual analysis, resist the urge to help if they have diculty
understanding one of the tasks. Try to understand why they are having
diculty, and then move on to the next task. However, unlike the contex-
tual analysis, you may choose to ask that the users do not talk out loud,
since it could aect the time it takes them to complete a task. In this case,
use your own judgment.
*
You can read the article here: http://www.nngroup.com/ articles/ why- you- only- need- to- test- with-
5-users/.

[image:]130 ◾ Designing the User Experience of Game Development Tools
If you can, it is also recommended to perform the user tests with two
people: one person assigning the tasks, and the other taking notes. When
you are alone, it can be dicult to assign tasks, observe the user, and take
notes all at once. Having a dedicated note- taker ensures that the person
assigning the tasks can focus on the user and notice things that they might
miss if they were taking notes.
Although user tests can take less time than a contextual analysis, try to
keep them under an hour. Being the subject of a user test can be draining
for some people. In any case, if the users are in production, they may not
have more time than that. If you encounter resistance while running the
user tests (either from the user you are testing or from their supervisor),
ensure that everyone understands that the time required to run a user
test is a small investment compared to the potential savings of time and
money in the long term.
It can also be helpful to record a video of the user’s screen, or their
interaction with the pre- visualization. If an interesting or signicant
event occurs during the user test, make a note of the time that it occurs in
the video, so that you can go back during the Analysis phase and grab a
screenshot or short video clip.
WRAPPING UP
is chapter focused on the Evaluation phase of the User- Centered Design
process. We learned how to evaluate a design and how to decide between
pre- visualization and going straight to code. We also learned a series of
techniques to be used during the Evaluation phase, such as sketching,
paper prototyping, interactive prototyping, performing a heuristic evalu-
ation, and nally, performing user tests.
In the next chapter, we will return to the Analysis phase, going back
through the loop of the User- Centered Design process, and discuss the
importance of comparing measurements.

[image:]131
Chapter 7
Back to Analysis
DÉJÀ VU
I
        , you might be won-
dering why we are talking about the Analysis phase again. “We already
did that in Chapter4!”
e purpose of this chapter is to emphasize—once again—that the
User- Centered Design process is an iterative cycle. Once you have com-
pleted the Evaluation phase, examine the feedback gathered during the
Analysis phase to plan your next move.
Do We Have to Do Everything Over Again?
One of the misconceptions of the User- Centered Design process is that
it is a heavy process and that each of the techniques must be used every
time through the cycle. is is not true: while there is an up- front cost in
doing Analysis for the rst time, in subsequent iterations, the techniques
are there to be used on an as- needed basis.
As you go through the loop, you may nd that you missed an impor-
tant task that the majority of users do on a regular basis. In this case, you
can produce another task ow to add to the others. You may also discover
important users of the tool that you were not aware of before. is could
require doing more contextual analyses to discover their goals and men-
tal models.
If not, you can spend the rest of the time focusing on analyzing the
results of the Evaluation phase and preparing for the next round of adjust-
ments in the Design phase.

[image:]132 ◾ Designing the User Experience of Game Development Tools
COMPARING MEASUREMENTS
In game development, we are accustomed to gathering all sorts of mea-
surements: the burn- down rate of a sprint, performance metrics of the
CPU and GPU, how dierent types of memory are allocated, budgets for
various types of expenses, the amount of information on each vertex of a
mesh, and so on. Yet, when was the last time that the eciency and learn-
ability of the game development tools were measured on a regular basis?
One of the main reasons is due to the perception that it takes too much
time to measure. However, consider this: if you go on a road trip, do you
drive around aimlessly, hoping that you will soon arrive at your destina-
tion, or do you stop occasionally to check a map? Developing a tool with-
out measuring is like driving around without occasionally checking a map
(see Figure7.1). While it is true that verifying measurements takes a little
bit of time at each iteration, the goal is that the overall time will be lower,
as opposed to barreling forward aimlessly in the hope that we are making
the tool better.
Expert Opinions
If you have studied the history of computer science, you may have learned
about Admiral Grace Hopper. She developed the rst compiler, and she is
credited with popularizing the term debugging. One of her most famous
FIGURE 7.1 e importance of taking the time to analyze the results of the eval-
uation phase.

[image:]Back to Analysis ◾ 133
quotes is this: “One accurate measurement is worth more than a thousand
expert opinions.”
In the games industry, it is common to have an expert user or stake-
holder whose job it is to represent the needs of all users with the same job
description. When changes are made to a tool, we may ask this person to
decide if the changes are good enough. In some cases, they may say that
recent changes to the tool have made everyone more productive, and oen
the conversation ends there. However, how do we know that this is true?
*
e Analysis phase is our opportunity to learn the answer to this ques-
tion. By verifying and comparing the measurements, you can see if the
changes have really helped to improve eciency, learnability, or both.
Each time you go through the Analysis phase, compare the measurements
to the previous cycle, and keep a record for the next cycle. is is one of
the most reliable ways to know if the changes made in the Design phase
are moving the tool in the right direction.
It is important to note that this does not mean that we do not value the
opinion of the expert users and stakeholders. On the contrary, by includ-
ing them in the User- Centered Design process, they can use the informa-
tion to make even better decisions, with less risk. is will help to build a
stronger relationship between all of the people involved in the development
of the tool, and keep everyone focused on improving the user experience.
*
I was this person for several games, tools, and pipelines, and there is no doubt in my mind that my
opinion was wrong on many occasions!

[image:]135
Chapter 8
Real- World User-
Centered Design
INTRODUCTION
T
     is to present a “day in the life” account
of a tools development team using the User- Centered Design process.
is will give you a sense of what the process feels like, which can help you
to understand how to implement it yourself.
The Cast
Stakeholders
• Sophie, project manager
• Ben, art director
Developers
• Daniel, tools programmer
• Francis, technical artist
The Company
is story takes place at a medium- sized game developer that has been
in business for over ten years. ey have developed their own engine and
tools, which they have used to create games that have sold enough cop-
ies to keep them in business. However, very little eort has been put into
improving the tools, due to perceived time and budget constraints. No one

[image:]136 ◾ Designing the User Experience of Game Development Tools
is measuring the performance of the users, and it is generally accepted that
if the tool can create the content, it is “done.”
As a result, some of the tools are not very easy to use and are frequently
the source of frustration for the content creators. Most of the senior users
who have been with the company for many years have given up on com-
plaining and have simply accepted that the tools are the way they are.
The Situation
Sophie has recently been promoted to project manager. e last game that
she shipped suered from grueling overtime, productivity problems, lost
data, and the slow ramp- up of new sta due to diculty learning the tools.
Some senior people quit shortly aer the project, and the cost of retraining
the new hires was signicantly higher than if they had been able to keep
their sta.
Sophie is currently in the production phase of her next project, and she
is starting to see the same situation emerge from the last project, espe-
cially in the cut- scene pipeline. Concerned that history will repeat itself,
and because work on cut- scenes will be starting soon, she decides that she
wants to see if she should invest in improving the eciency of the cut-
scene pipeline.
She learns that two developers from another team, Daniel and Francis,
have been using a new approach in their tools development work—the
User- Centered Design process—and that they have been getting positive
results. Although she wants to improve the tools, like a good project man-
ager, she also wants to ensure that the benets outweigh the costs.
Daniel and Francis have recently become available, so she asks them to
join her team to focus on making the cut- scene pipeline more ecient. She
requests that they keep her up to date on their sprint reports so she can
track their progress.
THE PROCESS IN ACTION
Sprint 1
Analysis
Daniel and Francis start by interviewing the stakeholders. ey know
that Sophie’s goal is to make the cut- scene pipeline more ecient. ey
also interview another stakeholder: Ben, the art director who is respon-
sible for the cut- scenes. ey learn that one of Ben’s goals is to be able
to request changes to the cameras and see the results so he can validate

Real- World User- Centered Design ◾ 137
the composition. He also mentions that, during the last project he worked
on, asking the animators to make changes to the camera took a very long
time, which he found frustrating.
With these stakeholder goals in mind, Daniel and Francis move on to
the next step: contextual analyses with the users who work on cut- scenes.
In light of the art director’s comments, they focus on the users who spend
the most amount of time working with cameras, the animators. ere
are twelve animators in the cut- scene team, and they are scheduled to be
working on cut- scenes for a total of six months.
During the contextual analyses, Daniel talks to the animators, while
Francis takes notes. ey begin by asking them what their goals are when
working with the camera. Many of the goals that the users talk about can
be linked to the producer and the art director: they want to adjust the
camera, and they want to do it quickly. However, unlike the art director,
their goal is not setting the composition of the camera but simply getting
the job done so they can move on to their next task.
During the task of adjusting the camera, one of the actions is to adjust
the depth of eld. e depth of eld has ve values that the users can set:
the start and end of the near blur, the start and end of the far blur, and
the focus point distance. ey mention that they sometimes get confused
about what each value represents, that it is dicult to nd the value they
are looking for at a glance, and that they oen have to readjust the values
multiple times because they go beyond the minimum or maximum.
e junior users say that it is extremely dicult to use the depth of eld
tool. e senior users say that while it is not perfect, the junior users just
have to adapt to it. In fact, the biggest complaint from the senior users is
regarding something that is done only on occasion: copying the settings
from one camera to another, which requires that they copy and paste the
values one eld at a time.
Some users even say that the depth of eld tool does not need to be
improved, mostly because it used to be worse! In the past, to change the
depth of eld, the users had to create a script le that contained commands
to set the depth of eld and attach that script le to the camera. is was
a problem because many users would generate errors by forgetting to put a
comma or a semicolon, misspelling the name of the command, and so on
(see the le side of Figure8.1).
To improve the situation, one of the tools programmers created a tool
to set the depth of eld: a window with a row of numeric boxes (see the
right side of Figure8.1). Even though some users feel that this tool is good

[image:]138 ◾ Designing the User Experience of Game Development Tools
enough and that there is nothing le to do, it is clear to Daniel and Francis
that this tool simply exposes the conceptual model of the depth of eld
script command, and that eciency could be improved further.
Using the notes from their contextual analyses, Daniel and Francis
start to build a task ow for adjusting the camera (see Figure8.2).
Aer analyzing the results of the task ow, they observe that all of the
users adjust the depth of eld manually, and that they do it oen. ey
decide that they will work on improving the eciency of this action rst,
and that they will work on the copy/ pasting of values from one camera to
another later.
Design
To improve the eciency of making manual adjustments using the depth
of eld tool, Daniel and Francis start by proposing a few small, iterative
changes to the existing design.
To make the labels easier to scan, they apply the design technique of
hierarchy. Next, to reduce the amount of time wasted by xing invalid val-
ues, they replace the numeric boxes with sliders (following the Microso
guidelines). is makes it clear that the values have a minimum and maxi-
mum. Finally, they modify the labels so that they are more familiar to
FIGURE 8.1 e previous (le) and current (right) methods for setting the depth
of eld of cameras.
100% of users, often

30% of users, rarely
Move/Rotate Adjust DOF
Manually
Copy/Paste Values
Select camera
FIGURE 8.2 Task ow analysis for the process of setting up cameras for
cut-scenes.

[image:]Real- World User- Centered Design ◾ 139
the users. For example, the new term for “TARGET” is “Focus Distance,”
which matches the name of a similar value found in the depth of eld
camera settings of the animation tool that the animators are accustomed
to using.
Evaluation
Daniel and Francis start to build their test plan. ey make a list of tasks
that can be used to measure the eciency of manually adjusting the depth
of eld values. A few examples: “e art director would like you to increase
the focus point of ‘camera_2’ by 10 units from frame 10 to frame 35 in the
cut- scene ‘Chapter1_ChaseB.’ How would you do that?” and “You receive a
bug report that the near blur of ‘camera_3’ is too high by 20 units through-
out the cut- scene ‘Chapter3_BossFightIntro.’ How would you x that?”
Because they are measuring eciency, and Daniel is a programmer, they
decide to go directly to code as opposed to pre- visualizing (Figure8.3).
Before running the tests, Daniel and Francis also decide to perform a
heuristic evaluation on the new version of the depth of eld tool. A few of
the heuristics jump out at them right away:
• Match between system and real world: e order and layout of the
numeric boxes match the “setDOF” command more than the cam-
era and the depth of eld eect.
• Flexibility and eciency of use: e users need to click on the “Apply”
button every time they make a change.
FIGURE 8.3 First iteration of the improved depth of eld tool.

[image:]140 ◾ Designing the User Experience of Game Development Tools
ey deploy the changes and run their user tests. is time, Francis
assigns tasks to the users while Daniel takes notes. ey also record the
users’ screen while they are watching them work.
Sprint 2
Analysis
Aer the user tests are done, Daniel and Francis analyze the notes and the
videos. ey calculate that the users take an average of 20 seconds to complete
all of the tasks from the user test. is will be their baseline measurement.
ey also note that the majority of the users feel that the order of the
sliders is confusing. Daniel and Francis believe that this is because they do
not match the users’ mental model of the camera, which is consistent with
their ndings during the heuristic evaluation. Daniel and Francis decide
to do a brief contextual analysis focused on understanding the users’ men-
tal model of the camera.
Aer meeting with the users, they realize that many of them describe
the camera from a side view, indicating the points at which the near and
far blur occur. One of the users even does a sketch representing their men-
tal model of the camera (see Figure8.4). is inspires Daniel and Francis
to improve the design.
Design
Francis has the idea to use the design technique of representation to lay
out the sliders so that they match the users’ mental model. e only issue
is that Francis cannot nd a multithumb slider in the Microso guide-
lines, so he looks to other content creation soware. He nds examples
of multithumb sliders in the Input Levels section of the Levels window
in Adobe Photoshop (see the top of Figure8.5), as well as with the Range
FIGURE 8.4 Exploring the mental model for depth of eld.

[image:]Real- World User- Centered Design ◾ 141
FIGURE 8.5 Researching common interaction patterns for a multi-thumb
slider in Adobe Photoshop (top) and Autodesk Maya (bottom). Adobe product
screenshot(s) reprinted with permission from Adobe Systems Incorporated.
Autodesk screen shots reprinted with the permission of Autodesk, Inc.

[image:]142 ◾ Designing the User Experience of Game Development Tools
slider in Autodesk Maya (see the bottom of Figure8.5). He uses these as
the interaction pattern.
Evaluation
Because this design contains controls that do not exist in their UI toolkit,
and Daniel has an urgent bug to x, Francis decides to pre- visualize. He
creates a simple paper prototype and then performs a “Wizard of Oz” test.
e feedback from the users is positive. ey say that the interface feels
more natural than the previous tool, and they state that it will enable them
to work faster. While this is good feedback, the paper prototype can only
conrm that the new design matches the mental model, but it cannot
determine if it increases eciency. e only way to answer that will be to
implement the changes. Once Daniel is available, they modify the inter-
face and deploy the updated version (see Figure8.6).
As they are modifying the interface, Daniel and Francis are approached
by a few users who remind them that copying and pasting values is still a
problem. Since they have made some progress on making manual adjust-
ments, Daniel and Francis decide to see if they can improve copying and
pasting values as well. ey start by creating a user test for copying and past-
ing values from one camera to another, with tasks such as “Another animator
set up ‘cam_5’ in the cut- scene ‘Chapter5_IntroC,’ and you want to use the
same settings from frame 25. How would you do that?”
ey run both the user test for manually adjusting values as well as the
user test for copying and pasting values from one camera to another.
Sprint 3
Analysis
Daniel and Francis analyze the previous Evaluation phase and perform
another measurement. ey discover that the users now take an average of
FIGURE 8.6 Second iteration of the improved depth of eld tool.

[image:]Real- World User- Centered Design ◾ 143
nine seconds to adjust the depth of eld manually, which is an 11-second
improvement from where they started. ey also analyze the results from
the copying and pasting camera values user test and arrive at a baseline
measurement of seven seconds.
Design
To improve the eciency even further, Daniel and Francis design two
changes that use the technique of reducing excise.
First, they modify the tool so that the camera settings automatically
update as soon as the sliders are modied. is allows the Apply button
to be removed, so the users do not have to move their mouse down to the
bottom of the tool and click every time they make a change.
Second, they add the ability to copy and paste from one camera to
another. ey expose this functionality to the users by implementing
a standard Edit menu with copy and paste menu items. ey associate
the copy and paste commands to hotkeys that follow existing standards:
Ctrl/ Cmd+C and Ctrl/ Cmd+V. is way, users can copy and paste values
from one camera to another quickly and easily.
Evaluation
Since the changes are small, they decide to make them directly in code
(see Figure8.7). ey run their user tests, and the results from the users
are positive. All of the users appreciate that they are no longer required
to click on the Apply button to update the depth of eld in the viewport.
e users who copy and paste values are very happy that they can
now do it faster. ey also say that they think this will have the biggest
impact on eciency out of all the improvements that Daniel and Francis
have made.
FIGURE 8.7 ird iteration of the improved depth of eld tool.

[image:]144 ◾ Designing the User Experience of Game Development Tools
Sprint 4
Analysis
Daniel and Francis examine the results and see that copying and past-
ing values has dropped from seven seconds to two seconds. at is an
improvement of ve seconds, which appears to be signicant.
Removing the Apply button has made a big dierence for all of the
users of the tool, by lowering the time to adjust the depth of eld manually
to just three seconds. at is an overall improvement of 17 seconds.
CALCULATING THE RETURN ON INVESTMENT
Ben is very pleased with the improvements to the depth of eld tool, and
he tells Sophie about it. Although she trusts Ben’s opinion, she wants to
ensure that the time and money spent on improving the tools are paying
o. She requests a status update from Daniel and Francis so that she can
calculate the return on investment.
*
 She uses the following information
for her calculation:
• Cut- scene production will last six months (130 working days).
• Twelve users use the depth of eld tool to adjust the camera. On aver-
age, they do this 90 times per 8-hour day.
• Four users copy and paste values between cameras. On average, they
do this 10 times per 8-hour day.
• Each user working on the cut- scenes costs $10,000 per month.
is means that before Daniel and Francis made any improvements, all of
the users together would spend over ve man- months working with the
depth of eld over the six- month period, at a cost of almost $50,000 (see
Figure8.8).
Aer the improvements, the users are now spending a little under one
man- month working with the depth of eld over the six- month period, or
around $7,500 (see Figure8.9).
Although it may look like the improvements have resulted in a savings
of $42,500, Sophie has to subtract the time spent by Daniel and Francis.
Since they worked on the depth of eld tool for three two- week sprints,
and they cost $10,000 per man- month, the investment was $30,000. is
*
You can nd a variety of ROI calculators on the Human Factors website here: http://humanfactors.
com/ coolstu/ roi.asp.

[image:]Real- World User- Centered Design ◾ 145
means that the total return on investment was $12,500. at is over a man-
month of time that did not exist before the improvements, and Daniel and
Francis are not done yet. In addition, it is important to note that any other
production that uses the updated depth of eld tool in the future will ben-
et from these improvements, immediately, at no cost.
Unfortunately, the copy and paste functionality did not result in as
much of a return as was hoped, which emphasizes that the biggest impact
comes from the improvements that aect the highest number of users, and
those who use the tools the most frequently.
Ultimately, the improvements have had a positive return on investment.
Sophie is satised with the results and asks Daniel and Francis to continue
improving the user experience of the game development tools by applying
the User- Centered Design process.
Manually Change Values Copy/Paste Values
Number of users
Before Changes to Depth of Field Tool
12
Duration (in days) 130 Cost/man-month $10,000
Seconds per action20
Times per day90
Total man-months 4.8
Total cost $48,750

Number of user
s4

Seconds per action 7
Times per day10
Total man-months 0.06
Total cost $630

FIGURE 8.8 Calculating the cost of using the depth of eld tool.
Manually Change Values Copy/Paste Values
Number of users 12
Duration (in days) 130 Cost/man-month $10,000
Seconds per action3
Times per day90
Total man-months 0.7
Total cost $7,312

Number of user
s4

Seconds per action 2
Times per day10
Total man-months 0.01
Total cost $180

After Changes to Depth of Field Tool
FIGURE 8.9 Calculating the cost of using the depth of eld tool aer the
improvements to the user experience, in an eort to calculate the return on
investment (ROI).

[image:]147
Conclusion
SUMMARY
e purpose of this book is to introduce you to concepts and techniques
that can be used to improve the user experience of game development tools.
In Chapter1, we learned the denition of a user experience, why we
should improve the user experience, as well as the value of improving the
user experience. We also learned the importance of balancing the needs of
the various groups involved in the development of a tool.
Chapter2 introduced you to the User- Centered Design process. We
learned about the advantages of the process, as well as how to integrate it
into Agile. We also discussed how to deal with a lack of time and resources.
Chapter3 focused on what it means to be “User- Centered.” In this
chapter, we learned about the importance of focusing on the right users
and ensuring that the features are useful for those users. We also discov-
ered the power of pre- visualization and the dierences between features
and goals.
Chapter4 presented the Analysis phase, where we discussed the impor-
tance of watching users work, an introduction to human– computer inter-
action, as well as the dierence between a mental model and a conceptual
model. We also learned about interviews, contextual analysis, and task
ows, in addition to understanding how to measure improvements to the
user experience.
Chapter5 was all about the Design phase: how the brain and the eyes
work together, as well as visual language and interaction patterns. We also
learned a wide variety of techniques that can be used to address common
design problems, as well as common interaction patterns for each.
In Chapter6, we discovered how to choose the right strategy for evalu-
ating our designs. We also learned pre- visualization techniques and heu-
ristic evaluation. Finally, we learned how to build and run user tests.

[image:]148 ◾ Conclusion
Chapter7 brought us back to the Analysis phase to compare our mea-
surements and to prepare for another cycle through the User- Centered
Design process.
Finally, Chapter8 walked us through a day in the life of a tools develop-
ment team tasked with improving the user experience of a tool, to give us
a better sense of how it feels to apply the User- Centered Design process.
CLOSING WORD
Culture Shift
roughout this book, we have used examples from Apple. is is not
because every single one of their products has the best user experience—
they certainly have made some mistakes over the years—but their prod-
ucts provide good examples that can be used to support the concepts and
techniques presented in this book. However, you might be wondering,
what is their secret? How do they do it?
One of the misconceptions about why Apple products are so successful
is that they have the best designers in the world. While their designers are
certainly very good, that is not the only factor at play.
An interview with former Apple senior designer Mark Kawano sheds
some light on the truth: everyone at Apple works together to improve
the user experience. “It’s actually the engineering culture, and the way the
organization is structured to appreciate and support design. Everybody
there is thinking about UX and design, not just the designers. And that’s
what makes everything about the product so much better … much more
than any individual designer or design team.”
*
e games industry needs to make the user experience of tools a prior-
ity. To do that, we need the User- Centered Design process to become as
common as using Scrum, proling GPU performance, and creating cut-
scene storyboards. When that happens, we will start to see the culture
shi necessary to make big improvements.
Where to Begin?
Now that you have read this book, the rst step is to start applying the
User- Centered Design process to your own tools development work. Once
you feel condent with the process and you have had success that you
can measure, the next step is to spread the word. Help people understand
*
You can read the full interview here: http://www.fastcodesign.com/ 3030923/ 4-myths- about-
 apple- design- from- an- ex- apple- designer.

Conclusion ◾ 149
how User- Centered Design can be integrated into the tools development
pipeline at your studio, because every studio is dierent. Tell your col-
leagues how you achieved your successes, and what you learned from your
failures. Everyone in the games industry should be aware of the incredible
potential that is waiting to be unlocked by improving the user experience
of our game development tools.
ere is no right or wrong time to start. Start small, and then work your
way up. Do a heuristic evaluation of that tool you have been working on.
Set up a few interviews with the stakeholders and contextual analyses with
the users so you can establish and track measurements. Apply one of the
many techniques found in the Design chapter.
Improving the user experience is an iterative process, which means you
can begin at any time … and that time might as well be now!
Are you ready? ree … two … one … go!

[image:]151
Thanks
is book was written, illustrated, and edited in airplanes, trains, hotel
rooms, and cafes, in four cities, on two continents, on one laptop. It would
not have been possible without the following people.
Jim Brown, Liam Grieg, Tom Hoferek, Corey Johnson, érèse
Migan, Jason Parks, and Karine ériault for their invaluable feedback.
Dominique Roussy, for giving me my rst job in the games industry. My
rst computer science teacher, Susan Van Gelder, for seeing my interest
in the fusion of programming and art, and providing me with the tools I
needed. Mike Acton, for his contributions to game tools usability, and for
providing the foreword. Geo Evans, Je Ward, Dan Goodman, and all
other past, present, and future members of the Toolsmiths IGDA SIG, for
working to bring the challenges of game tools development into the spot-
light. Ubiso, for giving me the opportunity to turn my passion for user
experience and content creation tools into a career. Pierre- Luc Tremblay,
for introducing me to e Inmates Are Running the Asylum—and to Alan
Cooper for writing it. Rick Adams, Maura Cregan, Marsha Pronin, Amy
Blalock, Charlotte Byrnes, and everyone at CRC Press who helped to make
this book possible. Lucy Suchman, Jason Mitchell, and Sara Lott at the
Computer History Museum for providing a few of the images in this book.
Sony, for making a tough little laptop that accompanied me throughout
this long journey. My big brother and big sister, who prepared me for the
real world by sandwiching me in the back seat of our parents’ car. My wife
and children for reminding me that there is more to life than just content
creation tools … which I believe, most of the time. ank you, Andrea,
Benjamin, and Sophie … I love you!

[image:]153
Works Cited &
Recommended Reading
Adlin, Tamara, and John Pruitt. e Essential Persona Lifecycle: Your Guide to
Building and Using Personas. San Francisco, CA: Morgan Kaufmann, 2010.
Alexander, Christopher, Sara Ishikawa, and Murray Silverstein. A Pattern
Language: Towns, Buildings, Construction. New York: Oxford University
Press, 1977.
Anderson, Jonathan, John McRee, Robb Wilson, et al. Eective UI. Beijing:
O’Reilly, 2010.
Buxton, William. Sketching User Experiences: Getting the Design Right and the
Right Design. Amsterdam: Elsevier/Morgan Kaufmann, 2007.
Cooper, Alan. e Inmates Are Running the Asylum. Indianapolis, IN: Sams, 1999.
Cooper, Alan, Robert Reimann, and Dave Cronin. About Face 3: e Essentials of
Interaction Design. 3rd ed. Indianapolis, IN: Wiley Pub., 2007.
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Soware. Upper Saddle River, NJ:
Addison-Wesley, 1995.
Gladwell, Malcolm. David and Goliath: Underdogs, Mists, and the Art of Battling
Giants. New York: Little Brown & Company, 2013.
Gothelf, Je, and Josh Seiden. Lean UX: Applying Lean Principles to Improve User
Experience. Sebastopol, CA: O’Reilly Media, 2013.
Hawkins, Je, and Sandra Blakeslee. On Intelligence. New York: Times Books, 2004.
Hiltzik, Michael A. Dealers of Lightning: Xerox PARC and the Dawn of the Computer
Age. New York: HarperBusiness, 1999.
Johnson, Je. Designing with the Mind in Mind: Simple Guide to Understanding
User Interface Design Rules. Amsterdam: Morgan Kaufmann Publishers/
Elsevier, 2010.
Krug, Steve. Don’t Make Me ink!: A Common Sense Approach to Web Usability.
2nd ed. Berkeley, CA: New Riders Pub., 2006.
McConnell, Steve. Code Complete: A Practical Handbook of Soware Construction.
2nd ed. Redmond, WA: Microso Press, 2004.
Myers, Brad A. “e Importance of Percent- Done Progress Indicators for
Computer– Human Interfaces.” ACM SIGCHI Bulletin 16, no. 4 (1985): 11–17.

154 ◾ Works Cited & Recommended Reading
Nielsen, Jakob. “First Rule of Usability? Don’t Listen to Users.” Nielsen Norman
Group. http://www.nngroup.com/articles/rst- rule- of- usability- dont- listen-
to- users/ (accessed July15, 2014).
Nielsen, Jakob. “Why You Only Need to Test with 5 Users.” Nielsen Norman
Group. http://www.nngroup.com/articles/why- you- only- need- to- test- with-
5-users (accessed July15, 2014).
Nielsen, Jakob. “Response Time Limits.” Nielsen Norman Group. http://www.
nngroup.com/articles/response- times-3-important- limits/ (accessed July15,
2014).
Nielsen, Jakob. Usability Engineering. Boston: Academic Press, 1993.
Norman, Donald A. e Design of Everyday ings. New York: Basic Books, 1988.
Portigal, Steve. Interviewing Users: How to Uncover Compelling Insights. Brooklyn,
NY: Rosenfeld Media, 2013.
Saer, Dan. Designing for Interaction: Creating Innovative Applications and Devices.
2nd ed. Berkeley, CA: New Riders, 2010.
Sanders, Elizabeth B.-N. “Converging Perspectives: Product Development Research
for the 1990s.” Design Management Journal (Former Series) 3, no. 4 (1992):
49–54.
Suchman, Lucille Alice. Human– Machine Recongurations: Plans and Situated
Actions. 2nd ed. Cambridge: Cambridge University Press, 2007.
Sy, Desiree. “Adapting Usability Investigations for Agile User-Centered Design.”
Journal of Usability Studies 2, no. 3 (May 2007), 112–132. (Available at
http://uxpajournal.org/wp-content/uploads/pdf/agile-ucd.pdf.)
Vlaskovits, Patrick. “Henry Ford, Innovation, and at ‘Faster Horse’ Quote.”
Harvard Business Review. http://blogs.hbr.org/2011/08/henry- ford- never-
said- the- fast/ (accessed July15, 2014).
Weinschenk, Susan. 100 ings Every Designer Needs to Know about People.
Berkeley, CA: New Riders, 2011.
Wilson, Mark. “4 Myths about Apple Design, from an Ex- Apple Designer.” Co.
Design. http://www.fastcodesign.com/3030923/4-myths- about- apple- design-
 from- an- ex- apple- designer (accessed July15, 2014).
TOOLS & GUIDELINES
Microso Windows User Experience Guidelines: http://msdn.microso.com/
library/windows/desktop/dn688964.aspx
Apple OSX User Experience Guidelines: https://developer.apple.com/library/mac/
documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/
Intro.html
W3C standards for contrast: http://www.w3.org/TR/UNDERSTANDING- WCAG20/
visual- audio- contrast- contrast.html
Human Factors International ROI Calculators: http://humanfactors.com/coolstu/
roi.asp
Measuring Usability article on the SUS (System Usability Scale): http://www.
measuringusability.com/sus.php
Jakob Nielsen’s 10 Usability Heuristics: http://www. nngroup.com/ articles/ ten-
 usability- heuristics/

[image:]155
Trademarks
Adobe
•
, the Adobe
•
 logo, Adobe
•
 Audition
•
, Adobe
•
 Photoshop
•
,
Adobe
•
 Premiere Pro
•
, and Adobe
•
 Illustrator
•
 are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United
States and/ or other countries.
Autodesk
•
, the Autodesk
•
 logo, Autodesk
•
 Maya
•
, Autodesk
•

Combustion
•
, and Autodesk
•
 3ds max
•
 are registered trademarks or
trademarks of Autodesk, Inc., and/ or its subsidiaries and/ or aliates in
the United States and/ or other countries.
e Unity
•
 name, logo, brand, and other trademarks or images featured
or referred to within this book are licensed from and are the sole property
of Unity Technologies. Neither this book, its author, nor the publisher is
aliated with, endorsed by, or sponsored by Unity Technologies or any of
its aliates.
Microso
•
, the Microso
•
 logo, Oce
•
, Word
•
, Excel
•
, PowerPoint
•
,
Visual Studio
•
, Halo
•
, Expression Blend
•
, and Windows
•
 are either reg-
istered trademarks or trademarks of Microso Corporation in the United
States and/ or other countries.
Apple
•
, the Apple
•
 logo, GarageBand
•
, Mac
•
, Xcode
•
, iTunes
•
, iPhone
•
,
iPod
•
, iOS
•
, and OSX
•
 are trademarks of Apple, Inc., registered in the
United States and other countries.
NVIDIA
•
, the NVIDIA
•
 logo, NVIDIA
•
 Texture Tools, and the
NVIDIA
•
 Normal Map lter are trademarks and/ or registered trade-
marks of NVIDIA Corporation in the United States and other countries.
Audacity
•
 soware is copyright (c) 1999-2014 Audacity Team. e name
Audacity
•
 is a registered trademark of Dominic Mazzoni.

156 ◾ Trademarks
Balsamiq
•
 is a registered trademark of Giacomo Guilizzoni, licensed to
Balsamiq SRL and Balsamiq Studios, LLC, used with permission.
StarCra
•
 and Blizzard Entertainment
•
 are trademarks or registered trade-
marks of Blizzard Entertainment, Inc., in the United States and/ or other
countries.
Qt is a registered trademark of Digia Plc and/ or its subsidiaries.
Xerox
•
, the Xerox
•
 logo, and the Xerox
•
 8200 are registered trademarks
of Xerox Corporation in the United States and/ or other countries.
iRiver, the iRiver logo, and the iRiver H300 are registered trademarks of
iRiver Limited in the Republic of Korea and/ or other countries.
Epic, Epic Games, and the Epic Games logo are trademarks or registered
trademarks of Epic Games, Inc., in the United States and elsewhere.
Amazon, Kindle, Storyteller, and Mechanical Turk are trademarks of
Amazon.com, Inc., or its aliates.
Sony, the Sony logo, PlayStation, Vaio, Emotion Engine, and Cell
Broadband Engine are trademarks or registered trademarks of Sony
Computer Entertainment, Inc., in the United States, other countries, or
both and is used under license therefrom.
Pixar is a registered trademark of Pixar Animation Studios.
Logitech is a registered trademark of Logitech International in the United
States and other countries.
Valve, the Valve logo, and Team Fortress 2 are trademarks and/ or regis-
tered trademarks of Valve Corporation.
Mad Catz and the Mad Catz logo are trademarks or registered trademarks
of Mad Catz Interactive, Inc., its subsidiaries and aliates.
“Minicons Free Vector Icons Pack” by Webalys (http://www.webalys.com/
minicons) used under CC BY 3.0 license (http://creativecommons.org/
licenses/by/3.0/).

[image:]K23310
ISBN: 978-1-4822-4019-1
9 781482 240191
90000
“David is guided by his belief that he can contribute to raising the bar for all of
us: that we can all speak the same language, understand the same concepts,
and use the same techniques, so that we can all make better games. What you
are reading now is the result of David Lightbown’s rst big mission on that very
long quest.”
—Mike Acton,
Engine Director, Insomniac Games
“User experience is the preeminent design challenge of our time and David has
captured and rened these concepts to help us produce beautifully designed
workows that are a pleasure to use. His acclaimed lectures, now demonstrated
and elaborated in this book, are brilliant and very appropriate to our industry.”
—Jason Parks,
 Owner, Continuity AI; Former Technical Artist for SCEA,
THQ, and Volition
“David Lightbown’s book shines a light on a dark corner of the games, but it’s a
corner on the path we take every day in game development. All developers owe
it to their future selves to learn to apply the process presented in this book to
their tools.”
—Corey Johnson,

Unity Technologies
“If you build games tools and are not familiar with user-centered design, then
you should read this book. ... provides a comprehensive introduction to
user-centered design with easy-to-understand explanations and plenty of
real-world examples that demonstrate the principles and best practices
you need to know to start building better tools today.”
—Tom Hoferek,

Principal User Experience Designer, Autodesk
Designing the User Experience of Game Development Tools explains
how to improve the user experience of game development tools. The rst part
of the book details the logic behind why the user experience of game tools must
be improved. The second part introduces the concept of user-centered design,
a process that revolves around understanding people’s goals, watching them
work, learning the context in which they work, and understanding how
they think.
Ideal for anyone who makes, uses, or benets from game development tools,
the book presents complex concepts in a manner that is accessible to those
new to user experience design.
Designing the User Experience of Game
Development Tools
COMPUTER GAME DEVELOPMENT / DESIGN
Designing
the User
Experience
of Game
Development
Tools
DAVID LIGHTBOWN
DESIGNING THE USER EXPERIENCE OF GAME DEVELOPMENT TOOLS
LIGHTBOWN

bg94.png

f46.otf

f47.otf

bg2e.png
of 2

bg63.png

bgf.png

f27.otf

bg83.png

f29.otf

f32.otf

bg89.png
Bl Autodesk Maya 2012 x64: untitled®

Fle Edt Modfy Create Display Window Assets Select
View Shadng Lighting Show Renderer Panels

12%Mld SEENEREE QTOE » ¢

Create Polygon Tool O
PolyPlane O Poly Disk
Poly Cylnder O
Poly Cone O Foly Torus O
Poly Cube O

Poly Pyramid
Poly Prism
Pipe
Helix
v Interactive Creation
v Exit On Completion
Polygon Display All

f24.otf

f49.otf

bg72.png
O t Y L =*
OO <=i= OO =46

f1.otf

bg88.png
WHS O -
o wsEroxsen

ik e A

51 u¥-A- suie

Domens Viod 7 @

sageLYOUT

Sewenuitnsing
Hypeiink

Hew Commen:
st »

@WHS O

Houe

= Oocumens.-Word
DT DEGN PAGELAYOUT

%
B o
3 Paste Opions:

n

A fon

PR—

8 e
Stomyms

B3 Tonde

@ Sachvithing

& tpuin.

2 NewCemment
Anidote

(o o) ~[i1

k3

7m -0 x

|

bgb5.png

f4.otf

bg6e.png
Montreal, QC
Monday 10:00 PM
Overcast

@ 21"

Precipitation: 0%
Humidity: 14%
Wind: 6 km/h

Temperature | Precipitation

2

wind |

2 2

-
RLIBIE i
o

PM 2a 5Al SAW 1AM 2PM SPM gPM
Mon | Tue — Wed Thu Fii Sat Sun Mon
" s - va s
27° 15° 26° 18° 26° 147 24° 71 21°12° 23°14° 24°15° 22° 15°
“The Weather Channel - Weather Underground - Acculeather Send feedback
Q Pimary Social | % Promations
Gmail Team Stay more organized with Gmaif's inbox - 6:55am
0 ¥ Gmail Team The best of Gmail, wherever you are 6:55 am
Y7 Gmail Team Three tips to get the most out of Gmail - 6:55 am

bg2c.png
8 &l lo

bg35.png
wQ o

f17.otf

f26.otf

bg34.png

f39.otf

bg43.png

f1f.otf

f42.otf

bg2d.png

bgad.png
1l

i

I

|

Ll

Il

f3c.otf

bg1.png
AN A K PETERS BOOK

3
s
5
3
5
5
3
5
5
3
(s
3
3

bg37.png

f2e.otf

bg9.png

bg51.png
Fle Edt View Tanspor [Trocks] Generste Effect Anabe Help

Y —————
Jid) _) P St Tock

Mixand Render (tabel Teack
17! nﬁ Time Track

Resample.

bg66.png

bg6a.png

bg75.png

bg91.png

f37.otf

f40.otf

f28.otf

f21.otf

f3b.otf

bg4c.png
eee 22

B¥ Be e @+ Ow 0O¢ @6 O+

B =

bg16.png

bg7b.png
from Toolsmiths P... .\Toolsmiths P to Desktop (CA\..\Desktop)
Discovered 1 tem (41¢ M)...

() More deusit

bg2b.png

f11.otf

f1a.otf

bg4b.png

f14.otf

bg6c.png
X coeoooo00

V O0®0000

f13.otf

bg32.png
Q JAE@

bg52.png
Wil <

bg47.png

f3e.otf

bg1e.png
A— A

bg7c.png
irack Cip ffects Favores View Window _telp

B P

Eporting Mutack o) 41% ©

bg49.png

bg41.png
XK XXX

f1e.otf

bg96.png
s v [5
5
R - o oy o o > &
ol = poce n1om
S —— won
1ok i ek 205, omunrunisd a]
oo
—
s oo wm iy g | T [couom
o et oo R A o4 . : .
wmews |y | [o o woa o oo
oason
o
sz (o) »
iy
- Sememeroen 8 | (2]
s e
Aoz s o | gt prnamios | |.. awnvos o
(@) s oo o |y o et a OF | om oque) esoig
ey ey 10008 OW
0 ® == e e e
a = o
L b\
= e XY @O®

bg48.png
99

f45.otf

bg8a.png
[B1 Adobe Premiere Pro - C:\Users\dlightbown\My Docu... |- |[-)| [s3a]
File Edit Project Clip Sequence Marker Title Window Help

Program: Sequence 02 v *

Sequence 02

bg95.png

bgaf.png

bg7e.png
®

o x
Rererences o

radbcede] AambCeDe | AaBbC(AaBbcet AQBI assbee
o | 1hoSpac.. | Hesdng [y Hesdng2 Tile

FERECE Documert - Word
vome | mser

DESIGN PAGE LAYOUT

Subtle |

styes

Thank you Mariol But our princess
is in another castle!

BHEH S O~ Document - Viord ?® -0 x
vome | mseer

DESGN PAGELAYOUT REFERENCES 1]

napbeeoc| assbceor AaBbCc Aasbcet AQBI asebce
Thormil | THoSpuce. Hesding! Hesding2

Ty | swtte [

st

Thank you Mario!

But our princess is in
another castle!

®E 9 0= Document - iord ? @ - 0 x
Home | st

DESGN PAGELAYOUT REFERENCES 1))

napbceoe| aasbceor AabCc Assbcet AQBI asebces

Thomal | ThoSpec. Headingl Hexding2 Tde subtile |3

Nt

stes

‘Thankyou Mol But our princess s in another
castil

f1c.otf

f20.otf

ff.otf

bg77.png
@WH»ome. ? @ - 0 x| [0 H»ooame. 2 ® - 0 x
vowe | msesr | oeson o] | vove | mserr | oeson ol |

nertTae [el Je=e)
Table size Table
Number of columns: >
‘Number of rows: EIELS ~
; mm)
A [
@ Fixed columnwidth: [auto 1] 00
© AutoFit to contents DDDDDDDDEE
| g000000000
goO0000000
H000000800
B Insert Table...
[Draw Table
% comerrorore.

B Excel Spreadsheet
[Quick Tables »

bga7.png
mm_ﬁ
[’ Focus distance —g 25

Near Blur

bg6d.png
P PPP

PPP
PPPPP
DPPPP

T
TTTT
TTTT
TTTT

SSSS
SS
S8

SSSS

f36.otf

bg3b.png
Do
Do
be
Do
Do
Do

weQ
weQ weQ
=
=) =]
20 &%400 A& 0o
22200 2300

bg60.png

f48.otf

bg61.png

bg7.png

f2.otf

f2d.otf

f18.otf

f34.otf

bg87.png
skybox
dom

fur

infa

itam

tight
fightunior

runematch_s

targat

apon

worldspawn

spawn_point

trigger_counter
trigger_delay

trigger_hurt

trigger impulse.
trigger_multipl

trigger.

trigger.

trigger_t

bga3.png

bgd.png

bg82.png
CIEERE] Documents - erd Tw- o x
B 3 D R — - e Teamen -
e D BEOI & QR Do BLTIT
g | 10 P D S st s e | Bonimes ™™ B pgetomber g 25+ O+

bg5.png
CRC Press

Taylor & Francis Group

AN A K PETERS BOOK

bg59.png

f7.otf

bg1f.png

bgb3.png

bg30.png

bga6.png
COUN O s WN

setdof (8,

SetDOF (2,

SetDOF (4,

SetDOF (5,

SetDOF (4,

32,

26,

31,

29,

30,

12,

10,

11,

14,

11,

42, 25);

18);

37,

22)

41 21);

39,

26):

BLUR BEGIN_FORE 8

BLUR BEGIN BACK

B
BLUREND FORE 12
2

BLUR END_BACK
TARGET 25

bg4d.png

bg74.png
\A
B

=

kel A

T

st/ 4
£ sts

Tagr0d

wauges US>
wauzeaun
wosameE
aponnan
sueo
sweuan
tpeamegtim
summecu
suoaaw02pi0q
ompe
amsapou
Supe>

139000

S0

wnipeopy

Tosuds

- e

wngawos

waeun

wosmmerm

aporson

sueso

sunon

eemertem

summegs

® suosssumpo @
xozpen
amsspou
Suape>

o. A ©
oy e

] yrpeopy
Gon_Aedsquon Aedsguelsuosdo

bgab.png

bg4a.png

pdf2htmlEX-64x64.png

f31.otf

bg7f.png

bg39.png
om
=0
wo §

0®0

[Dfm)

[eJole}

[eJole}

fc.otf

f1b.otf

bg14.png

bg2f.png

bgb7.png

f1d.otf

bg56.png

bga9.png
| O csiver Sl

Preset: Default

Channel: Gray
Input Levels:

ST B 8 sy B | < 2

Vox iy Uping B Rt rnss

Famg s mEOESEE OTOH. .

T 11
a

1.00 1 24 24,00

bg1d.png

bg5b.png
QRSTE

f16.otf

bg53.png

fd.otf

bg5f.png

fa.otf

bg5d.png
.

bg9a.png
b bt L A

Fiker Type © 4 sample. © Alpha Channel
| 33 © Averege D
S e
. © Biased RGB
©39x9 ORed
© Dudy T,
© Blue
© Mex(RG.B)
© Cdarspace
| Add Height to Nomal Map O @
© Convet to Height

(Use Invest options)

bg4e.png

bg40.png

f6.otf

bg64.png

bgaa.png
erarer I &

n n
10} W
E3 2 2

san End san End
Near Blur Focus point distance Far Blur

Apply.

bg2a.png

bga.png

f8.otf

f3.otf

f2a.otf

f43.otf

f35.otf

f9.otf

bgac.png

f4a.otf

bg69.png
0 ®

® O

O o

O«

©

SIS

bg70.png

f12.otf

f30.otf

bg18.png

bg90.png

bga0.png
clclelc)
OO0

bg24.png
adeys sua 199

Nl

bgb.png

bg13.png

compatibility.js
/* Copyright 2012 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/* globals VBArray, PDFJS */

'use strict';

// Initializing PDFJS global object here, it case if we need to change/disable
// some PDF.js features, e.g. range requests
if (typeof PDFJS === 'undefined') {
 (typeof window !== 'undefined' ? window : this).PDFJS = {};
}

// Checking if the typed arrays are supported
// Support: iOS<6.0 (subarray), IE<10, Android<4.0
(function checkTypedArrayCompatibility() {
 if (typeof Uint8Array !== 'undefined') {
 // Support: iOS<6.0
 if (typeof Uint8Array.prototype.subarray === 'undefined') {
 Uint8Array.prototype.subarray = function subarray(start, end) {
 return new Uint8Array(this.slice(start, end));
 };
 Float32Array.prototype.subarray = function subarray(start, end) {
 return new Float32Array(this.slice(start, end));
 };
 }

 // Support: Android<4.1
 if (typeof Float64Array === 'undefined') {
 window.Float64Array = Float32Array;
 }
 return;
 }

 function subarray(start, end) {
 return new TypedArray(this.slice(start, end));
 }

 function setArrayOffset(array, offset) {
 if (arguments.length < 2) {
 offset = 0;
 }
 for (var i = 0, n = array.length; i < n; ++i, ++offset) {
 this[offset] = array[i] & 0xFF;
 }
 }

 function TypedArray(arg1) {
 var result, i, n;
 if (typeof arg1 === 'number') {
 result = [];
 for (i = 0; i < arg1; ++i) {
 result[i] = 0;
 }
 } else if ('slice' in arg1) {
 result = arg1.slice(0);
 } else {
 result = [];
 for (i = 0, n = arg1.length; i < n; ++i) {
 result[i] = arg1[i];
 }
 }

 result.subarray = subarray;
 result.buffer = result;
 result.byteLength = result.length;
 result.set = setArrayOffset;

 if (typeof arg1 === 'object' && arg1.buffer) {
 result.buffer = arg1.buffer;
 }
 return result;
 }

 window.Uint8Array = TypedArray;
 window.Int8Array = TypedArray;

 // we don't need support for set, byteLength for 32-bit array
 // so we can use the TypedArray as well
 window.Uint32Array = TypedArray;
 window.Int32Array = TypedArray;
 window.Uint16Array = TypedArray;
 window.Float32Array = TypedArray;
 window.Float64Array = TypedArray;
})();

// URL = URL || webkitURL
// Support: Safari<7, Android 4.2+
(function normalizeURLObject() {
 if (!window.URL) {
 window.URL = window.webkitURL;
 }
})();

// Object.defineProperty()?
// Support: Android<4.0, Safari<5.1
(function checkObjectDefinePropertyCompatibility() {
 if (typeof Object.defineProperty !== 'undefined') {
 var definePropertyPossible = true;
 try {
 // some browsers (e.g. safari) cannot use defineProperty() on DOM objects
 // and thus the native version is not sufficient
 Object.defineProperty(new Image(), 'id', { value: 'test' });
 // ... another test for android gb browser for non-DOM objects
 var Test = function Test() {};
 Test.prototype = { get id() { } };
 Object.defineProperty(new Test(), 'id',
 { value: '', configurable: true, enumerable: true, writable: false });
 } catch (e) {
 definePropertyPossible = false;
 }
 if (definePropertyPossible) {
 return;
 }
 }

 Object.defineProperty = function objectDefineProperty(obj, name, def) {
 delete obj[name];
 if ('get' in def) {
 obj.__defineGetter__(name, def['get']);
 }
 if ('set' in def) {
 obj.__defineSetter__(name, def['set']);
 }
 if ('value' in def) {
 obj.__defineSetter__(name, function objectDefinePropertySetter(value) {
 this.__defineGetter__(name, function objectDefinePropertyGetter() {
 return value;
 });
 return value;
 });
 obj[name] = def.value;
 }
 };
})();

// No XMLHttpRequest#response?
// Support: IE<11, Android <4.0
(function checkXMLHttpRequestResponseCompatibility() {
 var xhrPrototype = XMLHttpRequest.prototype;
 var xhr = new XMLHttpRequest();
 if (!('overrideMimeType' in xhr)) {
 // IE10 might have response, but not overrideMimeType
 // Support: IE10
 Object.defineProperty(xhrPrototype, 'overrideMimeType', {
 value: function xmlHttpRequestOverrideMimeType(mimeType) {}
 });
 }
 if ('responseType' in xhr) {
 return;
 }

 // The worker will be using XHR, so we can save time and disable worker.
 PDFJS.disableWorker = true;

 Object.defineProperty(xhrPrototype, 'responseType', {
 get: function xmlHttpRequestGetResponseType() {
 return this._responseType || 'text';
 },
 set: function xmlHttpRequestSetResponseType(value) {
 if (value === 'text' || value === 'arraybuffer') {
 this._responseType = value;
 if (value === 'arraybuffer' &&
 typeof this.overrideMimeType === 'function') {
 this.overrideMimeType('text/plain; charset=x-user-defined');
 }
 }
 }
 });

 // Support: IE9
 if (typeof VBArray !== 'undefined') {
 Object.defineProperty(xhrPrototype, 'response', {
 get: function xmlHttpRequestResponseGet() {
 if (this.responseType === 'arraybuffer') {
 return new Uint8Array(new VBArray(this.responseBody).toArray());
 } else {
 return this.responseText;
 }
 }
 });
 return;
 }

 Object.defineProperty(xhrPrototype, 'response', {
 get: function xmlHttpRequestResponseGet() {
 if (this.responseType !== 'arraybuffer') {
 return this.responseText;
 }
 var text = this.responseText;
 var i, n = text.length;
 var result = new Uint8Array(n);
 for (i = 0; i < n; ++i) {
 result[i] = text.charCodeAt(i) & 0xFF;
 }
 return result.buffer;
 }
 });
})();

// window.btoa (base64 encode function) ?
// Support: IE<10
(function checkWindowBtoaCompatibility() {
 if ('btoa' in window) {
 return;
 }

 var digits =
 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=';

 window.btoa = function windowBtoa(chars) {
 var buffer = '';
 var i, n;
 for (i = 0, n = chars.length; i < n; i += 3) {
 var b1 = chars.charCodeAt(i) & 0xFF;
 var b2 = chars.charCodeAt(i + 1) & 0xFF;
 var b3 = chars.charCodeAt(i + 2) & 0xFF;
 var d1 = b1 >> 2, d2 = ((b1 & 3) << 4) | (b2 >> 4);
 var d3 = i + 1 < n ? ((b2 & 0xF) << 2) | (b3 >> 6) : 64;
 var d4 = i + 2 < n ? (b3 & 0x3F) : 64;
 buffer += (digits.charAt(d1) + digits.charAt(d2) +
 digits.charAt(d3) + digits.charAt(d4));
 }
 return buffer;
 };
})();

// window.atob (base64 encode function)?
// Support: IE<10
(function checkWindowAtobCompatibility() {
 if ('atob' in window) {
 return;
 }

 // https://github.com/davidchambers/Base64.js
 var digits =
 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=';
 window.atob = function (input) {
 input = input.replace(/=+$/, '');
 if (input.length % 4 === 1) {
 throw new Error('bad atob input');
 }
 for (
 // initialize result and counters
 var bc = 0, bs, buffer, idx = 0, output = '';
 // get next character
 buffer = input.charAt(idx++);
 // character found in table?
 // initialize bit storage and add its ascii value
 ~buffer && (bs = bc % 4 ? bs * 64 + buffer : buffer,
 // and if not first of each 4 characters,
 // convert the first 8 bits to one ascii character
 bc++ % 4) ? output += String.fromCharCode(255 & bs >> (-2 * bc & 6)) : 0
) {
 // try to find character in table (0-63, not found => -1)
 buffer = digits.indexOf(buffer);
 }
 return output;
 };
})();

// Function.prototype.bind?
// Support: Android<4.0, iOS<6.0
(function checkFunctionPrototypeBindCompatibility() {
 if (typeof Function.prototype.bind !== 'undefined') {
 return;
 }

 Function.prototype.bind = function functionPrototypeBind(obj) {
 var fn = this, headArgs = Array.prototype.slice.call(arguments, 1);
 var bound = function functionPrototypeBindBound() {
 var args = headArgs.concat(Array.prototype.slice.call(arguments));
 return fn.apply(obj, args);
 };
 return bound;
 };
})();

// HTMLElement dataset property
// Support: IE<11, Safari<5.1, Android<4.0
(function checkDatasetProperty() {
 var div = document.createElement('div');
 if ('dataset' in div) {
 return; // dataset property exists
 }

 Object.defineProperty(HTMLElement.prototype, 'dataset', {
 get: function() {
 if (this._dataset) {
 return this._dataset;
 }

 var dataset = {};
 for (var j = 0, jj = this.attributes.length; j < jj; j++) {
 var attribute = this.attributes[j];
 if (attribute.name.substring(0, 5) !== 'data-') {
 continue;
 }
 var key = attribute.name.substring(5).replace(/\-([a-z])/g,
 function(all, ch) {
 return ch.toUpperCase();
 });
 dataset[key] = attribute.value;
 }

 Object.defineProperty(this, '_dataset', {
 value: dataset,
 writable: false,
 enumerable: false
 });
 return dataset;
 },
 enumerable: true
 });
})();

// HTMLElement classList property
// Support: IE<10, Android<4.0, iOS<5.0
(function checkClassListProperty() {
 var div = document.createElement('div');
 if ('classList' in div) {
 return; // classList property exists
 }

 function changeList(element, itemName, add, remove) {
 var s = element.className || '';
 var list = s.split(/\s+/g);
 if (list[0] === '') {
 list.shift();
 }
 var index = list.indexOf(itemName);
 if (index < 0 && add) {
 list.push(itemName);
 }
 if (index >= 0 && remove) {
 list.splice(index, 1);
 }
 element.className = list.join(' ');
 return (index >= 0);
 }

 var classListPrototype = {
 add: function(name) {
 changeList(this.element, name, true, false);
 },
 contains: function(name) {
 return changeList(this.element, name, false, false);
 },
 remove: function(name) {
 changeList(this.element, name, false, true);
 },
 toggle: function(name) {
 changeList(this.element, name, true, true);
 }
 };

 Object.defineProperty(HTMLElement.prototype, 'classList', {
 get: function() {
 if (this._classList) {
 return this._classList;
 }

 var classList = Object.create(classListPrototype, {
 element: {
 value: this,
 writable: false,
 enumerable: true
 }
 });
 Object.defineProperty(this, '_classList', {
 value: classList,
 writable: false,
 enumerable: false
 });
 return classList;
 },
 enumerable: true
 });
})();

// Check console compatibility
// In older IE versions the console object is not available
// unless console is open.
// Support: IE<10
(function checkConsoleCompatibility() {
 if (!('console' in window)) {
 window.console = {
 log: function() {},
 error: function() {},
 warn: function() {}
 };
 } else if (!('bind' in console.log)) {
 // native functions in IE9 might not have bind
 console.log = (function(fn) {
 return function(msg) { return fn(msg); };
 })(console.log);
 console.error = (function(fn) {
 return function(msg) { return fn(msg); };
 })(console.error);
 console.warn = (function(fn) {
 return function(msg) { return fn(msg); };
 })(console.warn);
 }
})();

// Check onclick compatibility in Opera
// Support: Opera<15
(function checkOnClickCompatibility() {
 // workaround for reported Opera bug DSK-354448:
 // onclick fires on disabled buttons with opaque content
 function ignoreIfTargetDisabled(event) {
 if (isDisabled(event.target)) {
 event.stopPropagation();
 }
 }
 function isDisabled(node) {
 return node.disabled || (node.parentNode && isDisabled(node.parentNode));
 }
 if (navigator.userAgent.indexOf('Opera') !== -1) {
 // use browser detection since we cannot feature-check this bug
 document.addEventListener('click', ignoreIfTargetDisabled, true);
 }
})();

// Checks if possible to use URL.createObjectURL()
// Support: IE
(function checkOnBlobSupport() {
 // sometimes IE loosing the data created with createObjectURL(), see #3977
 if (navigator.userAgent.indexOf('Trident') >= 0) {
 PDFJS.disableCreateObjectURL = true;
 }
})();

// Checks if navigator.language is supported
(function checkNavigatorLanguage() {
 if ('language' in navigator) {
 return;
 }
 PDFJS.locale = navigator.userLanguage || 'en-US';
})();

(function checkRangeRequests() {
 // Safari has issues with cached range requests see:
 // https://github.com/mozilla/pdf.js/issues/3260
 // Last tested with version 6.0.4.
 // Support: Safari 6.0+
 var isSafari = Object.prototype.toString.call(
 window.HTMLElement).indexOf('Constructor') > 0;

 // Older versions of Android (pre 3.0) has issues with range requests, see:
 // https://github.com/mozilla/pdf.js/issues/3381.
 // Make sure that we only match webkit-based Android browsers,
 // since Firefox/Fennec works as expected.
 // Support: Android<3.0
 var regex = /Android\s[0-2][^\d]/;
 var isOldAndroid = regex.test(navigator.userAgent);

 // Range requests are broken in Chrome 39 and 40, https://crbug.com/442318
 var isChromeWithRangeBug = /Chrome\/(39|40)\./.test(navigator.userAgent);

 if (isSafari || isOldAndroid || isChromeWithRangeBug) {
 PDFJS.disableRange = true;
 PDFJS.disableStream = true;
 }
})();

// Check if the browser supports manipulation of the history.
// Support: IE<10, Android<4.2
(function checkHistoryManipulation() {
 // Android 2.x has so buggy pushState support that it was removed in
 // Android 3.0 and restored as late as in Android 4.2.
 // Support: Android 2.x
 if (!history.pushState || navigator.userAgent.indexOf('Android 2.') >= 0) {
 PDFJS.disableHistory = true;
 }
})();

// Support: IE<11, Chrome<21, Android<4.4, Safari<6
(function checkSetPresenceInImageData() {
 // IE < 11 will use window.CanvasPixelArray which lacks set function.
 if (window.CanvasPixelArray) {
 if (typeof window.CanvasPixelArray.prototype.set !== 'function') {
 window.CanvasPixelArray.prototype.set = function(arr) {
 for (var i = 0, ii = this.length; i < ii; i++) {
 this[i] = arr[i];
 }
 };
 }
 } else {
 // Old Chrome and Android use an inaccessible CanvasPixelArray prototype.
 // Because we cannot feature detect it, we rely on user agent parsing.
 var polyfill = false, versionMatch;
 if (navigator.userAgent.indexOf('Chrom') >= 0) {
 versionMatch = navigator.userAgent.match(/Chrom(e|ium)\/([0-9]+)\./);
 // Chrome < 21 lacks the set function.
 polyfill = versionMatch && parseInt(versionMatch[2]) < 21;
 } else if (navigator.userAgent.indexOf('Android') >= 0) {
 // Android < 4.4 lacks the set function.
 // Android >= 4.4 will contain Chrome in the user agent,
 // thus pass the Chrome check above and not reach this block.
 polyfill = /Android\s[0-4][^\d]/g.test(navigator.userAgent);
 } else if (navigator.userAgent.indexOf('Safari') >= 0) {
 versionMatch = navigator.userAgent.
 match(/Version\/([0-9]+)\.([0-9]+)\.([0-9]+) Safari\//);
 // Safari < 6 lacks the set function.
 polyfill = versionMatch && parseInt(versionMatch[1]) < 6;
 }

 if (polyfill) {
 var contextPrototype = window.CanvasRenderingContext2D.prototype;
 var createImageData = contextPrototype.createImageData;
 contextPrototype.createImageData = function(w, h) {
 var imageData = createImageData.call(this, w, h);
 imageData.data.set = function(arr) {
 for (var i = 0, ii = this.length; i < ii; i++) {
 this[i] = arr[i];
 }
 };
 return imageData;
 };
 // this closure will be kept referenced, so clear its vars
 contextPrototype = null;
 }
 }
})();

// Support: IE<10, Android<4.0, iOS
(function checkRequestAnimationFrame() {
 function fakeRequestAnimationFrame(callback) {
 window.setTimeout(callback, 20);
 }

 var isIOS = /(iPad|iPhone|iPod)/g.test(navigator.userAgent);
 if (isIOS) {
 // requestAnimationFrame on iOS is broken, replacing with fake one.
 window.requestAnimationFrame = fakeRequestAnimationFrame;
 return;
 }
 if ('requestAnimationFrame' in window) {
 return;
 }
 window.requestAnimationFrame =
 window.mozRequestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 fakeRequestAnimationFrame;
})();

(function checkCanvasSizeLimitation() {
 var isIOS = /(iPad|iPhone|iPod)/g.test(navigator.userAgent);
 var isAndroid = /Android/g.test(navigator.userAgent);
 if (isIOS || isAndroid) {
 // 5MP
 PDFJS.maxCanvasPixels = 5242880;
 }
})();

// Disable fullscreen support for certain problematic configurations.
// Support: IE11+ (when embedded).
(function checkFullscreenSupport() {
 var isEmbeddedIE = (navigator.userAgent.indexOf('Trident') >= 0 &&
 window.parent !== window);
 if (isEmbeddedIE) {
 PDFJS.disableFullscreen = true;
 }
})();

// Provides document.currentScript support
// Support: IE, Chrome<29.
(function checkCurrentScript() {
 if ('currentScript' in document) {
 return;
 }
 Object.defineProperty(document, 'currentScript', {
 get: function () {
 var scripts = document.getElementsByTagName('script');
 return scripts[scripts.length - 1];
 },
 enumerable: true,
 configurable: true
 });
})();

bg5c.png

bg71.png

f23.otf

f33.otf

bg3c.png

f2b.otf

bg20.png

f4b.otf

bga8.png

bg80.png
~ Categones
24 Social (2)
¥ Promotions (1)
© Updates
" Forums

bg8e.png
(et R

Copying 2 items (1.64 Gi

from Toolsmiths\Toolsmiths to Toolsmiths\Toolsmiths

—

(%) More detail

Copying 2 items (1.64 GB)

Copying 2 items (164 Gf

Name: I6DAPodcastway
From: Toolsmiths Podcast 3 - Bloom_Recorded ..\Tool
To: Toolsmiths Podcast 3 - Bloom_ Recorded ..\Tool
Time remaining: About 10 Seconds

Items remaining: 2 (102 GB)

Speed: 158 MB/second

— J

(® Fewer detsits

bg1b.png

bg3f.png
@ %
-
)
R

bg8b.png
L)t LU L L L
e L0000
v A

bg93.png

f2c.otf

bg42.png
=/

fb.otf

bg55.png

f22.otf

bg54.png

pdf2htmlEX.min.js
(function(){/*
 pdf2htmlEX.js: Core UI functions for pdf2htmlEX
 Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com> and other contributors
 https://github.com/coolwanglu/pdf2htmlEX/blob/master/share/LICENSE
*/
var pdf2htmlEX=window.pdf2htmlEX=window.pdf2htmlEX||{},CSS_CLASS_NAMES={page_frame:"pf",page_content_box:"pc",page_data:"pi",background_image:"bi",link:"l",input_radio:"ir",__dummy__:"no comma"},DEFAULT_CONFIG={container_id:"page-container",sidebar_id:"sidebar",outline_id:"outline",loading_indicator_cls:"loading-indicator",preload_pages:3,render_timeout:100,scale_step:0.9,key_handler:!0,hashchange_handler:!0,view_history_handler:!0,__dummy__:"no comma"},EPS=1E-6;
function invert(a){var b=a[0]*a[3]-a[1]*a[2];return[a[3]/b,-a[1]/b,-a[2]/b,a[0]/b,(a[2]*a[5]-a[3]*a[4])/b,(a[1]*a[4]-a[0]*a[5])/b]}function transform(a,b){return[a[0]*b[0]+a[2]*b[1]+a[4],a[1]*b[0]+a[3]*b[1]+a[5]]}function get_page_number(a){return parseInt(a.getAttribute("data-page-no"),16)}function disable_dragstart(a){for(var b=0,c=a.length;b<c;++b)a[b].addEventListener("dragstart",function(){return!1},!1)}
function clone_and_extend_objs(a){for(var b={},c=0,e=arguments.length;c<e;++c){var h=arguments[c],d;for(d in h)h.hasOwnProperty(d)&&(b[d]=h[d])}return b}
function Page(a){if(a){this.shown=this.loaded=!1;this.page=a;this.num=get_page_number(a);this.original_height=a.clientHeight;this.original_width=a.clientWidth;var b=a.getElementsByClassName(CSS_CLASS_NAMES.page_content_box)[0];b&&(this.content_box=b,this.original_scale=this.cur_scale=this.original_height/b.clientHeight,this.page_data=JSON.parse(a.getElementsByClassName(CSS_CLASS_NAMES.page_data)[0].getAttribute("data-data")),this.ctm=this.page_data.ctm,this.ictm=invert(this.ctm),this.loaded=!0)}}
Page.prototype={hide:function(){this.loaded&&this.shown&&(this.content_box.classList.remove("opened"),this.shown=!1)},show:function(){this.loaded&&!this.shown&&(this.content_box.classList.add("opened"),this.shown=!0)},rescale:function(a){this.cur_scale=0===a?this.original_scale:a;this.loaded&&(a=this.content_box.style,a.msTransform=a.webkitTransform=a.transform="scale("+this.cur_scale.toFixed(3)+")");a=this.page.style;a.height=this.original_height*this.cur_scale+"px";a.width=this.original_width*this.cur_scale+
"px"},view_position:function(){var a=this.page,b=a.parentNode;return[b.scrollLeft-a.offsetLeft-a.clientLeft,b.scrollTop-a.offsetTop-a.clientTop]},height:function(){return this.page.clientHeight},width:function(){return this.page.clientWidth}};function Viewer(a){this.config=clone_and_extend_objs(DEFAULT_CONFIG,0<arguments.length?a:{});this.pages_loading=[];this.init_before_loading_content();var b=this;document.addEventListener("DOMContentLoaded",function(){b.init_after_loading_content()},!1)}
Viewer.prototype={scale:1,cur_page_idx:0,first_page_idx:0,init_before_loading_content:function(){this.pre_hide_pages()},initialize_radio_button:function(){for(var a=document.getElementsByClassName(CSS_CLASS_NAMES.input_radio),b=0;b<a.length;b++)a[b].addEventListener("click",function(){this.classList.toggle("checked")})},init_after_loading_content:function(){this.sidebar=document.getElementById(this.config.sidebar_id);this.outline=document.getElementById(this.config.outline_id);this.container=document.getElementById(this.config.container_id);
this.loading_indicator=document.getElementsByClassName(this.config.loading_indicator_cls)[0];for(var a=!0,b=this.outline.childNodes,c=0,e=b.length;c<e;++c)if("ul"===b[c].nodeName.toLowerCase()){a=!1;break}a||this.sidebar.classList.add("opened");this.find_pages();if(0!=this.pages.length){disable_dragstart(document.getElementsByClassName(CSS_CLASS_NAMES.background_image));this.config.key_handler&&this.register_key_handler();var h=this;this.config.hashchange_handler&&window.addEventListener("hashchange",
function(a){h.navigate_to_dest(document.location.hash.substring(1))},!1);this.config.view_history_handler&&window.addEventListener("popstate",function(a){a.state&&h.navigate_to_dest(a.state)},!1);this.container.addEventListener("scroll",function(){h.update_page_idx();h.schedule_render(!0)},!1);[this.container,this.outline].forEach(function(a){a.addEventListener("click",h.link_handler.bind(h),!1)});this.initialize_radio_button();this.render()}},find_pages:function(){for(var a=[],b={},c=this.container.childNodes,
e=0,h=c.length;e<h;++e){var d=c[e];d.nodeType===Node.ELEMENT_NODE&&d.classList.contains(CSS_CLASS_NAMES.page_frame)&&(d=new Page(d),a.push(d),b[d.num]=a.length-1)}this.pages=a;this.page_map=b},load_page:function(a,b,c){var e=this.pages;if(!(a>=e.length)&&(e=e[a],!e.loaded&&!this.pages_loading[a])){var e=e.page,h=e.getAttribute("data-page-url");if(h){this.pages_loading[a]=!0;var d=e.getElementsByClassName(this.config.loading_indicator_cls)[0];"undefined"===typeof d&&(d=this.loading_indicator.cloneNode(!0),
d.classList.add("active"),e.appendChild(d));var f=this,g=new XMLHttpRequest;g.open("GET",h,!0);g.onload=function(){if(200===g.status||0===g.status){var b=document.createElement("div");b.innerHTML=g.responseText;for(var d=null,b=b.childNodes,e=0,h=b.length;e<h;++e){var p=b[e];if(p.nodeType===Node.ELEMENT_NODE&&p.classList.contains(CSS_CLASS_NAMES.page_frame)){d=p;break}}b=f.pages[a];f.container.replaceChild(d,b.page);b=new Page(d);f.pages[a]=b;b.hide();b.rescale(f.scale);disable_dragstart(d.getElementsByClassName(CSS_CLASS_NAMES.background_image));
f.schedule_render(!1);c&&c(b)}delete f.pages_loading[a]};g.send(null)}void 0===b&&(b=this.config.preload_pages);0<--b&&(f=this,setTimeout(function(){f.load_page(a+1,b)},0))}},pre_hide_pages:function(){var a="@media screen{."+CSS_CLASS_NAMES.page_content_box+"{display:none;}}",b=document.createElement("style");b.styleSheet?b.styleSheet.cssText=a:b.appendChild(document.createTextNode(a));document.head.appendChild(b)},render:function(){for(var a=this.container,b=a.scrollTop,c=a.clientHeight,a=b-c,b=
b+c+c,c=this.pages,e=0,h=c.length;e<h;++e){var d=c[e],f=d.page,g=f.offsetTop+f.clientTop,f=g+f.clientHeight;g<=b&&f>=a?d.loaded?d.show():this.load_page(e):d.hide()}},update_page_idx:function(){var a=this.pages,b=a.length;if(!(2>b)){for(var c=this.container,e=c.scrollTop,c=e+c.clientHeight,h=-1,d=b,f=d-h;1<f;){var g=h+Math.floor(f/2),f=a[g].page;f.offsetTop+f.clientTop+f.clientHeight>=e?d=g:h=g;f=d-h}this.first_page_idx=d;for(var g=h=this.cur_page_idx,k=0;d<b;++d){var f=a[d].page,l=f.offsetTop+f.clientTop,
f=f.clientHeight;if(l>c)break;f=(Math.min(c,l+f)-Math.max(e,l))/f;if(d===h&&Math.abs(f-1)<=EPS){g=h;break}f>k&&(k=f,g=d)}this.cur_page_idx=g}},schedule_render:function(a){if(void 0!==this.render_timer){if(!a)return;clearTimeout(this.render_timer)}var b=this;this.render_timer=setTimeout(function(){delete b.render_timer;b.render()},this.config.render_timeout)},register_key_handler:function(){var a=this;window.addEventListener("DOMMouseScroll",function(b){if(b.ctrlKey){b.preventDefault();var c=a.container,
e=c.getBoundingClientRect(),c=[b.clientX-e.left-c.clientLeft,b.clientY-e.top-c.clientTop];a.rescale(Math.pow(a.config.scale_step,b.detail),!0,c)}},!1);window.addEventListener("keydown",function(b){var c=!1,e=b.ctrlKey||b.metaKey,h=b.altKey;switch(b.keyCode){case 61:case 107:case 187:e&&(a.rescale(1/a.config.scale_step,!0),c=!0);break;case 173:case 109:case 189:e&&(a.rescale(a.config.scale_step,!0),c=!0);break;case 48:e&&(a.rescale(0,!1),c=!0);break;case 33:h?a.scroll_to(a.cur_page_idx-1):a.container.scrollTop-=
a.container.clientHeight;c=!0;break;case 34:h?a.scroll_to(a.cur_page_idx+1):a.container.scrollTop+=a.container.clientHeight;c=!0;break;case 35:a.container.scrollTop=a.container.scrollHeight;c=!0;break;case 36:a.container.scrollTop=0,c=!0}c&&b.preventDefault()},!1)},rescale:function(a,b,c){var e=this.scale;this.scale=a=0===a?1:b?e*a:a;c||(c=[0,0]);b=this.container;c[0]+=b.scrollLeft;c[1]+=b.scrollTop;for(var h=this.pages,d=h.length,f=this.first_page_idx;f<d;++f){var g=h[f].page;if(g.offsetTop+g.clientTop>=
c[1])break}g=f-1;0>g&&(g=0);var g=h[g].page,k=g.clientWidth,f=g.clientHeight,l=g.offsetLeft+g.clientLeft,m=c[0]-l;0>m?m=0:m>k&&(m=k);k=g.offsetTop+g.clientTop;c=c[1]-k;0>c?c=0:c>f&&(c=f);for(f=0;f<d;++f)h[f].rescale(a);b.scrollLeft+=m/e*a+g.offsetLeft+g.clientLeft-m-l;b.scrollTop+=c/e*a+g.offsetTop+g.clientTop-c-k;this.schedule_render(!0)},fit_width:function(){var a=this.cur_page_idx;this.rescale(this.container.clientWidth/this.pages[a].width(),!0);this.scroll_to(a)},fit_height:function(){var a=this.cur_page_idx;
this.rescale(this.container.clientHeight/this.pages[a].height(),!0);this.scroll_to(a)},get_containing_page:function(a){for(;a;){if(a.nodeType===Node.ELEMENT_NODE&&a.classList.contains(CSS_CLASS_NAMES.page_frame)){a=get_page_number(a);var b=this.page_map;return a in b?this.pages[b[a]]:null}a=a.parentNode}return null},link_handler:function(a){var b=a.target,c=b.getAttribute("data-dest-detail");if(c){if(this.config.view_history_handler)try{var e=this.get_current_view_hash();window.history.replaceState(e,
"","#"+e);window.history.pushState(c,"","#"+c)}catch(h){}this.navigate_to_dest(c,this.get_containing_page(b));a.preventDefault()}},navigate_to_dest:function(a,b){try{var c=JSON.parse(a)}catch(e){return}if(c instanceof Array){var h=c[0],d=this.page_map;if(h in d){for(var f=d[h],h=this.pages[f],d=2,g=c.length;d<g;++d){var k=c[d];if(!(null===k||"number"===typeof k))return}for(;6>c.length;)c.push(null);var g=b||this.pages[this.cur_page_idx],d=g.view_position(),d=transform(g.ictm,[d[0],g.height()-d[1]]),
g=this.scale,l=[0,0],m=!0,k=!1,n=this.scale;switch(c[1]){case "XYZ":l=[null===c[2]?d[0]:c[2]*n,null===c[3]?d[1]:c[3]*n];g=c[4];if(null===g||0===g)g=this.scale;k=!0;break;case "Fit":case "FitB":l=[0,0];k=!0;break;case "FitH":case "FitBH":l=[0,null===c[2]?d[1]:c[2]*n];k=!0;break;case "FitV":case "FitBV":l=[null===c[2]?d[0]:c[2]*n,0];k=!0;break;case "FitR":l=[c[2]*n,c[5]*n],m=!1,k=!0}if(k){this.rescale(g,!1);var p=this,c=function(a){l=transform(a.ctm,l);m&&(l[1]=a.height()-l[1]);p.scroll_to(f,l)};h.loaded?
c(h):(this.load_page(f,void 0,c),this.scroll_to(f))}}}},scroll_to:function(a,b){var c=this.pages;if(!(0>a||a>=c.length)){c=c[a].view_position();void 0===b&&(b=[0,0]);var e=this.container;e.scrollLeft+=b[0]-c[0];e.scrollTop+=b[1]-c[1]}},get_current_view_hash:function(){var a=[],b=this.pages[this.cur_page_idx];a.push(b.num);a.push("XYZ");var c=b.view_position(),c=transform(b.ictm,[c[0],b.height()-c[1]]);a.push(c[0]/this.scale);a.push(c[1]/this.scale);a.push(this.scale);return JSON.stringify(a)}};
pdf2htmlEX.Viewer=Viewer;})();

f19.otf

bg8f.png

bg33.png
1] 2

(©] (€]

'

[©) [©)

bg76.png

f2f.otf

f3d.otf

f3a.otf

f38.otf

f25.otf

bg85.png
£7« o

bg3a.png

bg84.png
SNES N64 WII

bgb9.png
CRC Press e Saums

Suite 300, Boca

Taylor & Francis Group | 711 Third Avenue
an informa business New York, NY 10
2 Park Square, Milton Park
www.crcpress.com

Abingdon, Oxon OX14 4RN, UK

bg50.png
CERCE Socument Vird e
% ! 5 7]
4% [cattr Boap -1 | & A Aae e 29 | aapbcone| assbceo: AaBbCC
) o) < bcce ABBOCC (| 3 poce
P B L U-mox X A-¥-A- o i | hospie. Hesdingt (3| e
s ot Pl Cobnio) 1| K K% A -

TEare
R —

sets et

Tox
snin

@aE o o- [ro———— B

Its dangerous to go alonel Take this.

bg21.png

bg4f.png

bg81.png
Mesh| EditMesh Proxy Nommals Color

Combine o
Separate

Extract

Booleans

Smooth

Average ertices

Transfer Attributes

Paint Transfer Attrbutes Weights Tool
Transfer Shading Sets
Cipboard Actions

Reduce

Paint Reduce Weights Tool
Ceanup...

Triangulate:
Quadranguiate

il Hole

Make Hole Tool

Create Polygon Tool
Sculpt Geometry Tool
Mirror Cut

Mirror Geometry

bg65.png
T+ +++
+d++++
++++++
++++++
++++++

bg9f.png

f10.otf

f5.otf

f44.otf

f15.otf

bg25.png
WO @rewy (4]

(suondo yanu as7) 1209 uoug (] =
e e e)
onpe dep ewioN 01 H PPY]
o O) 1930 @
- suopdg MaiA G
8oedsi0j0) (O
@IURNQ || |08 g 0 zun
LLtle)
uea
EM N Agma @ Zzweau[d]
g9y paseig © CRE QU i (89y) aseq
i eeg) || 220 et
SXG
g0y sbeony O gty el TS P—TT e ELE S '
ey 2yt O acues y @ 901 s il (BN

Jopadsul @

20105 WbieH uonessust) b H

f41.otf

fe.otf

f3f.otf

bg6b.png

